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I. INTRODUCTION

Convolutional Neural Networks (CNNs) have recently been shown to significantly outperform the nearest neighbor approach coupled with the Dynamic Time Warping (DTW) algorithm (1NN-DTW) on the UCR archive benchmark [START_REF] Chen | The UCR Time Series Classification Archive[END_REF] for the Time Series Classification (TSC) problem [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF]. CNNs were not only able to beat the 1NN-DTW baseline, but they also reached results that are not significantly different than COTE [START_REF] Bagnall | Time-Series Classification with COTE: The Collective of Transformation-Based Ensembles[END_REF] -which is an ensemble of 37 classifiers. However, despite the high performance of these CNNs, deep learning models are still prone to overfitting. One example where these neural networks fail to generalize is when the training set of the time series dataset is very small. For example, while the accuracy of the Fully Convolutional Neural Networks (FCN) [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF] is 30% on the DiatomSizeReduction dataset (whose training set is the smallest in the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]), the 1NN-DTW classifier reaches 96% on the same dataset with the same train-test split [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]. We attribute this huge difference in accuracy to the overfitting phenomena, which is still an open area of research in the deep learning community [START_REF] Zhang | Understanding deep learning requires rethinking generalization[END_REF]. This problem is known to be mitigated using several techniques such as regularization, data augmentation or simply collecting more data [START_REF] Zhang | Understanding deep learning requires rethinking generalization[END_REF], [START_REF] Ismail Fawaz | Data augmentation using synthetic data for time series classification with deep residual networks[END_REF]. Another well-know technique is transfer learning [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF], where a model trained on a source task is then fine-tuned on a target dataset. For example in Fig. 1, we trained a model on the ElectricDevices dataset [START_REF] Chen | The UCR Time Series Classification Archive[END_REF] and then finetuned this same model on the OSULeaf dataset [START_REF] Chen | The UCR Time Series Classification Archive[END_REF], which significantly improved the network's generalization capability. Transfer learning is currently used in almost every deep learning model when the target dataset does not contain enough labeled data [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. Despite its recent success in computer vision [START_REF] Csurka | Domain Adaptation for Visual Applications: A Comprehensive Survey[END_REF], transfer learning has been rarely applied to deep learning models for time series data. One of the reasons for this absence is probably the lack of one big general purpose dataset similar to ImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] or OpenImages [START_REF] Krasin | OpenImages: A public dataset for large-scale multilabel and multi-class image classification[END_REF] but for time series. Furthermore, it is only recently that deep learning was proven to work well for TSC [START_REF] Cui | Multi-Scale Convolutional Neural Networks for Time Series Classification[END_REF] and there is still much to be explored in building deep neural networks for mining time series data [START_REF] Gamboa | Deep Learning for Time-Series Analysis[END_REF].

Since transferring deep learning models, between the UCR archive datasets [START_REF] Chen | The UCR Time Series Classification Archive[END_REF] (the largest benchmark currently available), have not been thoroughly studied, we decided to investigate this area of research with the ultimate goal to determine in advance which dataset transfers could benefit the CNNs and improve their TSC accuracy.

The intuition behind the transfer learning approach for time series data is also partially inspired by the observation of Cui et al. [START_REF] Cui | Multi-Scale Convolutional Neural Networks for Time Series Classification[END_REF], where the authors showed that shapelets [START_REF] Ye | Time Series Shapelets: A New Primitive for Data Mining[END_REF] (or subsequences) learned by the learning shapelets approach [START_REF] Grabocka | Learning Time-series Shapelets[END_REF] are related to the filters (or kernels) learned by the CNNs. We hypothesize that these learned subsequences might not be specific to one dataset and could occur in other unseen datasets with un/related classification tasks. Another observation for why transfer learning should work for time series data is its recent success in computer vision tasks [START_REF] Csurka | Domain Adaptation for Visual Applications: A Comprehensive Survey[END_REF]. Indeed, since time series data contain one temporal dimension (time) compared to two dimensions for images (width and height), it is only natural to think that if filters can successfully be transferred on images [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF], they should also be transferable across time series datasets.

To evaluate the potential of transfer learning for TSC, we performed experiments where each pair of datasets in the UCR archive was tested twice: we pre-trained a model for each dataset, then transferred and fine-tuned it on all the other datasets (a total of more than 7140 trained models). Fig. 2 illustrates the architecture of our proposed framework of transfer learning for TSC on two datasets. The obtained results show that time series do exhibit some low level features that could be used in a transfer learning approach. They also show that using transfer learning reduces the training time by reducing the number of epochs needed for the network to converge on the train set.

Motivated by the consensus that transferring models between similar datasets improves the classifier's accuracy [START_REF] Weiss | A survey of transfer learning[END_REF], we used the DTW algorithm as an inter-datasets similarity measure in order to quantify the relationship between the source and target datasets in our transfer learning framework. Our experiments show that DTW can be used to predict the best source dataset for a given target dataset. Our method can thus identify which datasets should be considered for transfer learning given a new TSC problem.

The rest of the paper is structured as follows, in Section II we review the existing work on deep and transfer learning for time series analysis. We then detail our proposed framework in Section III. In Section IV, we present the setups for our experimentations followed by the corresponding results and discussions in Section V. Finally, in Section VI, we conclude the work presented in this paper while proposing directions for future research.

II. BACKGROUND AND RELATED WORK

In this section, we start by giving a formal definition for the TSC problem. We then present some recent successful applications of deep neural networks for the TSC task. Finally, we give a summary of transfer learning and some of its applications for time series data mining problems. 

A. Time Series

Definition 2: A dataset D = {(X 1 , Y 1 ), . . . , (X N , Y N )} is a collection of pairs (X i , Y i )
where X i is a time series with Y i as its corresponding label (or class) vector.

The task of TSC consists in training a classifier on a dataset D in order to map from the space of possible inputs X i to a probability distribution over the class variable values Y i .

B. Deep learning for Time Series Classification

Since AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] won the ImageNet competition in 2012, deep learning has seen a lot of successful applications in many different domains [START_REF] Lecun | Deep learning[END_REF] such as reaching human level performance in image recognition problems [START_REF] Szegedy | Going deeper with convolutions[END_REF] as well as different natural language processing tasks [START_REF] Sutskever | Sequence to Sequence Learning with Neural Networks[END_REF], [START_REF] Bahdanau | Neural Machine Translation by Jointly Learning to Align and Translate[END_REF]. Motivated by this success of deep neural networks in many different domains, deep learning has been recently applied for the TSC problem [START_REF] Geng | Cost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification[END_REF], [START_REF] Le Guennec | Data Augmentation for Time Series Classification using Convolutional Neural Networks[END_REF].

In [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF], a three layers Fully Convolutional Neural Network has been designed for the TSC problem and validated on the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]. The FCN architecture contains convolutional layers without any sub-sampling layer, followed by a global average pooling layer before a traditional softmax classifier as the final layer. The network's architecture is presented in Fig. 3 and explained in details in Section III. Given that this network is currently the state of the art deep learning model for the TSC problem, we chose it as our main network for exploring transfer learning.

Other deep learning models have been also validated on the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF]. In [START_REF] Le Guennec | Data Augmentation for Time Series Classification using Convolutional Neural Networks[END_REF], a deep CNN was designed and trained from scratch to classify time series. In order to avoid the overfitting problem, the authors proposed different data augmentation techniques that warped and split the time series. In [START_REF] Geng | Cost-Sensitive Convolution based Neural Networks for Imbalanced Time-Series Classification[END_REF], the authors took the FCN model and modified the cost function in order to take into account the imbalanced classification of time series.

Outside the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF], deep learning has reached state of the art performance on several datasets in different domains [START_REF] Längkvist | A review of unsupervised feature learning and deep learning for time-series modeling[END_REF]. For spatio-temporal series forecasting problems, such as meteorology and oceanography, deep neural networks were proposed in [START_REF] Ziat | Spatio-Temporal Neural Networks for Space-Time Series Forecasting and Relations Discovery[END_REF]. For human activity recognition from wearable sensors, deep learning is replacing the feature engineering approaches [START_REF] Nweke | Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges[END_REF] where features are no longer hand-designed but rather learned by deep learning models trained through back-propagation. One other type of time series data is present in Electronic Health Records, where a recent generative adversarial network with a CNN [START_REF] Che | Boosting Deep Learning Risk Prediction with Generative Adversarial Networks for Electronic Health Records[END_REF] was trained for risk prediction based on patients historical medical records.

In short, deep learning is being applied to time series data with very successful results in several different domains. In fact, the convolutional neural network's ability to learn temporal invariant features is one of main the reasons behind its recent success, as well as the availability of big data across different domains [START_REF] Ismail Fawaz | Deep learning for time series classification: a review[END_REF].

Given the nature of time series data in many real-life applications, a question arises: Could the knowledge discovered in a certain dataset, be leveraged in order to boost the performance of deep neural networks on another completely unrelated time series dataset ?

C. Transfer learning for Time Series Classification

Before getting into the details of the recent applications for transfer learning, we give a formal definition of the latter [START_REF] Weiss | A survey of transfer learning[END_REF].

Definition 3: Transfer learning for deep neural networks, is the process of first training a base network on a source dataset and task, and then transfer the learned features (the network's weights) to a second network to be trained on a target dataset and task. Throughout this paper, we will refer to source dataset as the dataset we are transferring the pre-trained model from, and to target dataset as the dataset we are transferring the pre-trained model to.

Now that we have established the necessary definitions, we will dive into the recent applications of transfer learning for time series data mining tasks. In fact, transfer learning is sometimes confused with the domain adaptation approach [START_REF] Pan | A Survey on Transfer Learning[END_REF], [START_REF] Long | Learning Transferable Features with Deep Adaptation Networks[END_REF]. The main difference with the latter method is that the model is jointly trained on the source and target datasets [START_REF] Weiss | A survey of transfer learning[END_REF]. The goal of using the target instances during training, is to minimize the discrepancy between the source's and target's instances. In [START_REF] Arief-Ang | DA-HOC: Semisupervised Domain Adaptation for Room Occupancy Prediction Using CO2 Sensor Data[END_REF], a domain adaptation approach was proposed to predict human indoor occupancy based on the carbon dioxide concentration in the room. In [START_REF] Kasteren | Recognizing activities in multiple contexts using transfer learning[END_REF], hidden Markov models' generative capabilities were used in a domain adaptation approach to recognize human activities based on a sensor network.

For time series anomaly detection, a transfer learning approach was used to determine which time series should be transferred from the source to the target dataset to be used with a 1-NN DTW classifier [START_REF] Vercruyssen | Transfer Learning for Time Series Anomaly Detection[END_REF]. Similarly, in [START_REF] Spiegel | Transfer Learning for Time Series Classification in Dissimilarity Spaces[END_REF] the authors developed a method to transfer specific training examples from the source dataset to the target dataset and hence compute the dissimilarity matrix using the new training set. As for time series forecasting, a transfer learning approach for an auto-encoder was employed to predict the wind-speed in a farm [START_REF] Hu | Transfer learning for short-term wind speed prediction with deep neural networks[END_REF]. The authors proposed first to train a model on the historical wind-speed data of an old farm and fine-tune it using the data of a new farm. In [START_REF] Banerjee | A Deep Transfer Learning Approach for Improved Post-Traumatic Stress Disorder Diagnosis[END_REF] restricted Boltzmann machines were first pre-trained for acoustic phoneme recognition and then fine-tuned for post-traumatic stress disorder diagnosis.

Perhaps the recent work in [START_REF] Serrà | Towards a universal neural network encoder for time series[END_REF] is the closest to ours in terms of using transfer learning to improve the accuracy of deep neural networks for TSC. In this work, the authors designed a CNN with an attention mechanism to encode the time series in a supervised manner. Before fine-tuning a model on a target dataset, the model is first jointly pre-trained on several source datasets with themes [START_REF] Bagnall | The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[END_REF] that are different from the target dataset's theme which limits the choice of the source dataset to only one. Additionally, unlike [START_REF] Serrà | Towards a universal neural network encoder for time series[END_REF], we take a pre-designed deep learning model without modifying it nor adding regularizers. This enabled us to solely attribute the improvement in accuracy to the transfer learning feature, which we describe in details in the following section.

III. METHOD

In this section, we present our proposed method of transfer learning for TSC. We first introduce the adopted neural network architecture from [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF]. We then thoroughly explain how we adapted the network for the transfer learning process. Finally, we present our DTW based method that enabled us to compute the inter-datasets similarities, which we later use to guide the transfer learning process.

A. Architecture

The network architecture which we have selected for the transfer learning approach, is a one dimensional Fully Convolutional Neural Network [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF] (FCN). Note that our transfer learning method is independent of the chosen network architecture, and that we have chosen this latter architecture for its robustness as it has already achieved state of the art results on 44 datasets from the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF].

The input of the network is a time series of variable length. The network's output is a probability distribution over the C possible classes in the dataset. The first, second and third layers are convolutional layers with the Rectified Linear Unit (ReLU) as activation function. Each convolutional layer is followed by a batch normalization operation [START_REF] Ioffe | Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift[END_REF]. More precisely, the first convolutional layer is composed of 128 filters of length 8. The second convolution is composed of 256 filters of length 5. The last convolutional layer contains 128 filters of length 3 and the three convolutions have a stride equal to 1.

Each convolutional layer takes as input a time series and perform some non-linearities to transform it into a multivariate time series whose dimensions are inferred from the number of filters in each layer. The fourth layer is composed of a global average pooling operation which takes the input of the third convolution and averages each time series over the time axis. This averaging operation reduces drastically the number of parameters in a deep model while enabling the use of a class activation map [START_REF] Zhou | Learning Deep Features for Discriminative Localization[END_REF] which allows an interpretation of the learned features [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF]. The output of layer four is then fed to a softmax classification layer whose number of neurons is I.

Similarly to the hyperparameters, the architecture depicted in Fig. 3 is exactly identical to the architecture proposed in [START_REF] Wang | Time series classification from scratch with deep neural networks: A strong baseline[END_REF]. This enabled us to solely test the effect of transfer learning when fitting a deep learning model for the TSC task. We should also note that for fine-tuning and training from scratch, we are using the same network architecture with the same hyper-parameters, except for the last fully-connected layer whose adaptation is explained in the following subsection.

B. Network adaptation

After training the previously described network on the 85 datasets in the archive, we obtain 85 different neural networks. The only difference between these 85 neural network architectures lies in the output layer. The rest of the layers have the same number of parameters but with different values. In fact the last layer, which is a softmax classifier, depends on the number of classes in the dataset.

Thus, given a source dataset D s and a target dataset D t , we first train the network on D s . We then remove the last layer and replace it with another softmax layer whose number of neurons is equal to the number of classes in the target dataset D t . The added softmax layer's parameters are initialized randomly using Glorot's uniform initialization [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. This new network is then re-trained (fine-tuned) on D t .

We chose to fine-tune the whole network instead of training only the last newly added output layer. We tried to limit backpropagating the gradient to the last layer, but found that the network failed to converge. This is in compliance with the transfer learning literature [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF], where re-training the whole network almost always leads to better results.

Finally, we should add that one of the advantages of using a global average pooling layer is that we do not need to re-scale the input time series when transferring models between time series of different length.

C. Inter-datasets similarity

One of the main challenges with transfer learning is choosing the source dataset. In [START_REF] Pan | Transfer Learning to Predict Missing Ratings via Heterogeneous User Feedbacks[END_REF], it was demonstrated that a learning algorithm trained with a certain source domain will not yield an optimal performance if the marginal distributions of the datasets' input are different. In our case, the total number of datasets in the UCR archive is 85. Therefore for each target dataset in the archive, we have 84 potential source datasets. This makes the trial and error based approach for transfer learning very costly in terms of computational resources. Hence, we propose to use the DTW distance to compute the similarities between the datasets, thus guiding the choice of a source dataset for a given target dataset. Note that it is practically impossible to directly estimate the performance of a model learned on a source dataset by applying it on a target dataset's train set since the last layer of the network is specific [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF] to the classes of the source dataset.

In order to compute the similarities between the datasets, we first reduce the number of time series for each dataset to one time series (or prototype) per class. The per class prototype is computed by averaging the set of time series in the corresponding class. We used the well-known DTW Barycenter Averaging (DBA) method to the average a set of time series [START_REF] Petitjean | Summarizing a set of time series by averaging: From steiner sequence to compact multiple alignment[END_REF]. The latter summarizing function was proposed and validated as an averaging method in the DTW induced space. In addition, DBA has been recently used as a data reduction technique where it was evaluated in a nearest centroid classification schema [START_REF] Petitjean | Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification[END_REF]. Therefore, to generate the similarity matrix between the UCR datasets, we computed a distance between each pair of datasets. Finally, for simplicity and since the main goal of this paper is not the inter-datasets similarity, we chose the distance between two datasets to be equal to the minimum distance between the prototypes of their corresponding classes.

Algorithm 1 shows the different steps followed to compute the distance matrix between the UCR datasets. The first part of the algorithm (lines 1 through 7) presents the data reduction technique similar to [START_REF] Petitjean | Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification[END_REF]. For the latter step, we first go through the classes of each dataset (lines 1, 2 and 3) and then average the set of time series for each class. Following the recommendations in [START_REF] Petitjean | Dynamic Time Warping Averaging of Time Series Allows Faster and More Accurate Classification[END_REF], the averaging method (DBA) was initialized to be equal to the medoid of the time series selected set (line 4). We fixed the number of iterations for the DBA algorithm to be equal to 10, for which the averaging method has been shown to converge [START_REF] Petitjean | A global averaging method for dynamic time warping, with applications to clustering[END_REF].

After having reduced the different sets for each time series dataset, we proceed to the actual distance computation step (lines 8 through 22). From line 8 to 10, we loop through every possible combination of datasets pairs. Lines 13 and 14 show the loop through each class for each dataset (at this stage each class is represented by one average time series thanks to the data reduction steps). Finally, lines 15 through 19 set the distance between two datasets to be equal to the minimum DTW distance between their corresponding classes.

One final note is that when computing the similarity between the datasets, the only time series data we used came from the training set, thus eliminating any bias due to having seen the test set's distribution.

IV. EXPERIMENTAL SETUP A. Datasets

We evaluate our developed framework thoroughly on the largest publicly available benchmark for time series analysis: the UCR archive [START_REF] Chen | The UCR Time Series Classification Archive[END_REF], which consists of 85 datasets selected from various real-world domains. The time series in the archive are already z-normalized to have a mean equal to zero and a standard deviation equal to one. During the experiments, we used the default training and testing set splits provided by UCR. For pre-training a model, we used only the train set of the source dataset. We also fine-tuned the pre-trained model solely on the target dataset's training data. Hence the test sets were only used for evaluation purposes.

B. Experiments

For each pair of datasets (D 1 and D 2 ) in the UCR archive we need to perform two experiments:

• D 1 is the source dataset and D 2 is the target dataset.

• D 1 is the target dataset and D 2 is the source dataset. Which makes it in total 7140 experiments for the 85 dataset in the archive. Hence, given the huge number of models that need to be trained, we ran our experiments on a cluster of 60 GPUs. These GPUs were a mix of three types of Nvidia graphic cards: GTX 1080 Ti, Tesla K20, K40 and K80. The total sequential running time was approximately 168 days, that is if the computation has been done on a single GPU. But by leveraging the cluster of 60 GPUs, we managed to obtain the for c i = 1 to length(C i ) do 14: 

for c j = 1 to length(C j ) do 15: cdist = DT W (C i [c i ], C j [c j ]) 16: dist = minimum(dist, cdist
M [i, j] = dist 20:
end for 21: end for 22: return M results in less than one week. We implemented our framework using the open source deep learning library Keras [START_REF] Chollet | Keras[END_REF] with the Tensorflow [START_REF] Abadi | TensorFlow: A System for Largescale Machine Learning[END_REF] back-end. For reproducibility purposes, we provide the 7140 trained Keras models (in a HDF5 format) on the companion web page of the paper1 . We have also published the raw results and the full source code of our method to enable the time series community to verify and build upon our findings 2 .

V. RESULTS

The experiments described in the previous section yielded interesting yet hard-to-understand results. In this section, we first present the result of the 85×84 experiments in a form of a matrix (displayed as a heat map in Fig. 4). We then empirically show how choosing the wrong source dataset for a given target dataset could decrease the network's performance. Therefore, we provide a DTW based solution to choose the best source dataset for a given target dataset. Finally, we detail a few interesting case studies where the behavior of the proposed method has a significant impact on the transfered model's accuracy. 4: The variation in percentage over the original accuracy when fine tuning a pre-trained model. The rows' indexes correspond to the source datasets and the columns' indexes correspond to the target datasets. The red color shows the extreme case where the chosen pair of datasets (source and target) deteriorates the network's performance. Where on the other hand, the blue color identifies the improvement in accuracy when transferring the model from a certain source dataset and fine-tuning on another target dataset. The white color means that no change in accuracy has been identified when using the transfer learning method for two datasets. The matrix actually has a size of 85 × 85 (instead of 85 × 84) for visual clarity with its diagonal left out of the analysis. (Best viewed in color).

A. Transfer learning accuracy variation matrix

In order to have a fair comparison across the datasets, we illustrate the variation in the transferred model's accuracy based on the percentage of variation compared to the original accuracy (without transfer learning). For example, consider the original accuracy (equal to 74.6%) when training the neural network from scratch on the target dataset HandOutlines. Then instead of training the model from scratch (with random initializations) we obtain a 86.5% accuracy when initializing the network's weights to be equal to the weights of a pretrained network on the source dataset MedicalImages. Hence, the percentage of accuracy variation with respect to the original value is equal to 100 × (86.5 -74.6)/74.6 ≈ +16%. Thus negative values (red in Fig. 4) indicate a decrease in performance when using the transfer learning approach. Whereas, a positive percentage (blue in Fig. 4) indicates an increase in performance when fine-tuning a pre-trained model.

When observing the heat map in Fig. 4, one can easily see that fine-tuning a pre-trained model almost never hurts the performance of the CNN. This can be seen by the dominance of the white color in the heat map, which corresponds to almost no variation in accuracy.

On the other hand, the results which we found interesting are the two extreme cases (red and blue) where the use of transfer learning led to high variations in accuracy. Interestingly for a given target dataset, the choice of source dataset could deteriorate or improve the CNN's performance as we will see in the following subsection.

B. Naive transfer learning

While observing the heat map in Fig. 4, we can easily see that certain target datasets (columns) exhibit a high variance of accuracy improvements when varying the source datasets. Therefore, to visualize the worst and best case scenarios when fine-tuning a model against training from scratch, we plotted in Fig. 5 a pairwise comparison of three aggregated accuracies {minimum, median, maximum}.

For each target dataset D t , we took its accuracy among the source datasets and plot it against the model's accuracy when trained from scratch. This corresponds to the red dots in Fig. 5. By taking the minimum, we illustrate how one can always find a bad source dataset for a given target dataset and decrease the model's original accuracy when finetuning a pre-trained network.

On the other hand, the maximum accuracy (blue dots in Fig. 5) shows that there is also always a case where a source dataset increases the accuracy when using the transfer learning approach.

As for the median (yellow dots in Fig. 5), it shows that on average, pre-training and then fine-tuning a model on a target dataset improves without significantly hurting the model's performance.

One extreme case, where the choice of the source dataset had a huge impact on the model's accuracy, is the OliveOil dataset. Precisely the accuracy decreased from 93.3% to 16.7% when choosing respectively MALLAT and FaceFour as source datasets. This analysis showed us that blindly and naively using the transfer learning approach could drastically decrease the model's performance. Actually, this is largely due to the fact that the initial weights of the network have a significant impact on the training [START_REF] Glorot | Understanding the difficulty of training deep feedforward neural networks[END_REF]. This problem has been identified as negative transfer learning in the literature, where there still exists a need to quantify the amount of relatedness between the source and target datasets and whether an attempt to transfer knowledge from the source to the target domain should be made [START_REF] Weiss | A survey of transfer learning[END_REF]. Therefore in the following subsection, we show how our similarity based solution can quantify this relatedness between the source and the target, thus enabling us to predict the best source dataset for a given target dataset.

C. Smart transfer learning

In order to know in advance which source dataset is suited for which target dataset, we propose to leverage the similarity between two datasets. Our method is designed specifically for time series data without any previous domain knowledge about the datasets. Using the method we described in Section III, we managed to compute a nearest neighbor for a target dataset and set this nearest neighbor to be the chosen source dataset for the current target dataset in question.

The results showed that this proposed DTW based method will help in achieving what is called positive transfer [START_REF] Weiss | A survey of transfer learning[END_REF]. As opposed to negative transfer, positive transfer learning means that the learning algorithm's accuracy increases when finetuning a pre-trained model compared to a training from scratch approach [START_REF] Weiss | A survey of transfer learning[END_REF].

Fig. 6 shows a pairwise accuracy plot for two approaches: a random selection process of the source dataset against a "smart" selection of the source dataset using a nearest neighbor algorithm with the distance calculated in algorithm 1. In order to reduce the bias due to the random seed, the accuracy for the random selection approach was averaged over 1000 iterations. This plot shows that on average, choosing the most similar dataset using our method is significantly better than a random selection approach (with p < 10 -7 for the Wilcoxon signed-rank test). Respectively our method wins, ties and loses on 71, 0 and 14 datasets against randomly choosing the source dataset. We should also note that for the two datasets DiatomSizeReduction and Wine, the nearest neighbor is not always the best choice. Actually, we found that the second nearest neighbor increases drastically the accuracy from 3.3% to 46.7% for DiatomSizeReduction and from 51.9% to 77.8% for Wine (see the 2 nd NN dots in Fig. 6). This means that certain improvements could be incorporated to our inter-datasets similarity calculation such as adding a warping window [START_REF] Dau | Judicious setting of dynamic time warping's window width allows more accurate classification of time series[END_REF] or changing the number of prototypes for each class which we aim to study in our future work. Fig. 6: The accuracy of a fine-tuned model for two cases: (x axis) when the source dataset is selected randomly; (y axis) when the source dataset is selected using our Dynamic Time Warping based solution.

Therefore, since in Fig. 6 the most similar dataset is the only one that is considered as a potential source for a given target, another interesting study would be to analyze the accuracy on a given target dataset as a function of how dissimilar the source dataset is. However due to the huge number of datasets in the UCR archive compared to the space limitation, we chose to only study the most interesting cases where the results can be visually interpreted. The analysis for the whole 85 datasets is however included in the companion web page.

D. Interesting case studies

In this final analysis we chose to work with three interesting target datasets: ShapeletSim, HandOutlines and Meat. These datasets were chosen for different reasons such as the small size of the training set, the relatedness to shapelets and the transfer learning's accuracy variation.

ShapeletSim contains one of the smallest training sets in the UCR archive (with 20 training instances). Additionally, this dataset is a simulated dataset designed specifically for shapelets which makes it interesting to see how well CNNs can fine-tune (pre-learned) shapelets [START_REF] Cui | Multi-Scale Convolutional Neural Networks for Time Series Classification[END_REF] when varying the source dataset. Fig. 7 shows how the model's accuracy decreases as we go further from the target dataset. Precisely the average accuracy for the top 3 neighbors reaches 93% compared to the original accuracy of 76%. Actually, we found that the closest dataset to ShapeletSim is the RefrigerationDevices dataset which contains readings from 251 households with the task to identify three classes: Fridge, Refrigerator and Upright Freezer. This is very interesting since using other background knowledge one cannot easily predict that using RefrigerationDevices as a source for ShapeletSim will lead to better accuracy improvement. To understand better this source/target association, we investigated the shapes of the time series of each dataset and found that both datasets exhibit very similar spiky subsequences which is likely the cause for the transfer learning to work between these two datasets. HandOutlines is one of the datasets where fine-tuning a pre-trained model almost never improves the accuracy. Unlike ShapeletSim, this dataset contains enough labeled data for the learning algorithm to learn from (with 1000 time series in the training set). Surprisingly, we found that one could drastically increase the model's performance when choosing the best source dataset. Fig. 8 shows a huge difference (10%) between the model's accuracy when fine-tuned using the most similar source dataset and the accuracy when choosing the most dissimilar source dataset. HandOutlines is a classification problem that uses the outlines extracted from hand images. We found that the two most similar datasets (50words and WordsSynonyms) that yielded high accuracy improvements, are also words' outlines extracted from images of George Washington's manuscripts. Meat is one of the smallest datasets (with 20 training instances) where the transfer learning approach was almost always beneficial. However, we would like to examine the possibility of improving the accuracy even for the case where the transfer learning seems to be positive [START_REF] Weiss | A survey of transfer learning[END_REF] for any choice of source dataset. Fig. 9 shows that the accuracy reaches almost 95% for the top 3 closest datasets and then decrease the less similar the source and target datasets are. While investigating these similarities, we found the top 1 and 3 datasets to be respectively Strawberry and Beef which are all considered spectrograph datasets [START_REF] Bagnall | The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances[END_REF]. As for the second most similar dataset, our method determined it was 50words. Given the huge number of classes (fifty) in 50words our method managed to find some latent similarity between the two datasets which helped in improving the accuracy of the transfer learning process.

VI. CONCLUSION

In this paper, we investigated the transfer learning approach on a state of the art deep learning model for TSC problems. Our extensive experiments with every possible combination of source and target datasets in the UCR archive, were evidence that the choice of the source dataset could have a significant impact on the model's generalization capabilities. Precisely when choosing a bad source dataset for a given target dataset, the optimization algorithm can be stuck in a local optimum. This phenomena has been identified in the transfer learning literature by negative transfer learning which is still an active area of research [START_REF] Weiss | A survey of transfer learning[END_REF]. Thus, when deploying a transfer learning approach, the big data practitioner should give attention to the relationship between the target and the chosen source domains.

These observations motivated us to examine the use of the well known time series similarity measure DTW, to predict the choice of the source dataset when fine-tuning a model on a time series target dataset. After applying this transfer learning guidance, we concluded that transferring deep CNNs on a target dataset works best when fine-tuning a network that was pre-trained on a similar source dataset. These findings are very interesting since no previous observation made the link between the space induced by the classic DTW and the features learned by the Convolutional Neural Networks.

Our results should motivate the big data practitioners to no longer train models from scratch when classifying time series, but instead to fine-tune pre-trained models. Especially because CNNs, if designed properly, can be adapted across different time series datasets with varying length.

In our future work, we aim again to reduce the deep neural network's overfitting phenomena by generating synthetic data using a Weighted DTW Barycenter Averaging method [START_REF] Forestier | Generating Synthetic Time Series to Augment Sparse Datasets[END_REF], since the latter distance gave encouraging results in guiding a complex deep learning tool such as transfer learning.

Finally, with big data repositories becoming more frequent, leveraging existing source datasets that are similar to, but not exactly the same as a target dataset of interest, makes a transfer learning method an enticing approach.
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 1 Fig. 1: Evolution of model's loss (train and test) with and without the transfer learning method using ElectricDevices as source and OSULeaf as target datasets. (Best viewed in color).

Fig. 3 :

 3 Fig.3: Architecture of the one dimensional Fully Convolutional Neural Network adopted for our transfer learning process. The input to the network is a time series of variable length. The output layer is a softmax fully-connected classifier with C neurons equal to the number of classes in the dataset. (Best viewed in color).

Algorithm 1 4 :

 14 Inter-datasets similarity Input: N time series datasets in an array D Output: N × N datasets similarity matrix Initialization : matrix M of size N × N data reduction step 1: for i = 1 to N do 2: C = D[i].classes 3: for c = 1 to length(C) do avg init = medoid(C[c]) 5: C[c] = DBA(C[c], avg init)

  )

Fig.

  Fig.4: The variation in percentage over the original accuracy when fine tuning a pre-trained model. The rows' indexes correspond to the source datasets and the columns' indexes correspond to the target datasets. The red color shows the extreme case where the chosen pair of datasets (source and target) deteriorates the network's performance. Where on the other hand, the blue color identifies the improvement in accuracy when transferring the model from a certain source dataset and fine-tuning on another target dataset. The white color means that no change in accuracy has been identified when using the transfer learning method for two datasets. The matrix actually has a size of 85 × 85 (instead of 85 × 84) for visual clarity with its diagonal left out of the analysis. (Best viewed in color).

Fig. 5 :

 5 Fig.5: The three aggregated accuracies (minimum, median and maximum) of the Convolutional Neural Networks with the transfer learning approach against no transfer learning.

Fig. 7 :

 7 Fig.7: The fine-tuned model's accuracy variation on the target dataset ShapeletSim with respect to the chosen source dataset neighbor (smoothed for visual clarity -best viewed in color).

Fig. 8 :

 8 Fig. 8: The fine-tuned model's accuracy variation on the target dataset HandOutlines with respect to the chosen source dataset neighbor (smoothed for visual clarity -best viewed in color).

Fig. 9 :

 9 Fig.9: The fine-tuned model's accuracy variation on the target dataset Meat with respect to the chosen source dataset neighbor (smoothed for visual clarity -best viewed in color).

  ClassificationDefinition 1: A time series X = [x 1 , x 2 , ...x T ] is an ordered set of real values. The length of X is equal to the number of real values T .

	Original task	copy	Target task
	transferred model		fine-tuned model
	Car	CBF	
	source dataset	target dataset	
	Fig. 2: General deep learning training process with transfer
	learning for time series classification. In this example, a
	model is first pre-trained on Car (source dataset) and then the
	corresponding weights are fine-tuned on CBF (target dataset).

TABLE I :

 I Table showing the same hyperparameters for both approaches: with or without transfer learning.

http://germain-forestier.info/src/bigdata2018/
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