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Abstract—Glaucoma is the second leading cause of blindness
in the world. Although its physiopathology remains unclear, the
lamina cribrosa, a 3D mesh-like structure consisting of pores,
that allow the axons passing through to join the brain, has been
identified as the primary site of damage. In this work we present
an extended version of U-Net for pore segmentation in 2D en-
face OCT images with partial point annotations, i.e. having only
a small portion of pore locations in each image labeled. Our
method combines the attention gate and the context information
to address the difficulties caused by small object segmentation in
low signal to noise ratio images. Experimental results show that
71.8% of the annotated pores are successfully segmented.

Index Terms—Optical coherence tomography, lamina cribrosa,
pore segmentation, U-Net, attention mechanism

I. INTRODUCTION

The lamina cribrosa (LC), a 3D mesh-like structure in the
optic nerve head (ONH), has been identified as the primary
site of damage in glaucoma [1], the second leading cause of
blindness in the world. The LC is composed of pores (i.e.
axonal pathways, Fig. 1) through which the retinal axons pass
to reach the brain [2], and morphological changes in pores, like
increase in surface area and elongation, have been observed
in glaucoma patients [3]. In-vivo observation of LC pores is
now possible thanks to recent advances in optical coherence
tomography (OCT) technology and our research project aims
to characterize the LC pores in glaucoma as well as the subtle
changes occurring during the disease.

Fig. 1: 3D OCT data. En-face images (right) are extracted
from 3D OCT slices (left). The X axis represents the depth in
the ONH. Dark spots in the en-face images correspond to the
pores of the LC.

Fig. 2: Appearance variability of the en-face images of the
LC. Pores vary in their shape, size, and location, thus they
are difficult to be segmented, especially along with various
artifacts shown in red arrows.

Prior in-vivo LC studies mainly focused on the total LC
thickness [4], LC surface [5], and the anterior boundary of
the LC [6], while only two methods have been proposed to
investigate into the LC pore structure. Authors in [7] used
the local thresholding technique and the 3D median filter to
segment pores in 2D en-face images extracted from a 3D OCT
volume. This method only operates on one 2D en-face image
at a time, running the risk of not fully using the rich continuity
information from the consecutive slices. In [8], pore candidates
were selected as the local minima with the highest contrast in
locally averaged 2D en-face images and axonal pathways were
reconstructed from these points thanks to a tracking algorithm.
However the pore detection step is not reliable, since pore
features are not enough taken into account. Moreover both
methods require a manual delineation of peripheral masks for
the most contrasted en-face images in order to only process the
highly identifiable regions, and such manual delineation would
be time-consuming and less practical with larger datasets.

Recently, deep learning methods, especially the U-Net net-
work [9] and its variants [10], have shown success in analyzing
the LC in OCT volumes. For example, authors in [11] pro-
posed a 3D U-Net-based network to segment the ONH tissues
and thus to measure the LC thickness. Moreover, deep learning
has shown its capacity to accurately segment small retinal fluid
regions [12], [13] in OCT images with U-Net-based methods,
despite a small dataset. Thus it is promising that U-Net variants
could perform well for the pore segmentation task.

However, the above methods are developed in a fully
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Fig. 3: (a) incomplete pore annotation. Each identified pore
is marked with a point on the associated en-face image,
by observing the continuity of local regions in consecutive
images and checking the contrast. (b) pre-processed image
with morphological filters to enhance pore features. (c) region
growing on image (b) to produce the incomplete ground truth
segmentation map.

supervised manner, which requires a large amount of data with
pixel-level annotations. Obtaining such ground truth data is
unrealistic for the pore segmentation as the pore contours are
not very clear and there exists the ambiguity even between
the experts, in addition, small size and hundreds of pores in
an image make it difficult to have pixel-accurate annotation.
It is thus challenging to segment the pores of the LC with
the limited availability of pixel-level annotation data. As a
result, the weakly supervised point annotation [14] is the most
efficient for the pore segmentation task, since other methods
like the the bounding boxes [15] or scribbles [16] are not
suitable under dense pore intensities.

In this paper, we propose a baseline automatic LC pore
segmentation model, which is, to our knowledge, the first
attempt to look into this difficult problem with deep learning
methods. This work is inspired from [7], [8], where the
supervision of a human observer is required to reach the
accuracy necessary for the medical application. Our goal is to
get an accurate pore segmentation in every 2D en-face images,
reliable enough to allow a future automatic 3D reconstruction
of the axonal pathways [17].

II. DATASET

Our study population includes 17 subjects with 41 3D OCT
volumes. Multiple volumes may correspond to the same eye
of one patient for longitudinal studies. All OCT volumes were
validated by an expert to guarantee that only patients with
larger pores are recruited for the feasibility of the work, since it
is difficult for some glaucoma patients to fix their sight during
the examination. Volumes are acquired with the spectral-
domain OCT machine (Spectralis, Heidelberg Engineering),

where each acquisition centered on the ONH contains 131
2D OCT slices (Fig. 1). The theoretical transverse and axial
resolutions for such a 2D slice of 496× 768 pixels are about
7µm and 4µm respectively, the sampling step between two
consecutive slices approaching 15µm.

En-face images are extracted from the 3D OCT volume (Fig.
1) with a resolution of 131 × 768 pixels, and the pores were
partially annotated by 2 engineers, who retained only those
that show continuity in the volume and great contrast; the
selected pores were marked by a single coordinate point close
to the centroid (Fig. 3a). The objective of the annotation is
to identify the largest pores that allow most axons to pass
through since exhaustively segmenting all the pores is difficult,
especially in regions with vessel shadows or scanning artifacts
(Fig. 2). Finally, our dataset of 41 OCT volumes consists of
2101 en-face images, with an average of 8.78 ± 4.75 axonal
pathways manually identified in each volume, therefore a small
proportion of the totality of existing pores.

III. SEGMENTATION WITH PARTIAL POINTS ANNOTATION

Pore feature enhancement. The gray level intensity of
the en-face images (Fig. 2a) was coded to [0, 1] by linear
normalization. Since pores in the en-face images are weakly
contrasted with the surrounding tissues, we applied the fol-
lowing morphological filters [8] to enhance the pore features:

• Bottom-hat filter, and the complement denoted as IBH ,
with a structuring element D3. The objective of this
filter is to enhance the contrast and leave dark areas
of the image that are smaller than the structuring element.

IBH = 1− (I •D3 − I) (1)

• Alternate Sequential Filter, denoted as IASF , defined
by a sequence of closings and openings with increasing
size of the structuring element Di (up to i = 3), with
morphological reconstruction by dilation or erosion at
each step i. This filter aims at denoising, while retaining
the main dark structures.

Iopen = RD
I
(i−1)
fas

(I
(i−1)
fas ◦Di), with init. I0fas = I (2)

I
(i)
fas = REIopen(Iopen •Di) (3)

IFAS = 1−min(max(I3fas − I, 0), 1) (4)

where ◦, and • denote the opening and closing operations, and
both are built by using a binary structuring element with a disc
of radius r, denoted as Dr. RDM (I), REM (I) are respectively
the morphological reconstruction by dilation and by erosion
of the image I in the mask M . Such reconstruction repeats
dilation or erosion operation of the image I , until the contour
of I fits under the mask M . The pre-processed image Io(X)
in (5) is shown in Fig. 2b, and we take α = 0.5 to trade-off
between the 2 filters to denoise and retain main pores.

Io = α · IBH(X) + (1− α) · IFAS(X) (5)



Ground truth generation. The points marking the pore
centroids and manually defined in the annotation phase could
not be directly used for training since they represent only
several pixels and there are too many false negatives in the
image. To this end, a region growing algorithm was applied
on Io to generate the ground truth segmentation maps (GT ,
Fig. 2c): we used the partial points as seeds and we applied a
region-growing algorithm to get a segmentation. The similarity
criterion is the L1 distance (DIST ) between an unallocated
pixel’s intensity value and the mean intensity of the current
region. Among the 8-connectivity neighbors, the pixel with the
smallest DIST is allocated to the region if DIST is less than
a given threshold DISTth = 0.04; the growing process stops
when DIST becomes larger than DISTth for all neighbors.
A small threshold is used to avoid over-segmentation since
some pore boundaries are barely identifiable.

Proposed Network. U-Nets [9] have been widely adopted
within the medical imaging community and are known to
significantly improve segmentation performances. The skip
connections in U-Net helps retrieve lost spatial information at
the encoder path, enabling a precise localization of the target
objects. In our case, pore sizes are small, typically smaller
than 5 × 5 pixels, given that the size of an en-face image
is about 150 × 130 pixels after cropping to retain only the
nonzero region. In order to further improve the detection of
such small areas, pore features produced by U-Nets can be
strengthened by integrating attention mechanisms [18] into the
network to help capture the regions of interest (ROIs). One
popular approach proposed in [19] incorporates an Attention
Gate (AG) module (Fig. 5) into the U-Net. The AG allows
to estimate potential areas where the pores are most likely to
appear by removing feature activation in irrelevant regions,
without the necessity of using explicit external ROIs as super-
vision. Moreover, axons pass through the ONH follow a fairly
regular path: pore intensities are similar between neighboring
en-face images, while their centroids and shapes also vary
little spatially. Thus, a naive application of U-Net runs the
risk of not fully using these regularity properties. To this end,
we design a context-aware network by inputting 3 neighboring
en-face images, and outputting only one segmentation map for
the middle image.

The proposed context-aware attention U-Net is shown in
Fig. 4. Three input images are resized to 160 × 160 pixels,
and then they are progressively filtered by (2×) convolution
blocks and down-sampled in the encoder path. The convolution
block, used in both the encoder and the decoder, is composed
of a convolution layer (Conv), batch normalization (BN), and
rectified linear unit (ReLU). In the decoder path, each layer has
an attention gate through which features from the layer l in the
encoder path must pass through before concatenating to the up-
sampled features in the coarser layer (l+1) in the decoder path.
Finally a pixel-wise softmax is applied to generate probability
maps to assign each pixel the corresponding class (pore or
background).

The AG module is shown in Fig 5, where the architecture
is adapted from [19] for 2D pore segmentation. We define the

Fig. 4: Proposed context-aware attention U-Net architecture.

feature map x at pixel i ∈ {1, ..., N} in layer l ∈ {1, ..., L} as
xli ∈ RFl , where Fl refers to the number of feature maps in
layer l. An attention coefficient αli ∈ [ 0, 1] is calculated by the
AG to identify the ROIs. The output of AG is an element-wise
multiplication x̂l = αlix

l
i .

Fig. 5: Attention gate. Hx, Wx refer to the height and width
of the feature map x.

Feature maps are gradually down-sampled in the encoder
to capture a large receptive field. Features on the coarse
spatial grid level of layer (l + 1) identify the location of
target objects, and such coarse features could serve as gating
signal gl ∈ RFg to provide global information for xli to
disambiguate task-irrelevant feature content. Thus the additive
attention coefficients αli is calculated as:

αli = σ2(q
l
att(x

l
i, g

l
i; Θatt)) (6)

qlatt = ψT (σ1(W
T
x x

l
i+W

T
g g

l
i+b

l
i)) + bψi (7)

Where linear transforms Wx ∈ RFl×Fl , Wg ∈ RFg×Fl ,
ψ ∈ RFl×1, and the bias bli ∈ RFl , bψi ∈ R together form
the learnable parameter set Θatt = {Wx,Wg, ψ, b

l, bψ} which
characterize the AG. Wg and Wx ensure that the pixel-wise
addition of xl and gl could be done to learn the salient regions.
σ1(x) is the ReLU function for nonlinearity and σ2(x) is the
sigmoid activation function for normalisation. Moreover, the
linear function ψ allows to generate only one attention map αl

for all feature maps in layer l. In practice, linear transforms
{Wx,Wg, ψ} are implemented as 1× 1 convolution layer.

The Generalized Dice Loss (GDL) proposed in [20] is
an extension of dice loss, which is inspired from the Dice
Coefficient measuring the overlap between two images. We
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Fig. 6: Segmentation result. We extract one point for each
segmented pore for the comparison of pore numbers. (a) pre-
processed image. (b) partial ground truth for the evaluation.
(c) our network segmentation result. The red, magenta, yellow
points correspond to true positive, false positive, and the false
negative pores, respectively.

TABLE I: Statistics on the pore numbers (#) of the prediction
compared with the partially labeled ground truth.

# Min # Max # Mean # STD
Ground truth 1 16 7.77 3.34
Our method 8 52 33.22 10.23

used the GDL to solve the unbalanced background/foreground
problem since only few areas in our image are labeled.

GDL = 1− 2

∑1
l=0 wl

∑N
n=1 plngln∑1

l=0 wl
∑N
n=1 pln + gln

, wl =
1∑N

n=1 gln

Where GT = {gl1, ..., glN |gln ∈ {0, 1}} is the GT back-
ground (l = 0) or foreground (l = 1) segmentation map of an
image of N pixels, and P = {pl1, ..., plN |pln ∈ [ 0, 1] } is the
output segmentation map. The weight wl is used to provide
in-variance to different label set properties.

IV. EXPERIMENTS

Implementation details. Experiments were carried out on
the dataset described in Sec II. Data augmentation is per-
formed by randomly combining horizontal/vertical flipping,
rotating, brightness and contrast changing, Gaussian noise,
and elastic deformation [21]. We used a nested 4-fold cross-
validation with 13 subjects for training, 2 subjects for valida-
tion and 2 subjects for testing. Since for a test fold we had
an ensemble of 4 trained models, the prediction on the test
fold was obtained by averaging the 2 models that achieve the
highest recall and precision to increase the robustness of the
model. The learning rate is initialized as 3×10−4, and would
be reduced by a factor of 5 if the exponential moving average
of training loss did not improve by at least 5 × 10−3 within
the last 30 epochs. Adam optimizer is used with a weighted
decay of 3× 10−5, and a batch size of 32 for 500 epochs on
a TITAN RTX GPU.

(a) (b) (c)

(d) (e) (f)

Fig. 7: Segmentation results using different ratios of points
annotation. (a) source image. (b) pre-processed image. (c)
partial ground truth with the pre-processed image. (d)-(f)
results using different ratios of annotated points (full, 80%,
and 60% respectively.

TABLE II: Pore segmentation results using different ratio of
annotation. Note that our full annotation is partial.

Pixel-level Object-level
Dice Jaccard Precision Recall

Full 0.280 0.171 0.261 0.718
80% 0.192 0.104 0.166 0.714
60% 0.081 0.056 0.074 0.503

Evaluation. We used the pixel-level Dice similarity Coef-
ficient (Dice) and Jaccard index (Jaccard) to evaluate the
segmentation performance, however, as our ground truth seg-
mentation map is incomplete and is generated by an automatic
method, it is not surprising that the Dice and Jaccard are
low for the experiments. Thus, for a more reliable evaluation,
we complete the evaluation by adding the object-level recall
(Recall) and precision (Precision) metrics to measure the
the pore detection performance. The Recall and Precision
are calculated by extracting local maximum points of the
output probability map, while only one point is retained when
multiple neighbouring points have been extracted.

As mentioned above, our ground truth is incomplete both
for the training process and for the evaluation, in order to get
a more comprehensive validation of the results, we randomly
select 10 images from the test dataset with 194 images, and
try to point out all the pores without ambiguity. For these a
posteriori annotated images, we averaged the object-level true
positives (TP ), false positives (FP ), false negatives (FN ),
and finally the Recall for the predictions.

Prediction with partial points annotation. We firstly
compared the segmentation results with the ground truth, as
shown in Fig. 7 and Table I. We can see that our method
is able to segment pores marked in the ground truth (high
recall performance), even though the ground truth used for
the training phase is incomplete. Moreover, pores that are not
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Fig. 8: An example of segmentation results. (a) source image.
(b) pre-processed image. (c) incomplete ground truth mask.
(d) peripheral mask used for Chan Vese and W-Net. (e)
Chan Vese. (f) W-Net. (g) U-Net. (h) Attention U-Net. (i)
our model. Green, red and yellow areas represent correctly
segmented pores (TP ), incorrectly classified pores (FP ), and
missed pores (FN ) in the segmentation map respectively.

TABLE III: Segmentation results on the test dataset (194
images). We favor the Recall metric since the ground truth is
incomplete.

Pixel-level Object-level
Model Dice Jaccard Precision Recall
Chan Vese [22] 0.074 0.054 0.119 0.645
W-Net [23] 0.081 0.052 0.100 0.689
U-Net [9] 0.241 0.142 0.254 0.633
Attention U-Net [19] 0.250 0.145 0.277 0.622
Our method 0.280 0.171 0.261 0.718

identified in the ground truth are segmented as well, which
means, pore features are well learned during the training even
with the partial ground truth. However, it is inevitable that the
model predicts some false positives in artifact areas (see Fig.
7c) since they appear like dark spots that are similar to pores.

To explore the performance of our pore segmentation
method with partial ground truth when the ratio of the number
of annotated axonal pathways changes, we randomly select
60% and 80% of the pathways in the ground truth and trained
the network with such sub-partial points annotation dataset.
The segmentation results are shown in Table II. The Recall
metric is comparable between the ”Full” and 80% of the
ground truth, but the former annotation performs much better
on other metrics, which could be explained by that that with a

(a) (b) (c)

Fig. 9: Example of a postriori validation result by the expert
for a more reliable evaluation. (a) pre-processed image. (b) our
network prediction. (c) manual validation by the expert. Blue
and yellow markers are the object-level FN and FP pores
respectively. Red points in (c) are the partial ground truth for
the evaluation in Table III, while the magenta points are TP
pores that are not in the partial ground truth.

TABLE IV: A posteriori evaluation by the expert (10 images).

Object-level
Model TP FP FN Recall
Chan Vese [22] 23.8 8.4 12.9 0.64
W-Net [23] 27.2 15.5 8.7 0.76
U-Net [9] 29.8 2.0 5.1 0.85
Attention U-Net [19] 27.4 1.8 5.6 0.83
Our method 32.7 2.2 3.2 0.91

smaller ratio of annotated points, the network tends to predict
more pore candidates, even though some of them are simply
small noisy areas, and we observe that pore features are not
well learned. However, with 60% of the pathway annotation,
sometimes the network is almost incapable of predicting pore
candidates with very few pathways for training phase (about 5
for an OCT volume) (Fig. ??f). The deleted pores, as well as
the missing pores in the ground truth, are too much penalized
to get a fair segmentation result with the small dataset.

Comparison with other state-of-the-art methods. We
compare the proposed method with traditional active con-
tour approach proposed by Chan Vese [22], the unsupervised
method W-Net [23], as well as the supervised methods of
original U-Net [9] and Attention U-Net [19]. We manually
delineated a peripheral mask to only retain the most contrasted
area of the LC for Chan Vese [22] and W-Net [23] approaches,
since they are not capable of detecting the LC area automat-
ically. Fig. 8 shows the visual comparison of segmentation
performances, we can observe that active contour and unsu-
pervised W-Net approaches are sensitive to acquisition noises
and artifacts, while U-Net based methods are more efficient in
predicting the pore candidates. The proposed method is able
to predict more pore candidates in low contrast regions and in
border regions, thanks to the context-aware design that is able
to refer local consecutive potential pore areas.

The proposed method is robust in identifying true positive
pores with a high Recall value, as shown in Table III. The
Dice, Jaccard and Precision are low for all models, which
could be explained by two factors: on the one hand, only
partial pores are annotated in the ground, so that false positive
regions in the output segmentation map may correspond to



pores that are not labeled in the ground truth; on the other
hand, the thresholding value DISTth is low, resulting in pore
sizes in the ground truth tend to be smaller.

To this end, we inversely asked the expert to validate or
not the pores suggested by different methods and also to
point out the missing pores. Using this method, we bypass
the partial ground truth problem. Obviously this method is
time-consuming, hence why we did it only on 10 images of
the test dataset. This is what we show in Fig. 9 and Table IV
where the results produced by different methods are evaluated
a posteriori instead of relying on the partial ground truth for
score evaluation. We can observe that our model predicts more
TP pores thanks to the context-aware design, and meanwhile
the attention gate helps to eliminate FP pores by gradually
attenuating the activation of their surrounding background as
the network goes to shallower layers in the decoder path,
resulting in a more accurate prediction of pore location and
pore sizes. Finally, The missing pores (FN ) are mainly located
in the beginning or the end of the pathway, where the image
is of low signal to noise ratio, as well as the artifact areas,
where in both cases it is hard even for experts to identify
without referring the continuity.

V. CONCLUSION

We proposed a simple yet effective method for LC pore
segmentation. Our algorithm is based on a context-aware U-
Net with added attention gates and has proved to be com-
petitive with other state-of-the-art methods. This is a difficult
task not only because the images are of low resolution and
noisy, but because of varying advises of expert physicians to
build the ground truth: disagreements exist from one expert to
another on which spots are really pores or not. This is a clear
limitation of our work that we will have to work on in the
future, perhaps by proposing a dynamic system in which user
can interact in real time with the neural network to confirm
or not the presence of a perceived LC pore. Our future work
also includes 3D modeling of pores to quantify deformations
in glaucomatous eyes to better understand the disease.
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