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Glaucoma is the second leading cause of blindness in the world. Although its physiopathology remains unclear, the lamina cribrosa, a 3D mesh-like structure consisting of pores, that allow the axons passing through to join the brain, has been identified as the primary site of damage. In this work we present an extended version of U-Net for pore segmentation in 2D enface OCT images with partial point annotations, i.e. having only a small portion of pore locations in each image labeled. Our method combines the attention gate and the context information to address the difficulties caused by small object segmentation in low signal to noise ratio images. Experimental results show that 71.8% of the annotated pores are successfully segmented.

I. INTRODUCTION

The lamina cribrosa (LC), a 3D mesh-like structure in the optic nerve head (ONH), has been identified as the primary site of damage in glaucoma [START_REF] Ha Quigley | Optic nerve damage in human glaucoma. ii. the site of injury and susceptibility to damage[END_REF], the second leading cause of blindness in the world. The LC is composed of pores (i.e. axonal pathways, Fig. 1) through which the retinal axons pass to reach the brain [START_REF] Dichtl | Course of the optic nerve fibers through the lamina cibrosa in human eyes[END_REF], and morphological changes in pores, like increase in surface area and elongation, have been observed in glaucoma patients [START_REF] Vilupuru | Adaptive optics scanning laser ophthalmoscopy for in vivo imaging of lamina cribrosa[END_REF]. In-vivo observation of LC pores is now possible thanks to recent advances in optical coherence tomography (OCT) technology and our research project aims to characterize the LC pores in glaucoma as well as the subtle changes occurring during the disease. Prior in-vivo LC studies mainly focused on the total LC thickness [START_REF] Omodaka | 3d evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma[END_REF], LC surface [START_REF] Sredar | 3d modeling to characterize lamina cribrosa surface and pore geometries using in vivo images from normal and glaucomatous eyes[END_REF], and the anterior boundary of the LC [START_REF] Tan | Automatic feature extraction of optical coherence tomography for lamina cribrosa detection[END_REF], while only two methods have been proposed to investigate into the LC pore structure. Authors in [START_REF] Nadler | Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes[END_REF] used the local thresholding technique and the 3D median filter to segment pores in 2D en-face images extracted from a 3D OCT volume. This method only operates on one 2D en-face image at a time, running the risk of not fully using the rich continuity information from the consecutive slices. In [START_REF] Rossant | Detection and tracking of the pores of the lamina cribrosa in three dimensional sd-oct data[END_REF], pore candidates were selected as the local minima with the highest contrast in locally averaged 2D en-face images and axonal pathways were reconstructed from these points thanks to a tracking algorithm. However the pore detection step is not reliable, since pore features are not enough taken into account. Moreover both methods require a manual delineation of peripheral masks for the most contrasted en-face images in order to only process the highly identifiable regions, and such manual delineation would be time-consuming and less practical with larger datasets.

Recently, deep learning methods, especially the U-Net network [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and its variants [START_REF] Siddique | U-net and its variants for medical image segmentation: A review of theory and applications[END_REF], have shown success in analyzing the LC in OCT volumes. For example, authors in [START_REF] Sripad | Drunet: A dilatedresidual u-net deep learning network to digitally stain optic nerve head tissues in optical coherence tomography images[END_REF] proposed a 3D U-Net-based network to segment the ONH tissues and thus to measure the LC thickness. Moreover, deep learning has shown its capacity to accurately segment small retinal fluid regions [START_REF] Chen | Automated segmentation of fluid regions in optical coherence tomography b-scan images of age-related macular degeneration[END_REF], [START_REF] Tennakoon | Retinal fluid segmentation in oct images using adversarial loss based convolutional neural networks[END_REF] in OCT images with U-Net-based methods, despite a small dataset. Thus it is promising that U-Net variants could perform well for the pore segmentation task. However, the above methods are developed in a fully supervised manner, which requires a large amount of data with pixel-level annotations. Obtaining such ground truth data is unrealistic for the pore segmentation as the pore contours are not very clear and there exists the ambiguity even between the experts, in addition, small size and hundreds of pores in an image make it difficult to have pixel-accurate annotation.

It is thus challenging to segment the pores of the LC with the limited availability of pixel-level annotation data. As a result, the weakly supervised point annotation [START_REF] Qu | Weakly supervised deep nuclei segmentation using partial points annotation in histopathology images[END_REF] is the most efficient the pore segmentation task, since other methods like the the bounding boxes [START_REF] Kervadec | Bounding boxes for weakly supervised segmentation: Global constraints get close to full supervision[END_REF] or scribbles [START_REF] Yigit B Can | Learning to segment medical images with scribble-supervision alone[END_REF] are not suitable under dense pore intensities.

In this paper, we propose a baseline automatic LC pore segmentation model, which is, to our knowledge, the first attempt to look into this difficult problem with deep learning methods. This work is inspired from [START_REF] Nadler | Automated lamina cribrosa microstructural segmentation in optical coherence tomography scans of healthy and glaucomatous eyes[END_REF], [START_REF] Rossant | Detection and tracking of the pores of the lamina cribrosa in three dimensional sd-oct data[END_REF], where the supervision of a human observer is required to reach the accuracy necessary for the medical application. Our goal is to get an accurate pore segmentation in every 2D en-face images, reliable enough to allow a future automatic 3D reconstruction of the axonal pathways [START_REF] Wang | Tortuous pore path through the glaucomatous lamina cribrosa[END_REF].

II. DATASET

Our study population includes 17 subjects with 41 3D OCT volumes. Multiple volumes may correspond to the same eye of one patient for longitudinal studies. All OCT volumes were validated by an expert to guarantee that only patients with larger pores are recruited for the feasibility of the work, since it is difficult for some glaucoma patients to fix their sight during the examination. Volumes are acquired with the spectraldomain OCT machine (Spectralis, Heidelberg Engineering), where each acquisition centered on the ONH contains 131 2D OCT slices (Fig. 1). The theoretical transverse and axial resolutions for such a 2D slice of 496 × 768 pixels are about 7µm and 4µm respectively, the sampling step between two consecutive slices approaching 15µm.

En-face images are extracted from the 3D OCT volume (Fig. 1) with a resolution of 131 × 768 pixels, and the pores were partially annotated by 2 engineers, who retained only those that show continuity in the volume and great contrast; the selected pores were marked by a single coordinate point close to the centroid (Fig. 3a). The objective of the annotation is to identify the largest pores that allow most axons to pass through since exhaustively segmenting all the pores is difficult, especially in regions with vessel shadows or scanning artifacts (Fig. 2). Finally, our dataset of 41 OCT volumes consists of 2101 en-face images, with an average of 8.78 ± 4.75 axonal pathways manually identified in each volume, therefore a small proportion of the totality of existing pores.

III. SEGMENTATION WITH PARTIAL POINTS ANNOTATION

Pore feature enhancement. The gray level intensity of the en-face images (Fig. 2a) was coded to [0, 1] by linear normalization. Since pores in the en-face images are weakly contrasted with the surrounding tissues, we applied the following morphological filters [START_REF] Rossant | Detection and tracking of the pores of the lamina cribrosa in three dimensional sd-oct data[END_REF] to enhance the pore features:

• Bottom-hat filter, and the complement denoted as I BH , with a structuring element D 3 . The objective of this filter is to enhance the contrast and leave dark areas of the image that are smaller than the structuring element.

I BH = 1 -(I • D 3 -I) (1) 
• Alternate Sequential Filter, denoted as I ASF , defined by a sequence of closings and openings with increasing size of the structuring element D i (up to i = 3), with morphological reconstruction by dilation or erosion at each step i. This filter aims at denoising, while retaining the main dark structures.

I open = R D I (i-1) f as (I (i-1) f as • D i ), with init. I 0 f as = I (2) 
I (i) f as = R E Iopen (I open • D i ) (3) 
I F AS = 1 -min(max(I 3 f as -I, 0), 1) (4) 
where •, and • denote the opening and closing operations, and both are built by using a binary structuring element with a disc of radius r, denoted as D r . R D M (I), R E M (I) are respectively the morphological reconstruction by dilation and by erosion of the image I in the mask M . Such reconstruction repeats dilation or erosion operation of the image I, until the contour of I fits under the mask M . The pre-processed image I o (X) in ( 5) is shown in Fig. 2b, and we take α = 0.5 to trade-off between the 2 filters to denoise and retain main pores.

I o = α • I BH (X) + (1 -α) • I F AS (X) (5) 
Ground truth generation. The points marking the pore centroids and manually defined in the annotation phase could not be directly used for training since they represent only several pixels and there are too many false negatives in the image. To this end, a region growing algorithm was applied on I o to generate the ground truth segmentation maps (GT , Fig. 2c): we used the partial points as seeds and we applied a region-growing algorithm to get a segmentation. The similarity criterion is the L1 distance (DIST ) between an unallocated pixel's intensity value and the mean intensity of the current region. Among the 8-connectivity neighbors, the pixel with the smallest DIST is allocated to the region if DIST is less than a given threshold DIST th = 0.04; the growing process stops when DIST becomes larger than DIST th for all neighbors. A small threshold is used to avoid over-segmentation since some pore boundaries are barely identifiable.

Proposed Network. U-Nets [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] have been widely adopted within the medical imaging community and are known to significantly improve segmentation performances. The skip connections in U-Net helps retrieve lost spatial information at the encoder path, enabling a precise localization of the target objects. In our case, pore sizes are small, typically smaller than 5 × 5 pixels, given that the size of an en-face image is about 150 × 130 pixels after cropping to retain only the nonzero region. In order to further improve the detection of such small areas, pore features produced by U-Nets can be strengthened by integrating attention mechanisms [START_REF] Vaswani | Attention is all you need[END_REF] into the network to help capture the regions of interest (ROIs). One popular approach proposed in [START_REF] Oktay | Attention u-net: Learning where to look for the pancreas[END_REF] incorporates an Attention Gate (AG) module (Fig. 5) into the U-Net. The AG allows to estimate potential areas where the pores are most likely to appear by removing feature activation in irrelevant regions, without the necessity of using explicit external ROIs as supervision. Moreover, axons pass through the ONH follow a fairly regular path: pore intensities are similar between neighboring en-face images, while their centroids and shapes also vary little spatially. Thus, a naive application of U-Net runs the risk of not fully using these regularity properties. To this end, we design a context-aware network by inputting 3 neighboring en-face images, and outputting only one segmentation map for the middle image.

The proposed context-aware attention U-Net is shown in Fig. 4. Three input images are resized to 160 × 160 pixels, and then they are progressively filtered by (2×) convolution blocks and down-sampled in the encoder path. The convolution block, used in both the encoder and the decoder, is composed of a convolution layer (Conv), batch normalization (BN), and rectified linear unit (ReLU). In the decoder path, each layer has an attention gate through which features from the layer l in the encoder path must pass through before concatenating to the upsampled features in the coarser layer (l+1) in the decoder path. Finally a pixel-wise softmax is applied to generate probability maps to assign each pixel the corresponding class (pore or background).

The AG module is shown in Fig 5, where the architecture is adapted from [START_REF] Oktay | Attention u-net: Learning where to look for the pancreas[END_REF] for 2D pore segmentation. We define the Feature maps are gradually down-sampled in the encoder to capture a large receptive field. Features on the coarse spatial grid level of layer (l + 1) identify the location of target objects, and such coarse features could serve as gating signal g l ∈ R Fg to provide global information for x l i to disambiguate task-irrelevant feature content. Thus the additive attention coefficients α l i is calculated as:

α l i = σ 2 (q l att (x l i , g l i ; Θ att )) (6) 
q l att = ψ T (σ 1 (W T x x l i +W T g g l i +b l i )) + b ψ i (7) 
Where linear transforms

W x ∈ R F l ×F l , W g ∈ R Fg×F l , ψ ∈ R F l ×1 , and the bias b l i ∈ R F l , b ψ i ∈ R together form the learnable parameter set Θ att = {W x , W g , ψ, b l , b ψ }
which characterize the AG. W g and W x ensure that the pixel-wise addition of x l and g l could be done to learn the salient regions. σ 1 (x) is the ReLU function for nonlinearity and σ 2 (x) is the sigmoid activation function for normalisation. Moreover, the linear function ψ allows to generate only one attention map α l for all feature maps in layer l. In practice, linear transforms {W x , W g , ψ} are implemented as 1 × 1 convolution layer.

The Generalized Dice Loss (GDL) proposed in [START_REF] Sudre | Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[END_REF] is an extension of dice loss, which is inspired from the Dice Coefficient measuring the overlap between two images. We 

IV. EXPERIMENTS

Implementation details. Experiments were carried out on the dataset described in Sec II. Data augmentation is performed by randomly combining horizontal/vertical flipping, rotating, brightness and contrast changing, Gaussian noise, and elastic deformation [START_REF] Simard | Best practices for convolutional neural networks applied to visual document analysis[END_REF]. We used a nested 4-fold crossvalidation with 13 subjects for training, 2 subjects for validation and 2 subjects for testing. Since for a test fold we had an ensemble of 4 trained models, the prediction on the test fold was obtained by averaging the 2 models that achieve the highest recall and precision to increase the robustness of the model. The learning rate is initialized as 3 × 10 -4 , and would be reduced by a factor of 5 if the exponential moving average of training loss did not improve by at least 5 × 10 -3 within the last 30 epochs. Adam optimizer is used with a weighted decay of 3 × 10 -5 , and a batch size of 32 for 500 epochs on a TITAN RTX GPU. Evaluation. We used the pixel-level Dice similarity Coefficient (Dice) and Jaccard index (Jaccard) to evaluate the segmentation performance, however, as our ground truth segmentation map is incomplete and is generated by an automatic method, it is not surprising that the Dice and Jaccard are low for the experiments. Thus, for a more reliable evaluation, we complete the evaluation by adding the object-level recall (Recall) and precision (P recision) metrics to measure the the pore detection performance. The Recall and P recision are calculated by extracting local maximum points of the output probability map, while only one point is retained when multiple neighbouring points have been extracted.

As mentioned above, our ground truth is incomplete both for the training process and for the evaluation, in order to get a more comprehensive validation of the results, we randomly select 10 images from the test dataset with 194 images, and try to point out all the pores without ambiguity. For these a posteriori annotated images, we averaged the object-level true positives (T P ), false positives (F P ), false negatives (F N ), and finally the Recall for the predictions.

Prediction with partial points annotation. We firstly compared the segmentation results with the ground truth, as shown in Fig. 7 and Table I. We can see that our method is able to segment pores marked in the ground truth (high recall performance), even though the ground truth used for the training phase is incomplete. Moreover, pores that are not identified in the ground truth are segmented as well, which means, pore features are well learned during the training even with the partial ground truth. However, it is inevitable that the model predicts some false positives in artifact areas (see Fig. 7c) since they appear like dark spots that are similar to pores.

To explore the performance of our pore segmentation method with partial ground truth when the ratio of the number of annotated axonal pathways changes, we randomly select 60% and 80% of the pathways in the ground truth and trained the network with such sub-partial points annotation dataset. The segmentation results are shown in Table II. The Recall metric is comparable between the "Full" and 80% of the ground truth, but the former annotation performs much better on other metrics, which could be explained by that that with a III, while the magenta points are T P pores that are not in the partial ground truth. smaller ratio of annotated points, the network tends to predict more pore candidates, even though some of them are simply small noisy areas, and we observe that pore features are not well learned. However, with 60% of the pathway annotation, sometimes the network is almost incapable of predicting pore candidates with very few pathways for training phase (about 5 for an OCT volume) (Fig. ??f). The deleted pores, as well as the missing pores in the ground truth, are too much penalized to get a fair segmentation result with the small dataset.

Comparison with other state-of-the-art methods. We compare the proposed method with traditional active contour approach proposed by Chan Vese [START_REF] Chan | Active contour without edges[END_REF], the unsupervised method W-Net [START_REF] Royer | Imaging unsupervised approaches for the segmentation of dry armd lesions in eye fundus cslo images[END_REF], as well as the supervised methods of original U-Net [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF] and Attention U-Net [START_REF] Oktay | Attention u-net: Learning where to look for the pancreas[END_REF]. We manually delineated a peripheral mask to only retain the most contrasted area of the LC for Chan Vese [START_REF] Chan | Active contour without edges[END_REF] and W-Net [START_REF] Royer | Imaging unsupervised approaches for the segmentation of dry armd lesions in eye fundus cslo images[END_REF] approaches, since they are not capable of detecting the LC area automatically. Fig. 8 shows the visual comparison of segmentation performances, we can observe that active contour and unsupervised W-Net approaches are sensitive to acquisition noises and artifacts, while U-Net based methods are more efficient in predicting the pore candidates. The proposed method is able to predict more pore candidates in low contrast regions and in border regions, thanks to the context-aware design that is able to refer local consecutive potential pore areas.

The proposed method is robust in identifying true positive pores with a high Recall value, as shown in Table III. The Dice, Jaccard and P recision are low for all models, which could be explained by two factors: on the one hand, only partial pores are annotated in the ground, so that false positive regions in the output segmentation map may correspond to pores that are not labeled in the ground truth; on the other hand, the thresholding value DIST th is low, resulting in pore sizes in the ground truth tend to be smaller.

To this end, we inversely asked the expert to validate or not the pores suggested by different methods and also to point out the missing pores. Using this method, we bypass the partial ground truth problem. Obviously this method is time-consuming, hence why we did it only on 10 images of the test dataset. This is what we show in Fig. 9 and Table IV where the results produced by different methods are evaluated a posteriori instead of relying on the partial ground truth for score evaluation. We can observe that our model predicts more T P pores thanks to the context-aware design, and meanwhile the attention gate helps to eliminate F P pores by gradually attenuating the activation of their surrounding background as the network goes to shallower layers in the decoder path, resulting in a more accurate prediction of pore location and pore sizes. Finally, The missing pores (F N ) are mainly located in the beginning or the end of the pathway, where the image is of low signal to noise ratio, as well as the artifact areas, where in both cases it is hard even for experts to identify without referring the continuity.

V. CONCLUSION

We proposed a simple yet effective method for LC pore segmentation. Our algorithm is based on a context-aware U-Net with added attention gates and has proved to be competitive with other state-of-the-art methods. This is a difficult task not only because the images are of low resolution and noisy, but because of varying advises of expert physicians to build the ground truth: disagreements exist from one expert to another on which spots are really pores or not. This is a clear limitation of our work that we will have to work on in the future, perhaps by proposing a dynamic system in which user can interact in real time with the neural network to confirm or not the presence of a perceived LC pore. Our future work also includes 3D modeling of pores to quantify deformations in glaucomatous eyes to better understand the disease.
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 1 Fig. 1: 3D OCT data. En-face images (right) are extracted from 3D OCT slices (left). The X axis represents the depth in the ONH. Dark spots in the en-face images correspond to the pores of the LC.

Fig. 2 :

 2 Fig. 2: Appearance variability of the en-face images of the LC. Pores vary in their shape, size, and location, thus they are difficult to be segmented, especially along with various artifacts shown in red arrows.

Fig. 3 :

 3 Fig. 3: (a) incomplete pore annotation. Each identified pore is marked with a point on the associated en-face image, by observing the continuity of local regions in consecutive images and checking the contrast. (b) pre-processed image with morphological filters to enhance pore features. (c) region growing on image (b) to produce the incomplete ground truth segmentation map.
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 45 Fig. 4: Proposed context-aware attention U-Net architecture.

Fig. 6 :

 6 Fig. 6: Segmentation result. We extract one point for each segmented pore for the comparison of pore numbers. (a) preprocessed image. (b) partial ground truth for the evaluation. (c) our network segmentation result. The red, magenta, yellow points correspond to true positive, false positive, and the false negative pores, respectively.

GDL = 1 - 2 1 l=0 w l N n=1 p ln g ln 1 l=0 w l N n=1 p ln + g ln , w l = 1 N

 1211 used the GDL to solve the unbalanced background/foreground problem since only few areas in our image are labeled. n=1 g ln Where GT = {g l1 , ..., g lN |g ln ∈ {0, 1}} is the GT background (l = 0) or foreground (l = 1) segmentation map of an image of N pixels, and P = {p l1 , ..., p lN |p ln ∈ [ 0, 1] } is the output segmentation map. The weight w l is used to provide in-variance to different label set properties.

Fig. 7 :

 7 Fig. 7: Segmentation results using different ratios of points annotation. (a) source image. (b) pre-processed image. (c) partial ground truth with the pre-processed image. (d)-(f) results using different ratios of annotated points (full, 80%, and 60% respectively.

Fig. 8 :

 8 Fig. 8: An example of segmentation results. (a) source image. (b) pre-processed image. (c) incomplete ground truth mask. (d) peripheral mask used for Chan Vese and W-Net. (e) Chan Vese. (f) W-Net. (g) U-Net. (h) Attention U-Net. (i) our model. Green, red and yellow areas represent correctly segmented pores (T P ), incorrectly classified pores (F P ), and missed pores (F N ) in the segmentation map respectively.

Fig. 9 :

 9 Fig. 9: Example of a postriori validation result by the expert for a more reliable evaluation. (a) pre-processed image. (b) our network prediction. (c) manual validation by the expert. Blue and yellow markers are the object-level F N and F P pores respectively. Red points in (c) are the partial ground truth for the evaluation in TableIII, while the magenta points are T P pores that are not in the partial ground truth.

TABLE I :

 I Statistics on the pore numbers (#) of the prediction compared with the partially labeled ground truth.

		# Min	# Max	# Mean	# STD
	Ground truth	1	16	7.77	3.34
	Our method	8	52	33.22	10.23

TABLE II :

 II Pore segmentation results using different ratio of annotation. Note that our full annotation is partial.

			Pixel-level	Object-level
		Dice	Jaccard	Precision	Recall
	Full	0.280	0.171	0.261	0.718
	80%	0.192	0.104	0.166	0.714
	60%	0.081	0.056	0.074	0.503

TABLE III :

 III Segmentation results on the test dataset (194 images). We favor the Recall metric since the ground truth is incomplete.

		Pixel-level	Object-level
	Model	Dice	Jaccard	Precision	Recall
	Chan Vese [22]	0.074	0.054	0.119	0.645
	W-Net [23]	0.081	0.052	0.100	0.689
	U-Net [9]	0.241	0.142	0.254	0.633
	Attention U-Net [19] 0.250	0.145	0.277	0.622
	Our method	0.280	0.171	0.261	0.718

TABLE IV :

 IV A posteriori evaluation by the expert (10 images).

			Object-level	
	Model	TP	FP	FN	Recall
	Chan Vese [22]	23.8	8.4	12.9	0.64
	W-Net [23]	27.2	15.5	8.7	0.76
	U-Net [9]	29.8	2.0	5.1	0.85
	Attention U-Net [19] 27.4	1.8	5.6	0.83
	Our method	32.7	2.2	3.2	0.91