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Abstract: We consider the problem of under and over-approximating the image of general
vector-valued functions over bounded sets, and apply the proposed solution to the estimation
of reachable sets of uncertain non-linear discrete-time dynamical systems. Such a combination
of under and over-approximations is very valuable for the verification of properties of controlled
systems. Over-approximations prove properties correct, while under-approximations can be used
for falsification. Coupled, they provide a measure of the conservatism of the analysis. This work
introduces a general framework relying on approximations of robust ranges of vector-valued
functions, formulated as AE extensions, that can be interpreted as quantified propositions
where universal quantifiers (A) precede existential quantifiers (E). This framework allows us
to extend for under-approximation many precision refinements that are classically used for
over-approximations, such as affine approximations, Taylor models, quadrature formulae and
preconditioning methods. We end by evaluating the efficiency and precision of our approach,

focusing on the application to the analysis of discrete-time dynamical systems.
Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0)
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1. INTRODUCTION

Guaranteed state estimation and reachability analysis are
central to many problems in control, such as robust and op-
timal control of dynamical systems, set invariance, safety
verification, or control synthesis. This ultimately relies on
computing ranges of functions over a domain, that we have
to approximate since this is an intractable problem.

Much of the existing work focuses on over-approximations
of images of functions, or of reachable sets, generally
based on convex set representations (intervals, ellipsoids,
polyhedra...). We are interested here in the much less
studied problem of computing under-approximations, that
is, sets of states guaranteed to be reached. Combining over
and under approximations is fundamental for the valida-
tion of control systems.When the over-approximation is
not sufficient to prove a property, an under-approximation
is helpful to state the quality of the over-approximation.
Additionally, when an under-approximation of the reach-
able set intersects the set of error states, it provides a proof
of falsification of the property.

For general controlled systems, the reachability properties
will depend on the initial conditions of the system, but
also on the sensitivity of the system to some control inputs
and external disturbances, as reflected by the notions of
minimal and maximal reachability Mitchell (2007). We
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generalize these notions here to robust reachability, con-
sidering both control inputs and adversarial disturbances.

Contents and contributions The computation of the
reachable set of a dynamical system can be reduced to
a series of images of sets by some vector-valued func-
tion. In this article, we generalize the first-order approach
of Goubault and Putot (2020) to higher-order extensions,
and develop more precise quadrature formulas:

e Section 2 recaps the necessary background. Section
3 generalizes the mean-value extension of Goubault
and Putot (2020) and proposes new higher-order Tay-
lor extensions for under-approximating robust ranges
of sufficiently smooth real-valued functions. These ex-
tensions for the robust range are the basis for under-
approximation of elementary vector-valued functions;

e Section 4 proposes a novel approach to subdivisions
for the extensions based on quadrature formulas: this
approach improves precision of the computation of
under and over-approximations, while still scaling
with the dimension of the system;

e Section 5 applies this approach to the approximation
of reachable sets of discrete-time dynamical systems,
demonstrating its tractability and precision.

Related work Our approach is related to and partially
relies on work on modal intervals and mean-value ex-
tensions, which applications include the computation of
under-approximations of function images as in Goldsztejn
(2012a,b). It is also related to over-approximations of
nonlinear functions and dynamical systems, on which we
rely to compute under-approximations. Many methods

2405-8963 Copyright © 2021 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2021.08.504



236 Eric Goubault et al. / IFAC PapersOnLine 54-5 (2021) 235-240

for over-approximating reachable sets for non-linear sys-
tems have been developed, among which Taylor-based
or polytopes-based approaches. There exist less methods
for the harder problem of under-approximating images
of functions or sets of reachable states. Some approaches
have been proposed for linear discrete-time systems, such
as Kurzhanski and Varaiya (2000); Girard et al. (2006).
Interval-based methods, relying on space discretization,
have been used for under-approximating the image of non-
linear functions Goldsztejn and Jaulin (2010). They were
also used to over and under approximate solutions of differ-
ential systems with uncertain initial conditions Mézo et al.
(2018). Tight approximations for reachable sets of nonlin-
ear continuous systems can be found via expensive Eule-
rian methods: the zero sub-level set of the Lipschitz viscos-
ity solution to a Hamilton-Jacobi (HJB) partial differential
equation gives the (backward) reachable set Chen et al.
(2016). Other approaches, using SoS methods and LMI
relaxations have been proposed for inner approximations,
see e.g. Korda et al. (2013). In Xue et al. (2020), under-
approximations for polynomial systems are obtained by
solving semi-definite programs. Taylor models are used on
the inverse flow map to derive under-approximations Chen
et al. (2014), using topological conditions that are checked
with interval constraints solving. In Xue et al. (2016),
the computation of the under-approximated reachable set
is based on a analysis of the boundary of the reachable
sets and polytopic approximations. In Kochdumper and
Althoff (2020), some non-convex under-approximations
are computed with polynomial zonotopes, relying on a
computation of the outer-approximation of the reachable
set, of an enclosure of the boundary of the reachable set,
and a reduction of the outer-approximation until it is fully
included in the region delimited by the boundary.

2. BACKGROUND ON AE EXTENSIONS

We recall in this section the results of Goubault and Putot
(2020) for mean-value over and under-approximating ex-
tensions for scalar and vector-valued functions.

Notations For a continuously differentiable vector-valued
function f : R™ — R"™, we note f; its i-th component and
Vf = (ijl)” = (gTJ:)lgign,lngm its Jacobian matrix.
We note (z,y) the scalar product of vectors z and y, and
|z| the absolute value extended componentwise.

Intervals are used in many situations to rigorously com-
pute with interval domains instead of reals, usually lead-
ing to over-approximations of function ranges over boxes.
Interval quantities, whether scalar or vector-valued, will
be noted with bold letters, e.g x = [2,Z], z € R, T € R.
For a (possibly vector-valued) interval & € TR™, we note
c(x) = (z+7)/2 its center and r(x) = (T —x)/2 its radius.

An over-approximating extension, also called outer-appro-
zimating extension, of a function f : R™ — R” is a
function f : P(R™) — P(R™), where P(S) denotes the
powerset of S, such that for all  in P(R™), range(f, ) =
{f(z),x € &} C f(«). Dually, under-approximations de-
termine a set of values proved to belong to the range of
the function over some input set. An under-approzimating
extension, also called inner-approximating extension, of
f, is a function f : P(R™) — P(R"), such that for

all  in P(R™), f(x) C range(f,z). Under- and over-
approximations can be interpreted as quantified propo-
sitions: range(f,z) C z can be written Vx € x, 3z €
z, f(x) = z while z C range(f,x) can be written Vz €
z, dx € x, f(x) = z. Both these propositions are what we
call AF propositions, quantified propositions where univer-
sal quantifiers (A) precede existential quantifiers (E).

Mean-value AE extensions for scalar-valued functions
We consider a function f : R™ — R. The natural interval
extension consists in replacing real operations by their
interval counterparts in the expression of the function. A
generally more accurate extension relies on a linearization
by the mean-value theorem.

Suppose f is differentiable over the box @. The mean-value
theorem implies that

Val € ®, Vo € 2,3 € x, f(x) = f(2°) + (VF(€),z — 2°).
If we can bound the range of the gradient of f over x, by
V f(x), then we can derive an interval enclosure, called the
mean-value extension. Let us choose 2 to be the center
c(x) of x and recall we note r(x) = (T — x)/2 its radius.

Theorem 1. (Thm. 1, Goubault and Putot (2020)). Let f
be a continuously differentiable function from R™ to R
and z € IR™. Let f° = [f°, f0] include f(c(x)) and V a
vector of intervals V; = [V,,V;] for i € {1,...,m} such
that {|V;f(c(x1),...,c(®i=1),Tiy. .., 2m)|, 2 € x} C V,.
We have the over- and under-approximating extensions

range(f, ) C [f°, /) + (V,r(x))[-1,1] (1)

[fO = (¥, r(2)), f* + (V. r(2))] C range(f, ) (2)

Ezample 1. Let us consider the range of f defined by
f(x) = 22 — 2 over = [2,3]. We can compute f(2.5) =
3.75 and |V £([2,3])| C [3,5]. Then (1) and (2) yield 3.75+
1.5[-1,1] C range(f, [2,3]) € 3.75+2.5[—1, 1], from which

we deduce [2.25,5.25] C range(f, [2, 3]) C [1.25,6.25].

We refer to extensions (1) and (2) as AE extensions, as
they can be interpreted as AFE propositions. Note that
the under-approximation can become empty if the width
fo— fo of the approximation of f(c(x)) exceeds 2(V, r(x)):
in this case the lower bound of the resulting interval is
larger than the upper bound, which by convention we
identify with the empty interval. A special attention to the
practical evaluation of these extensions over the region x
of interest is thus crucial, this is the object of Section 4.

Mean-value AE extensions of the robust range  Mean-
value AE extensions can be generalized to compute ranges
that are robust to disturbances, identified as some input
components. Let us partition the indices of the input space
in two subsets 4 and Ig, where I 4 defines the indices of
the inputs that correspond to disturbances, and Ig the
remaining dimensions. We decompose the input box @
accordingly by @ = x 4 X xg. We define the robust range of
function f on @, robust on x¢ with respect to disturbances
x4, as range(f, @, I4,Ig) = {z|Vw € x4, Ju € x¢, 2 =
f(w,w)}. Intuitively, v will be control components, w
disturbances to which the output range should be robust.

Theorem 2. (Thm. 2, Goubault and Putot (2020)). Let f
be continuously differentiable function from R™ to R and
x = x4 X zg € IR™. Let f°, V,, and V, be vectors of
intervals such that f(c(z)) C f°, {|Vwf(w, c(ze))| , w €
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A} C Vy and {|Vuf(w,u)| ,w € g, u € g} C V.
We have:

range(f, @, La, Ie) C [f* = (Vu,r(xe)) + (Yo, (2 4)),

+
<zu,7"(335)> - <ﬁw7{r($¢4)>] - range(f,w,IA, IS) (4)

AE extensions for wvector-valued functions  Following
Goubault and Putot (2020), we now detail how full n-
dimensional boxes can be included in the image of vector-
valued functions f : R™ — R", for m > n, using AE
extensions of robust ranges.

The mean-value extensions of Theorem 1 or the generaliza-
tion of Theorem 5 give us under and over-approximations
of projections of the image of the function. The Cartesian
product of the over-approximations of each component
provides an over-approximation of a vector-valued func-
tion f : R™ — R™. This is however not the case for
under-approximation. Suppose for example that we have
Vz1 € z1,3x1 € ®1, Jxa € T2, 21 = fi(x) and Vzo €
Zo, 31 € @1, 2o € X, 22 = fo(x). We cannot deduce di-
rectly that for all Vz; € z1 and Vzy € z5 there exists z; and
x9 such that z = f(z). Suppose now that we have: Vz; €
z1,V21 € @1, Jro2 € X2, 21 = f1(x) and Vzy € z9,Vasy €
T, dx1 € X1, 290 = fo(x) with continuous selections zo and
x1. Then there exists functions go(2z1, 1) : 21 X 1 — @2
and g1(z2,22) : 22 X 3 — 1 that are continuous in
(resp. x2), and such that V(z1,22) € z, Y(z1,22) € @,
21 = fi(w1,92(21,21)) and 22 = f2(g1(22,22),22). Using
the Brouwer fixed point theorem on the continuous map
g + (x1,22) = (91(22,22),92(21,21)) on the compact
set 1 X @2, then V(z1,22) € z, I(x%,25) € x such that
(21,22) = f(«%,23). This result can be generalized:
Theorem 3. (Theorem 3 Goubault and Putot (2020)). Let
f + R™ — R™ be an elementary function and =

[1...m] —[1...n] Let us note, for all i € [1...n], J](;"') =
{jel...m], n(j) =i} and J§V = {j € [1...m]}\
J](;'i). Consider the n AE-extensions i € [1...n] built from
Theorems 2, 4 or 5 and such that

Vz; € Zi, (V(EJ S wj)jle:”’ (HLU] S xj)],ngi), Zi = fZ(IE)

Then z = z1 X 29 X ... X z,, if non-empty, is an under-
approximation of the image of f:Vz € z, Jx € ¢,z = f(z).

Theorem 3 gives us directly a computation of an under-
approximation of range(f, ) for f : R™ — R™. It can also
be used to compute an under-approximation of the ro-
bust range range(f, «, I4, I¢). For this, we need to choose
m:[l...m] = ([1...n]\ I4), which corresponds to the
fact that the disturbance part of the input components
will always be quantified universally. We define below the
result of this process, which will be later used in reacha-
bility algorithms for discrete-time dynamical systems.
Definition 1. Let f : R™ — R™ and 7 : [1...m] —
(1...n] \ I14). We define Z(f,x,I4,Ic,7) an under-
approximation of range(f,x,I4,I¢) obtained using The-
orem 3 with function 7w, where the under-approximation
of each component is obtained with Theorem 2 or Corol-
lary 1. We define O(f, x, I 4, I¢, 7) the over-approximation
obtained with Theorem 2 component-wise.

3. GENERALIZATION TO NEW AE EXTENSIONS

We now introduce new robust AE extensions for a function
f:R™ — R, which are no longer necessarily based on the

mean-value theorem ! .

Theorem 4. Suppose we have an approximation function
g for f, which is an elementary 2 function in the sense of
Goldsztejn (2012a), satisfying Vw € x4, Yu € x¢, 3¢ €
x, f(w,u) = g(w,u,§). Then any under-approximation
(resp. over-approximation) of the robust range of g with
respect to x4 and &, I, C range(g,x X x,I4 U {m +
1,...,2m},I¢) is an under-approximation (resp. over-
approximation) of the robust range of f with respect to
za, le. T, Crange(f,x, 14, Ig).

For instance, for a continuously (n + 1)-differentiable f,
the following g, obtained by a Taylor-Lagrange expansion
and noting = (w, u), is an approximation function for f

" (- 20
o6 = 1)+ 3 T Dt a0)

(l‘ _ xO)n—i—l
— (5

(n+1)! (5)
where D®f denotes the higher order partial derivative of
f. For n =0, g is the mean-value approximation.

Ezample 2. Consider function f(z) = 23+ 22+ 2+ 1 on
[—1, 1]. Its exact range is [0.796875,1.328125]. Let us ap-
proximate f using an order 2 Taylor-Lagrange expansion:
we compute f(V(z) = 322 +2z+1 and f*)(z) = 6242 and
deduce g(z, &) = 1+a+22(36+1). By Theorem 4, the range
of f over [—i, i} is under (resp. over) approximated by any
under (resp. over) approximation of the robust range with
respect to & of g(z,§).

+ D" f(€)

Theorem 5 gives a simple way for computing the under-
approximated robust range of g, which is well suited in
particular for quadratic Taylor-based approximations.

Theorem 5. Let g be an elementary function g(w,u,§) =
a(w,u) + B(w,u,§) over z = (w,u) € x CIR™ and £ € x.
Let Z, be an under-approximation of the robust range of
a with respect to w, i.e. range(a,x,I4,1I¢), and Og an
over-approximation of the range of f, i.e. range(,x x
x,0,{1,...,2m}). The robust range of g with respect
to w € x4 and § € x, ie. range(g,x x x,I4 U {m +
1,...,2m}, I¢), is under-approximated by Z, = [Z, +

This is the case of Taylor expansions (5), where « is the
degree n polynomial, and 3 the degree n + 1 remainder. A
direct consequence is a simple order 2 method:

Corollary 1. Consider f : R™ — R a function in
C?. Let £ V% and VY be such that f(z°) C f°,
|V f(z)] C VY and |Vuf(z)| € VY with 20 = ¢(x).
Then range(f,x, I, I¢) is under-approximated by [Z,, +
05, Za+0g) where I, = [~ (V. 1(ze)) + (Vo r(@a)),
O+ (Vo r(ze)) — (ﬁi,r(m,@)] and Og is any over-
approximation of {2 D?f(z)(r(z))% z € x}.

1 Extended version with proofs in arXiv:2101.11536
2 Elementary functions are compositions of +, -, X, /, sine, cosine,
log, exp functions in particular.
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Ezxample 3. We carry on with Example 2. The under

approximation of the range of 1+ z over [—1, 1] is [3, 3].
Standard interval computation yields [0, 15][+, ] = [0, &5]

as over approximation of the range of 2%(3¢ + 1) for  and
¢in [—1 1]. We deduce [0.859375,1.25] C range(f, ). In
comparison, the mean-value AE extension of Theorem 2

yields the less precise under-approximation [0.875,1.125].
4. PRECONDITIONING AND QUADRATURE

The n-dimensional inner boxes that we compute with the
techniques of Section 2 can sometimes be small or empty,
even when the projected inner-approximations on each
component are tight. We propose here some solutions.

Preconditioning for computing inner skewed boxes The
image of the vector-valued function cannot always be
precisely approximated by a centered box.

Ezample 4. We consider f(z) = (222 — z1m0 — 1,29 +
r3 — 2)T with £ = [0.9,1.1]2. The under-approximated
projections on the two components, [—0.38,0.38] and
[-0.38,0.38], are close to the over-approximated range
[—0.42,0.42]2, but we only find empty inner boxes.

This can be partly solved by computing a skewed box, or
the image of a box by a linear map, instead of a box. Let
C € R™ ™ be a non-singular matrix. If z is an interval
vector such that z C range(Cf,x) , we can deduce a
skewed box to be in the range of f, by {C71z|z € 2} C
range(f,x). A natural choice for C is the inverse of the
center of the interval Jacobian matrix C = (¢(V))~1.

Ezxample 5. On Example 4, using this preconditioning
and 7 : (1 — 1,2 — 2), we obtain the yellow under-
approximating parallelotope of Figure 1a. We estimate the
image range( f, ) by sampling points in the input domain.
This sampling-based estimation is represented as the dark
dots-filled region. The green parallelotope and box are the
over-approximations with and without preconditioning.

Quadrature formulae for the mean-value extension The
mean-value interval extension can yield rough approxima-
tions. This is especially the case when the variation of the
gradient is important over the input range.Using simple
quadrature formulae partially solves this problem.

Let f : R™ — R. We partition each dimension j = [1...m)]

of the m-dimensional input box * = x; X ... X &, in
2k sub-intervals and define, for all j = [1...m], xj_k <

—(k-1) 0 k . -k _ )
z; < < xj < < xy, with ;0 =y,

29 = c(x;), 2% = T;. We note da’ = z* — 2/~ the vector-

valued deviation. The first natural idea is to compute an
under-approximation for each sub-box obtained as product
of sub-intervals in each dimension. But the convex union
of the under-approximating boxes is in general not an
under-approximation of range(f, ). We propose below a
scheme that avoids these unions, and remains linear in
k with respect to the non-partitioned case. We note ! =
[x7, ol x oyt 2l x .. x [z}, 2L ], and for all i between 2
and k, &' = [z7%, 2t]x. . .x[z;7, 2l \&' ", where \ denotes
the set difference and @ the interior of x. This partition is
represented in Figure 1b for a two-dimensional space. In
practice, each ”square ring” ' will be decomposed in 2n
sub-boxes for the Jacobian evaluation.

By the mean-value theorem, Vx € [z71 2], 3¢t €
[e= 1, 2], f(z) = f(2°) +(VF(€), 2 —2°). Let f° 2 f(°)
and V* for i in [1, k] such that {|Vf(z)|,z € '} C V"
We have range(f,z') C f° + (vl,d:cl)[—l, 1] and [f0 —
(Y, daty, fO+(V1L, dz")] C range(f, [z, z']). Let us now
take z € x%. We can iterate the mean-value theorem on
the adjacent subdivision and write that for all z € x2,
there exist 2t € ' Nx?, €2 € x? such that f(x) = f(a!)+
(VF(£?),z—a') and |21 — 21| < d2? and |zy — 23] < da3.
(take for example for z! the intersection of the line from
2% to z with the border between z! and x?). We have
range(f, 2'Uz?) € fO+(V',de")[~1,1]+(V", dz?)[~1,1].
There also exists (z,z1) € 2 xx! such that |z —z1| = d?
and |zrg — 3| = dz3 (take the corners of the boxes z' and
x?), so that we also have [f0 — (V! dz!) — (V2 da?), fO +

(V! da') + (V?,dz?)] C range(f,x' U x?). This gener-
alizes to the k subdivisions, for instance for the under-

approximation: [f0 — Zle (V' dz), O+ Zfﬂ(yl, dz)] C
range(f, x). The same applies to the estimation of robust
ranges. Naturally, other quadrature schemes could be used.
Example 6. We consider f(x) = (2224213 —2w120—2, 25—
r3+4x1m9—3)T with & = [0.9, 1.1]2. The results are repre-
sented in Figure 1c. The sampling-based estimation of the
image is the dark dots-filled region. We choose 7 : (1 —
1,2 — 2). Using the preconditioned mean-value extension
without partitioning, the over-approximation is the largest
green parallelotope and the under-approximation for the
joint range is empty. The quadrature formula for the mean-
value extension with & = 10 partitions on one hand,
and the order 2 extension of Corollary 1 on the other
hand, yield two very similar under-approximating yellow
parallelotopes. They also yield two very similar green over-
approximating parallelotopes. The light green box is the
order 2 over-approximation without preconditioning.

Remark 1. The approach yields approximations centered
at f(2°). We observe that the under-approximating skewed
box is very close to the largest skewed box entirely included
in the image, given a fixed skewing and a center at f(z°).

Finally, as sound under-approximations are still obtained
by considering sub-regions of the input set, refinements can
be obtained by filtering out sub-regions where Jacobian
coefficients are very sensitive to the inputs or close to zero.

Bounding the Jacobian matrix The approach relies on
computing over-approximations of V f(z) over some sub-
sets of input box @, namely V* for ¢ in [1, k] such that
{IVf(z)],z € '} C V'. Automatic differentiation allows
to compute the derivatives, but needs to be combined with
set-membership methods. The combination of automatic
differentiation with an evaluation in affine arithmetic pro-
vides a good trade-off between efficiency and precision.
Also, affine forms provide a combination of parameteriza-
tion and set-based estimation: a parametric approximate
form for Vf(z) valid on all box « is computed, that
can be instantiated on x* to yield over-approximation V?,
avoiding several differentiations.

5. APPLICATION TO DISCRETE-TIME SYSTEMS

We consider the reachability of discrete-time non-linear
dynamical systems with inputs of the form
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(a) Example 5: under- (dotted lines) and
over-approximation (plain lines)

Fig. 1. Nllustrations for Sections 2 and 4

{ ) (6)

where f : R™ — R" is a vector-valued non-linear function
with m > n, z € R" the vector of state variables,
u € u C R™™" the input signal, and z° the initial set.

k

= f(2F

ez

Given an initial set 2°, we want to compute the bounded
time reachable set of the dynamical system, i.e, the set
of states visited by the dynamical system up to a fixed
time horizon K € N. The computation of the reachable set
can be seen as a series of images of sets by vector-valued
function f. We thus can use the results of Sections 2 to 4.

For conciseness, we consider systems without disturbances
and compute maximal (or classical) reachable sets. The
algorithms can be straightforwardly extended to robust
reach set of systems with disturbances, basically replacing
ranges by robust ranges. This allows us to use the lighter
notations Z(f,x, ) and O(f, 2, ) to note the under and
over-approximating sets introduced in Definition 1.

Method 1 the first method consists in iteratively comput-
ing function image, with as input the previously computed
approximation of the image. We compute under and over-
approximations I¥ and O” of the reachable set z* by

10— 50 90,0
Tt P P SR
This yields Algorithm 1. At each step k, under and

Algorithm 1 Tterated discrete-time reachability

Input: f:R" — R”, 20 C IR” initial state, K € N*, an
over-approximating extension [V f] (see Section 4)
Output: I* and O for k € [1, K]
19:= 29 0% := 2% choose 7 : [1..
for k from 0 to K — 1 do
Vi =V, VE = [[Vf1(0)]
Ak = o(VH), Ak = ¢(V§) (supposed non-singular)
Of = (a1 b = (4
= T(CF f, TF, 7), 25
if 2% = () then

O(CH £, OF, )

return
end

k+1 . Ak b+l k41 . Ak Jk+1
I =A7z7", 0 = A5z4

end for

over-approximations I* and OF of the joint range, which
computation are fully decoupled, are used as input for the
next step. It is thus particularly important to compute

(b) Partitioning the input domain

(c) Example 6: approximations for quadra-
ture and order 2 extensions

tight approximations of this vector-valued range, and in
particular use preconditioning. At each step k, leCH i
an interval vector such that, if it is non empty, I**+1
Ak 2K C range(f, I*) C range(f*+1,2°).

Method 2 the second method consists in computing the
sensitivity to initial state by approximating the gradient
of the iterated function. At each step k, we compute the
under and over-approximation of range(f*,z°), i.e. the
loop body f iterated k times, starting from the initial state
29, This yields the schematic Algorithm 2. At each step

Algorithm 2 Discrete-time reachability computed on f*

for k from 0 to K — 1 do
IFHL = T(fF+L 20 ), OFFL .

O(fF+1, 29 )

end for

k, the under- and over-approximation are both obtained
from over-approximations of f**! and its gradient.

Discussion ~ While relying on the same techniques for
range estimation, Algorithm 1 and 2 are different: Al-
gorithm 1 needs at each step a non-empty under-
approximating box or skew box of the vector-valued reach-
able set of states, and precision will be lost and not
recovered when this set is not well approximated by a
skew box. Algorithm 2 relies only on the propagation
of over-approximations to deduce under-approximations.
In particular, the under-approximation may be empty at
some step, and become non-empty again at further steps
(a similar remark was made for continuous systems in
Goubault and Putot (2017)). Algorithm 2 is more costly
as it requires a differentiation of the iterated function.

6. IMPLEMENTATION AND EXAMPLES

The approach is implemented as part of the RINO proto-
type, available from https://github.com/cosynus-1ix/
RINO. The prototype performs function range estimations,
discrete-time and continuous-time reachability.

Test Model We consider the test model of Dreossi et al.
(2016), with same initial conditions and parameter values.
Figure 2a shows the under and over-approximated reach-
able sets (respectively the filled yellow region and green
parallelotope) over time up to 25 steps with Algorithm 1.
They are obtained in 0.02 seconds. The under and over-
approximations are very close one to another, confirming
the accuracy of the results.
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(a) Skewed box approximations (Algo- (b)
rithm 1) for the test model

Skewed box approximations (Algo- (c)
rithm 1) for the SIR epidemic model
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Projected approximations
(Algorithm 2) for the bees model

Fig. 2. Under and over-approximations for the 3 discrete systems

SIR Epidemic Model We consider the SIR epidemic
model with the parameters of Dreossi et al. (2016). We
compute the reachable set up to 60 steps from the initial
box (x1,x2,23) € [0.79,0.80] x [0.19,0.20] x [0,0.1]. The
vector-valued reachable sets (x1,x2) computed in 0.05
seconds with Algorithm 1 up to 60 steps are represented
in Figure 2b. We can note in particular from the zoomed
reachable set in the figure, which corresponds to last step
(60), that the under-approximation (in yellow) is still of
good quality (the purple dots correspond to sample exe-
cutions). However, only Algorithm 2 is able to compute,
also in 0.05 seconds, non-empty (and actually very tight)
approximations when taking as initial condition xz3 = 0
which is of empty interior, instead of 3 € [0,0.1].

Honeybees Site Choice Model We consider the reach-
able sets up to 1500 steps of the 5-dimensional Hon-
eybees model studied in Dreossi et al. (2016). Algo-
rithm 1 takes only 1.7 seconds but yields rather im-
precise results. Algorithm 2 takes 57 seconds, but the
projected under-approximations are very tight, close to
the over-approximations, as can be seen on Figure 2c
which represents the approximations for all components
as functions of steps. These results can be compared to
Figure 7 in Dreossi et al. (2016), obtained in 81 sec-
onds. Our approach is slightly faster and provides tighter
over-approximation while solving the much more involved
under-approximation problem.

7. CONCLUSION AND FUTURE WORK

We focused on new AE under-approximating extensions
and their accurate practical evaluation for non-linear
vector-valued functions, and exemplified their interest for
the reachability of discrete-time systems. These techniques
can also be used for the reachability analysis of continuous-
time systems, improving for instance over Goubault and
Putot (2019); Goubault and Putot (2020).
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