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Abstract—Ensemble learning methods often improve results
in problems addressed by single Machine Learning models. In
this work, we apply Ensemble Learning on video-recorded crowd
movements. First, we build Ensembles of homogeneous Convolu-
tional Neural Networks (CNN) to compare their performance on
the Crowd-11 dataset and show the gain of performance demon-
strated by Ensembles compared to single CNN models. Secondly,
we evaluate all the possible combinations of these homogeneous
Ensembles to build a global Ensemble of heterogeneous models,
and we analyze the combination of Ensembles that achieves the
best results. Our experiments reveal that Ensemble classification
often obtains better results than single models and combining
different Ensembles can make the predictions accuracy even
better.
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I. INTRODUCTION

More and more cities are subject to massive crowd move-
ments due to cultural or political events. During a crowd
movement, law enforcement services rely on video surveil-
lance and can count on recent approaches allowing an optimal
deployment of cameras [1]. However, although the video data
collection is increasingly widespread, the automatic analysis
of these videos is not always performed in real time which can
delay the intervention of law enforcement services. One of the
reasons for this is the lack of generic statistical models that can
be used in real time to detect any type of anomalies that may
arise from crowd events [2]. Furthermore, the development of
such models is a tedious task. This can be explained by the
scarcity of annotated datasets [3]. However, recent years have
seen the emergence of datasets illustrating massive and various
crowd movements such as Crowd-11 [4].

The authors of Crowd-11 trained models to classify crowd
clips. The model that obtains the best classification results in
their article derives from the C3D architecture [5]. In previous
works, we obtained better results [6], by using a model derived
from the TwoStream Inflated 3D architecture (2S-I3D) which
already outperforms the C3D models on action recognition
datasets [3].

In this article, we aim to improve the classification results
on the Crowd-11 dataset by applying Ensemble Learning
methods. We first create Ensembles of homogeneous mod-
els deriving from different architectures and benefiting from
different training pre-conditions. The theoretical aspect of

this comparison is developed in Section IV-A. Secondly, an
evaluation of all the possible combinations of these models
allows us to elect a global Ensemble of heterogeneous models
that gathers several homogeneous Ensembles. The theoretical
aspect of this combination is developed in Section IV-C.

This article is organized as follows: in Section II, we present
Ensemble methods applied to video classification and crowd
analysis. In Section III, we present our approaches. We discuss
our experiments in Section IV.

II. REVIEW

Ensemble methods perform very well in several machine
learning tasks [7]. Zhou [8] divides the Ensemble methods
into three major categories:

• Boosting, illustrated by its most famous algorithm Ad-
aBoost [9], which consists in learning T models by
associating each time different weights to the training
examples. At the beginning, of similar values, these
weights change at the tth iteration of the AdaBoost
algorithm by taking into account the error obtained from
the model trained on tth − 1 iteration. In the end, a
weighted majority vote is used to combine the decisions
of the T models.

• Bagging, which is a contraction of Bootstrap Aggregat-
ing, where statistical methods are trained on samples
created by Bootstrap sampling [10]. Subsequently, these
methods are combined into an Ensemble by a majority
vote.

• Stacking, where different statistical methods are trained
on a dataset. Subsequently, a second statistical method,
called a meta-classifier, learns to combine the trained
models.

Furthermore, Zhou considers that some Ensemble methods do
not fall into any of these three major categories.

Here we explore some recent Ensemble approaches applied
to image processing, video analysis, and crowd analysis.

For image processing and video analysis, Lia et al. [11]
apply an Ensemble method to provide a solution to classes
that lack examples for a vehicle image classification prob-
lem. They apply balanced sampling and data augmentation.
Their Ensemble method consists of a combination of multiple
ResNet models [12] and the decision is inferred using the
majority vote.
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Pouyanfar et al. [13] propose EDL (Ensemble Deep Learn-
ing) which they use for the classification of videos on the
Trecvid [14] and Disaster [15] datasets. EDL is a suite
of deep feature extractor models from images, which are
Convolutional Neural Networks (CNNs) [16] pre-trained on
ImageNet, and each extractor is followed by a Support Vector
Machine (SVM) [17] which serves as a weak learner in the
Ensemble. The learned features are extracted from the last
Fully Convolutional Network (FCN) layer of each model. The
used architectures are: AlexNet [18], CaffeNet [19], Region
based CNN [20], GoogleNet [21], and ResNet. The decision
is inferred following a weighted vote.

Inspired by Liu et al. [22], Chen et al. [23] propose an
Ensemble approach named Ensemble Weighted Multi-Instance
Learning. They start by sampling several subsets of the major-
ity class, and by combining each time a subset of the majority
class with a minority class, they train a model using AdaBoost
[9]. The trained models are combined for the final decision.

In the context of crowd analysis, Walach et al. [24] apply
gradient boosting and selective sampling on a simple CNN
architecture to perform objects counting in images. Their
approach is applied to microscopic bacterial cells datasets, and
crowd counting datasets.

Wu et al. [25] stack several models whose outputs are used
as new features which will be sent as inputs of a new model.

Due to the paucity of annotated data, Gong et al. [26] learn
in a semi-supervised manner an Ensemble of pose-sensitive
DPM (Deformable Part-based Model) mixtures [27] for pedes-
trian detection. Several postures are taken into account such
as: front, rear, left, right. Each DPM mixture specialized to
a specific pedestrian posture is trained using a Latent-SVM
[28].

Contrary to previously mentioned approaches [11], [22], we
do not aim to solve the problem of unbalanced data. We do
not do Boosting, as in Walach et al. [24], because in Boosting
the training sessions are repeated several times to change
the weights of the training examples. The same cannot be
reproduced for video data without requiring a huge calculation
time. We opt for a compromise between a form of Stacking
[25], without a meta-classifier because we combine the models
at the evaluation phase, and a form of Bagging, because we
perform an aggregation of models without applying Bootstrap
sampling. Here the samples are the folds already obtained
following the cross validation that we did for our previous
work [6]. Our split is stratified, which means that each fold
maintains the classes distribution of the original dataset. We
do not do semi-supervised learning combined with the use of
Ensemble methods, as in Gong et al. [26], because our dataset
does not suffer from missing annotations. All the video clips
are weakly annotated here.

Zhou et al. [29] argue that it is not useful to put a very
large number of models in an Ensemble. Choosing a small
number of models that are already yielding good results is
enough to yield better results when they end up gathering into
an Ensemble. Therefore, we decided to split the dataset into
5 folds, as it was already done in Bendali-Braham et al. [6],

which allows each Ensemble to be equipped with 4 single
models that extract different knowledge from the Crowd-11
dataset.

III. ENSEMBLE CLASSIFICATION

In the light of the approaches mentioned in Section II,
and based on the definition proposed by Zhou [8], Ensemble
learning consists in training, or evaluating, a set of statistical
models, whether they are of similar nature or not, trained in
similar conditions or not.

First, we set up Ensemble approaches made up of homo-
geneous models that possess the same pre-training conditions.
Afterwards, we propose to create global Ensemble approaches
which mix heterogeneous models of different architectures and
that have various pre-training conditions.

A. Creation of homogeneous models ensembles

In a previous work on the Crowd-11 dataset, we showed
that models from the 2S-I3D network perform better than the
C3D network and the Inflated 3D Nets (I3D) [6]. However,
the 2S-I3D results peak approximately at 68% accuracy. These
results were confirmed by a 5-fold cross-validation.

In this work, we split the dataset into 5 folds, and we train,
for each possible combination of these folds, a model from
one of the following architectures:

• The 2S-I3D architecture [3],
• The I3D architecture [3].
• The C3D architecture [5].
• The Resnet 3D (R3D) architecture [30].

In each combination, 3 folds are used for training, 1 fold
for validation, and the last fold for testing. By selecting a
test fold each time, we can produce 4 models by combining
the remaining folds. During the evaluation on a test fold, the
decisions of the 4 models are summed to deduce the decision.

With this procedure, we can make up to 20 different
combinations of the training, validation, and test sets. We
mention in the following paragraphs the composition of each
of the used architectures.

The I3D architecture is composed of a basis of two 3D
convolution layers. Each of these layers is supported by a
Batch Normalization and is followed by a 3D MaxPooling
operation. These 2 layers are followed by 9 Inception modules
whose internal composition changes slightly from one module
to another. The last Inception module is connected to a 3D
AveragePooling whose outputs are sent to a SoftMax function
for the classification task.

The 2S-I3D architecture is made up of two streams. Each
branch reproduces the architecture of the I3D network. One of
the two streams extracts features from an RGB video clip, and
the other one extracts features from an optical flow version of
the video clip. The outputs of these two streams are connected
to the Softmax classification function.

The C3D architecture, proposed by Tran et al. [5], consists
of 5 layers of 3D convolutions, followed by two layers of FCN
whose outputs are sent to a Softmax classification function.



The R3D architecture, proposed by Hara et al. [30], is made
up of several residual blocks. Each residual block is composed
of two 3D convolution layers. We choose the version with
34 hidden layers because of its good performance which is
demonstrated by Hara et al. [30] on the Sports-1m action
recognition dataset. This version of the R3D architecture
consists of a first layer of 3D convolutions followed by 16
residual blocks, and ends with an FCN layer before the
Softmax classification function.

1) Constitution of training, validation and test sets: The
version of the Crowd-11 dataset available to us corresponds
to the version that we worked on in our previous project [6].
This version of Crowd-11 consists of 1641 scenes that can
be considered as contextual boundaries between video clips.
These scenes are split into 5769 video clips which are labeled
into 11 classes by Dupont et al. [4]. These 11 classes are: Gas
Free, Gas Jammed, Laminar Flow, Turbulent Flow, Crossing
Flows, Merging Flows, Diverging Flow, Static Calm, Static
Agitated, Interacting Crowd, No Crowd.

In order to split the dataset into folds to apply cross-
validation, we divided the dataset starting from the scenes in
our previous work [6]. To ensure that the division of the dataset
is stratified, we apply the algorithms, presented below:

1) The first algorithm splits the scenes of the dataset into
multiple folds. In our case, we split it into 5 folds.

2) The second algorithm is by the first algorithm to update
the score of each fold w.r.t its distribution.

These two algorithms are used to constitute the folds that will
be used for the creation of the training, validation, and test
sets, as illustrated in Figure 1.

The following program splits the scenes of the dataset into
multiple folds
Sc← list of scenes
Nb folds← number of folds
Sc freq ← array listing the number of clips per scene
Cls freq ← array listing the number of clips per class
{Sc freq and Cls freq are pre-computed}
Folds scenes← array of lists of scenes of each fold {The
dataset is split into the Folds scenes scenes.}
Folds distribs ← scores distributions of each fold with
respect to the diversity of the clips it contains
while Sc not empty do
• Select the fold with the worst score from

Folds distribs
• Select the scene that contains the biggest number of

clips from Sc freq
• Remove the selected scene from Sc freq and Sc
• Add the selected scene to the selected fold on

Folds scenes
• Update the score of the selected fold on

Folds distribs
end while
return Folds scenes

The following program updates the score of a selected fold
Require: Folds distrib, s, Nb folds, Cls freq

s← scene previously selected
V ids← list of all the dataset’s clips
Database ← dataframe containing the information about
the dataset that link the scenes to their video clips
Sc vids ← intersection between the scene s and the
dataframe Database, and retrieval of all the video clips
of these scenes from V ids
for all class c in Sc classes do
Fold distribc ← Fold distribc +

Nb folds
Cls freqc

end for
return New fold’s score Fold distrib stored in
Folds distribs
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Fig. 1. Illustration of the constitution of the train, validation and test sets
from different combinations of folds of the Crowd-11 dataset

2) Global ensembles of heterogeneous models: We create
global Ensembles of models having either different architec-
tures, e.g. fine-tuned 2S-I3D Ensembles coupled with C3D
Ensembles trained from scratch, or different training con-
ditions, e.g. fine-tuned I3D Ensembles and I3D Ensembles
trained from scratch, or various Ensembles accumulating the
two differences, for example C3D Ensembles trained from
scratch, fine-tuned I3D Ensembles, and 2S-I3D Ensembles
trained from scratch. We compose global Ensembles from
the Ensembles of homogeneous models compared in Sec-
tion IV-A. Next, we evaluate on the test set all the possible
combinations from these Ensembles of homogeneous models.
Equation (1) computes the number of combinations without
repetition that can give rise to global Ensembles.

nb combinations =

K∑
i=2

C(K, i) (1)

Where K represents the maximum size of a combination
constituting a global Ensemble. C(K, i) represents the func-
tion that computes a combination without repetition where
the number of choices is set to i. i is the length of the
tuple which represents the number of homogeneous Ensembles
combined into a global Ensemble of heterogeneous models. As
we already evaluate the Ensembles of homogeneous models
in Section IV-A, i starts from 2 which is considered as the
minimum size of a combination1.

1The source code of this project is available here: https://github.com/
MounirB/Crowded-scenes-Ensemble-classification

https://github.com/MounirB/Crowded-scenes-Ensemble-classification
https://github.com/MounirB/Crowded-scenes-Ensemble-classification


IV. EXPERIMENTS

In this section, we detail the different types of experiments
that we have conducted:

• We compared the performance of Ensembles made up of
fine-tuned models to other Ensembles made up of models
which did not benefit from pre-training;

• We compared Ensembles that were trained on augmented
data from the Crowd-11 dataset and compared them to
Ensembles that did not benefit from augmented data.

In this work, the chosen hyperparameters for the training
process correspond to the hyperparameters that we used in
Bendali-Braham et al. [6]. The video clips of the Crowd-11
dataset last approximately for ≈ 5 seconds. For I3D and 2S-
I3D architectures, 20 frames are selected from a video clip.
These frames are found at regular intervals all along the clip.
The size of each image is fixed to 224 × 224 pixels. For
R3D and C3D architectures, 16 frames are selected from a
video clip and the size of each frame is fixed to 112 × 112
pixels. For the 2S-I3D models, the optical flow version of
each clip is obtained via the TV-L1 algorithm [31]. During
the comparison of the Ensembles that benefited from data
augmentation or not, we will substitute the Farnebäck optical
flow extraction algorithm for the TVL1 algorithm because the
former is quicker than the latter. However, we also undertake
experiments to check if the use of the Farnebäck algorithm
does not significantly reduce the performance of the 2S-I3D
models. The Farnebäck algorithm is theoretically known to be
less accurate than the TVL1 algorithm.

A. Comparison of Ensembles of models with homogeneous
architectures

We want to verify whether an Ensemble of fine-tuned
models perform better than an Ensemble trained from scratch.
Fine-tuned 2S-I3D and I3D models were pre-trained on the
ImageNet [32] and the Kinetics [33] datasets. The fine-tuned
C3D models were pre-trained on the Sports-1m dataset [34].
Furthermore, we train from scratch models from the 2S-I3D,
I3D, C3D, and R3D architectures.

In all these situations, we create 5 major training/validation
and testing contexts, where we fix a test sample upstream, and
we vary the validation samples (that must be different from the
test sample) downstream. Under these circumstances, for each
Ensemble, three samples are selected for training. These latter
are different from the test sample and the selected validation
sample. At the end, for the 5 test folds, 20 individual models
are trained from scratch or fine-tuned. Each group of 4 singles
models, whether trained from scratch or fine-tuned, constitutes
an Ensemble of models at the evaluation phase.

The prediction results of these models are evaluated in
terms of accuracy in Table I. Overall results demonstrate that
the constitution of Ensemble models increases the average
accuracy for the classification task.

B. Data augmentation

By augmenting the video data of Crowd-11, we aim to
evaluate the impact of data augmentation on the classification

of video-recorded crowd movements. Data augmentation was
only applied on the training sets of the Crowd-11 dataset. To
augment data, we applied the following operations: random
crop, salt and pepper effect, video flip. In our experiments,
we compare two data augmentation strategies:

• A fixed pre-computed data augmentation before the be-
ginning of the training session. The augmentation meth-
ods are chosen randomly, alone or combined with other
augmentation methods. As a result of data augmentation,
the size of the training set was multiplied by 3. In each
epoch of the training session, the model explores the
augmented data as well as the non-augmented data.

• An on-the-fly data augmentation that is renewed at each
epoch of the training session. In this context, at each
training epoch, data augmentation has a probability of
75% to occur. The epochs are repeated 4 times to allow
the on-the-fly data augmentation to be similar in terms
of quantity and variety to that of the pre-computed
augmentated data.
a) Discussion of the results of data augmentation: As a

result of our experiments illustrated in Table II, we find that
using the Farnebäck extraction algorithm slightly reduces the
performance of 2S-I3D models. The average score goes from
69.02% to 68.41%, which is an insignificant reduction that can
be neglected for the rest of our experiments. On-the-fly data
augmentation does not improve the results. Conversely, this
type of data augmentation worsens the performance of the 2S-
I3D models. The pre-computed data augmentation greatly im-
proves the results of fine-tuned 2S-I3D models whose second
branch feeds on flow video clips obtained via the Farnebäck
algorithm. These Ensembles even progress, on average, by 1
point of accuracy from 68.41% to 69.81% thus beating the
Ensembles of fine-tuned 2S-I3D models whose second streams
were fed by the pre-computed flow clips extracted using the
TVL1 algorithm. This good performance is offset by the 5
times greater training time required by models benefiting from
the precomputed data augmentation.

C. Evaluation of global sets of models with heterogeneous
architectures

We create global Ensembles by combining the models
of homogeneous Ensembles whose results are illustrated in
Table III. These 8 Ensembles can participate into 247 combi-
nations containing at least 2 heterogeneous Ensembles.

The combination that achieves the best results combines
the fine-tuned 2S-I3D Ensembles that have benefited from
pre-computed data augmentation, with the fine-tuned 2S-I3D
Ensembles that have not benefited from data augmentation,
fine-tuned C3D Ensembles, and I3D Ensembles trained from
scratch. The results of this combination are shown in Table IV.
We find that this combination improves the overall perfor-
mance by 1.5% in terms of accuracy.

Table IV shows that the Ensembles complete each other
for the classification task. In this case, the least performing
Ensembles do not curb the performance of the best global
Ensemble.



TABLE I
COMPARISON BETWEEN THE RESULTS OBTAINED BY THE PRE-TRAINED 2S-I3D ENSEMBLES FINE-TUNED ON CROWD-11 AND THEIR SINGLE MODELS

Test sample involved 0 1 2 3 4 µ σ

Validation sample:
accuracy per associated
individual model

1: 67.86 0: 66.55 0: 66.04 0: 63.09 0: 69.73
2: 69.08 2: 66.55 1: 67.28 1: 66.26 1: 70.60
3: 67.33 3: 66.29 3: 68.52 2: 63.52 2: 69.30
4: 69.86 4: 65.44 4: 66.66 4: 62.15 3: 67.39

Accuracies standard
deviations of the models
sharing the same test
sample

0.99 0.45 0.91 1.52 1.17

Accuracies mean of
the models sharing
the same test sample

68.53 66.21 67.13 63.76 69.26 66.98 1.92

Accuracy per ensemble 70.48 67.57 68.61 66.43 72.00 69.02 1.99

TABLE II
PERFORMANCE COMPARISON BETWEEN ENSEMBLES OF 2S-I3D MODELS THAT WERE FINE-TUNED OR WERE NOT FINE-TUNED ON AUGMENTED DATA

Involved test sample 0 1 2 3 4 µ σ
2S-I3D Ensembles FarneBack (Flow) Non Augmented accuracies 70.56 66.55 69.93 64.21 70.78 68.41 2.59
2S-I3D Ensembles FarneBack (Flow) Augmented Precomputed accuracies 71.00 69.10 71.88 65.58 71.47 69.81 2.31
2S-I3D FarneBack (Flow) Augmented On The Fly accuracies 68.47 67.23 69.23 64.21 69.30 67.69 1.89

TABLE III
COMPARISON BETWEEN MODELS ENSEMBLES WITH HOMOGENEOUS ARCHITECTURES

Test sample 0 1 2 3 4 µ σ
C3D scratch 31.26 32.76 32.27 31.76 38.08 33.23 2.47
C3D pretrained 61.13 60.59 61.00 58.13 61.56 60.48 1.21
I3D scratch 54.93 55.91 58.53 53.85 58.86 56.42 1.97
I3D pretrained 64.10 60.25 62.24 57.70 60.95 61.05 2.12
R3D (w 34 layers) scratch 47.42 52.00 50.13 48.63 50.43 49.72 1.57
2S I3D scratch (TVL1) 54.41 56.42 60.83 54.45 61.30 57.48 3.01
2S I3D pretrained (TVL1) w/o DA 70.48 67.57 68.61 66.43 72.00 69.02 1.99
2S I3D pretrained (Farnebäck) w DA 71.00 69.10 71.88 65.58 71.47 69.81 2.31

TABLE IV
COMPARISON BETWEEN THE BEST COMBINATION GIVING RISE TO A GLOBAL SET AND THE SET MODELS CONSTITUTING IT

Test sample 0 1 2 3 4 µ σ
(1) C3D pretrained 61.13 60.59 61.00 58.13 61.56 60.48 1.21
(2) I3D scratch 54.93 55.91 58.53 53.85 58.86 56.42 1.97
(3) 2S I3D pretrained (TVL1) w/o DA 70.48 67.57 68.61 66.43 72.00 69.02 1.99
(4) 2S I3D pretrained (Farnebäck) w DA 71.00 69.10 71.88 65.58 71.47 69.81 2.31
Global ensemble (1) + (2) + (3) + (4) 72.05 70.04 73.20 66.35 74.95 71.32 2.95

The main result of this work is that Ensemble learning
improves the performances of the classification task and com-
bining multiple Ensembles in a global Ensemble can make
the results even better. Despite these good results, it is worth
noting that the computation time for the decision making of the
Ensembles is obviously higher than for the individual models.

V. CONCLUSION AND PERSPECTIVES

Ensemble learning improves the accuracy of the video
classification task. In this work, we verified this improvement
for video-recorded crowd movements illustrated by the Crowd-
11 dataset. First, we found that the Ensemble of fine-tuned 2S-
I3D models improve the results of their single models which
were trained on different training samples. Here, thanks to
Ensemble methods, the average accuracy of single models
increases from 66.98% to 69.02%.

Afterwards, the comparison between the Ensembles of ho-
mogeneous models that have different training pre-conditions
and deriving from different architectures shows the superiority
of the pre-computed data augmentation strategy for the En-
sembles of 2S-I3D models. This augmentation strategy is the
appropriate regularization method that allows these Ensembles
to generalize well. The pre-computed data augmentation strat-
egy helped the 2S-I3D Ensembles to increase their accuracy
from 69.02% to 69.81%.

Finally, the best global Ensemble of heterogeneous models
increases the classification accuracy from 69.81% to 71.32%.

Currently, our models do not realize real-time predictions.
As a remedy, we intend to focus in our future work transferring
the knowledge learned by our Ensembles to lighter and quicker
models, by applying knowledge distillation; a concept coined
by Hinton et al. [35].
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