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1AMAP, Univ. Montpellier, IRD, CNRS, CIRAD, INRAE, Montpellier, France
2TETIS, INRAE, AgroParisTech, Université Montpellier, Montpellier, France
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Abstract

The rapid loss of biodiversity in tropical rainforests calls for new remote sens-

ing approaches capable of providing rapid estimates of biodiversity over large

areas. Imaging spectroscopy has shown potential for the estimation of taxo-

nomic diversity, but the link with spectral diversity has not been investigated

extensively with experimental data so far. We explored the relationship between

taxonomic diversity and visible to near infrared spectral variance derived from

various spectral processing techniques by means of a labeled dataset comprising

2000 individual tree crowns from 200 species from an experimental tropical

forest station in French Guiana. We generated a set of artificially assembled

communities covering a broad range of taxonomic diversity from this experi-

mental dataset. We analyzed the impact of various processing steps: spectral

normalization, spectral transformation through principal component analysis,

and feature selection. Correlation between taxonomic diversity and inter-

specific spectral variance was strong. Correlation was lower with total spectral

variance, with or without normalization and transformation. Dimensionality

reduction through feature selection resulted in dramatic improvement of the

correlation between Shannon index and spectral variance. While airborne diver-

sity mapping of tropical forest may not be at hand yet, our results confirm that

spectral diversity metrics, when computed on properly preprocessed and

selected spectral information can predict taxonomic diversity in tropical ecosys-

tems.

Introduction

Tropical forests are the largest terrestrial reservoir of bio-

diversity (ter Steege et al., 2013). They are subjected to a

rapid loss of biodiversity due to climate change, land-use

change (O’Neill et al., 2018), and anthropogenic pressure

(Alamgir et al., 2017). Developing monitoring systems

able to assess tropical forest degradation in terms of car-

bon stocks and biodiversity is a pressing challenge. The

scale and speed of change in tropical forests far outpace

our ability to monitor them through ground inventories

alone. Developing new remote sensing approaches capable

of providing rapid estimates of biodiversity over large

areas is necessary to better understand the functioning of

tropical rainforests.

Spectral diversity is deemed to integrate information

on taxonomic, functional, and phylogenetic diversity and

similarly to predict ecosystem function (Cavender-Bares

et al., 2020). The variation of spectral patterns can thus

be related to functional and structural properties that vary

between species or functional groups (Gamon et al., 1997;

Ustin & Gamon, 2010; Wang & Gamon, 2019). Opera-

tional multispectral satellites have been able to predict

plant functional traits when combined with climatic and

soil information (Aguirre-Gutiérrez et al., 2021; Ma

et al., 2019; Rapinel et al., 2019). Airborne and satellite
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imaging spectroscopy thus hold promise for detecting

changes in the floristic and functional composition of

temperate and tropical forests and estimating their biodi-

versity (Clark & Roberts, 2012; Féret & Asner, 2014; Som-

ers & Asner, 2013).

Most studies that use imaging spectroscopy to estimate

biodiversity rely on the Spectral Variation Hypothesis

(SVH; Palmer et al., 2000), which posits that the variabil-

ity in reflectance or “spectral variability” in space is an

expression of spatial heterogeneity of ecosystems compo-

sition and is therefore related to plant diversity. However,

the simple expectation that a higher spectral variation will

indicate a higher plant diversity is not always corrobo-

rated by empirical studies. Schmidtlein and Fass-

nacht (2017) showed, for instance, that the SVH does not

hold over broad regions or across time using MODIS

500 × 500 m pixels. The coarser the spatial resolution of

remote sensing data is, the more likely a pixel is to con-

tain several species and the smaller the overall spectral

variation across pixels of a given area (Fassnacht

et al., 2022). Therefore, one may expect that, for a given

region, the relationship between spectral variation and

diversity will not be stable across spatial resolution scales.

But, higher spatial resolution is not always better. For

instance, if the pixel size is below the individual tree

crown size, the within-individual variability increases,

confounding the relationship between spectral variability

and taxonomic diversity (Nagendra & Rocchini, 2008).

The spatial resolution of remote sensing data should

therefore be adapted to the size of individual organisms

of a given ecosystem. Whether a higher spatial resolution

allows a better assessment of tropical forest diversity thus

remains an open question.

Spectral diversity of plant canopies can be measured in

different ways. It can be estimated using the coefficient of

variation of spectral indices (Oindo & Skidmore, 2002) or

spectral bands among pixels (Gholizadeh et al., 2018,

2019; Hall et al., 2010; Wang et al., 2018), the mean dis-

tance of a group of pixels from their spectral centroid

(Rocchini, 2007; Rocchini et al., 2010), the number of

spectrally distinct clusters obtained by unsupervised classi-

fication or “spectral species” (Féret & Asner, 2014), and

spectral variance (Laliberté et al., 2019).

One strong limitation to the design of a methodology

adapted to tropical forests canopies so far is the relative

scarcity of adequate working datasets, i.e., sky-view spec-

tral images over a study site where individual tree crowns

have been delineated and identified at the species level to

serve as a control for the assessment of species diversity

(but see Baldeck et al., 2015). In the present paper, we

take advantage of a dataset including very-high spatial

resolution spectral information extracted from visible to

near infrared imaging spectroscopy acquired over an

experimental tropical forest station in French Guiana,

encompassing about 2000 individual tree crowns (ITCs)

from 200 species. Albeit important in size, the data at

hand are incomplete because they contain only the most

easily discernible crowns whose segmentation and label

could be confirmed beyond reasonable doubt during field

checking. This rich dataset however offers the possibility

to explore the link between spectral diversity and taxo-

nomic diversity by allowing the reconstruction of pseudo

images through re-assembling labeled tree crowns drawn

from the database. We generated a set of artificially

assembled communities covering a broad range of taxo-

nomic diversity from our global tree crown dataset to

explore the relationship between spectral variance and

taxonomic diversity. We hypothesised, following the SVH,

that the spectral variance measured on these communities

would be correlated to their taxonomic diversity. We

applied a hierarchical variance partitioning to the artificial

tree communities to evaluate the contribution of species

(inter-species spectral variance) and individuals (inter-

crown spectral variance within species) to the total spec-

tral variance. We evaluated the influence of spectral pro-

cessing and feature selection on the correlation between

spectral variance and taxonomic diversity, and on the

hierarchical structure of spectral variance. These analyses

allowed us to highlight the importance of spectral pro-

cessing and feature selection for the estimation of taxo-

nomic diversity using spectral variance. Moreover, we

were able to test if the correlation between spectral vari-

ance and taxonomic diversity was related to the propor-

tion of interspecies spectral variance. Practical

implications for biodiversity monitoring from airborne

imaging spectroscopy are finally discussed.

Material and Methods

Study area

The study site is located at Paracou, on the coastal part

of French Guiana (51°80 N, 52°530 W), where a set of 16

permanent forest plots (118.75 ha in total) are regularly

monitored. All stems above 10 cm diameter at breast

height (DBH) have been inventoried regularly for more

than 25 years. More than 750 tree species have been listed

on the site. A detailed description of the site and experi-

mental design can be found in Gourlet-Fleury

et al. (2004). In this study, we used data from the forest

inventory conducted in 2015.

Imaging spectroscopy

Imaging spectroscopy was acquired with a Hyspex VNIR-

1600 (Hyspex NEO, Skedsmokorset, Norway) sensor
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coupled with a Riegl LMSQ780 laser scanner. The 160

spectral bands span the visible to near infrared (VNIR)

range, from 414 to 994 nm, with a spectral sampling dis-

tance of 3.64 nm. The flight of the King Air B200 airplane

took place on cloudless conditions on September 19th,

2016, from 15:00 to 17:00, solar time, at an average alti-

tude of 920 m and covered all the plots of the experimen-

tal site of Paracou. Images were orthorectified,

georeferenced, and atmospheric corrections were applied

using ATCOR-4. The final product obtained had a 1-m

spatial resolution. The full spectral range of the VNIR

sensor was considered in this study.

We extracted spectral information corresponding to the

bottom of atmosphere VNIR reflectance from pixels cor-

responding to the ITCs from the image mosaic. Several

pre-processing steps were performed, including filtering

of irrelevant pixels and spectral domains, spectral normal-

ization and transformation. This included: (1) spatial

masking of pixels corresponding to defoliated tree crowns

and shaded pixels, (2) spectral masking to remove atmo-

spheric water absorption bands, (3) reflectance normaliza-

tion based on continuum removal (CR), and (4) spectral

transformation of normalized reflectance with principal

component analysis (PCA).

Removal of irrelevant pixels and noisy spectral
domains

We masked pixels corresponding to lower values of Nor-

malized Difference Vegetation Index (NDVI) and fixed a

threshold for minimum NDVI of 0.5 to remove non-

vegetated or non-foliated pixels (Asner & Martin, 2009;

Féret & Asner, 2014). Shaded parts of the ITCs are char-

acterized by low overall reflectance compared with sunlit

pixels, particularly in the near infrared (NIR) domain;

therefore, pixels with NIR reflectance inferior to a thresh-

old of 20% reflectance were also masked (Féret & de

Boissieu, 2020). We discarded all spectral bands between

887 nm and 994 nm, due to low signal to noise ratio.

This reflectance dataset is hereafter referred to as Level-1

spectral processing (Table 1).

Normalization of reflectance data using
continuum removal

Continuum removal (CR) or convex-hull transform is a

normalization procedure allowing comparison of individ-

ual absorption features from a common baseline (Clark &

Roush, 1984). The CR aims at performing albedo normal-

ization, allowing comparison of individual absorption

features among reflectance spectra (Cavender-Bares

et al., 2020). It also reduces structure-induced reflectance

effects of canopies such as within-canopy scattering of

diffuse radiation (Serbin & Townsend, 2020), and the

effect of changing illumination from sunlit to shaded

parts of the tree crown.

The continuum is a convex hull fit over the top of a

reflectance spectrum using straight-line segments that

connect local spectra maxima. This continuum is then

used as a reference, and the continuum-removed spec-

trum is computed as the ratio between the original spec-

trum and the continuum, as follows (Eq. 1):

RCR ¼ R=Cð Þ (1)

where RCR corresponds to the continuum-removed reflec-

tance, R is the original reflectance, and C is the contin-

uum. RCR ranges between 0 and 1 if R is positive, which,

unless improper preprocessing, is the case. This

continuum-removed reflectance dataset is hereafter

referred to as Level-2 spectral processing (see Table 1).

Principal component analysis

We applied a standardized PCA (SPCA) to the Level-2

data. PCA is a commonly used method in imaging spec-

troscopy analysis for spectral transformation and dimen-

sionality reduction (Ruiz Hidalgo et al., 2021;

Theodoridis et al., 2014). PCA is particularly relevant for

dimensionality reduction of hyperspectral information, as

it produces uncorrelated (orthogonal) latent variables cor-

responding to the principal components (PCs) from orig-

inal spectral information characterized by strong

correlation and redundancy between neighboring spectral

bands. PCs are ranked by decreasing contribution to total

explained variance. Components with low eigenvalues

explaining a marginal proportion of the total variance in

an image may still contain useful information for specific

tasks such as species discrimination and biodiversity anal-

ysis: Mather (1999) suggested that the choice of PCA

components should not be based on eigenvalues alone

Table 1. Number of bands, pixels, ITC, and species at each step of

reflectance data processing.

Filtering/processing

Number

of bands

Number

of pixels

Number

of species

Number

of ITC

Initial dataset 160 46 571 246 2246

Discard shaded and

defoliated pixels

160 41 564 246 2239

Discard noisy spectral

domains

124 41 564 246 2239

Removal of ITCS with less

than 10 pixels

(preprocessing level-1)

124 37 533 199 1595

Continuum removal

(preprocessing level-2)

122 37 533 199 1595
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and Rodarmel and Shan (2002) recommended performing

visual selection of the components in order to select those

including relevant biological spatial patterns. In the case

of imaging spectroscopy, PCs explaining an important

part of the spectral variance may also include patterns

related to sensor artefacts or conditions of acquisition. PC

selection based on visual analysis has been suggested by

multiple authors using PCA for dimensionality reduction

of imaging spectroscopy in the context of biodiversity

analysis (Asner et al., 2012; Féret & Asner, 2014; Laliberté

et al., 2019). Here, we performed PC selection based on a

statistical criterion corresponding to the correlation

between taxonomic diversity and spectral variance, and

we used Sequential Forward Selection (SFS) to identify

feature relevance (see 3.5).

This SPCA-transformed continuum-removed reflec-

tance dataset is hereafter referred to as Level-3 spectral

processing.

Standardization of spectral information

For each of the three spectral datasets corresponding to

the different levels of spectral processing, a standardiza-

tion across features was performed in order to give the

same importance to each spectral feature, and the same

contribution to spectral variance.

Delineated tree crowns

Field survey was conducted to build a large ground truth

dataset. Easily discernible crowns were delineated manu-

ally using the canopy height model derived from LiDAR

(Light Detection And Ranging) acquisitions and the high

spatial resolution RGB (Red, Green, Blue) images

acquired simultaneously with imaging spectroscopy. The

correct delineation of these ITCs was then validated in

the field and the corresponding species ascertained from

the ground inventory data (Aubry-Kientz et al., 2019). A

total of 2246 ITCs from 246 species were delineated over

the plot network, and the corresponding pixels were

extracted from the imaging spectroscopy based on the

crown outlines. This dataset was subsequently reduced

when discarding shaded pixels and by eliminating ITCs

with less than 10 pixels were removed from the dataset

(Table 1).

Generation of artificial populations

We aimed at quantifying the link between spectral vari-

ance and taxonomic diversity for different communities

of various richness.

Species richness (S) is the number of species present in

the considered community. Shannon diversity index (H0)

is a measure of entropy. Simpson diversity index (D) is

the probability that two individuals randomly selected

belong to different species. Both Shannon and Simpson

indices combine species richness and evenness, but Simp-

son index gives more weight to abundant species (Mar-

con, 2015).

We took advantage of the experimental dataset com-

bining georeferenced delineated tree crowns and corre-

sponding reflectance acquired from the imaging

spectroscopy in order to explore a broad range of taxo-

nomic diversity and composition. As this initial dataset

was strongly imbalanced in terms of number of pixels

and crowns per species (pixels per crowns range = 138

and interquartile range = 15), we developed a procedure

for the generation of populations with controlled species

richness.

Each artificial population comprised 100 ITCs selected

from the crown database, and each ITC included 10 pix-

els, resulting in individual populations of 1000 pixels. For

ITCs of more than 10 pixels, we performed a random

selection of 10 pixels among all pixels for each ITC draw.

To generate population samplings with a large range of

species diversity, our simulation strategy was based on

two successive steps. First, we produced 20 artificial pop-

ulations corresponding to extreme levels of species rich-

ness (S): 10 populations of maximum species richness

(S = 100), and 10 populations of low species richness

(S = 2). Then, we produced intermediate levels of diver-

sity, based on successive resampling of the populations

corresponding to extreme richness. We gradually

decreased or increased the diversity of populations with

high and low richness respectively, by sequentially delet-

ing ITCs and drawing others from the whole ITCs dataset

randomly and without replacement to ensure that no

population will have pixels from the same ITC sampled

twice. The procedure resulted in 220 populations covering

the full gradient of taxonomic diversity with different

equitabilities (Table 2).

We repeated the simulation procedure in order to gen-

erate 501 sets of 220 populations. For each population

(number of observations = 100), we computed three tax-

onomic diversity metrics to characterize tree species

assemblages (Table 3). Figure 1 shows the relationship

between S, H0 and D for the set of artificial populations

Table 2. Statistical summary of diversity metrics for the generated

artificial populations.

Indice Median Max Min

Richness (S) 50.00 100 2

Shannon index (H0) 3.34 4.50 0.33

Simpson index (D) 0.94 0.99 0.18
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with median correlation for Level-2 data. Both Shannon

and Simpson diversity indices showed negative skew, but

this skewness was particularly strong for the Simpson

index. Our protocol for generating artificial populations

allowed us to explore a wide gradient of taxonomic diver-

sity, even if extreme cases may appear unrealistic. To esti-

mate the actual values of S, H0 and D that can be found

in the study area, we selected from the forest inventory

database all the ITCs with a DBH ≥20 cm, which are

more likely to be seen from above. We drew 100 samples

of 100 neighboring ITCs and compared their diversity

metrics with those of the artificial populations. The med-

ian Shannon index was 3.7, the median Simpson index

was 0.97, and the median species richness was 56 species,

quite close to the medians obtained for the artificial pop-

ulations (see Table 2).

Spectral variance partitioning

We performed spectral variance analysis to study the

influence of spectral processing on the relationship

between taxonomic diversity and different components of

spectral variance. Total spectral variance (or spectral iner-

tia) is the sum over all variables (i.e. individual spectral

or principal components) of the unidimensional vari-

ances, i.e.:

VarTOT ¼ ∑
n

i¼1

∑
p

j¼1

yij�yi

� �
2

p
(2)

where n is the number of spectral bands and p is the

number of pixels, yij corresponds to the reflectance of

spectral band i and j, yi corresponds to the reflectance

averaged over all pixels for spectral band i. We hierarchi-

cally partitioned the total spectral variance of each artifi-

cial population as:

VarTOT ¼ VarSP þ VarITCjSP þ VarRES (3)

where VarTOT is the total variance of the spectral data

(corresponding to Level-1, Level-2, or Level-3 reflectance

data). VarSP is the part of this variance explained by spe-

cies (inter-species variance). VarITCjSP is the part of the

intra-species variance explained by ITCs (inter-crown

within species variance), and VarRES is the residual (intra-

crown) variance (Legendre & Legendre, 1998).

In order to highlight the influence of spectral process-

ing steps, we compared the correlation between VarTOT

and taxonomic diversity for each level of processing of

spectral information, and we analyzed the distribution

of VarSP, VarITC|SP and VarRES, for each of the 501 sets of

populations.

Feature selection

We used Sequential Feature Selection (SFS) to identify

the combination of spectral features (spectral bands or

components) maximizing the correlation between VarTOT

and taxonomic diversity. SFS is a greedy search algorithm

seeking to optimize a criterion (corresponding here to the

Pearson correlation coefficient (r) between VarTOT and a

taxonomic diversity index) by adding features sequentially

in forward mode and systematically evaluating the model

for all available features to be added to an initial subset

(Theodoridis et al., 2014). Here, SFS was performed on

one set of 220 populations, hereafter named calibration

set, and the generalization ability of the selected features

was tested on the remaining 500 sets of 220 populations.

The calibration set was identified based on the correlation

between VarTOT and the Shannon index when using all

features: for each level of processing, we identified the set

of populations of median correlation. We made the

assumption that mixing of crowns and pixels when gener-

ating artificial populations was sufficient for feature selec-

tion to be robust enough from one population to

another. We also assumed that the selection of features

obtained using this set characterized by the median value

of the correlation between VarTOT and the Shannon index

would be an acceptable trade-off for the applicability of

selected features to the largest number of populations.

We selected the Shannon index as it was better correlated

to VarTOT (r = 0.28) than species richness (r = 0.24) and

better correlated to VarSP than Simpson index (r = 0.88

for Shannon index, r = 0.80 for Simpson index).

Figure 2 summarizes the full analysis procedure.

Results

Impacts of reflectance preprocessing on the
relationship between spectral variance and
taxonomic diversity

We computed the correlation between VarTOT and the

Shannon index for the 501 sets of 220 populations for

each of the three levels of spectral processing. The vari-

ability of this correlation was large for each processing

level (Fig. 3) and were approximately normally

Table 3. Summary of taxonomic diversity metrics used in this study

(pi corresponds to the relative abundance of species i).

Diversity metrics Description/equation

Species richness (S) Number of species

Shannon index (H0) (Shannon, 1948) H0 ¼ �∑S
i pi � ln pið Þ

Simpson index (D) (Simpson, 1949) D ¼ 1�∑S
i pið Þ2
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distributed. Our results highlight the strong influence of

spectral normalization, as the median correlation

increased from 0.15 for Level-1 (prior to normalization)

to 0.30 and 0.35 for Level-2 and Level-3, respectively. The

influence of PCA in addition to spectral normalization

resulted in marginal overall increase of the correlation.

However, this correlation remained low overall, with 15%

of the populations showing correlation higher than 0.50.

Effects of feature selection on the
relationship between spectral variance and
taxonomic diversity

We computed the evolution of the correlation between

VarTOT and diversity indices with an increasing number

of features for each set to test the robustness of feature

ranking obtained from the calibration set. The evolution

of the correlation between VarTOT and taxonomic diver-

sity when increasing the number of features was remark-

ably similar across taxonomic diversity indices (Fig. 4).

Feature selection strongly improved the correlation

overall for the three levels of processing, and the

improvement was stronger on the calibration set. The

maximum correlation was obtained for one spectral band

when using Level-1 data, 12 bands for Level-2 data and

12 PCs for Level-3 data. The evolution of the correlation

with dimensionality reduction gave very different results

between the calibration set and the validation sets for

Level-1 while it remained similar for Level-2 and Level-3

with differences of around 0.02 to 0.05 between the Pear-

son correlation coefficient obtained for calibration set and

the median Pearson correlation coefficient obtained for

validation sets.

For the validation sets, the correlation decreased slowly

but steadily as features were added for Level-1. For Level-2,

the median correlation remained consistently strong

(r > 0.70) from one selected band to 25 bands, then stea-

dily decreased to reach a median correlation around 0.29

when using all bands. For Level-3, the maximum median

correlation was reached for only 7 selected PCs and was

lower than the maximum obtained on the calibration set.

The comparison of the distribution of correlations

when using all spectral features (Fig. 4) and when using

the optimal number of features (Fig. 5) highlights the

dramatic improvement of the strength of the linear rela-

tionship between taxonomic diversity and VarTOT result-

ing from feature selection.

Effect of SFS on the partitioning of spectral
variance

We analyzed the influence of feature selection on vari-

ance partitioning into inter-species, inter-crown, and

residual components. We computed the evolution of the

correlation between VarSP and taxonomic diversity with

an increasing number of spectral features, for all 501 sets

(Fig. 6) and compared the distribution of VarSP, VarITC|

SP, and VarRES when using the full spectral information

or the optimal set of features identified from SFS

(Fig. 7).

VarSP showed systematically stronger correlation with

diversity than VarTOT. The correlation between VarSP and

any of the three diversity indices was stable over all the

sets, with limited influence of the feature selection. In the

case of Level-2 processing, dimensionality reduction

resulted in a strong decrease of its variability across sets

(Fig. 6B), which was not the case for other levels of pro-

cessing.

The improvement in correlation between diversity and

VarTOT following dimensionality reduction did not reflect

a change in the structure of spectral variance and notably

no systematic increase in the share of interspecies variance

Figure 1. Distribution of calibration populations for Level-2 dataset along the Richness/Shannon or Richness/Simpson Index gradient. The range

of diversity measured over Paracou is represented by the red box.

6 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Linking spectral variance and forests biodiversity C. Badourdine et al.



(Fig. 7). Feature selection did not increase the proportion

of VarSP for Level-1 and Level-2, confirming that the pro-

portion of VarSP is a poor predictor of the correlation

between VarTOT and the Shannon index. Moreover, for

Level-3, feature selection resulted in a decrease in the

share of VarRES in favour of VarSP, but this had no direct

effect on the correlation between VarSP and Shannon

index since it remained constant (Fig. 6C). The selected

features maximized the correlation between VarTOT and

diversity indices without changing either the proportion

of VarSP or its correlation with these indices, which

means that SFS does not prioritize bands related to the

species contribution to the total spectral variance.

Characterization of the bands selected by
the SFS and identification of the spectral
domains of interest

The contribution of the spectral information correspond-

ing to bands selected from SFS applied on Level-2 data is

illustrated in Figure 8. The maximum correlation (RMAX)

between VarTOT and the Shannon index was reached for

the first 12 selected features. Most of the twelve features

were located in the red edge part of the near infrared

domain. The correlation remained greater than or equal

to 95% of RMAX for 3 to 32 selected features, including

spectral bands in the red edge, near infrared, green

Figure 2. Summary of the different treatments applied to the data. The effect of these three levels of spectral processings is then compared with

the results obtained with the SFS.
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domain of the visible region (530 to 560 nm), and one spec-

tral band in the blue domain corresponding to the first spec-

tral band. The spectral bands corresponding to the blue and

the red domains showed negative contribution to the link

between taxonomic diversity and spectral variance, as their

addition resulted in suboptimal correlation. These spectral

domains correspond to absorption domains of chlorophylls,

and the absorption corresponding to these domains tends to

saturate for dense and highly photosynthetic canopies. The

results obtained for Level-1 data are presented in Appendix

S1. The bands belonging to the red edge were not selected by

the SFS, which shows that the existing information in the

raw reflectance data needs to be processed using appropriate

transformation or normalization to get the most of spectral

information.

Discussion

The aim of this study was to investigate and quantify the

link between spectral variance and taxonomic diversity on

artificial populations covering a wide range of taxonomic

diversity. Our results highlighted the importance of spec-

tral processing and feature selection in maximizing this

relationship. We showed that the correlation between

total variance and taxonomic diversity was relatively

weak, while, as expected, interspecies variance and taxo-

nomic diversity were strongly correlated. However, the

interspecies variance represented less than 50% of the

total spectral variance and feature selection did not signif-

icantly increase this proportion.

Impact of spectral processing on the
correlation between spectral variance and
taxonomic diversity

We observed that VarTOT derived from Level-1 reflectance

was poorly correlated with taxonomic diversity, but spec-

tral processing including normalization and feature selec-

tion resulted in a strong increase of this correlation. The

different population sets showed highly variable correla-

tions between VarTOT and diversity indices when all fea-

tures were used. After optimal feature selection from a

calibration set, the variability of the correlations between

VarTOT and Shannon diversity index obtained from inde-

pendent test sets was strongly reduced. These results are

encouraging with regard to the possibility of mapping

upper canopy taxonomic diversity from imaging spec-

troscopy. The applicability of the findings obtained with

Level-3 processing on this subset of the image is less

straightforward than those corresponding to Level-2 pro-

cessing. The computation of PCA over this full imaging

spectroscopy dataset will inevitably result in very different

components, therefore it will be necessary to perform the

feature selection again on these new components.

Methodological considerations

Artificial population generation

Our population generation procedure implies that the size

of all crowns of the artificial populations is the same. We

made this choice in order to guarantee that the

Figure 3. Distribution of the Pearson correlation coefficient between the Shannon diversity index and the VarTOT computed on all spectral

features, for the 501 sets of 220 populations and the three levels of spectral processing.

8 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Linking spectral variance and forests biodiversity C. Badourdine et al.



estimation of the taxonomic diversity of the communities

is done on communities of the same size (number of

individuals and pixels, hence same surface). This choice

was made to evaluate the link between taxonomic diver-

sity and spectral variance under controlled conditions in

order to limit the possible additional source of variation

on the spectral variance. This crown size effect, and thus

the relative proportion of spectral variance represented by

some individuals, will have to be taken into account when

applying this method to real-world data. Moreover, the

reflectance of some pixels may be the result of a mixture

of several individuals that overlap or are intermingled.

The crowns were carefully selected and identified in the

study, which allowed to limit occurrence of mixed pixels

without resorting to a spatial buffer applied to each delin-

eated crown.

Figure 4. Evolution of the Pearson correlation coefficient between total spectral variance and taxonomic diversity, for an increasing number of

spectral features selected from SFS applied to Level-1 spectral processing (VNIR, A, E, G), SFS applied to Level-2 spectral processing (VNIR+CR, B,
F, H) and SFS applied to Level-3 spectral processing (VNIR+CR + PCA, C, G, I). The taxonomic diversity is expressed as Shannon index (A–C),
Simpson index (D–F), and species richness (G–I).
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Interpretation of the spectral features selected by
SFS

The first spectral band, belonging to the blue domain, has

been identified by the SFS as important. The application

of CR on a VNIR reflectance spectrum corresponding to

green vegetation is most likely to produce a first segment

between the first spectral band and the NIR shoulder cor-

responding to higher wavelengths of the red edge. In this

situation, the CR reflectance of the first spectral band

from the blue domain would be directly related to the

slope of the segment, and to the value of NIR reflectance.

The green and red edge domains are particularly sensitive

to photosynthetic pigment content of foliage in the case

of dense canopies with high photosynthetic pigment con-

tent, suggesting the link between taxonomic information,

photosynthetic activity and spectral information

(Cavender-Bares et al., 2020).

Figure 5. Distribution of the Pearson correlation coefficient calculated on the 501 sets of 220 populations between VarTOT calculated on the

best features selection and Shannon index for the three types of preprocessing.

Figure 6. Evolution of the Pearson correlation coefficient between the Shannon index and VarTOT or VarSP, for each spectral processing.
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Figure 7. Comparison of the distribution of inter-species spectral variance (VarSP), inter-ITC within species spectral variance (VarITC|SP), and resid-

ual spectral variance (VarRES) using all features or the selected features for the three pretreatments.

Figure 8. Spectral features selection obtained with SFS applied on calibration dataset for Level-2 processing. Feature importance: 1 = selection of

features required to reach maximum correlation (RMax) between Shannon’s H and VarTOT, and remain ≥95% of RMax; 2 = additional features

resulting in correlation between 90 and 95% of RMax (0.69 ≤ R < 0.72); 3 = addition of features resulting in correlation <90% of RMax. Gray

bars correspond to the 12 features identified to reach maximum correlation, with importance represented by their height.
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These results are in line with other studies, in particu-

lar, with the fact that the absence of SWIR has an influ-

ence on the selection of bands in the visible, red-edge and

to some extent the NIR (Hennessy et al., 2020; Rivard

et al., 2008). We did not examine the influence of spectral

resolution in this study; however, the importance of the

blue domain and the red-edge were reported for both

hyperspectral (Hennessy et al., 2020) and multispectral

data (Immitzer et al., 2016).

Partial estimation of biodiversity of tropical forest

This study focused on canopy tree diversity, which is

merely a subset of forest plant diversity. Tropical forests

contain many forms of plant growth. Trees account for

only 25% of all tropical forest species (Gentry & Dod-

son, 1987; Wright, 2002), and lianas can account for up

to 23% of the remaining species (Gentry & Dod-

son, 1987). Our approach does not take into account the

species in the lower layers of the canopy. A review of the

recent progress made in the study of liana ecology using

terrestrial, aerial, and space-based remote sensing is pro-

vided by Heijden et al. (2022).

Effectiveness of feature selection for
prediction of taxonomic diversity

Our population generation procedure was designed to test

the relationship between spectral variance and taxonomic

diversity for different combinations of richness and

equitability. For the populations, which are the most rep-

resentative of the actual diversity observed in Paracou

(Fig. 1) the correlation between VarTOT and Shannon

index became positive when using the selected features: it

reached a median value of 0.21 for the Level-1 and 0.23

for Level-2 processing. For Level-3 processing, we found a

positive correlation both when using all the components

and when using the selection and the correlation reached

the median value of 0.29 when using the selected features.

The maximum correlation obtained for this range of tax-

onomic diversity remained weak, suggesting that the

direct relationship between spectral variance and taxo-

nomic diversity is challenging the applicability of an

approach based on spectral variance for operational bio-

diversity mapping over tropical rainforests using imaging

spectroscopy. Here, we used the full spectral range of the

VNIR sensor, but the airplane also carried a sensor for

SWIR (Short Wave Infrared) data acquisition. The addi-

tion of SWIR improves discrimination of species (Laybros

et al., 2019) and thus could have provided useful infor-

mation. However, the signal-to-noise ratio of SWIR is

much lower compared with VNIR (Laybros et al., 2020).

It is possible that expanding the spectrum by

incorporating SWIR data into the analysis would have led

to improved results, but because different sensors were

used for the acquisition, geometric coherence was more

difficult to ensure over the entire 400 to 2500 nm spec-

trum, which resulted in artefacts when applying contin-

uum removal.

VarSP was consistently more strongly correlated with

taxonomic diversity than VarTOT. However, in an opera-

tional framework of biodiversity mapping, VarSP is not

accessible, hence the importance of developing methods

to optimize the link between spectral variance as mea-

sured on an image and taxonomic diversity. As shown in

Figures 6 and 7, the increase in correlation between spec-

tral variance and diversity indices obtained with SFS was

not related to a change in the level of inter-species vari-

ance nor to an increase in correlation between inter-

species variance and diversity indices. In order to

understand the drivers of increased correlation induced

by SFS, we have examined different hypotheses. Since

the increase in correlation is not related to an increase

in the proportion of variance explained by the species,

we surmised that it could be due to a homogenisation of

intra-species variance within populations. However, cal-

culations of intra-specific variances did not unambigu-

ously support this hypothesis. We also analyzed the

distribution and variability of the paired distances

between mean spectra of species but found that the SFS

did not clearly reduce their variability. The mechanisms

by which feature selection strongly contributed to

improve the prediction of taxonomic diversity from

spectral variance are not well understood yet and deserve

further scrutiny.

The general application of the method described in this

study needs careful evaluation. The procedure developed

to select spectral features from SFS applied on a calibra-

tion set led to suboptimal performances when applied to

test datasets. Although this feature selection significantly

improved overall performances, the selection of features

obtained using the calibration set was not the optimal

selection for all populations sets. This procedure may be

adjusted by applying SFS to multiple calibration datasets

and selecting features based on the ranking and frequency

of occurrences among multiple calibration datasets. This

may improve the stability of the performance of the SFS,

but the relevance of this operation on pseudo-images is

questionable: it would not guarantee a better performance

once applied on the whole image.

Comparison with other approaches

We chose total variance as spectral diversity metric, but

other metrics could have been used, such as the mean

distance from the spectral centroid (Rocchini, 2007;
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Rocchini et al., 2010) or the coefficient of variation (CV)

of spectral reflectance (Wang et al., 2018). We calculated

the CV of each population and the linear correlation

results with the three diversity indices were similar to

those shown in Figure 5.

An advantage of methods using spectral variation to

estimate taxonomic diversity over methods based on spec-

tral species clustering (Féret & Asner, 2014) is that they

require less user choice and are therefore more objective.

Féret and Asner (2014), Laliberté et al. (2019), Wang

et al. (2018) applied PCA to reflectance data and selected

relevant components based on visual analysis. Our feature

selection method using SFS algorithm circumvents the

need for subjective choices to be made. However, SFS

depends on ground information availability.

Oldeland et al. (2010) and Wang et al., 2018 found

better correlations between spectral variability metrics

and Shannon or Simpson indices, which consider both

richness and abundance, than with species richness alone.

In our study, the correlation coefficient between spectral

variance and taxonomic diversity showed minor differ-

ences when using species richness or Shannon index as

diversity metric (Fig. 5). In this same study, Wang et al.

showed that when the richness of simulated communities

increased but equitability was low (high abundance of

dominant species) the spectral variability, measured via

the CV, remained low. They also reported a case where

the spectral variability of a plot with high simulated

diversity was exceeded by one low diversity plot domi-

nated by a species with high intraspecific variability. The

leaf traits of some species and their structure had a

strong influence on optical diversity, as did the structure

of the canopy, and could modify the optical diversity-

vegetation diversity relationship. Rossi et al. (2021)

concluded in their study that the spectral diversity-

biodiversity relationship studied at the leaf level (Frye

et al., 2021; Schweiger et al., 2018) cannot be easily

transferred to the plant or community level and that the

impact of canopy structure on the relationship between

spectral diversity and taxonomic diversity needs to be

better understood.

An earlier study by Vaglio Laurin et al. (2014) con-

ducted in Ghana examined how diversity of 64 0.125 ha

tropical forest plots could be predicted from imaging

spectroscopy. The authors reported a pseudo-R2 value of

0.85 when comparing the Shannon diversity measured

from plot inventories with the predicted value derived

from spectral information acquired at 1-m spatial. The

approach developed in that study predicted the Shannon

diversity in 64 plots from 744 predictors (186 bands × 4

metrics) using random forest regression. In our study, we

used a single predictor (spectral variance) and a simple

linear model to relate this predictor to taxonomic diver-

sity.

Conclusion

Our study demonstrates the link between spectral vari-

ance and taxonomic diversity in a simulated diversity gra-

dient built from spectral information extracted from

imaging spectroscopy acquired over hyperdiverse dense

tropical forest canopy. We found that the inter-species

spectral variance represented between 17% and 50% of

the total spectral variance depending on image processing

(Fig. 8). We evidenced the importance of reflectance nor-

malization for improving the correlation between spectral

variance and taxonomic diversity indices. We showed that

feature selection significantly enhanced predictability of

taxonomic diversity from spectral variance. This study

allowed us to identify which spectral domains maximized

the link between spectral variance and taxonomic diver-

sity. We found that the red-edge and NIR domains con-

tained the most useful information for estimating

taxonomic diversity in a tropical rainforest. This study

has contributed to the foundation for a spectral-spatial

analysis to be conducted at the landscape scale at our site.

Forthcoming analyses will test its ability to map spatial

patterns of taxonomic diversity using spectral variance.
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Table S1 Distribution for each level of spectral treatments

of the features providing the maximum Pearson correla-

tion coefficient, at least 95% of the maximum and at least

70% of the maximum.

Figure S2. Spectral features selection obtained with SFS

applied on calibration dataset for Level-1 processing. Fea-

ture importance.

16 ª 2022 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Linking spectral variance and forests biodiversity C. Badourdine et al.

https://doi.org/10.1002/eap.1669
https://doi.org/10.1007/s004420100809

	 Abstract
	 Intro�duc�tion
	 Mate�rial and Meth�ods
	 Study area
	 Imag�ing spec�troscopy
	 Removal of irrel�e�vant pix�els and noisy spec�tral domains
	 Nor�mal�iza�tion of reflectance data using con�tin�uum removal
	 Prin�ci�pal com�po�nent anal�y�sis
	 Stan�dard�iza�tion of spec�tral infor�ma�tion

	 Delin�eated tree crowns
	 Gen�er�a�tion of arti�fi�cial pop�u�la�tions
	 Spec�tral vari�ance par�ti�tion�ing
	 Fea�ture selec�tion

	 Results
	 Impacts of reflectance pre�pro�cess�ing on the rela�tion�ship between spec�tral vari�ance and tax�o�nomic diver�sity
	 Effects of fea�ture selec�tion on the rela�tion�ship between spec�tral vari�ance and tax�o�nomic diver�sity
	 Effect of SFS on the par�ti�tion�ing of spec�tral vari�ance
	rse2306-fig-0001
	 Char�ac�ter�i�za�tion of the bands selected by the SFS and iden�ti�fi�ca�tion of the spec�tral domains of inter�est
	rse2306-fig-0002

	 Dis�cus�sion
	 Impact of spec�tral pro�cess�ing on the cor�re�la�tion between spec�tral vari�ance and tax�o�nomic diver�sity
	 Method�olog�i�cal con�sid�er�a�tions
	 Arti�fi�cial pop�u�la�tion gen�er�a�tion

	rse2306-fig-0003
	rse2306-fig-0004
	 Inter�pre�ta�tion of the spec�tral fea�tures selected by SFS

	rse2306-fig-0005
	rse2306-fig-0006
	rse2306-fig-0007
	rse2306-fig-0008
	 Par�tial esti�ma�tion of bio�di�ver�sity of trop�i�cal forest

	 Effec�tive�ness of fea�ture selec�tion for pre�dic�tion of tax�o�nomic diver�sity
	 Com�par�ison with other approaches

	 Con�clu�sion
	 ACKNOWLEDGEMENTS
	 REFERENCES
	rse2306-bib-0001
	rse2306-bib-0002
	rse2306-bib-0003
	rse2306-bib-0004
	rse2306-bib-0005
	rse2306-bib-0006
	rse2306-bib-0007
	rse2306-bib-0008
	rse2306-bib-0009
	rse2306-bib-0010
	rse2306-bib-0011
	rse2306-bib-0012
	rse2306-bib-0013
	rse2306-bib-0014
	rse2306-bib-0015
	rse2306-bib-0016
	rse2306-bib-0017
	rse2306-bib-0018
	rse2306-bib-0019
	rse2306-bib-0020
	rse2306-bib-0021
	rse2306-bib-0022
	rse2306-bib-0023
	rse2306-bib-0024
	rse2306-bib-0025
	rse2306-bib-0026
	rse2306-bib-0027
	rse2306-bib-0028
	rse2306-bib-0029
	rse2306-bib-0030
	rse2306-bib-0031
	rse2306-bib-0032
	rse2306-bib-0033
	rse2306-bib-0034
	rse2306-bib-0035
	rse2306-bib-0036
	rse2306-bib-0037
	rse2306-bib-0038
	rse2306-bib-0039
	rse2306-bib-0040
	rse2306-bib-0041
	rse2306-bib-0042
	rse2306-bib-0043
	rse2306-bib-0044
	rse2306-bib-0045
	rse2306-bib-0046
	rse2306-bib-0047
	rse2306-bib-0048
	rse2306-bib-0049
	rse2306-bib-0050
	rse2306-bib-0051
	rse2306-bib-0052
	rse2306-bib-0053
	rse2306-bib-0054


