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Abstract

The purpose of this work is to provide an explicit construction of a strong Feller

semigroup on the space of probability measures over the real line that addition-

ally maps bounded measurable functions into Lipschitz continuous functions, with

a Lipschitz constant that blows up in an integrable manner in small time. Our con-

struction relies on a rearranged version of the stochastic heat equation on the circle

driven by a coloured noise. Formally, this stochastic equation writes as a re�ected

equation in in�nite dimension, a topic that is known to be challenging. Under the

action of the rearrangement, the solution is forced to live in a space of quantile func-

tions that is isometric to the space of probability measures on the real line. We prove

the equation to be solvable by means of an Euler scheme in which we alternate �at

dynamics in the space of random variables on the circle with a rearrangement oper-

ation that projects back the random variables onto the subset of quantile functions.

A �rst challenge is to prove that this scheme is tight. A second one is to provide a

consistent theory for the limiting re�ected equation and in particular to interpret in

a relevant manner the re�ection term. The last step in our work is to establish the

aforementioned Lipschitz property of the semigroup by adapting earlier ideas from

the Bismut-Elworthy-Li formula in stochastic analysis.

Keywords: Measure-valued Di�usions, Wasserstein Di�usions, Re�ected SPDE,

Common Noise Mean Field Models, Rearrangement Inequalities, Bismut-Elworthy-

Li formula.
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1 Introduction

1.1 Motivation

Mean-�eld models with common noise . Our work is motivated by recent devel-
opments in the theory of mean-�eld models, at the intersection of stochastic analysis,
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calculus of variations and control and game theories. Although mean �eld models have
a long history, stemming from statistical mechanics (see the pioneering work [39]), the
problems studied in recent years are, in comparison, of an increasing complexity. For
example, the solutions of control or game problems give rise, in the mean-�eld regime,
to partial di�erential equations posed on the space of probability measures, whose un-
derstanding remains an active area of research in the case of control and with even more
open questions in the case of games (see [17, 18, 20, 36] and the references therein for a
recent state of the art on these questions).

From a probabilistic point of view, mean-�eld models lead, as soon as they evolve
with time, to the study of dynamics with values in the space of probability measures.
Although the latter are understood as evolutions of the law of a typical random particle,
representative of the mean-�eld continuum, these probability measures remain most often
deterministic. For example, they may be governed by non-linear Fokker-Planck equations
or, depending on the terminology, may obey nonlinear Markovian dynamics, see for
instance the seminal work by McKean [56] and the monograph [40]. Nevertheless, many
recent works have underlined the interest in considering random dynamics on the space
of probability measures. For example, from a modelling point of view, the nonlinear
Fokker-Planck equations become stochastic when the particles composing the mean-�eld
continuum are all subjected to a common noise, see for instance the earlier works [26,
49, 48, 73] and also the more recent monographs [17, 19] for a systematic study within
the framework of mean-�eld control and games. On a purely mathematical level, the
presence of a common noise also raises interesting challenges. Although it is possible,
in standard cases, to adapt the usual techniques of mean-�eld models to establish the
well-posedness of stochastic Fokker-Planck equations, the understanding of the impact
of common noise is in fact rather limited. In particular, there is currently no catalogue
listing the varying e�ects of common noise on the statistical behaviour of solutions, unlike
the theory of �nite-dimensional di�usion processes, in which the impact of noise has been
widely studied in �nite or in�nite time.

Models with a smoothing e�ect . Typically - and this is the framework of this paper
- it may be relevant to ask about the possible regularisation properties of the semigroup
induced, on the space of functionals of a probability measure, by a stochastic Fokker-
Planck equation or by a mean-�eld model with a common noise. Although the expected
properties are certainly limited when the common noise is of �nite dimension (since the
ambient space is of in�nite dimension), the question takes a turn when the common noise
is allowed to be in�nite-dimensional. In other words, it is reasonable to imagine that a
su�ciently �large� common noise could indeed provide regularisation phenomena. There
is an example in the literature. The Fleming-Viot process with mutations induced by
di�usions is a process with values in the space of probability measures whose semigroup is
strong Feller and maps bounded functions into Lipschitz continuous functions, see [70].
The generator, which acts on functionals of probability measures, contains two parts:
a �rst-order term that coincides with the operator coming from a deterministic linear
Fokker-Planck equation and a second-order term yielded by the �sampling replacement�
rule characterising the Moran and Fleming-Viot models. Notably, this second-order term
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should be regarded as being induced by a form of common noise in the model. However, it
must be stressed that the smoothing property is rather poor in small time, as the Lipschitz
constant of the functions returned by the semigroup may blow up exponentially fast in
small time. Although it may seem anecdotal, such a limitation on the rate at which the
regularisation occurs renders this noise almost impossible to use in concrete situations. In
�nite dimension, noise is typically used to regularise transport models driven by singular
velocity �elds. In this case, the usual techniques rely on the fact that the (�rst order)
derivatives of the transition kernel diverge in an integral manner in small time. This is
also an essential point in the theory of nonlinear parabolic partial di�erential equations.
These observations serve as a guideline for the rest of the paper.

1.2 Di�usions with values in the space of probability measures

Wasserstein di�usions. The search for common noise(s) that would be able to force
some practicable smoothing properties on the space of probability measures is in fact
connected to another question that has been addressed by a series of authors for almost
�fteen years: what should be a Brownian motion on the space of probability measures?
Whilst there has not yet been an answer to this question that may be called canonical,
the existing candidates are usually referred to as �Wasserstein di�usions�. This termi-
nology echoes the notion of Wasserstein space, which is de�ned as the space P2(Rd)
of probability measures (on Rd, for some d ≥ 1) having a �nite second moment, and
which is equipped with the 2-Wasserstein distance W2. Many works from calculus of
variations have demonstrated the interest to endow the Wasserstein space with a kind of
Riemannian structure, see for instance the earlier works [38, 61, 62] and the book [1]. In
this approach, the tangent space at a probability measure µ ∈ P2(Rd) is the closure in
L2(Rd,Rd;µ) (the space of µ-square integrable functions from Rd into itself) of smooth
compactly supported gradient vector �elds on Rd. Accordingly, the Wasserstein deriva-
tive or intrinsic gradient of a functional de�ned on P2(Rd) reads, at any µ ∈ P2(Rd), as
the gradient of a real-valued function (i.e., a potential) de�ned on Rd. Roughly speak-
ing, this potential corresponds to the so-called �at or functional derivative used in the
formulation of the generator of the aforementioned Fleming-Viot process, see [25, 27,
70]. Wasserstein di�usions are usually expected to be di�usion processes with values in
P2(R) that are consistent with the metric W2. For instance, the small time large devi-
ations are expected to have W2

2 as rate functional and the local variance (or quadratic
variation) in the corresponding chain rule (or Itô formula) is expected to derive from the
Riemannian metric. Whilst the Fleming-Viot process is not a W2-Wasserstein di�usion,
examples are known. The most famous one is the 1d Wasserstein di�usion constructed
by von Renesse and Sturm in [66]. The key point in [66] is to introduce a parametrised
class of entropy probability measures on P([0,1]) - the space of probability measures on
the unit interval - and then to consider, under each of these probability measures, the
Markov process associated with the Dirichlet form generated by the Riemannian metric.
The entropy probability measures are constructed in two steps: the �rst one is to equip
the space of quantile functions on [0,1] with a Poisson-Dirichlet measure and the second
one is to transfer the latter measure onto P([0,1]) by means of the natural isometry that
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exists between the space of quantile functions equipped with the L2-norm and the space
P([0,1]) equipped with W2. The same isometry plays a key role in our work, however
we use slightly di�erent quantile functions.

Although the work [66] has had a great impact in the �eld, it is fair to say that the
Wasserstein di�usion that is constructed therein remains of a di�cult approach. In par-
ticular, the de�nition via a Dirichlet form does not allow for generic starting points and,
to the best of our knowledge, there has not been any systematic analysis of the properties
of the semigroup. We refer to [5, 71] for particle approximations of this Wasserstein di�u-
sion and to [32] for a log-Sobolev inequality. Several works have been written in the wake
of [66]. For example, in [41, 42], Konarovskyi has proposed an alternative construction
in one dimension, leading to another de�nition of the Wasserstein di�usion. From the
particle system perspective, this approach aims at evolving a cloud of massive random
particles, with the heavier particles having smaller �uctuations. The particles aggregate
and thus become heavier as they collide. As opposed to the construction based on Dirich-
let forms, the model allows one to consider arbitrary initial conditions, but the collision
rules force the dynamics to instantaneously take its values in the set of �nitely supported
probability measures. The analysis has been pushed further in [46], but many questions
remain open, starting with uniqueness: at this stage, it is not known whether the way
the cloud of particles passes, instantaneously at time 0, from a continuum to a �nite
collection is unique. We refer to [43] and the references therein for an extension allowing
for fragmentation. We also refer to [55] for a molli�cation of the coalescing dynamics,
for which uniqueness holds true. And, last but not least, the 1d dynamics constructed
in [41, 42] are somehow extended to the higher dimensional setting in [28] but using the
theory of Dirichlet forms in the spirit of [66] (although the latter work is only in one
dimension). Remarkably, the Dirichlet form that is introduced in [28] indeed induces, in
the 1d case, the same generator (acting on functionals of a probability measure) as in
[41, 42].

Connection with the Dean-Kawasaki equation . The aforementioned works are
connected with stochastic Fokker-Planck equations. In [41, 42, 66], it is shown that
the various forms of Wasserstein di�usions under study each induce generators (acting
on functionals of a probability measure) sharing some similarities with the generator
of the so-called Dean-Kawasaki equation. Formally, the latter is a stochastic version
of a standard Fokker-Planck equation (of order 1 or 2 depending on the cases) that
includes an additional noisy term whose local quadratic variation derives exactly from
the Riemannian metric on P(Rd) (with d = 1 in [41, 42, 66]). However, it has been proved
in [44, 45] that the Dean-Kawasaki equation, in its strict version, cannot be solvable
except in trivial cases where it reduces to a �nite dimensional particle system (which
requires in particular the initial distribution to be �nitely supported). This negative
result has an interesting consequence: to make the Dean-Kawasaki equation well-posed,
some extra correction is needed in the dynamics, which is exactly what is done in [41, 42,
66]. However, the latter works demonstrate that, so far, there has not been any canonical
choice for such a correction.

The very spice of the Dean-Kawasaki equation may be explained as follows. When
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the solution is at some probability measure µ ∈ P(R), a typical particle in the mean-�eld
continuum, located at some point x ∈ R, should be subjected to the value at this point
x of a cylindrical Wiener noise on L2(R,R;µ), which makes no sense in general. This
seemingly naive remark suggests that Dean-Kawasaki dynamics can be approached by
replacing the cylindrical noise by a coloured noise. To a certain extent, this idea is the
basis of the two contributions [30] and [54]. In [54], the author succeeded to prove that
the resulting semigroup has an (albeit weak) molli�cation e�ect on functions over the
space of probability measures.

1.3 Our contribution

Smoothing properties of the Ornstein-Ulhenbeck process. Unlike many of the
aforementioned works, our aim is not to provide another candidate for being a Wasser-
stein di�usion. Our primary motivation in this contribution is to construct as explicitly
as possible a probability-measure valued process having su�ciently strong smoothing
properties. Although not discussed further within this text, our long-term goal is indeed
to propose a corresponding theory of linear or nonlinear parabolic Partial Di�erential
Equations (PDEs) on the space of probability measures and to exhibit, in this context,
second order operators allowing to smooth the singularities that may appear in the corre-
sponding hyperbolic PDEs. Of course, such a probability-measure valued process should
share some similarities with Wasserstein di�usions, but as we will see, the process that
we introduce in this paper does not satisfy the pre-requisites for being a Wasserstein
di�usion.

Our approach is based on the following two simple observations. First, Lions [51]
showed in his lectures on mean-�eld games at the Collège de France, that in order to
study certain mean-�eld models, it can prove useful to lift probability measures into
random variables, i.e., to invert the map that sends a random variable onto its statisti-
cal distribution. Although the inverse is obviously multi-valued in general, it has been
shown that Lions' lifting principle provides a very understandable picture of the Wasser-
stein derivative: in short, it can be represented as a Fréchet derivative on a Hilbert
space of square-integrable random variables, see e.g. [37] for a complete overview of the
connections between the di�erent derivatives. Our second remark is a well-known fact
from stochastic analysis: we know how to construct a Hilbert-valued di�usion process
with strong smoothing properties. A simple example is the Ornstein-Ulhenbeck process
driven by an appropriate operator, see for instance [21, 23, 24]. This suggests the follow-
ing procedure: we should project back from the space of random variables, and onto the
space of probability measures, an Ornstein-Ulhenbeck process taking values in a space of
square-integrable random variables. Whilst this looks very appealing, this idea has an
obvious drawback. In general, the projection should destroy the Markov nature of the
dynamics, i.e., the transition probabilities started from two di�erent random variables
representing the same probability measure may not be the same.

The next step in our construction is thus inspired from the Lie-Trotter-Kato formula
and related splitting methods. Precisely, we want to de�ne a probability measure-valued
process by alternating one step in the space of random variables, following some pre-
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scribed Ornstein-Ulhenbeck dynamics, and one projection operation to return back from
the space of random variables to the space of probability measures. The choice of the
probability space carrying the random variables is not a di�culty and throughout the
paper we work on the circle, S ≅ R/Z, equipped with the Lebesgue measure. However,
the choice of an appropriate projection is much more di�cult. It is in fact an essential
aspect in the implementation of the splitting scheme and, as in the contributions [30,
41, 42, 55, 54, 66], it leads us to limit our study to the one-dimensional case, with the
following two advantages. First, probability measures can be easily identi�ed with quan-
tile functions on the circle (or say to simplify `non-decreasing functions' although this
notion has to be clari�ed in the periodic setting, see Proposition 2.1 below), which in
turn makes the choice of projection operation easier as it then su�ces to send a function
on the circle to an appropriate rearrangement. Second, the rearrangement operation is
in fact an easy way to transform a random variable on the circle into a quantile function
whilst preserving its statistical law (under the Lebesgue measure).

The resulting scheme in which we combine `�at' dynamics and rearrangement is very
much inspired by earlier works of Brenier on discretisation schemes for conservation laws,
see for instance [14, 15], with the main di�erence that the works of Brenier are mostly for
deterministic dynamics. In contrast, the dynamics that we consider are stochastic. As
we choose the Laplacian to be the driving operator in the Ornstein-Ulhenbeck dynamics,
we call the resulting equation the `rearranged stochastic heat equation'.

Rearranged and re�ected equations. In fact, the presence of the noise raises many
subtleties in our construction. In particular, one issue is that the rearrangement opera-
tion and the Laplacian driving the Stochastic Heat Equation (SHE) do not marry well.
Obviously, they do not commute. As a result, the smoothing e�ect of the Laplacian
(which is now acting on functions de�ned on the circle) is weaker when the rearrange-
ment is present. At least, this is what we observe in our computations. Of course, this
has a rather dramatic consequence on the choice of the noise. One key feature of the
SHE is that, after convolution with the heat kernel, the cylindrical white noise driving
the SHE gives a true random function. When the SHE is rearranged (as we do here),
this no longer seems to be the case. In order to remedy this problem, we need to colour
the noise driving the SHE. As well-expected, this has an impact on the smoothing prop-
erties of the semigroup generated by the rearranged SHE, but nevertheless we succeed
to show that the rate at which the derivative of the semigroup blows up in small time
is integrable, as we initially intended. It remains an open question whether the same
construction can be achieved for the SHE driven by a cylindrical white noise.

Another di�culty is to obtain a suitable formulation of the rearranged SHE. Although
Brenier's works [14, 15] quite clearly suggest to see the rearrangement as a re�ection and
indeed to write the rearranged SHE as a re�ected equation, again, the presence of the
noise requires additional precautions. The study of re�ected di�erential equations is in
general more complicated in the stochastic case than in the deterministic case because
the solutions are no longer of bounded variation. We refer to the seminal article [50] in
the case of �nite dimensional equations. Unfortunately, in�nite dimensional equations
are even more di�cult to deal with. To the best of our knowledge, there is no general
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theory that can cover our formulation of the rearranged SHE. We therefore propose a
tailor-made interpretation in which the re�ection term is constructed by hand. Schemat-
ically, the rearranged SHE is written as a stochastic di�erential equation on the space
L2(S) ∶= L2(S,LebS) (of functions on the circle that are square-integrable with respect
to the Lebesgue measure) subject to a re�ection term whose e�ect is to constrain the
solution to remain in the cone of our chosen quantile functions (i.e., of functions with ap-
propriate monotonicity properties). This representation is reminiscent of the 1d re�ected
stochastic di�erential equation studied by Nualart and Pardoux [59] (and extended next
in [31]), in which the solution is constrained to remain positive under the e�ect of a
re�ection. Although the latter positivity constraint may be interpreted as a constraint
on the monotonicity of the primitive, the rearranged SHE that we study here is not the
primitive of the Nualart-Pardoux re�ected equation. This can be seen quite simply in the
calculations: roughly speaking, the derivation/integration and re�ection operations do
not commute. However, at the beginning of our work on this subject, this (�nally false)
correspondence between primitive equation and derivative equation led us to use (in the
rearranged dynamics) a coloured noise, obtained by integration of the white noise. We
think that this image will be useful to the reader (with the knowledge that the noise we
eventually use below is actually less regular than the primitive of the white noise).

The form of the re�ection in [59] was further speci�ed in the later contributions [75,
76] due to Zambotti. These additional results provide a more re�ned description of the
behaviour of the solution at the boundary of the domain. In our approach we are not
able at this stage, to give a similar picture. Our construction of the re�ection process
and its associated integral is too elementary. In particular, we consider only the action
of the re�ection process on functions that are far more regular than the solution of the
equation itself. Fortunately, this does not prevent us from obtaining a characterisation
of the solutions, su�cient to carry out our program to the end.

In fact, Zambotti's results are based on a formula of integration by parts on the set
of continuous trajectories with positive values under the law of the Bessel process of
dimension 3. This integration by parts formula allows one to reinterpret the solutions of
the Nualart-Pardoux equation by means of the theory of Dirichlet forms. The adaptation
to our case remains completely open. Although we do not use them here, we think
it appropriate to mention some of the more general works that have been published
subsequently on stochastic di�erential equations in in�nite dimension. The three papers
[9, 10, 11] deal with the case where the re�ection takes place on a su�ciently regular
convex domain with a non-empty interior in a Hilbert space; as an example, the Nualart-
Pardoux equation does not satisfy these conditions. The assumption made on the domain
allows one to obtain an integration by parts formula similar to the one obtained in
[75, 76] and then to use the theory of Dirichlet forms. This said, the results in [9,
10] are not directly stated for the re�ected equation itself but for the corresponding
elliptic in�nite-dimensional Kolmogorov equation with Neumann boundary condition.
The corresponding Markov process is addressed in [11]. The probabilistic approach has
been pushed further in the parallel contribution [64].

Description of the results. The rearranged SHE is proven to be uniquely solvable in
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the strong sense. The reader may �nd a de�nition of a solution in De�nition 4.13. The
main solvability result is Theorem 4.15

The proof holds in two main steps. The �rst one is to show the existence of a weak
solution and the second one is to prove that uniqueness holds in the strong sense. Strong
existence then follows from a standard adaptation of Yamada-Watanabe's theorem. As
is often the case, the �rst step is more challenging. Weak solutions are obtained as weak
limits of linear interpolations of an Euler scheme in which we alternate, on each time step,
the Ornstein-Ulhenbeck dynamics in L2(S) with the rearrangement operation. To make
it clear, the state (in L2(S)) of the Ornstein-Ulhenbeck process is rearranged at the end
of each time step. At the beginning of each new step, the previous terminal rearranged
state is used as a new initial condition. Part of the challenge is to show that the scheme
is tight (in the space of continuous functions). This is done in Section 3 by using several
key properties of the rearrangement operation, which are presented in Section 2. Our
choice to drive the Ornstein-Ulhenbeck by the Laplacian operator and to colour the noise
is essential in the tightness analysis. In order to complete the proof of the existence of
a weak solution, we need to give an appropriate sense to the re�ection process, which
is one of the goals of Section 4. As we already said, the corresponding integral is just
de�ned with respect to processes that take values in the space of smooth functions on
S, but the resulting characterisation is su�cient to obtain strong uniqueness. The main
point in the proof of strong uniqueness is to impose, in the de�nition of a solution, a
weak form of orthogonality between the solution and the re�ection. We prove that it is
satis�ed by any weak limit of the discrete scheme.

The second main statement of the article is Theorem 5.11, which says that the semi-
group generated by our rearranged SHE is strongly Feller, i.e., maps bounded measurable
functions into continuous functions. Moreover, we prove that the semi-group returns
Lipschitz continuous functions, with a Lipschitz constant that blows up, as time tends
to 0, in an integrable manner. This is a strong result and, as we have already alluded
to, we expect it to have applications in the analysis of partial di�erential equations set
on the space of probability measures. The proof of Theorem 5.11 draws heavily on
previous works on the so-called Bismut-Elworthy-Li formula, which is an integration
by parts formula for the transition probabilities of a di�usion process, see for instance
[34, 35, 72] in the �nite-dimensional framework and [22] and [21, Chapter 7] in in�nite
dimension. Such an integration by parts is in fact strongly related to Malliavin calculus,
see for instance Exercise 2.3.5 in the book [60], together with the papers [12] and [57].
The transposition of the Bismut-Elworthy-Li formula to the re�ected setting is known
however to raise some technical di�culties. A major obstacle, due to the presence of the
re�ection term in the dynamics, is to prove the di�erentiability of the �ow with respect
to the initial condition. We refer to [29] for the �rst result in this direction (for a drifted
Brownian motion with re�ection in the orthant) and to [3, 4, 52, 53] for further results.
None of these results (which are all in �nite dimension) apply to our case. At this stage,
we do not know whether similar results may be true for the rearranged SHE. Instead, in
our analysis of the semigroup we use the sole property that the �ow (generated by the
rearranged SHE) is Lipschitz continuous with respect to the initial condition. Whilst this
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is not enough to prove the exact analogue of the Bismut-Elworthy-Li formula, it does
allow us to derive the expected smoothing e�ect of the semigroup. A key point in this
respect is to use the fact that, when restricted to initial conditions parametrised by a
�nite-dimensional parameter, the �ow is almost everywhere di�erentiable (with respect
to the initial condition) as a consequence of Rademacher's theorem.

Comparison with recent literature and further prospects. A few weeks before
we put this work on arXiv, another arXiv pre-publication was published ([65]) in which
the authors introduce, on the space of probability measures, a Dirichlet form whose
construction has some similarities with the construction of the rearranged SHE that we
introduce here. Note that the results of the two papers do not overlap, but an in-depth
study would be necessary to link the two constructions more properly. In short, the
work [65] aims at projecting on the space of probability measures a Gaussian measure
constructed on an L2 space of random variables and then at considering, under this
measure, the Dirichlet form generated by the Riemannian metric on P2(Rd) (with d ≥ 1).
For example, in 1d, this Gaussian measure can be the invariant measure of the SHE
driven by a cylindrical white noise. Although this example (in 1d) does not �t our
assumptions (since we need the noise to be coloured), it is worth noting that, if we had
to write formally the generator of the rearranged SHE in this case, it would be di�erent
from the one computed in [65, Theorem 4.1]. This observation demonstrates that, even
though it shares some similarities with our work, the construction achieved in [65] leads
to a distinct process. In this respect, we also point out that the choice of the cylindrical
noise in [65] raises some di�culties in the identi�cation of the domain of the generator,
which are reminiscent of our need to colour the noise (see [65, Remark 4.1]). Last but
not least, it is clear that we will come back to the connection with PDEs in a future
contribution.

We also point out that our construction based on the Lie-Trotter-Kato formula has
a simple particle interpretation. At each time step of the Euler scheme, we can indeed
consider a particle approximation of the SHE, as given for example by a �nite volume
discretisation. Then, at the end of each time step, the rearrangement operation, when im-
plemented on the particles, simply consists in reordering the particles (in an increasing or
decreasing manner depending on the precise de�nition of the rearrangement). Although
we do not discuss this further in the rest of the article (for obvious reasons of length),
this prospect is natural.

The reader may also wonder about higher dimensional extensions. Although this is
indeed a natural equation, we think it is useful to recall that many of the aforementioned
works (notably those concerning the construction of a Wasserstein di�usion) are also in
one dimension. From this point of view, this limitation in our model should not come
as a surprise. As for the possible ways to extend the construction to the case d ≥ 2, the
di�culty we would face in extending our results to the higher dimension is the choice
of the rearrangement. Whilst the notion of rearrangement is simple in one dimension,
the multi-dimensional case is far more complicated. One possibility is to use the tools
of optimal transport ([16]), but this perspective is open at this stage. The reader may
also worry about the fact that, in dimension d ≥ 2, the stochastic heat equation (when
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driven by the Laplace operator) requires a coloured noise, of a higher regularity than
what we use here. In fact, this would be only the case if we considered the stochastic
heat equation on a space of dimension d (typically the d-dimensional torus). Actually,
our belief is that we could de�ne the stochastic heat equation on the 1d torus, but regard
it as a system of d equations. That said, another possibility could be to replace the
Laplacian by another operator, the Laplacian being chosen here for convenience (many
calculations or intermediate properties rely on this choice). Whilst we think that the
generalisation to other operators with similar smoothing properties is feasible, it would
nevertheless deserve a rigorous veri�cation.

Organisation of the paper . We introduce some preliminary material in Section 2,
including in particular a series of already known (but very useful) results on the symmetric
rearrangement on S together with some frequently used notation. Section 3 is dedicated
to the presentation and the analysis of the approximating splitting scheme that we employ
to extract next a weak solution to the rearranged SHE. In particular, the reader will �nd
all the required assumptions on the noise in the introduction of Section 3. Tightness
is established in Proposition 3.7. The de�nition of a solution to the rearranged SHE is
clari�ed in Section 4, see De�nition 4.13. Existence and uniqueness are guaranteed by
Theorem 4.15 . The smoothing properties of the semigroup is studied in Section 5, the
main Lipschitz estimate being stated in Theorem 5.11.

2 Preliminary Material

2.1 The symmetric non-increasing rearrangement

As explained in the introduction, the construction of our rearranged stochastic heat
equation with values in the space of quantile functions relies heavily on the notion of
rearrangement for periodic functions.

Throughout, the circle S is chosen to be parametrised by the interval (−1/2,1/2] and
0 is regarded as a privileged �xed point on the circle, i.e., S ∶= (R + 1/2)/Z.

Proposition 2.1. Given a measurable function f ∶ S→ R, there exists a unique function,
called symmetric non-increasing rearrangement of f and denoted f∗ ∶ S→ [−∞,+∞], that
satis�es the following two properties:

1. f∗ is symmetric (with respect to 0), is non-increasing and left-continuous on the
interval [0,1/2), and is right-continuous at 1/2 (left- and right-continuity being here
understood for the topology on [−∞,+∞]),

2. the image of the Lebesgue measure LebS by f∗ is the same as the image of the
Lebesgue measure by f , namely

∀a ∈ R, LebS({x ∈ S ∶ f∗(x) ≤ a}) = LebS({x ∈ S ∶ f(x) ≤ a}),

which is sometimes known as `Cavalieri's principle'.
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Intuitively, f∗ should be regarded as a quantile function, the symmetrisation pro-
cedure here forcing an obvious form of `continuous periodicity' (whose interpretation
requires some care as f∗ may have jumps). Indeed, it must be noted that the collection
of functions f∗ satisfying item 1 in the de�nition above are one-to-one with the set P2(R)
of probability measures on R that have a �nite-second moment. In fact, for f∗ as in item
1 and for a probability measure µ ∈ P2(R), the measure LebS ○(f∗)−1 is equal to µ if and
only if x ∈ [0,1]↦ f∗((1−x)/2) coincides with the usual quantile function, i.e. the usual
generalised inverse of the (right-continuous) cumulative distribution function. The reader
is referred to Baernstein [8] for further details, see in particular De�nition 1.29 therein for
the general de�nition of symmetric rearrangements in the Euclidean setting and Chapter
7 in the same book for a speci�c treatment of spherical symmetric rearrangements.

The following de�nition is used quite often in the rest of the text:

De�nition 2.2. A function f ∶ S → R is said to be symmetric non-increasing if f = f∗.
The collection of equivalence classes in L2(S) containing a symmetric non-increasing
function is denoted by U2(S). It is a cone.

Below, we often consider elements of L2
sym(S). They are de�ned as functions in L2(S)

that are Lebesgue almost everywhere symmetric. One of these elements is said to be
non-increasing (we refrain from tautological use of the word symmetric and believe that
given the context of the circle, this should not be a source of confusion) if it coincides
almost everywhere with an element of U2(S). Notice that we may choose the latter
representative to be uniquely de�ned as a symmetric non-increasing function. Indeed,
two elements of U2(S) that coincide in L2(S) coincide in fact everywhere on S (courtesy
of the left- and right-continuity properties). Also, the following proposition is of clear
importance.

Proposition 2.3. Both L2
sym(S) and U2(S) are closed subsets of L2(S) equipped with

∥ ⋅ ∥2.

Proof. Closedness of L2
sym(S) is obvious. Indeed, given a sequence (fn)n≥1 of elements of

L2
sym(S) that converges to some f in L2(S), it su�ces to let n tend to ∞ in the identity

∫
S
fn(x)ϕ(x)dx = ∫

S
fn(−x)ϕ(x)dx,

which holds true for any ϕ ∈ L2(S). Closedness of U2(S) is a consequence of Lemma 2.6
below, which says that, if (fn)n≥1 takes values in U2(S), then ∥f⋆n − f⋆∥2 ≤ ∥fn − f∥2 for
each n ≥ 1, so that (fn)n≥1 also converges to f⋆, from which we get f = f⋆.

2.2 Reformulating the main results

In what follows, our di�usion process with suitable smoothing properties on P2(R) thus
arrives via the construction of a di�usion process with values in U2(S). The equivalence
relies on the fact that the mapping f∗ ∈ U2(S) ↦ LebS ○ (f∗)−1 ∈ P2(R) is not only
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one-to-one but is in fact an isometry when P2(R) is equipped with the W2-Wasserstein
distance, i.e., for any two f∗, g∗ in U2(S),

∥f∗ − g∗∥2 =W2(LebS ○ (f∗)−1,LebS ○ (g∗)−1),

where
W2(µ, ν)2 ∶= inf

π∈P(R2))∶π○e−1
x =µ,π○e−1

y =ν
∫
R2

∣x − y∣2π(dx, dy),

with ex ∶ (x, y) ∈ R2 ↦ x and ey ∶ (x, y) ∈ R2 ↦ y being the two evaluation mappings on
R2. It is worth observing that this identity is a direct consequence of the non-expansive
property stated in Lemma 2.6, since for any π as above, there exist two (measurable)
functions f and g from S to R such that π = LebS ○ (f, g)−1.

In this framework, our main results can be (re)formulated as follows:

1. We introduce a stochastic di�erential equation on U2(S) in the form of a re�ected
(or rearranged) stochastic equation on L2(S) whose re�ection term forces solutions
to stay within the cone U2(S), whenever they are initialised from U2(S), see The-
orem 4.15. Solutions induce a Lipschitz continuous �ow with values in U2(S). The
construction of the rearranged equation relies on an Euler scheme, in which we al-
ternate some �at dynamics in the space L2

sym(S) with the rearrangement operation

that projects back the solution onto U2(S).

2. The second main statement is Theorem 5.11, which says that the semigroup gen-
erated by our rearranged stochastic equation maps bounded measurable functions
on U2(S) into Lipschitz continuous functions on U2(S). Recast on P2(R) (through
the isometry between U2(S) and P2(R)), we get in this way a semigroup that maps
bounded measurable functions on P2(R) into Lipschitz continuous functions (with
respect to the 2-Wasserstein distance W2).

2.3 Key properties of the symmetric non-increasing rearrangement

In the subsection, we expand a list of properties that are satis�ed by f∗ and that we
use quite often in the paper (including the aforementioned Lemma 2.6). The �rst one is
obvious and just follows from item 2 in the statement of Proposition 2.1.

Lemma 2.4 (Preservation of Lp norms). With the same notations as in Proposition 2.1,
we have, for any p ∈ [1,∞], ∥f∗∥p = ∥f∥p.

The next result, called the Hardy-Littlewood inequality, is fundamental.

Lemma 2.5 (Hardy-Littlewood inequality). Let f and g be two measurable real-valued
functions de�ned on S such that ∥f∥p <∞ and ∥g∥q <∞, for p, q ∈ [1,∞], with 1/p+1/q =
1. Then,

∫
S
f(x)g(x)dx ≤ ∫

S
f∗(x)g∗(x)dx.
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We refer to [8, Corollary 2.16] for a general statement in the Euclidean setting, but
stated under the conditions that f and g are non-negative, and to [8, Section 7.3] or [6, 7]
for a version without non-negativity constraints that is speci�cally stated on the circle.

We now turn to the well-known property of non-expansion:

Lemma 2.6 (Non-expansion property). Let f and g be two measurable real-valued func-
tions such that ∥f∥p <∞ and ∥g∥p <∞, for p ∈ [1,∞]. Then,

∥f∗ − g∗∥p ≤ ∥f − g∥p.

We refer to [8, Corollary 2.23] for the Euclidean setting (which requires f and g to be
positive valued) and to [8, Section 7.3] for the extension to the spherical setting (which
no longer requires f and g to be positive valued).

The following statement is taken from [6, 7], see also [8, Theorem 8.1].

Lemma 2.7 (Riesz rearrangement inequality). Let f , g and h be three measurable real-
valued functions on S, such that ∥f∥p < ∞, ∥g∥q < ∞ and ∥h∥r < ∞ for p, q, r ∈ [1,∞]
with 1/p + 1/q + 1/r = 1. Then,

∫
S
∫
S
f(x)g(x − y)h(y)dxdy ≤ ∫

S
∫
S
f∗(x)g∗(x − y)h∗(y)dxdy.

We conclude this list of inequalities with:

Lemma 2.8 (Pólya�Szeg® inequality.). Let f be a Lipschitz continuous real-valued func-
tion on S. Then, for any real p ∈ [1,∞], f∗ is also Lipschitz continuous and

∥Df∗∥p ≤ ∥Df∥p,

where Df and Df⋆ are almost everywhere de�ned derivatives of f and f∗ respectively.

Preservation of the Lipschitz property follows from the spherical version of [8, Theo-
rem 3.6]. The inequality is taken from [8, Theorem 7.4].

2.4 The heat kernel and the rearrangement operator

In the rest of the work, we often compose the rearrangement operator and the heat
kernel. In this preliminary subsection, we thus address several basic properties of this
composition, which we invoke quite often in this text.

First, it is worth recalling that the periodic heat semigroup (with speci�c di�usivity
parameter 1) on the circle S, which we denote (et∆)t≥0, has the following kernel (see Dym
and McKean p.63 [33]):

Γ(t, x) ∶= 1√
4πt

∑
n∈Z

exp{−(x − n)2

4t
} , t > 0, x ∈ S. (2.1)

The following lemma says that Γ(t, ⋅) is a symmetric non-increasing function on the
circle, namely Γ(t, ⋅) is equal to Γ(t, ⋅)∗, the rearrangement operation ∗ here acting on
the x-variable.
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Lemma 2.9. For any t > 0, the function x ↦ Γ(t, x) is non-increasing on (0,1/2) and
non-decreasing on (−1/2,0).

The proof of Lemma 2.9 is not so trivial, because of the series underpinning the
expression of Γ. The reader will �nd a general discussion on spherical heat kernels in the
recent paper [58], but speci�c (and much easier) computations that su�ce for the proof
of the above statement can be found in [2].

We conclude this subsection by proving that the periodic heat semigroup preserves
the symmetric non-increasing property of functions on the circle:

Lemma 2.10. Let f belonging to L1(S) be symmetric non-increasing on the circle (i.e.,
f = f∗). Then, for any t > 0, the convolution f ∗Γ(t, ⋅) is also symmetric non-increasing
on the circle.

Proof. We let h = f ∗ Γ(t, ⋅), for a given t > 0. Lemmas 2.7 and 2.9 yield

∫
S
∫
S
f(x)Γ(t, x − y)h(y)dxdy ≤ ∫

S
∫
S
f(x)Γ(t, x − y)h∗(y)dxdy,

which can be rewritten as (using the symmetry of the heat kernel)

∥h∥2
2 = ∫S

∫
S
f(x)Γ(t, y − x)h(y)dxdy ≤ ∫

S
∫
S
f(x)Γ(t, y − x)h∗(y)dxdy = ⟨h,h∗⟩2.

It remains to see that, by the preservation of Lp norms,

∥h − h∗∥2
2 = ∥h∥2

2 + ∥h∗∥2
2 − 2⟨h,h∗⟩2 = 2∥h∥2

2 − 2⟨h,h∗⟩2 ≤ 0,

which yields h = h∗ almost everywhere. Since h is continuous (by convolution), so is h∗

(see [8, Subsection 2.4]). Therefore, h and h∗ coincide.

2.5 Some notation

The paper makes an intense use of tools from functional and Fourier analysis. We
thus introduce a few related notations that we use repeatedly in the text. The space
of continuous functions from a metric space X to another metric space Y is denoted
C(X ,Y). When working on the Euclidean space Rk, for an integer k ≥ 1, we denote by
C∞0 (Rk) the space of in�nitely di�erentiable real-valued functions on Rk with a compact
support.

We recall that S is the circle parametrised by the interval of length 1. Also, we let

eRm ∶ x ∈ S↦
√

2 cos(2mπx), eIm ∶ x ∈ S↦
√

2 sin(2mπx),

for any (non-negative) integer m, form the complete Fourier basis on L2(S), where L2(S)
is the space of square integrable functions on S. Quite often, we just use the even (cosine)
Fourier functions, which prompts us to use the shorter notation em for eRm.

The Lebesgue measure on S is denoted LebS with dLebS(x) written as dx. For any real
p ≥ 1, we call ∥ ⋅ ∥p the Lp norm on the space of measurable functions f on (S,LebS) with
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∫S ∣f(x)∣pdx <∞. Similarly, when p =∞, the notation ∥⋅∥∞ is used for the L∞ (supremum)
norm, i.e. ∥f∥∞ ∶= essup{f(x) ∶ x ∈ S}. The inner product in L2(S) is denoted ⟨⋅, ⋅⟩2. For
an element f ∈ L1(S) and for a non-negative integer m, we call f̂Rm ∶= ∫S f(x)eRm(x)dx
the cosine Fourier mode of f of index m and f̂Im ∶= ∫S f(x)eIm(x)dx the sine Fourier
mode of f of index m. When f is Lebesgue almost everywhere (written a.e. hereafter)
symmetric, i.e. f(−x) = f(x) a.e., all the sine Fourier modes are 0 and we can just write
f̂m = ⟨f, em⟩ in place of f̂Rm. In that case, f̂m is a real number. As we already mentioned,
these symmetric functions are used quite often in the text and we denote by L2

sym(S)
the set of functions f in L2(S) that are a.e. symmetric. More generally, for a parameter
µ ∈ R, we denote by Hµ

sym(S) the Sobolev space of a.e. symmetric functions f such that

∥f∥2
2,µ ∶= ∑

m∈N0

(m ∨ 1)2µf̂2
m <∞,

(N is the collection of natural numbers 1, 2, 3, ... The set N0 is de�ned as N0 = N∪ {0}).
Of course, H0

sym(S) is nothing but L2
sym(S). The inner product on Hµ

sym(S) is denoted

⟨f, g⟩2,µ ∶= ∑m∈N0
(m ∨ 1)2µf̂mĝm.

For any integer k ≥ 1, we denote by Ck(S) the space of k-times continuously di�eren-
tiable functions on S.

We now introduce some standard notations. For a real number x, we write ⌊x⌋ for
the �oor of x, ⌈x⌉ for the ceiling of x and x+ ∶= max(x,0) (resp. x− = min(−x,0)) for the
positive (resp. negative) part of x. For two reals x and y, we let x ∨ y ∶= max(x, y) and
x ∧ y ∶= min(x, y). Moreover, for a di�erentiable real-valued function on S, we write Df
for the derivative of f . And, we let ∆ ∶=D2.

As for constants that are used in the various inequalities, they are usually written in
the form ca,b or Ca,b, where the subscripts are quantities on which the current constant
depends, and are implicitly allowed to vary from line to line (as long as they just depend
on the same quantities a and b).

3 Approximation Scheme and its Estimates

The construction of our re�ected stochastic heat equation relies on a discretisation scheme
in which we alternate one random move in the Hilbert space L2

sym(S) of square-integrable
symmetric random variables on S and a rearrangement, forcing the output of the discreti-
sation scheme to stay within the subset of symmetric non-increasing functions U2(S).
De�nition of the noise. The randomisation in L2

sym(S) obeys a standard Euler scheme,
with Gaussian increments. This prompts us to introduce the following Wiener process,
(Wt)t≥0:

Wt ∶= B0
t e0 + ∑

m∈N
m−λBm

t em ≡ ∑
m∈N0

λmB
m
t em, t ≥ 0, (3.1)

where λ > 1/2 and the sequence (λm)m∈N0 is given by λ0 ∶= 1 and λm ∶= m−λ for m ∈ N.
Here, the processes {(Bm

t )t≥0}m∈N0 are independent standard Brownian motions con-
structed on a probability space (Ω,A,P). Whilst it would be desirable to work with
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the widest possible range for λ, we here restrict the analysis to λ > 1/2. In particular,
this choice precludes the white noise. In contrast, our choice λ > 1/2 forces the sequence
(λm)m∈N0 to be square summable. In particular, the process (Wt)t≥0 can be equivalently
de�ned as an L2

sym(S)-valued Brownian motion with covariance function

Q ∶ (f, g) ∈ (L2
sym(S))2 ↦ s ∧ t ∑

m∈N0

λ2
mf̂

mĝm = s ∧ t ⟨f, g⟩2,−λ. (3.2)

De�nition of the scheme. The approximation scheme is constructed via composition of
the stochastic convolution associated with W and the rearrangement operator ∗ de�ned
in Proposition 2.1. Given a stepsize h ∈ (0,1), we de�ne the sequence (Xh

n)n∈N0 by,

Xh
n+1 =(eh∆Xh

n + ∫
h

0
e(h−s)∆dWn+1

s )
∗

Xh
0 =X0,

(3.3)

where

Wn+1
s ∶=Ws+nh −Wnh, (3.4)

and X0 is an U
2(S)-valued random variable that is assumed to be independent of (Wt)t≥0

(see Assumption on X0 for a clear formulation).
In Subsections 3.1 and 3.2, the dependence ofWn+1 on h is suppressed in the notation,

since h is kept �xed. It is only in the forthcoming Subsection 3.3 that h becomes variable
as we let the stepsize of the scheme tend to 0. To precise, we use below the notation
F ∶= (Ft)t≥0 to denote a �ltration (satisfying the usual conditions) such that X0 is F0-
measurable and (Wt)t≥0 is a Q-Brownian motion with respect to (Ft)t≥0.

Reminders about the stochastic convolution. It is worthwhile to recall several properties of
the stochastic convolution that will be used within this article. In the interest of brevity,
the general conditions under which the following properties hold are not recalled; they
are satis�ed for the Laplacian and this is enough for the present purpose. The interested
reader is referred to cited articles and the proceeding literature for generalisations and
to Da Prato and Zabczyk [24, Ch.5] for a comprehensive introduction.

For an F0-measurable initial condition X0 with values in L2
sym(S), the stochastic

convolution provides a weak solution to the linear equation,

dXt =∆Xtdt + dWt, t ≥ 0,

written on the �ltered probability space (Ω,F ,F,P) and a time interval [0, T ], for a
given time horizon T > 0. That is to say, that for all t ∈ [0, T ] and ϕ ∈ C2(S), the process
X̂ ∶= (X̂t)t≥0 de�ned by,

X̂t ∶= et∆X0 + ∫
t

0
e(t−s)∆dWs, t ≥ 0,
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satis�es, P almost surely,

⟨X̂t, ϕ⟩ = ⟨X0, ϕ⟩ + ∫
t

0
⟨X̂s,∆ϕ⟩ds + ⟨Wt, ϕ⟩, t ≥ 0.

By a result of Kotelenez, [47, Theorem 2, p.146], the process X̂ has a version with con-
tinuous sample paths. From Zangeneh, [77, Corollary 1, p.345], this version is adapted.
Additionally, from Salavati and Zangeneh, [68, Theorem 6, p.4], the following pathwise
estimate holds for the pth power of the norm, p ≥ 2,

∥X̂t∥p2 ≤ ∥X̂0∥p2 + p∫
t

0
∥X̂s∥p−2

2 ⟨X̂s, dWs⟩ +
p(p − 1)

2
∫

t

0
∥X̂s∥p−2

2 d[W ]s, (3.5)

where
[W ]t = ∑

m∈N0

λ2
mt, t ≥ 0, (3.6)

is the standard bracket of (Wt)t≥0.
Furthermore, noting that the stochastic convolution is generally not a martingale (or

even a semimartingale), one may not apply immediately the maximal inequalities or other
martingale theorems. However, in the present setting, due to a theorem of Zangeneh [78,
Theorem 2, p.147], see also [68, Theorem 5, p.4], the following estimate holds, for p ≥ 2,
T > 0,

E [ sup
0≤t≤T

∥∫
t

0
e(t−s)∆dWs∥

p

2
] ≤ cpE [[W ]p/2T ] . (3.7)

Subsections 3.1 and 3.2 are dedicated to the proving of some key estimates on the
scheme that will be useful when letting the stepsize h tend to 0. Tightness is addressed
in Subsection 3.3.

Distributional derivative of the noise. Several times in the text, we use the distributional
derivative of W . For any t ≥ 0, we thus let

wt ∶=DWt = −2π ∑
m∈N

m1−λBm
t e

I
m, t ≥ 0. (3.8)

Since (Wt)t≥0 is a Q-Brownian motion with values in L2
sym(S), we easily get that (wt)t≥0

is a Brownian motion with values in H−1
anti-sym(S), the latter being de�ned as the dual

of the space H1
anti-sym(S) of anti-symmetric periodic functions with a square-integrable

generalised gradient. We do not use the form of the covariance matrix, but it could be
explicitly computed, following (3.2).

Assumption on X0. Throughout the rest of the paper, we assume that X0 is an
F0-measurable random variable with values in U2(S), satisfying

∀p ≥ 1, E[∥X0∥
2p

2
] <∞. (3.9)
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3.1 Lp estimates of the solution

We start with some preliminary estimates for the Lp norm of the process (Xh
n)n∈N0 .

Firstly, the following estimate for W is given:

Lemma 3.1. For p > 0 (and for h being the stepsize of the scheme and λ the exponent
colouring the noise),

E [∥∫
h

0
e(h−s)∆dWs∥

2p

2
] ≤cp,λhp. (3.10)

When p = 1,

c1,λ = ∑
m∈N0

λ2
m = d

dt
[W ]t. (3.11)

Proof. From Theorem 4.36 in [24], p114 (refer to p.96 therein for related notation):

E [∥∫
h

0
e(h−s)∆dWs∥

2p

2
] ≤ cpE

⎡⎢⎢⎢⎢⎣

⎛
⎝∫

h

0
∑

m,n∈N0

∣⟨e(h−s)∆λmem, en⟩∣2ds
⎞
⎠

p⎤⎥⎥⎥⎥⎦

= cp(∫
h

0
∑
m∈N0

λ2
me

−8π2(h−s)m2

ds)
p

≤ cphp( ∑
m∈N0

λ2
m)

p

=∶ cp,λhp,

(3.12)

where we used the obvious bound e−r ≤ 1, for r ≥ 0, to pass to the �nal line. The second
identity in (3.11) follows from (3.6), concluding the proof.

As a consequence, we have:

Lemma 3.2. For T > 0 and p ≥ 2 (and for h being the stepsize of the scheme and λ the
exponent colouring the noise),

sup
n∈N0∶nh≤T

E [∥Xh
n∥

p

2
] ≤ cp,λ,T (1 +E [∥X0∥p2]) . (3.13)

Proof. The �rst step follows from the fact that the rearrangement preserves Lp norms.

E [∥Xh
n∥

p

2
] = E [∥eh∆Xh

n−1 + ∫
h

0
e(h−s)∆dWn

s ∥
p

2
] . (3.14)

The mild solution to the stochastic heat equation started from Xh
n−1 and driven by

(Wn
r )0≤r≤h (see (3.4)) is denoted here by

X̂h,n−1
s ∶= es∆Xh

n−1 + ∫
s

0
e(s−r)∆dWn

r , s ∈ [0, h]. (3.15)
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Then, by estimate (3.5),

E [∥Xh
n∥

p
2]

≤ E [∥Xh
n−1∥

p

2
+ p∫

h

0
∥X̂h,n

s ∥p−2
2 ⟨X̂h,n

s , dWn
s ⟩ +

p(p−1)
2 ∫

h

0
∥X̂h,n

s ∥p−2
2 d[Wn]s ] .

(3.16)

One may remove the martingale terms that contribute zero (by induction over the index
n in (3.14), the left-hand side therein is obviously �nite, and then the left-hand side in
(3.15) has a �nite p-moment for any p ≥ 1). It remains to control E[∥X̂h,n

s ∥q2] for q ≥ 0.

∥X̂h,n
s ∥q2 = ∥es∆Xh

n−1 + ∫
s

0
e(s−r)∆dWn

r ∥
q

2
≤ cq (∥es∆Xh

n−1∥
q

2
+ ∥∫

s

0
e(s−r)∆dWn

r ∥
q

2
)

≤ cq (∥Xh
n−1∥

q
2 + ∥∫

s

0
e(s−r)∆dWn

r ∥
q

2
) , (3.17)

where the last bound follows from the contraction property of the heat semigroup. In
light of Lemma 3.1,

E[∥X̂h,n
s ∥q2] ≤ cq (E [∥Xh

n−1∥
q
2] + cq,λh

q/2) . (3.18)

Choosing q = p − 2 and injecting the above bound in (3.16), we obtain

E [∥Xh
n∥

p
2] ≤E [∥Xh

n−1∥
p
2] + cp,λhE [∥Xh

n−1∥
p−2

2
+ h(p−2)/2] , (3.19)

and then, using the assumption h < 1 together with the obvious bound ap−2 ≤ 1 + ap, for
a ≥ 0, we get

E [∥Xh
n∥

p
2] ≤(1 + cp,λh)E [∥Xh

n−1∥
p
2] + cp,λh.

The conclusion follows from the discrete version of Gronwall's lemma.

3.2 Uniform estimate for the derivatives of the iterates

We now provide some estimates for the spatial derivative of the functions (Xh
n)n≥0.

Whilst this may look quite easy to do, thanks to the presence of the heat semigroup in
the formula (3.3), the analysis is in fact more complicated due to the additional presence
of the rearrangement. Part of the proof is thus to estimate the concomitant e�ect of
the periodic heat semigroup and the rearrangement transformation. This is given in the
following lemma:

Lemma 3.3. Let u belong to L1(S) and U be uniformly distributed on [0,1] on the same
space (Ω,F ,P) as before. Then,

E[∥DehU∆u∗∥2
2] ≤ E[∥DehU∆u∥2

2]. (3.20)
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Of course, the two expectations in the statement could be rewritten as

E[∥DehU∆u∗∥2
2] = ∫

1

0
∥Dehs∆u∗∥2

2ds, E[∥DehU∆u∥2
2] = ∫

1

0
∥Dehs∆u∥2

2ds,

but the notation using the expectation symbol is convenient for the rest of the analysis.

Proof. Recalling the notation Γ in (2.1) for the heat kernel, we have the following two
identities:

∥Des∆u∗∥2
2 =∫S

(∫
S
DΓ(s, x − y)u∗(y)dy)

2

dx

=∫
S
∫
S
∫
S
DΓ(s, x − y)u∗(y)DΓ(s, x − z)u∗(z)dydzdx.

Observe that

∫
S
DΓ(s, x − y)DΓ(s, x − z)dx =DyDz ∫

S
Γ(s, x − y)Γ(s, x − z)dx =DyDz[Γ(2s, y − z)]

= −D2
xΓ(2s, y − z).

Therefore,

∥Des∆u∗∥2
2 = − ∫S

∫
S
u∗(y)D2

xΓ(2s, y − z)u∗(z)dydz

= − ∫
S
∫
S
u∗(y)DtΓ(2s, y − z)u∗(z)dydz.

(3.21)

By integrating the above equality in s over [0, h] and by applying both Cavalieri's prin-
ciple and Riesz' rearrangement inequality, we get

∫
h

0
∥Des∆u∗∥2

2ds =
1

2
[∫

S
u∗(y)2dy − ∫

S
∫
S
u∗(y)Γ(2h, y − z)u∗(z)dydz]

≤ 1

2
[∫

S
u(y)2dy − ∫

S
∫
S
u(y)Γ(2h, y − z)u(z)dydz]

= ∫
h

0
∥Des∆u∥2

2ds,

(3.22)

the last line being obtained by reverting back the computations in (3.21). This completes
the proof.

Next, Lemma 3.3 is applied to the scheme. We claim:

Lemma 3.4 (Uniform estimate for the schemes' derivatives). For δ ∈ [0, λ − 1
2) (with λ

as in (3.1)), and for n ∈ N (with h being the stepsize of the scheme),

E [∥DXh
n∥

2

2
] ≤ 1

hn
E [∥X0∥2

2] + cδ,λ[hδ + (hn)
1
2 + (hn)min(λ− 1

2
, 1
2
)]. (3.23)
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Proof. Following the notation of Lemma 3.3, we introduce, as an artefact of the proof
method, a uniformly distributed [0,1]-valued random variable U independent of the
�ltration F. By Lemma 2.8 (the Pólya�Szeg® inequality),

E [∥DXh
n∥

2

2
] ≤ E [∥D (eh∆Xh

n−1 + ∫
h

0
e(h−s)∆dWn

s )∥
2

2
] .

Recalling the notation (3.8) for the weak derivative w of W (and adapting accordingly
the notation for increments over the time discretisation (3.4)), we get

E [∥DXh
n∥

2

2
] ≤ E [∥D (eh∆Xh

n−1 + ∫
h

0
e(h−s)∆dWn

s )∥
2

2
]

= E [∥Deh∆Xh
n−1∥

2

2
+ ∥∫

h

0
e(h−s)∆dwns ∥

2

2
]

≤ E [∥DehU∆Xh
n−1∥

2

2
+ ∥∫

h

0
e(h−s)∆dwns ∥

2

2
] ,

where we used the independence of Deh∆Xh
n−1 and ∫ h0 e(h−s)∆dwns to pass from the �rst

to the second line and the simple fact that U is [0,1]-valued to pass from the penultimate
to the last line (together with the obvious fact that D and ∆ commute). We now make
use of Lemma 3.3. Using the scheme (3.3), with n replaced by n − 2 therein, we obtain

E [∥DXh
n∥

2

2
] ≤ E [∥Deh(U+1)∆Xh

n−2∥
2

2
+

2

∑
k=1

∥e(k−1)hU∆∫
h

0
e(h−s)∆dwn+1−k

s ∥
2

2
]

≤ E [∥De2hU∆Xh
n−2∥

2

2
+

2

∑
k=1

∥e(k−1)hU∆∫
h

0
e(h−s)∆dwn+1−k

s ∥
2

2
] .

By iteration,

E [∥DXh
n∥

2

2
]

≤ E [∥DenhU∆X0∥
2

2
+

n

∑
k=1

∥e(k−1)hU∆∫
h

0
e(h−s)∆dwn+1−k

s ∥
2

2
]

≤ E [∥DenhU∆X0∥
2

2
] + 4π2

n

∑
k=1

E [∑
m≥1

e−8π2(k−1)hUm2

∫
h

0
e−8π2(h−s)m2

m2(1−λ)ds]

≤ E [∥DenhU∆X0∥
2

2
] +

n

∑
k=1

E [∑
m≥1

e−8π2(k−1)hUm2(1 − e−8π2hm2)m−2λ] .

Next, recall that λ > 1
2 , and for δ ≤ 1, (1 − e−x) ≤ xδ for x ≥ 0. Then, handing the �rst
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summand indexed in k with δ ∈ [0, λ − 1
2), and the remaining one with δ = 1,

E [∥DXh
n∥

2

2
] ≤ E [∥DenhU∆X0∥

2

2
] + cδ,λhδ + ch

n

∑
k=2

E [∑
m≥1

e−8π2(k−1)hUm2

m2(1−λ)]

≤ E [∥DenhU∆X0∥
2

2
] + cδ,λhδ + ch

n−1

∑
k=1

E [∑
m≥1

e−8π2khUm2

m2(1−λ)]

≤ E [∥DenhU∆X0∥
2

2
] + cδ,λhδ + ch

n−1

∑
k=1

E [∑
m≥1

e−8π2khUm2

m2(1−λ)+] .

Using the following Gaussian estimate

∑
m≥1

e−8π2khUm2

m2(1−λ)+ ≤ ∫
∞

0
e−8π2khUx2(x2(1−λ)+ + 1)dx

≤ cλ((khU)−
1
2 + (khU)−

1
2
−(1−λ)+),

(3.24)

we obtain

E [∥DXh
n∥

2

2
] ≤ E [∥DenhU∆X0∥

2

2
] + cδ,λhδ + cλh

n

∑
k=1

E [(khU)−
1
2 + (khU)−

1
2
−(1−λ)+]

≤ E [∥DenhU∆X0∥
2

2
] + cδ,λ (hδ + (hn)

1
2 + (hn)

1
2
−(1−λ)+) .

Note that 1
2 − (1 − λ)+ = min(λ − 1

2 ,
1
2).

For the �nal step, letting (X̂m
0 )m∈N0 denote the (cosine) Fourier coe�cients of X0

(recalling that X0 is assumed to be symmetric),

E[∥DenhU∆X0∥
2

2
] = E[ ∑

m∈N0

4π2m2e−8π2nhm2U ∣X̂m
0 ∣2]

= 4π2E ∑
m∈N0

(∫
1

0
m2e−8π2nhm2sds)∣X̂m

0 ∣2 ≤ 1

nh
E ∑
m∈N0

∣X̂m
0 ∣2 = 1

nh
E [∥X0∥2

2] .

3.3 Tightness

Under the same assumption as before on X0 (namely, X0 takes values in U2(S) and
E[∥X0∥2p

2 ] < ∞ for any p ≥ 1), we shall address the tightness properties of the scheme,
see Proposition 3.7 for the main statement of this subsection. We warn the reader that
the proof is technical. It is possible to skip it at �rst and come back to it later.

In order to proceed, we de�ne the following linear interpolation (X̃h
t )t≥0 of the scheme:

X̃h
t ∶= (⌈t/h⌉ − t/h)Xh

⌊t/h⌋ + (t/h − ⌊t/h⌋)Xh
⌈t/h⌉. (3.25)

Lemma 3.2 (applied with T + 1 instead of T ) gives us the following bound:
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Corollary 3.5. For an initial condition X0 ∈ U2(S) with �nite moments of any order,
for a real T > 0 and for any real p ≥ 1, we have

sup
t≤T

E [∥X̃h
t ∥

2p

2
] ≤ C

p,λ,T,E[∥X0∥
2p
2 ]
, (3.26)

where the last parameter E[∥X0∥2p
2 ] in the constant is here to say that the constant depends

on X0 through the moment E[∥X0∥2p
2 ].

The next result is an intermediary lemma that we use below in order to establish
Kolmogorov-Chentsov's criterion.

Lemma 3.6 (Su�cient condition for relative compactness). Let f and g be functions
such that, f, g ∶ (0,∞) → (0,∞), f and −g are non-increasing, f(ε) → ∞ and g(ε) → 0
as ε→ 0.

Suppose that A ⊂ C([0, T ],X ), with (X , ∥ ⋅∥) being a normed vector space and T being
a positive real, is such that, for some 0 < α < 1 and some threshold ε0 > 0 and for all
ε ∈ (0, ε0) and x ∈ A,

∥xt − xs∥ ≤ f(ε)(t − s)α for 0 < ε < s < t ≤ T, (3.27)

∥xs − x0∥ ≤ g(ε) for 0 < s < ε. (3.28)

Then, A is equicontinuous.

Proof. Fix δ > 0 and choose (s, t) ∈ [0, T ]2 such that ∣t − s∣ ≤ δ. Then, for ε ∈ (0, ε0) such
that δ ≥ f(ε)− 1+α

α , we have

∥xt − xs∥ ≤ δ−
α

1+α δα = δ
α2

1+α for 0 < ε < s < t, (3.29)

∥xs − x0∥ ≤ 2g(f−1(δ−
α

1+α )) for 0 < s < ε, (3.30)

where f−1(a) ∶= sup{x ∈ (0,∞) ∶ f(x) ≥ a}, for a ∈ (0,∞). Since f(x) → ∞ as x → 0,
f−1(a) is well-de�ned (in (0,∞]) for any a ∈ (0,∞). Moreover, it is quite standard to
check that f−1(a) → 0 as a →∞. We deduce that, in both (3.29) and (3.30), the right-
hand side tends to 0 with δ, which provides a uniform modulus of continuity for any
(xt)0≤t≤T in A.

Proposition 3.7. For any �nite time horizon T > 1, the linear interpolation schemes
{X̃h}h∈(0,1) ∶= {(X̃h

t )t≥0}h∈(0,1) induce a tight family of probability measures on the space
of continuous functions C([0, T ], L2

sym(S)). Moreover, for any p ≥ 1, there exists a con-
stant C

p,λ,T,E[∥X0∥
2p
2 ]

, independent of h, such that

E[ sup
n∶nh≤T+h

∥Xh
n∥

2p
2 ] ≤ C

p,λ,T,E[∥X0∥
2p
2 ]
.

Proof. The proof is to verify Kolmogorov-Chentsov's criterion, by �rst establishing equicon-
tinuity via Lemma 3.6, which is in fact rather demanding, and �nally con�rming that, for
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any t ∈ [0, T ], the random variables {Xh
t }h∈(0,1) induce a tight collection of probability

measures on L2
sym(S). Throughout the proof, we use the notation N0 ∶= ⌈T /h⌉.

First step. Consider the quantity supn∈{0,⋯,N0}
∥Xh

n −X0∥2. This will be controlled by
splitting the problem via the triangle inequality,

sup
n∈{0,⋯,N0}

∥Xh
n −X0∥2 ≤ sup

n∈{0,⋯,N0}

{∥Xh
n − enh∆X0∥2 + ∥enh∆X0 −X0∥2} .

To handle the �rst summand, one begins by use of the non-expansion property of
the rearrangement (together with the fact that X0 itself is non-increasing on the circle
and that the periodic heat semigroup preserves symmetric non-increasing property of
functions, see Lemma 2.10):

∥Xh
n − enh∆X0∥2

2 ≤ ∥eh∆Xh
n−1 − enh∆X0 + ∫

nh

(n−1)h
e(nh−s)∆dWs∥

2

2

≤ ∥Xh
n−1 − e(n−1)h∆X0∥

2

2
+ ∥∫

nh

(n−1)h
e(nh−s)∆dWs∥

2

2

+ 2⟨eh∆Xh
n−1 − enh∆X0,∫

nh

(n−1)h
e(nh−s)∆dWs⟩.

The second inequality above follows from the contractive property of the heat semigroup.
By iteration,

∥Xh
n − enh∆X0∥2

2 ≤
n

∑
k=1

∥∫
kh

(k−1)h
e(kh−s)∆dWs∥

2

2

+ 2
n

∑
k=1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩.

(3.31)

The idea to estimate the above is to view the right-hand side as the value at time n of
a process. To be precise, one studies the regularity of two discrete processes, T 1 and T 2

(indexing by h is omitted), de�ned respectively as

⎛
⎝
T 1
n ∶=

n

∑
k=1

∥∫
kh

(k−1)h
e(kh−s)∆dWs∥

2

2

⎞
⎠
n≥0

,

⎛
⎝
T 2
n ∶= 2

n

∑
k=1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩

⎞
⎠
n≥0

.

(3.32)

For the regularity of (T 1
n)n≥0, observe that for any exponent p ≥ 1, by Lemma 3.1,

E[∥∫
kh

(k−1)h
e(kh−s)∆dWs∥

2p

2
] ≤ cp,λhp.

Consequently, by the generalised means inequality, we get, for 0 ≤m < n,

E[(
n

∑
k=m+1

∥∫
kh

(k−1)h
e(kh−s)∆dWs∥

2

2
)
p

] ≤ cp,λ(h(n −m))p,
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which one may rewrite as

E[∣T 1
n − T 1

m∣p] ≤ cp,λ(h(n −m))p.

The second process in (3.32), (T 2
n)n≥0, de�nes a martingale,

(T 2
n)n≥1

∶= (2
n

∑
k=1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩)

n≥1

,

with the convention that T 2
0 = 0. Therefore, by the Burkholder-Davis-Gundy inequality,

E[∣T 2
n − T 2

m∣p] ≤ E[∣
n

∑
k=m+1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩∣

p

]

≤ E[([
⋅

∑
k=m+1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩]

n

)
p/2

],

where the notation [ ⋅ ]n denotes the quadratic variation up the nth instant (note that
here, this is from the (m + 1)st instant). This may be estimated by writing:

[
⋅

∑
k=m+1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩]

n

=
n

∑
k=m+1

([eh∆Xh
k−1 − ekh∆X0

⋀0

]
2
h

+∑
`∈N

[eh∆Xh
k−1 − ekh∆X0

⋀̀

]
2

∫
kh

(k−1)h
`−2λe−8π2(kh−s)`2ds)

≤ h
n

∑
k=m+1

∑
`∈N0

[eh∆Xh
k−1 − ekh∆X0

⋀̀

]
2
= h

n

∑
k=m+1

∥eh∆Xh
k−1 − ekh∆X0∥

2

2
.

(3.33)

Applying the generalised means inequality and using, from Corollary 3.5, the fact that
supk=0,⋯,N0

E[∥Xh
kh∥

p
2] ≤ Cp,λ,T,E[∥X0∥

p
2]
, one obtains

E[∣T 2
n − T 2

m∣p] ≤ E[∣
n

∑
k=m+1

⟨eh∆Xh
k−1 − ekh∆X0,∫

kh

(k−1)h
e(kh−s)∆dWs⟩∣

p

]

≤ cp,λ,T,E[∥X0∥
p
2]
(h(n −m))

p
2 .

Returning to (3.31), via application of the Kolmogorov-Chentsov continuity theorem [see
Theorem 1.2.1 in [67]] (to the linear interpolation of the two processes in (3.32)) that,
for α ∈ (0, (p2 − 1)/2p),

∥Xh
n − enh∆X0∥2 ≤ Ξh(nh)α, n ∈ {0,⋯,N0},

almost surely for a (non-negative) random variable Ξh with a �nite L2p(P)-moment that
satis�es E[(Ξh)2p] ≤ c

p,λ,T,E[∥X0∥
2p
2 ]

. Consequently,

∥Xh
n −X0∥2 ≤ Ξh(nh)α +w(nh), n ∈ {0,⋯,N0},
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where w(x) is a random variable that depends on X0, that tends almost surely to 0 with
x and that is dominated by 2∥X0∥2. Notice that this implies in particular that

E[ sup
n∶nh≤T+h

∥Xh
n∥

2p
2 ] ≤ c

p,λ,T,E[∥X0∥
2p
2 ]
.

In turn, for t ∈ [0, T ] and for n ∶= ⌊t/h⌋,

∥X̃h
t −X0∥2 ≤ (n + 1 − t

h
)∥Xh

n −X0∥2 + ( t
h
− n)∥Xh

n+1 −X0∥2

≤ Ξh[(n + 1 − t

h
)(nh)α + ( t

h
− n)((n + 1)h)α]

+ (n + 1 − t

h
)w(nh) + ( t

h
− n)w((n + 1)h).

(3.34)

Assuming without any loss of generality that w is non-decreasing (changing w(x) into
supy∈[0,x]w(y)), we get

∥X̃h
t −X0∥2 ≤ Ξh((n + 1)h)α +w((n + 1)h).

If n = ⌊t/h⌋ ≥ 1, then nh ≤ t < (n + 1)h ≤ 2nh ≤ 2t and thus

∥X̃h
t −X0∥2 ≤ Ξh(2t)α +w(2t). (3.35)

If n = ⌊t/h⌋ = 0, then t < h and (3.34) yields

∥X̃h
t −X0∥2 ≤

t

h
(Ξhhα +w(h)). (3.36)

We distinguish the following two cases in (3.36). If t ≤ h2, i.e.
√
t ≤ h, then

∥X̃h
t −X0∥2 ≤

√
t

√
t

h
(Ξh +w(1)) ≤

√
t(Ξh +w(1)). (3.37)

If h2 ≤ t ≤ h, then h ≤
√
t and (3.36) yields

∥X̃h
t −X0∥2 ≤ [Ξh

√
t
α +w(

√
t)]. (3.38)

We now collect (3.35), (3.37) and (3.38). Recalling that the random function w is
dominated by 2∥X0∥2, we can modify the random variable Ξh (in such a way that its 2p
moment remains less than some constant c

p,λ,T,E[∥X0∥
2p
2 ]

) so that

∥X̃h
t −X0∥2 ≤ Ξhtα/2 +w(2(

√
t ∨ t)), t ∈ [0, T ].

Modifying again the choice of w, this may be simpli�ed into

∥X̃h
t −X0∥2 ≤ Ξhtα/2 +w(t), t ∈ [0, T ]. (3.39)
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The above bound describes the small time behaviour of the process. It remains to address
the situation away from initialisation.

Second step. From here, we take p ≥ 2. This phase of the proof establishes that for �xed
N ≤ N0 and N ≤m < n,

E[∥Xh
n −Xh

m∥2p

2
∣FNh] ≤ cp,λ(nh −mh)p + cpE[∥Xh

m − e(n−m)h∆Xh
m∥2p

2
∣FNh]

≤ cp,λ(nh −mh)p + cp(nh −mh)pE[∥DXh
m∥2p

2
∣FNh].

(3.40)

To begin, apply the triangle and generalised means inequalities:

E [∥Xh
n −Xh

m∥2p

2
∣FNh]

≤ 22p−1E [∥Xh
n − e(n−m)h∆Xh

m∥
2p

2
+ ∥Xh

m − e(n−m)h∆Xh
m∥

2p

2
∣FNh] .

(3.41)

The second summand in the above right hand side is simpler to handle in this step
and follows from a readily-established heat semigroup estimate. For u ∈ L2(S) with a
generalised derivative Du in L2(S),

∥e(t−s)∆u − u∥2
2 = ∫

t−s

0
⟨∂rer∆u, e(t−s)∆u − u⟩dr

= −∫
t−s

0
⟨Der∆u,De(t−s)∆u −Du⟩dr ≤ 2(t − s)∥Du∥2

2,

(3.42)

which is enough for the desired estimation. For the �rst summand in (3.41), one proceeds
via the following sequence of inequalities. Starting with the non-expansion property of the
rearrangement (recall that the heat semigroup preserves the symmetric non-increasing
property),

∥Xh
n − e(n−m)h∆Xh

m∥
2p

2
≤ ∥eh∆Xh

n−1 + ∫
h

0
e(h−s)∆dWn

s − e(n−m)h∆Xh
m∥

2p

2
, (3.43)

which may be estimated by means of (3.5), by considering the process

X̂h,n−1
s ∶= es∆[Xh

n−1 − e(n−1−m)h∆Xh
m] + ∫

s

0
e(s−r)∆dWn

r , s ∈ [0, h].

Following the same sequence of inequalities as in (3.16), (3.17), (3.18) and (3.19), we
obtain1

E [∥Xh
n − e(n−m)h∆Xh

m∥
2p

2
∣FNh] ≤ E [∥Xh

n−1 − e(n−1−m)h∆Xh
m∥

2p

2
∣FNh]

+ cp,λh(E [∥Xh
n−1 − e(n−1−m)h∆Xh

m∥
2p−2

2
∣FNh] + hp−1) ,

1Although the reader may �nd the computations reminiscent of (3.31), the objective is in fact di�erent.
In (3.31), the goal is to apply Kolmogorov-Chentsov's theorem to the process (∥Xh

n −enh∆X0∥22)0≤⌊n/h⌋≤T .
The purpose here is obviously not the same.
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which gives, by iteration,

E [∥Xh
n − e(n−m)h∆Xh

m∥
2p

2
∣FNh] ≤ cp,λh

n−1

∑
k=m+1

(E [∥Xh
k − e(k−m)h∆Xh

k ∥
2p−2

2
∣FNh] + hp−1) .

We proceed by induction on p, assuming for a while that p is an integer (greater than or
equal to 1). When p = 1, the above inequality yields

E [∥Xh
n − e(n−m)h∆Xh

m∥
2

2
∣FNh] ≤ c1,λh(m − n).

Then, by induction, we get, for any p ∈ N,

E [∥Xh
n − e(n−m)h∆Xh

m∥
2p

2
∣FNh] ≤ cp,λ(h(m − n))p. (3.44)

When p is a real greater than or equal to 1, we may apply the above inequality to ⌈p⌉
and then get the same conclusion as above by Hölder's inequality applied with exponent
⌈p⌉/p. By combining (3.41), (3.42) and (3.44), we obtain (3.40).

Third step. Having established that

E [∥Xh
n −Xh

m∥2p
2 ∣FNh] ≤ cp,λ(nh −mh)p + cp(nh −mh)pE [∥DXh

m∥2p
2 ∣FNh] , (3.45)

one needs to control the term, E [∥DXh
m∥2p

2 ∣FNh]. As in the proof of Lemma 3.4, for ease

of notation, an independent uniform random variable Ũ is introduced (independence
being understood as independence with respect to the �ltration F). For the sake of
clarity, we feel better to construct Ũ on a separate probability space (Ω̃, F̃ , P̃) and then
to elevate the original probability space (Ω,F ,P) to a product with (Ω̃, F̃ , P̃). In this
way, one may denote by Ẽ the integral with respect to the P̃ component of the product
measure. Then, by application of the Pólya�Szeg® inequality (Lemma 2.8) followed by
use of the contractive property of the heat semigroup,

∥DXh
m∥2

2 ≤ ∥D(eh∆Xh
m−1 + ∫

mh

(m−1)h
e(mh−s)∆dWs)∥

2

2

≤ Ẽ[∥DehŨ∆Xh
m−1∥

2

2
] + ∥∫

mh

(m−1)h
e(mh−s)∆dws∥

2

2

+ 2⟨D(eh∆Xh
m−1),∫

mh

(m−1)h
e(mh−s)∆dws⟩,

where we used the same notation as in (3.8). In turn, by inequality (3.20),

Ẽ[∥DehŨ∆Xh
m−1∥

2

2
] ≤ Ẽ[∥Deh(1+Ũ)∆Xh

m−2∥
2

2
+ ∥ehŨ∆∫

(m−1)h

(m−2)h
e((m−1)h−s)∆dws∥

2

2

+ 2⟨D(eh(1+Ũ)∆Xh
m−2),∫

(m−1)h

(m−2)h
e((m−1)h+hŨ−s)∆dws⟩],
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and then,

∥DXh
m∥2

2 ≤ Ẽ[∥Deh(1+Ũ)∆Xh
m−2∥

2

2

+ ∥ehŨ∆∫
(m−1)h

(m−2)h
e((m−1)h−s)∆dws∥

2

2
+ ∥∫

mh

(m−1)h
e(mh−s)∆dws∥

2

2

+ 2⟨D(eh(1+Ũ)∆Xh
m−2),∫

(m−1)h

(m−2)h
e((m−1)h+hŨ−s)∆dws⟩

+ 2⟨D(eh∆Xh
m−1),∫

mh

(m−1)h
e(mh−s)∆dws⟩].

Noticing that

Ẽ[∥Deh(1+Ũ)∆Xh
m−2∥

2

2
] ≤ Ẽ[∥De2hŨ∆Xh

m−2∥
2

2
],

we can apply once again (3.20), but with h replaced by 2h. And then, by iteration, we
get for any N <m ≤ N0,

∥DXh
m∥2

2
≤ Ẽ[∥Deh(1+(m−N−1)Ũ)∆Xh

N∥2

2
]

+ Ẽ[
m−N

∑
k=1

∥eh(k−1)Ũ∆∫
(m−k+1)h

(m−k)h
e((m−k+1)h−s)∆dws∥

2

2
]

+ 2
m−N

∑
k=1

Ẽ[⟨D(eh(1+(k−1)Ũ)∆Xh
m−k),∫

(m−k+1)h

(m−k)h
e((m−k+1)h+h(k−1)Ũ−s)∆dws⟩]

=∶ Ẽ[∥Deh(1+(m−N−1)Ũ)∆Xh
N∥2

2
] + Ẽ[

m−N

∑
k=1

(R1
k + 2R2

k)].

(3.46)

Next, calculate the pth moment of both R1 ∶= Ẽ[∑m−Nk=1 R1
k] and R2 ∶= Ẽ[∑m−Nk=1 R2

k]
(conditional on FNh). For the case of R1, we �rst notice that, for k ≥ 2,

Ẽ[R1
k] = 4π2Ẽ∑

`∈N
(e−4π2h(k−1)Ũ`2 ∫

(m−k+1)h

(m−k)h
`(1−λ)e−4π2((m−k+1)h−s)`2dB`

s)
2

,

and then, by Jensen inequality (in the form (Ẽ∑`∈N x2
`y

2
` )p ≤ (Ẽ∑`∈N x2

`)p−1Ẽ∑`∈N x2
`y

2p
` ),

(Ẽ[R1
k])

p
≤ c(Ẽ∑

`∈N
`2(1−λ)e−8π2(k−1)hŨ`2)

p−1

× Ẽ[∑
`∈N

`2(1−λ)e−8π2(k−1)hŨ`2(∫
(m−k+1)h

(m−k)h
e−4π2((m−k+1)h−s)`2dB`

s)
2p

].
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Therefore,

E[(Ẽ[R1
k])

p
∣FNh]

≤ c(Ẽ∑
`∈N

`2(1−λ)e−8π2(k−1)hŨ`2)
p−1

× Ẽ[∑
`∈N

`2(1−λ)e−8π2(k−1)hŨ`2E{(∫
(m−k+1)h

(m−k)h
e−4π2((m−k+1)h−s)`2dB`

s)
2p

∣FNh}]

≤ chp(Ẽ∑
`∈N

`2(1−λ)e−8π2(k−1)hŨ`2)
p

.

We recall from (3.24) that, for 2 ≤ k ≤m −N ,

(Ẽ∑
`∈N

`2(1−λ)e−8π2(k−1)hŨ`2)
p

≤ cp,λ(Ẽ(((k − 1)hŨ)−
1
2 + ((k − 1)hŨ)−

1
2−(1−λ)+))

p

≤ cp,λ{1 + ((k − 1)h)−
1
2−(1−λ)+}

p
,

from which we deduce that, for 2 ≤ k ≤m −N ,

E[(Ẽ[R1
k])

p
∣FNh] ≤ cp,λhp{1 + ((k − 1)h)−

1
2−(1−λ)+}

p
. (3.47)

When k = 1 (and m −N ≥ 1),

E[(Ẽ[R1
1])

p
∣FNh] = 4π2E[{∑

`∈N
(∫

mh

(m−1)h
`1−λe−4π2(mh−s)`2dB`

s)
2

}
p

∣FNh]

= 4π2E[{∑
`∈N

`−(λ+
1
2
)(∫

mh

(m−1)h
`

5
4
−λ

2 e−4π2(mh−s)`2dB`
s)

2

}
p

∣FNh].

By Jensen inequality,

E[(Ẽ[R1
1])

p
∣FNh] ≤ cp,λ∑

`∈N
`−(λ+

1
2
)`(

5
2
−λ)pE[(∫

mh

(m−1)h
e−4π2(mh−s)`2dB`

s)
2p

∣FNh]

≤ cp,λ∑
`∈N

`−(λ+
1
2
)`(

5
2
−λ)p(∫

h

0
e−8π2s`2ds)

p

≤ cp,λ∑
`∈N

`−(λ+
1
2
)`(

1
2
−λ)p(1 − exp(−8π2h`2))p

≤ cp,λhmin(λ− 1
2
,1) p

2 ,

(3.48)

where we used the inequality 1 − exp(−x) ≤ cλxmin(λ− 1
2
,1) 1

2 .Therefore, by de�ning bk,h ∶=
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1 + ((k − 1)h)−
1
2−(1−λ)+ , we deduce that, from (3.48) and (3.47),

E[(R1)p∣FNh]

≤ cpE[(Ẽ[R1
1])

p
∣FNh] + cpE[(Ẽ[

m−N

∑
k=2

R1
k])

p

∣FNh]

≤ cp,λhmin(λ− 1
2
,1) p

2 + cp(
m−N

∑
k=2

bk,h)
p−1

(
m−N

∑
k=2

bk,hb
−p
k,hE[(Ẽ[R1

k])
p
∣FNh])

≤ cp,λhmin(λ− 1
2
,1) p

2 + cp,λhp(
m−N

∑
k=2

bk,h)
p

.

Inserting the value of bk,h, we obtain

E[(R1)p∣FNh]

≤ cp,λhmin(λ− 1
2
,1) p

2 + cp,λhp(m −N +
m−N

∑
k≥1

(kh)−
1
2−(1−λ)+)

p

≤ cp,λhmin(λ− 1
2
,1) p

2 + cp,λhp(m −N + h−1∫
h(m−N)

0
x−

1
2
−(1−λ)+dx)

p

≤ cp,λhmin(λ− 1
2
,1) p

2 + cp,λ,T (h(m −N))p(
1
2
−(1−λ)+)

.

(3.49)

Recalling that 1
2 −(1−λ)+ = min(λ− 1

2 ,
1
2) and using the bound hm ≤ T +1, we eventually

get that

E[(R1)p∣FNh] ≤ cp,λ,T (h(m −N))min(λ− 1
2
, 1
2
)
p
2 . (3.50)

This gives a bound for R1 in (3.46).
For the treatment of R2 (also in (3.46)), using the symmetry of the Laplace operator

and Burkholder-Davis-Gundy inequality (see Theorem 4.36 in [24]), one may write

E[(R2)p∣FNh]

= E
⎡⎢⎢⎢⎢⎣

⎛
⎝
m−N

∑
k=1

Ẽ[⟨D(eh(1+(k−1)Ũ)∆Xh
m−k),∫

(m−k+1)h

(m−k)h
e((m−k+1)h+h(k−1)Ũ−s)∆dws⟩]

⎞
⎠

p

∣FNh
⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣

⎛
⎝
m−N

∑
k=1

[⟨DXh
m−k, Ẽ∫

(m−k+1)h

(m−k)h
e((m−k+1)h+h(1+2(k−1)Ũ)−s)∆dws⟩]

⎞
⎠

p

∣FNh
⎤⎥⎥⎥⎥⎦

≤ cpE
⎡⎢⎢⎢⎢⎣

⎛
⎝
m−N

∑
k=1

[∥DXh
m−k∥

2

2
[∫

⋅

(m−k)h
Ẽ(e((m−k+1)h+h(1+2(k−1)Ũ)−s)∆)dws]

(m−k+1)h
]
⎞
⎠

p/2

∣FNh
⎤⎥⎥⎥⎥⎦

≤ cpE
⎡⎢⎢⎢⎢⎣

⎛
⎝
m−N

∑
k=1

{∥DXh
m−k∥

2

2
E(Ẽ[R1

k])}
⎞
⎠

p/2

∣FNh
⎤⎥⎥⎥⎥⎦
, (3.51)
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where we used stochastic Fubini's theorem to pass the expectation symbol Ẽ in the fourth
line. We split (3.51) as follows:

E[(R2)p∣FNh]

≤ cpE[∥DXh
m−1∥

p

2
∣FNh]E(Ẽ[R1

1])
p/2

+ cpE
⎡⎢⎢⎢⎢⎣

⎛
⎝
m−N

∑
k=2

{∥DXh
m−k∥

2

2
E(Ẽ[R1

k])}
⎞
⎠

p/2

∣FNh
⎤⎥⎥⎥⎥⎦
.

Inserting (3.47) and (3.48) and recalling from (3.49) that h∑m−Nk=2 bk,h ≤ cλ,T

E[(R2)p∣FNh] ≤ cp,λE[∥DXh
m−1∥

p

2
∣FNh]hmin(λ− 1

2
,1) p

4

+ cp,λE
⎡⎢⎢⎢⎢⎣

⎛
⎝
h
m−N

∑
k=2

{∥DXh
m−k∥

2

2
(1 + ((k − 1)h)−

1
2−(1−λ)+)}

⎞
⎠

p/2

∣FNh
⎤⎥⎥⎥⎥⎦

≤ cp,λE[∥DXh
m−1∥

p

2
∣FNh]hmin(λ− 1

2
,1) p

4

+ cp,λh
m−N

∑
k=2

(1 + ((k − 1)h)−
1
2−(1−λ)+)E[∥DXh

m−k∥
p

2
∣FNh].

Collect the above bounds for R2 and the bound (3.50) for R1 and plug them into (3.46).
Assuming that (m −N)h ≤ ε for some ε ∈ [h,1) (which is possible since h < 1), recalling
that 1

2 − (1 − λ)+ = min(1
2 , λ −

1
2) and repeating (3.49), one has

sup
m≥N ∶h(m−N)≤ε

E[∥DXh
m∥2p

2
∣FNh]

≤ cp,λ,T(1 + ∥DXh
N∥2p

2
+ εmin( 1

2
,λ− 1

2
) 1

2 sup
m≥N ∶h(m−N)≤ε

E[∥DXh
m∥2p

2
∣FNh]),

from which we deduce that, for ε ≤ εp,λ,T small enough (the threshold εp,λ,T being strictly
positive and only depending on p, λ and T ),

sup
m≥N ∶h(m−N)≤ε

E[∥DXh
m∥2p

2
∣FNh] ≤ cp,λ,T (1 + ∥DXh

N∥2p

2
),

observing from a straightforward induction that E[∥DXh
m∥2p

2
∣FNh] is �nite for m > N .

(Notice that, when h ≥ εp,λ,T , the above is obviously true since the set of indices in the
left-hand side reduces to the singleton {N}.)

For ε being �xed, we can �nd an integer Iε, depending only on ε and T , together
with integers N0 = N < N1 < ⋯ < NIε , such that hNIε≥ T + 1 and h(Nk −Nk−1) ≤ ε for
k = 1,⋯, Iε. For each k = 1,⋯, Iε, we get

sup
Nk−1≤m≤Nk

E[∥DXh
m∥2p

2
∣FNk−1h] ≤ cp,λ,T (1 + ∥DXh

Nk−1
∥2p

2
).
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By induction, we get

sup
m≥N ∶hm≤T+1

E[∥DXh
m∥2p

2
∣FNh] ≤ cp,λ,T (1 + ∥DXh

N∥2p

2
).

Finally, back to (3.45), for m,n ≥ N such that hm and hn are less than T ,

E[∥Xh
n −Xh

m∥2p

2
∣FNh] ≤ cp,λ(nh −mh)p + cp(nh −mh)pE[∥DXh

m∥2p

2
∣FNh]

≤ cp,λ(nh −mh)p + cp,λ,T (nh −mh)p(1 + ∥DXh
N∥2p

2
).

Fourth Step. Recall that X̃h denotes the linear interpolation of the schemes Xh. Deduce
from the previous step that, for s, t ≥ Nh (throughout s and t are always less than a
�xed T ), for a �xed N ≥ 1,

E[∥X̃h
t − X̃h

s ∥
2p

2
∣FNh] ≤ cp,λ,T (t − s)p(1 + ∥DXh

N∥2p).

Therefore, one may apply Kolmogorov-Chentsov's theorem under the conditional proba-
bility measure P(⋅∣FNh). It says that

E[ sup
Nh≤s<t≤T

(∥X̃h
t − X̃h

s ∥2

∣t − s∣α )
2p

∣FNh] ≤ cp,λ,T (1 + ∥DXh
N∥2p),

for α ∈ (0, (p − 1)/2p).
By Jensen inequality, one obtains (choosing for instance p = 2)

E[ sup
Nh≤s<t≤T

(∥X̃h
t − X̃h

s ∥2

∣t − s∣α )
2

] ≤ c2,λ,TE(1 + ∥DXh
N∥2),

for α = 1/4.
Fix ε > 0 (which is distinct from ε used in the previous step). For h < ε, there

is an integer N such that Nh ≤ ε ≤ 2Nh. Recalling Lemma 3.4, for δ ∈ [0, λ − 1
2),

E[∥DXh
N∥2

2] ≤ 1
NhE[∥X0∥2

2] + cδ,λ,T (hδ + (Nh)min(λ− 1
2
, 1
2
)), one has

E[ sup
ε≤s<t≤T

(∥X̃h
t − X̃h

s ∥2

∣t − s∣α )
2

] ≤ cλ,T,E[∥X0∥
2
2]
ε−1. (3.52)

If ε ≤ h, then, for s ∈ (ε, h) and t > h,

∥X̃h
t − X̃h

s ∥2 ≤ ∥X̃h
t − X̃h

h∥2 + ∥X̃h
s − X̃h

h∥2

≤ ∥X̃h
t − X̃h

h∥2 + (h − s)∥Xh
h −X0∥2 ≤

Ξ̃h

ε
∣t − s∣α,

with E[(Ξ̃h)2] ≤ C (with C independent of h). The same holds true if t < h. Therefore,
(3.52) is valid for all ε > 0.
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Then, by Markov's inequality,

P(⋃
k≥1

{ sup
1/k≤s<t≤T

∥X̃h
t − X̃h

s ∥2

∣t − s∣α > k
2

ε
}) ≤ Cε.

Recalling the conclusion of the �rst step and deducing from the above that, on an event
Ahε of probability greater than 1 −Cε, for any k ≥ 1,

∥X̃h
t − X̃0∥2 ≤ Ξhtα +w(t), t ∈ [0, T ],

∥X̃h
t − X̃h

s ∥2 ≤
k2

ε
∣t − s∣α; s, t ∈ [1

k
, T ],

(3.53)

where Ξh has �nite moments of any order, uniformly with respect to h ∈ (0,1). Without
any loss of generality, one may take k to be any real greater than 1, and not only such
integers. Changing the de�nition of Ahε , we can also assume without any loss of generality
that Ξh ≤ 1/ε on Ahε .

Here we also recall, that almost surely, w(t) converges to 0 as t tends to 0. By
Egorov's theorem, we deduce that, on an event Bε of probability greater than 1 − ε,
w(1/n) converges uniformly to 0 as n tends to ∞. Since w was chosen to be non-
decreasing in t (see the end of the �rst step), this says that limt→0 supω∈Bε w(t) = 0 (the
presence of ω comes from the fact that w is a random function).

Restrict attention to Ahε∩Bε. Then, we can replace w(t) by supω∈Bε w(t) in (3.53). By
Lemma 3.6, we deduce that on Ahε ∩Bε, the paths {(X̃h

t )0≤t≤T }0<h<1 are contained within
a common subset of equicontinuous functions from [0, T ] to L2(S). Since P(Ahε ∩Bε) ≥
1−(C+1)ε and ε > 0 is arbitrary, this proves that, for any ε > 0, there exists a Borel subset
Eε ⊂ C([0, T ], L2(S)) of equicontinuous functions such that P({(X̃h

t )0≤t≤T ∈ Eε}) ≥ 1 − ε
for any h ∈ (0,1).
Conclusion. In order to prove tightness, it thus remains to show that, for all t ∈ [0, T ],
the family {X̃h

t }0<h<1 is tight on L2(S). We invoke Lemma 3.4. It says that we can �nd
a constant cλ,T such that, for any h ∈ (0,1) and any n ∈ N with nh ≤ T + 1,

E [∥DXh
n∥

2

2
] ≤ 1

hn
E [∥X0∥2

2] + cλ,T . (3.54)

Fix h ∈ (0,1) and then t ∈ [h,T ]. Letting n ∶= ⌊t/h⌋ ≥ 1, we have nh ≤ t < nh+h < 2nh,
which implies 1/nh ≤ 2/t. By (3.25) and by convexity, (3.54) yields

E [∥DX̃h
t ∥

2

2
] ≤ E [∥DXh

nh∥
2

2
] +E [∥DXh

(n+1)h∥
2

2
] ≤ 4

t
E [∥X0∥2

2] + 2cλ,T .

Recalling that the embedding from H1(S) into L2(S) is compact, we deduce that, for
any ε > 0 and any t ∈ (0, T ], there exists a compact subset Kε,t of L

2(S) (with Kε,t

independent of h) such that

t ≥ h⇒ P({X̃h
t ∈Kε,t}) ≥ 1 − ε. (3.55)
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Moreover, since L2(S) is Polish, we deduce that the law of X0 is tight on L2(S). There-
fore, for any ε > 0, we can �nd a compact subset Kε,0 of L2(S) (with Kε,0 independent
of h) such that

P({Xh
0 ∈Kε,0}) ≥ 1 − ε. (3.56)

For t ∈ [0, T ], we let K̃ε,t ∶= {sx + (1 − s)y, s ∈ [0,1], x ∈ Kε,0, y ∈ Kε,t}, which is a
compact subset of L2(S).

By (3.25) again, we have, for t ∈ (0, h), X̃h
t ∈ K̃ε,t on the event {Xh

0 ∈ Kε,0} ∩ {X̃h
h ∈

Kε,h}. Therefore, (3.55) and (3.56) yield

P({X̃h
t ∈ K̃ε,t}) ≥ 1 − 2ε, t ∈ (0, h). (3.57)

Combining (3.55), (3.56) and (3.57), we deduce that, for every t ∈ [0, T ], the family
{X̃h

t }0<h<1 is tight on L2(S). This completes the proof.

4 Limiting Dynamics: Characterisation and Well-posedness

This section addresses the weak limits of the schemes. As discussed in the introduction, it
is expected that those weak limits, say denoted by X, should satisfy a re�ected stochastic
di�erential equation in in�nite dimension, understood in the sense,

dXt = ∆Xtdt + dWt + dηt, t ≥ 0, (4.1)

for an initial condition X0 satisfying the assumption stated in the beginning of Section
3. Here, (ηt)t≥0 should be understood as a forcing term that re�ects the process X
into the cone U2, see De�nition 2.2. As we said in the introduction, re�ected stochastic
partial di�erential equations were already considered in Röckner, Zhu and Zhu [64], but
the results proven therein do not apply to our setting. Without access to these results,
our approach follows the application of limit theorems to the tested/weak behaviour of
the schemes. In order to study the forcing term in this case, we restrict the analysis
to a smaller class of test functions in the weak formulation, this class being nonetheless
su�cient to demonstrate uniqueness of the limit. Below, we often refer to (4.1) - with
accompanying conditions on the process η - as the rearranged stochastic heat equa-

tion (or rearranged SHE in short). The reader impatient for the exact solution
concept at which we arrive should skip momentarily to De�nition 4.13, with caution that
the fourth condition contains an integral that is de�ned en route.

The purpose of this section is thus to identify conditions satis�ed by any weak limit
that are, in the end, su�cient to prove that the weak limit (of the schemes) is in fact
unique. This goal is reached in a series of �ve subsections. In Subsection 4.1, we prove
that weak limits satisfy an equation of the form (4.1). In Subsection 4.2, we de�ne an
integral with respect to the re�ection process (ηt)t≥0. The main feature of this integral
is that it must be non-decreasing with respect to integrand processes valued in the cone
U2(S). Moreover, in Subsection 4.3 we establish an orthogonality property between X
and η that is key to proving uniqueness of the weak limit. The rigorous de�nition of a
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solution to (4.1) together with the main statement of its existence and uniqueness are
given in Subsection 4.4, see in particular De�nition 4.13 and Theorem 4.15. We end the
section with a proof of the Lipschitz regularity of the �ow induced by the solution in
Subsection 4.5.

4.1 Testing of the weak limits

Our analysis of the weak limits as solutions of a re�ected SPDE relies on the following
statement:

Proposition 4.1. Let (Xt,Wt)t≥0 be a weak limit (over C([0,∞), L2(S)) equipped with
the topology of uniform convergence on compact subsets) of the processes {(X̃h

t ,Wt)t≥0}h>0

as h tends to 0, this weak limit being constructed on the same �ltered probability space
(Ω,A,F,P) as the scheme itself and the second component (Wt)t≥0 of the weak limit
abusively denoted the same as the noise in the scheme.

Then, (Xt,Wt)t≥0 is F-adapted, (Xt)t≥0 is U2(S)-valued (i.e., each Xt has symmet-
ric and non-increasing values, see (2.2)) and (Wt)t≥0 is an L2

sym(S)-valued Q-Brownian
motion with respect to F. Moreover, there exists an F-adapted continuous process (ηt)t≥0

with values in H−2
sym(S) such that, with probability 1, for any u ∈H2

sym(S):

1. for any s, t ≥ 0 with t − s > 0,

⟨Xt −Xs, u⟩ = ∫
t

s
⟨Xr,∆u⟩dr + ⟨Wt −Ws, u⟩ + ⟨ηt − ηs, u⟩, (4.2)

2. if u is non-increasing in the sense of De�nition 2.2, then the path (⟨ηt, u⟩)t≥0 is
non-decreasing (with t) and starts from 0 at time 0.

The hypothesis that the weak limit can be constructed on the same space (Ω,A,P)
as in Section 3 can be made without loss of generality. In short, this just requires the
probability space to be `rich enough'2 (e.g., it is an atomless Polish probability space),
which as additional assumption, is not a hindrance for us. The claim that (Ω,A,P)
can be equipped with the �ltration F requires a little more care: F cannot be any given
�ltration, which is a common feature with weak limits of processes. We clarify the choice
of F in the proof below. We do this only for the convenience of using the same notation
F for this speci�c choice, as we are convinced that there is no risk of confusion for the
reader. Similarly, denoting the second component of the weak limit by (Wt)t≥0 is also
rather abusive, but is justi�ed by the fact that the second component's law in any weak
limit remains that of a Q-Brownian motion with values in L2

sym(S), see (3.1) and (3.2).
To facilitate identi�cation of the limiting dynamics, a transformation of the scheme

is considered that e�ectively removes di�culties arising from the presence of the noise
term. In order to simplify the exposition, some additional notation is introduced.

2By `rich enough', we mean that, for any distribution µ on a Polish space S, we can construct a
µ-distributed random element from Ω to S .
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Let V h = (V h
n )n≥0 denote the unique solution to the scheme (3.3) without the rear-

rangement operation (and with the same notation as in (3.4) for Wn+1):

V h
n+1 =eh∆V h

n + ∫
h

0
e(h−s)∆dWn+1

s , V h
0 =X0. (4.3)

Equivalently, V h
n = Vnh, where V is the solution to the stochastic heat equation with X0

as initial condition, i.e.

Vt = et∆X0 + ∫
t

0
e(t−s)∆dWs, t ≥ 0, (4.4)

which has values in L2
sym(S). The scheme (3.3) may be rewritten as

Xh
n+1 = (V h

n+1 + eh∆(Xh
n − V h

n ))∗ , n ≥ 0. (4.5)

The so-called shifted scheme, Xh − V h = (Xh
n − V h

n )n≥0 is denoted Y h = (Y h
n )n≥0, so that

the above may be rewritten as:

Y h
n+1 = (V h

n+1 + eh∆Y h
n )∗ − V h

n+1, n ≥ 0. (4.6)

Following the notation (3.25), we introduce the linear interpolations

Ỹ h
t ∶= (⌈t/h⌉ − t/h)Y h

⌊t/h⌋ + (t/h − ⌊t/h⌋)Y h
⌈t/h⌉,

Ṽ h
t ∶= (⌈t/h⌉ − t/h)V h

⌊t/h⌋ + (t/h − ⌊t/h⌋)V h
⌈t/h⌉, t ≥ 0,

(4.7)

which leads to
Ỹ h
t = X̃h

t − Ṽ h
t , t ≥ 0. (4.8)

Remark 4.2. The subsequent proof of Proposition 4.1 shows that similar notations (to
the ones introduced directly above) can be used to clarify the shape of the re�ection
process (ηt)t≥0 in (4.2). Indeed, denoting again by (Vt)t≥0 the solution to the stochastic
heat equation with X0 as initial condition and with (Wt)t≥0 as driving noise (recalling
that we abusively chose to keep this notation in the limit setting), i.e., (Vt)t≥0 solves (4.4),
and then letting Yt ∶=Xt − Vt, for t ≥ 0, one has, with probability 1, for any v ∈H2

sym(S),

∀t ≥ 0, ⟨ηt, v⟩ = ⟨Yt, v⟩ − ∫
t

0
⟨Yr,∆v⟩dr. (4.9)

We now turn to:

Proof of Proposition 4.1. Throughout the proof, we �x T > 0, and we study the weak
limits, as h tends to 0, of {X̃h,W} when the latter is restricted to the time interval
[0, T ]. This is su�cient for our purposes.

We start with the following observation that holds true, for a given h > 0, with
probability 1 and for any u ∈H2

sym(S),

⟨Y h
n+1 − Y h

n , u⟩ = ⟨Y h
n+1 − eh∆Y h

n , u⟩ + ⟨(eh∆ − I)Y h
n , u⟩

= ⟨Y h
n+1 − eh∆Y h

n , u⟩ + ∫
h

0
⟨es∆Y h

n ,∆u⟩ds,
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where we used the identity ∂se
s∆ = ∆es∆. Rearranging, and working under the additional

assumption that u is non-increasing, we use the rewritten shifted scheme (4.6) to show:

⟨Y h
n+1 − Y h

n , u⟩ − ∫
h

0
⟨es∆Y h

n ,∆u⟩ds = ⟨Y h
n+1 − eh∆Y h

n , u⟩ (4.10)

= ⟨(V h
n+1 + eh∆Y h

n )∗ − (V h
n+1 + eh∆Y h

n ) , u⟩ ≥ 0,

the last line following from the Hardy-Littlewood inequality (Lemma 2.5).
We rewrite the second term in the left-hand side:

∫
h

0
⟨es∆Y h

n ,∆u⟩ds = ∫
h

0
⟨(es∆ − I)Y h

n ,∆u⟩ds + h⟨Y h
n ,∆u⟩

= ∫
h

0
⟨Y h
n , (es∆ − I)∆u⟩ds + h⟨Y h

n ,∆u⟩.
(4.11)

Summing over the time mesh n, we get for any (s, t) ∈ [0, T ]2, with the two notations
Ns ∶= n−1⌊sn⌋ and Nt ∶= n−1⌊tn⌋,

RRRRRRRRRRR

Nt

∑
n=Ns

∫
h

0
⟨er∆Y h

n ,∆u⟩dr − ∫
t

s
⟨Ỹ h
r ,∆u⟩dr

RRRRRRRRRRR

≤
RRRRRRRRRRR

Nt

∑
n=Ns

∫
h

0
⟨Y h
n , (er∆ − I)∆u⟩dr

RRRRRRRRRRR
+
RRRRRRRRRRR

Nt

∑
n=Ns

h ⟨Y h
n ,∆u⟩ − ∫

t

s
⟨Ỹ h
r ,∆u⟩dr

RRRRRRRRRRR

≤ cT sup
0≤r≤h

∥(er∆ − I)∆u∥
2

sup
n∈{0,⋯,Nt}

∥Y h
n ∥2 +

RRRRRRRRRRR

Nt

∑
n=Ns

h⟨Y h
n ,∆u⟩ − ∫

t

s
⟨Ỹ h
r ,∆u⟩dr

RRRRRRRRRRR
=∶ T h1 (t) + T h2 (s, t).

(4.12)

Since ∆u ∈ L2(S), we know that

lim
h↘0

sup
0≤r≤h

∥(er∆ − I)∆u∥
2
= 0.

Together with Proposition 3.7 (recalling that Y h
n = (Xh

n − V h
n )n≥0), we deduce that

∀ε > 0, lim
h↘0

P({ sup
0≤t≤T

T h1 (t) ≥ ε}) = 0. (4.13)

Similarly, by tightness of {X̃h}h∈(0,1) on C([0,∞), L2
sym(S)), we deduce that {Ỹ h}h∈(0,1]

is also tight on C([0,∞), L2
sym(S)), from which we easily get that (since Ỹ h is the linear

interpolation of Y h)

∀ε > 0, lim
h↘0

P({ sup
0≤s<t≤T

T h2 (s, t) ≥ ε}) = 0. (4.14)

Therefore, returning to (4.12), the last two displays (4.13) and (4.14) yield

∀ε > 0, lim
h↘0

P( sup
0≤s<t≤T

RRRRRRRRRRR

Nt

∑
n=Ns

∫
h

0
⟨er∆Y h

n ,∆u⟩dr − ∫
t

s
⟨Ỹ h
r ,∆u⟩dr

RRRRRRRRRRR
≥ ε) = 0. (4.15)
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It remains to insert (4.15) into (4.10). Together, the latter two yield

∀(s, t) ∈ [0, T ]2 ∶ s < t, ⟨Ỹ h
t − Ỹ h

s , u⟩ − ∫
t

s
⟨Ỹ h
r ,∆u⟩dr ≥ T h3 (s, t), (4.16)

with

∀ε > 0, lim
h↘0

P( sup
0≤s<t≤T

∣T h3 (s, t)∣ ≥ ε) = 0. (4.17)

Now we let h tend to 0. Following the statement, we slightly abuse notation and
write (Xt,Wt)0≤t≤T a weak limit of {(X̃h

t ,Wt)0≤t≤T }h∈(0,1]. We denote by F, the usual
augmentation of the �ltration generated by (Xt,Wt)0≤t≤T . There is no di�culty in prov-
ing that (Wt)0≤t≤T is an L2

sym(S)-valued Q-Brownian motion with respect to F. Along

the same subsequence, {(X̃h
t ,Wt, Ṽ

h
t , Ỹ

h
t )0≤t≤T }h∈(0,1] converges to (Xt,Wt, Vt, Yt)0≤t≤T ,

where (Vt)0≤t≤T solves the heat equation (4.4) (driven by the limit process W ) and
Yt = Xt − Vt, for t ∈ [0, T ] (in particular, Y0 = 0). Obviously, (Xt,Wt, Vt, Yt)0≤t≤T is F-
adapted. By Proposition 2.3, (Xt)0≤t≤T takes values in U2(S) (since (X̃h

t )0≤t≤T does, for
any h > 0). In turn, (Yt)0≤t≤T is valued in L2

sym(S) since (Vt)0≤t≤T takes values in L2
sym(S).

Moreover, using (4.16) and (4.17), we obtain, when u ∈H2
sym(S) is non-increasing,

∀(s, t) ∈ [0, T ]2 ∶ s < t, ⟨Yt − Ys, u⟩ − ∫
t

s
⟨Yr,∆u⟩dr ≥ 0, (4.18)

which prompts us to let, for any v ∈H2
sym(S),

∀t ∈ [0, T ], ⟨ηt, v⟩ ∶= ⟨Yt, v⟩ − ∫
t

0
⟨Yr,∆v⟩dr.

Then, (4.18) says that, for any u ∈ H2
sym(S), with u being non-increasing, the process

(⟨ηt, u⟩)0≤t≤T is a.s. non-decreasing. By a separability argument, we deduce that, a.s., for
any u ∈H2

sym(S), with u being non-increasing, the process (⟨ηt, u⟩)0≤t≤T is non-decreasing.
This proves item 2 in the statement.

By replacing (Yt)0≤t≤T by (Xt−Vt)0≤t≤T in the de�nition of (ηt)0≤t≤T and by recalling
that, for any v ∈H2(S),

⟨Vt, v⟩ − ∫
t

0
⟨Vr,∆v⟩dr = ⟨et∆X0, v⟩ + ∫

t

0
e(t−r)∆dWr,

we easily verify item 1 in the statement, completing the proof.

From the bound obtained in Proposition 3.7 and the notation de�ned in Remark 4.2,
we deduce the following result:

Proposition 4.3. For any p ≥ 1 and any T > 0, there exists constant Cp,λ,T,E[∥X0∥2p],
such that for any weak limit as in Proposition 4.1,

E[ sup
t∈[0,T ]

∥Xt∥2p
2 ] ≤ Cp,λ,T,E[∥X0∥2p].

Additionally, with the notation of Remark 4.2,

E[ sup
t∈[0,T ]

∥Yt∥2p
2 ] ≤ Cp,λ,T,E[∥X0∥2p].
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4.2 Integral with respect to the re�ection process

Our next objective is to construct an integral with respect to the re�ection process (ηt)t≥0

identi�ed in the statement of Proposition 4.1. Not only is this question interesting in
its own right, but we go on to make use of the resulting integral in order to establish
uniqueness of the weak limits obtained in Proposition 4.1.

The ingredients that we want to use in the construction of the integral are the fol-
lowing two properties, which are satis�ed with probability 1:

� the path (ηt)t≥0 has continuous values in H−2
sym(S);

� for any non-increasing u ∈H2
sym(S), the path (⟨ηt, u⟩)t≥0 is non-decreasing.

In order to distinguish clearly between the random process (ηt)t≥0 and one of its reali-
sation, we denote below by (nt)t≥0 a deterministic trajectory that satis�es the above
two features, namely

(E1) t↦ nt is a continuous function from [0,∞) to H−2
sym(S).

(E2) For any non-increasing u ∈ H2
sym(S), the function t ∈ [0,∞) ↦ ⟨ηt, u⟩ is non-

decreasing.

It is important to stress again that the integral we construct below holds for a path
(nt)t≥0 satisfying only the two assumptions (E1) and (E2). In particular, the integral
with respect to (ηt)t≥0 is then obtained by choosing (nt)t≥0 as the current realisation of
(ηt)t≥0. In this regard, the de�nition of the latter integral is pathwise.

Now, let u ∈ H2
sym(S) be non-increasing. If we consider in addition another deter-

ministic trajectory (zt)t≥0 with continuous sample paths valued in L2
sym(S), (E2) allows

us to de�ne

(∫
t

0
⟨zr, u⟩d⟨nr, u⟩)

t≥0

(4.19)

as a Riemann-Stieltjes integral. From this, it would be desirable to give a meaning to
the as yet informally written integrals

(∫
t

0
zr ⋅ dnr)

t≥0

, (4.20)

where the dot ⋅ in the notation is intended to denote a form of duality presence between
in the integrand and the integrator.

Our de�nition of the integral is done by analogy with Parseval's identity, setting u in
(4.19) to be (cosine) elements in the Fourier basis. The next step is then to expand (4.20)
along the (cosine) Fourier basis (em)m∈N0 , noticing that one may indeed decompose each
em as the di�erence of two symmetric non-increasing functions that we denote as e+m and
e−m, de�ned by:

e+m(x) ∶=em(0) + ∫
x

0
[−1(−1/2,0](y)(Dem(y))

−
+ 1[0,1/2)(y)(Dem(y))

+
] (y)dy,

e−m(x) ∶=∫
x

0
[−1(−1/2,0](y)(Dem(y))

+
+ 1[0,1/2)(y)(Dem(y))

−
] (y)dy.

(4.21)
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By construction, the functions e+m and e−m are symmetric non-increasing (courtesy of the
symmetry properties of em) and em = e+m − e−m. Therefore, one may set:

∫
t

s
⟨zr, em⟩ ⋅ d⟨nr, em⟩ ∶=∫

t

s
⟨zr, em⟩ ⋅ d⟨nr, e+m⟩ − ∫

t

s
⟨zr, em⟩ ⋅ d⟨nr, e−m⟩. (4.22)

A key remark is that, for any ε > 0, (zr)r≥0 can be replaced by (eε∆zr)r≥0 in the above
formulation, which is a direct consequence of Lemma 2.10. The following statement is a
crucial step in the construction of our integral (4.2).

Lemma 4.4. For any integer k ≥ 1 and any real ε > 0, there exists a constant ck,ε such
that, for any two (deterministic) curves (nt)t≥0 and (zt)t≥0, with (nt)t≥0 satisfying (E1)
and (E2) and with (zt)t≥0 a continuous path in L2

sym(S),

∀T ≥ 0, ∀m ∈ N0, sup
t∈[0,T ]

∣∫
t

0
⟨eε∆zr, em⟩d⟨nr, e±m⟩∣ ≤ ck,ε

mk ∨ 1
∥nT ∥2,−2 sup

t∈[0,T ]

∥zt∥2.

(4.23)

When (nt)t≥0 is understood as a realisation of (ηt)t≥0, the term ∥nT ∥2,−2 becomes ∥ηT ∥2,−2

and can be upper bounded by

∥ηT ∥2,−2 ≤ cT sup
t∈[0,T ]

∥Yt∥2, (4.24)

with (Yt)t≥0 as in (4.9).

In (4.23), we use the notation e±m to indicate that the result holds true with both
e+m and e−m. Also, note that the L

2 contributions of e+m and e−m diverge with m. This is
precisely the reason why we consider integrands of the form (eε∆zt)t≥0, since convolution
with the heat kernel forces the higher modes of the resulting function to decay exponen-
tially fast. In brief, for any k and ε as in the statement, we can �nd two constants ck
and ck,ε such that, for m ∈ N,

∀r ≥ 0, ∣⟨eε∆zr, em⟩∣ ≤ ck∣⟨D2keε∆zr,
1

m2k
em⟩∣ ≤ ck,ε

1

m2k
∥zr∥2. (4.25)

Obviously, the proof of Lemma 4.4 relies on the bound (4.25), whence appears the con-
stant ck,ε in the statement.

Proof of Lemma 4.4. We begin with the following simple observation. Obviously, each
e±m belongs to H2

sym(S) and it is a simple exercise to show that ∥e±m∥2,2 ≤ c(m2 ∨ 1).
We invoke (E2), which allows one to use the following standard property of the

Riemann-Stieltjes integral:

sup
t∈[0,T ]

∣∫
t

0
⟨eε∆zr, em⟩d⟨nr, e±m⟩∣ ≤ sup

t∈[0,T ]

∣⟨eε∆zt, em⟩∣ × ⟨nT , e±m⟩

≤ ck,ε
m2 ∨ 1

m2k ∨ 1
∥nT ∥2,−2 sup

t∈[0,T ]

∥zt∥2,

(4.26)

41



with the last line following from (4.25) together with the bound ∥e±m∥2,2 ≤ c(m2∨1). This
shows (4.23). As for the proof of (4.24), we just make use of (4.9). This completes the
proof.

Lemma 4.4 allows us to make the following de�nition:

De�nition 4.5. For any two (deterministic) curves (nt)t≥0 and (zt)t≥0, with (nt)t≥0

satisfying (E1) and (E2) and with (zt)t≥0 being a continuous function from [0,∞) to
L2

sym(S), we can de�ne, almost surely, for any ε > 0 the integral process

(∫
t

0
eε∆zr ⋅ dnr)

t≥0

as the limit, for the uniform topology on compact subsets:

∫
t

0
eε∆zr ⋅ dnr ∶= lim

M→∞

M

∑
m=0

(∫
t

0
⟨eε∆zr, em⟩d⟨nr, e+m⟩ − ∫

t

0
⟨eε∆zr, em⟩d⟨nr, e−m⟩).

It satis�es

∀T ≥ 0, sup
t∈[0,T ]

∣∫
t

0
eε∆zr ⋅ dnr∣ ≤ cε∥nT ∥2,−2 × sup

t∈[0,T ]

∥zt∥2. (4.27)

When (nt)t≥0 is understood as a realisation of (ηt)t≥0, the term ∥nT ∥2,−2 becomes ∥ηT ∥2,−2

and can be upper bounded as in (4.24).

Remark 4.6. The following three remarks are in order:

1. In De�nition 4.5, not only is the convergence uniform in time t in a �xed segment
[0, T ], for some T > 0, but it is also uniform with respect to the integrand (zt)0≤t≤T

when the latter is required to satisfy supt∈[0,T ] ∥zt∥2 ≤ A for some given A > 0. This
is a direct consequence of the form of the rate of convergence given by (4.23).

2. Moreover, it is straightforward to observe that both Lemma 4.4 and De�nition 4.5
extend to the case when (zt)t≥0 is a piecewise constant path with values in L2

sym(S)
(i.e., there exists an increasing locally-�nite sequence of time indices (tk)k≥0, with
t0 = 0, such that t ∈ [tk, tk+1)↦ zt is constant for each k ≥ 0).

3. De�nition 4.5 could be in fact seen as a particular case of a more general de�nition of
a Riemann-Stieltjes integral for functions with values in a Banach space. Implicitly,
in our de�nition, the integrand is regarded as a path taking values in a space of
`very regular functions' and the integrator as a path with values in a space of
distributions acting on those very regular functions. By specifying the underlying
functional spaces, we could recast our construction within the larger framework
studied for instance in [69]. Actually, we prefer to provide a tailor-made analysis
of the integral and not to make use of such general results, for the following two
reasons. First, it makes the reading much easier. Second, the Banach spaces we
deal with here are standard Hilbert spaces in functional analysis, and this allows
us to provide an elementary approach to the integral.
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The following lemma explains the interest of the second remark right above.

Lemma 4.7. Within the same framework as in De�nition 4.5 but with (zt)t≥0 therein
being piecewise constant (with the same jumping times (tk)k≥0 as in Remark 4.6), the
integral process (∫ t0 eε∆zr ⋅dnr)t≥0 coincides with the process de�ned by standard Riemann
sums, i.e.,

∫
t

0
eε∆zr ⋅ dnr = ∑

k≥0∶tk≤t

⟨eε∆ztk , ηtk+1∧t − ηtk⟩, t ≥ 0.

In particular, if ztk , for each k ≥ 0, is symmetric non-increasing, then

∀t ≥ 0, ∫
t

0
eε∆zr ⋅ dηr ≥ 0.

Before we prove Lemma 4.7, we state the following important corollary.

Corollary 4.8. Within the same framework as in De�nition 4.5, with (zt)t≥0 therein be-
ing continuous, we let, for any k ∈ N, zk = (zkt )t≥0 be the piecewise constant approximation
of z = (zt)t≥0 of stepsize 1/k, namely

zkt ∶= z⌊kt⌋/k, t ≥ 0.

Then, the following convergence holds true, uniformly on compact subsets,

∫
t

0
eε∆zr ⋅ dnr = lim

k→∞
∫

t

0
eε∆zkr ⋅ dnr, t ≥ 0.

In particular, if zt is non-increasing for each t ≥ 0, then

∀t ≥ 0, ∫
t

0
eε∆zr ⋅ dnr ≥ 0.

We now prove Lemma 4.7.

Proof of Lemma 4.7. Throughout the proof, we use the same notation as in the statement
of the lemma. Back to De�nition 4.5 - but for a path of the type discussed in the second
item of Remark 4.6 - we then observe that, for any integer M ≥ 1,

M

∑
m=0

(∫
t

0
⟨eε∆zr, em⟩d⟨nr, e+m⟩ − ∫

t

0
⟨eε∆zr, em⟩d⟨nr, e−m⟩)

=
M

∑
m=0

∑
k≥0∶tk≤t

(⟨eε∆ztk , em⟩[(⟨ntk+1∧t, e
+
m⟩ − ⟨ntk , e+m⟩) − (⟨ntk+1∧t, e

−
m⟩ − ⟨ηtk , e−m⟩)])

=
M

∑
m=0

∑
k≥0∶tk≤t

(⟨eε∆ztk , em⟩(⟨ntk+1∧t, em⟩ − ⟨ntk , em⟩)).

Exchanging the two sums, we get

M

∑
m=0

(∫
t

0
⟨eε∆zr, em⟩d⟨nr, e+m⟩ − ∫

t

0
⟨eε∆zr, em⟩d⟨nr, e−m⟩)

= ∑
k≥0∶tk≤t

M

∑
m=0

(⟨eε∆ztk , em⟩(⟨ntk+1∧t, em⟩ − ⟨ntk , em⟩)).
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Since, for each k ∈ N, ntk belongs to H−2
sym(S) and eε∆ztk to H2

sym(S), we have

∀k ∈ N, lim
M→∞

M

∑
m=0

(⟨eε∆ztk , em⟩(⟨ntk+1∧t, em⟩ − ⟨ηtk , em⟩)) = ⟨eε∆ztk , ntk+1∧t − ntk⟩,

from which we easily deduce that

∫
t

0
eε∆zr ⋅ dnr ∶= lim

M→∞

M

∑
m=0

(∫
t

0
⟨eε∆zr, em⟩d⟨nr, e+m⟩ − ∫

t

0
⟨eε∆zr, em⟩d⟨nr, e−m⟩)

= ∑
k∶tk≤t

⟨eε∆ztk , ntk+1∧t − ntk⟩,

the convergence being uniform with respect to t in compact subsets.
In order to complete the proof, note that whenever ztk is symmetric non-increasing,

so is eε∆ztk , see Lemma 2.10. By the second item in Proposition 4.1, we then obtain
that ⟨eε∆ztk , ntk+1∧t − ntk⟩ ≥ 0.

It remains to check Corollary 4.8.

Proof of Corollary 4.8. The �rst claim in the statement of Corollary 4.8 is a consequence
of (4.27), using the linearity of the integral, which says that

∫
t

0
eε∆zr ⋅ dnr − ∫

t

0
eε∆zkr ⋅ dnr = ∫

t

0
eε∆(zr − zkr ) ⋅ dnr, t ∈ [0, T ],

together with the fact that
lim
k→∞

sup
0≤t≤T

∥zt − zkt ∥2 = 0.

As for the second claim, it follows from Lemma 4.7, which gives

∀t ≥ 0, ∫
t

0
zkr ⋅ dnr ≥ 0,

for any integer n ≥ 0, whenever zt, for each t ≥ 0, is symmetric and non-increasing.

Remark 4.9. A useful observation is that (notice the presence of the factor 2 in the
exponential below)

∫
t

0
e2ε∆zr ⋅ dnr

can be written as

∫
t

0
e2ε∆zr ⋅ dnr = ∫

t

0
eε∆zr ⋅ d(eε∆nr)

= lim
M→∞

M

∑
m=0

∫
t

0
⟨eε∆zr, em⟩d⟨eε∆ηr, em⟩

= lim
M→∞

M

∑
m=0

∫
t

0
⟨eε∆zr, em⟩d⟨ηr, eε∆em⟩,
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where it must be stressed that (eε∆nt)t≥0 on the �rst line satis�es (E1) and (E2). While
(E1) follows from the contractive properties of the heat semigroup, (E2) follows from
Lemma 2.10 (in words, eε∆u is symmetric non-increasing if u ∈ L2(S) is symmetric non-
increasing).

A sketch proof of these identities is as follows. By Corollary 4.8 (and with the same
notation as therein), we can write

∫
t

0
e2ε∆zr ⋅ dnr = lim

k→∞
∫

t

0
e2ε∆zkr ⋅ dnr.

Then, Lemma 4.7 allows one to write the right-hand side as a Riemann sum. The proof
is then completed by expanding the terms in the Riemann sum in Fourier coe�cients,
exactly as in the proof of Lemma 4.7.

Remark 4.10. De�nition 4.5 supplies us with the integral

(∫
t

0
eε∆zr ⋅ dnr)

t≥0

,

when (zt)t≥0 is a deterministic continuous path with values in L2
sym(S) and (nt)t≥0 sat-

is�es (E1) and (E2).
Importantly, one can easily replace (zt)t≥0 by the realisation of a (stochastic) contin-

uous process (Zt)t≥0 with values in L2
sym(S) and (nt)t≥0 by the same stochastic process

as in Proposition 4.1. The resulting integral process is denoted

(∫
t

0
eε∆Zr ⋅ dηr)

t≥0

.

It is continuous in time.
When (Zt)t≥0 is adapted to the �ltration F used in the statement of Proposition 4.1,

the integral is also adapted to F: this is a consequence of Lemma 4.7 and Corollary 4.8.

4.3 Orthogonality of the re�ection

We now come to the last property in the description of the weak limits:

Proposition 4.11. Let (Xt,Wt)t≥0 be a weak limit of the processes {(X̃h
t ,Wt)t≥0}h>0 as

h tends to 0, as given by Proposition 4.1. Then, for any t ≥ s ≥ 0,

lim
ε↘0

E [∫
t

s
eε∆Xr ⋅ dηr] = 0, (4.28)

To appreciate the scope of the above statement, the reader should recall that (Xt)t≥0

takes symmetric non-increasing values. Therefore, Corollary 4.8 yields, almost surely,

∫
t

s
eε∆Xr ⋅ dηr ≥ 0,
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for any t ≥ s ≥ 0. In particular, Fatou's lemma (together with the time continuity of the
integral) implies that, with probability 1, for any t ≥ s ≥ 0,

lim inf
ε↘0

∫
t

s
eε∆Xr ⋅ dηr = 0.

We regard this property as a (weak) form of orthogonality between Xr and dηr, recalling
that the orthogonality property is standard in re�ected equations (see for instance the
seminal work [50]).

Moreover, we obtain the following corollary as an important by-product of the proof.

Corollary 4.12. Let (Xt,Wt)t≥0 be a weak limit of the processes {(X̃h
t ,Wt)t≥0}h>0 as

h tends to 0, as given by Proposition 4.1. Then, for any T > 0, with probability 1, the
process (Xt)0≤t≤T takes values in L2([0, T ],H1

sym(S)) and

E∫
T

0
∥DXt∥2

2dt <∞.

Proof of Proposition 4.11 and Corollary 4.12.

First step. We �rst prove Corollary 4.12 (which is not a direct corollary of Proposition
4.11, but which comes as a consequence of the global architecture of the proof). In order
to do so, we return to the scheme (3.3). For a given h ∈ (0,1] and for any integer n ≥ 0,

E[∥Xh
n+1∥2

2] ≤ E [∥eh∆Xh
n + ∫

h

0
e(h−s)∆dWn+1

s ∥
2

2
]

= E[∥eh∆Xh
n∥2

2] +E [∥∫
h

0
e(h−s)∆dWn+1

s ∥
2

2
] .

(4.29)

Then, using the fact that (et∆Xh
n)0≤t≤h solves the heat equation, one has the equality

E[∥eh∆Xh
n∥2

2 + 2∫
h

0
∥Des∆Xh

n∥2
2ds] = E[∥Xh

n∥2
2]. (4.30)

Considering h ≤ ε for some ε ∈ (0,1), we have E[∥eε∆DXh
n∥2

2] ≤ E[∥Des∆Xh
n∥2

2] for
s ∈ (0, h]. Combining this with equations (4.29), (4.30), and Lemma 3.1 (for the de�nition
of c1,λ), we get

E[∥Xh
n+1∥2

2] −E[∥Xh
n∥2

2] + 2hE [∥Deε∆Xh
n∥2

2] ≤c1,λh.

And then, for t ≥ s ≥ 0 and Nt ∶= h⌊t/h⌋ and Ns ∶= h⌊s/h⌋, we have

E[∥Xh
Nt∥

2
2] −E[∥Xh

Ns∥
2
2] + 2h

Nt−1

∑
n=Ns

E [∥Deε∆Xh
n∥2

2] ≤ c1,λh(Nt −Ns).

Recalling the notation (3.25) and combining tightness of the family {(X̃h
t )t≥0}h∈(0,1] with

Corollary 3.5 (which supplies us with uniform integrability properties), we obtain

E[∥X̃h
t ∥2

2] −E[∥X̃h
s ∥2

2] + 2∫
t

s
E [∥Deε∆X̃h

r ∥2
2]dr ≤ c1,λ(t − s) + Oh(1), (4.31)
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with limh↘0 Oh(1) = 0 (the rate possibly depending on ε). Noticing that the function
z ↦ D[eε∆z] is continuous from L2(S) into itself, we can easily take some weak limit as
in the statement (as h tends to 0). We get

E[∥Xt∥2
2] −E[∥Xs∥2

2] + 2∫
t

s
E [∥Deε∆Xr∥2

2]dr ≤c1,λ(t − s). (4.32)

Since the constant c is independent of ε, this establishes Corollary 4.12 (recalling that
closed balls of H1(S) are closed for the L2 norm ∥ ⋅ ∥2).

Second step. For the next part, return to equation (4.2), with u ∈ H2
sym(S) replaced by

eε∆u,

⟨Xt −Xs, e
ε∆u⟩ − ∫

t

s
⟨Xs,∆e

ε∆u⟩ds = ⟨Wt −Ws, e
ε∆u⟩ + ⟨ηt − ηs, eε∆u⟩. (4.33)

The next step is to choose u = em and then to apply Itô's formula in order to expand
(⟨Xt, e

ε∆em⟩2)t≥0. To do so, it is worth recalling from (4.22) that since em may be
written as the di�erence of two symmetric decreasing functions e+m and e−m, the process
(⟨ηt, eε∆em⟩)t≥0 may be written as the di�erence of two non-decreasing processes and
consequently has �nite variation. Therefore, due to Itô's formula, one has

d⟨Xt, e
ε∆em⟩2 =2⟨eε∆Xt, em⟩⟨∆eε∆Xt, em⟩dt + 2⟨Xt, e

ε∆em⟩d⟨ηt, eε∆em⟩
+ 2⟨Xt, e

ε∆em⟩d⟨Wt, e
ε∆em⟩ + d [⟨W⋅, e

ε∆em⟩]
t
,

(4.34)

where, as before, the symbol [⋅]t is used to denote the bracket.
Integrating between 0 and t, applying expectation, and then summing over m ∈ N0,

E[∥eε∆Xt∥2
2] = E[∥eε∆X0∥2

2] − 2∫
t

0
E[∥Deε∆Xr∥2

2]dr

+ 2E[ ∑
m∈N0

∫
t

0
⟨eε∆Xr, em⟩d⟨ηr, eε∆em⟩] + ∑

m∈N0

E[⟨Wt, e
ε∆em⟩2]

= E[∥eε∆X0∥2
2] − 2∫

t

0
E[∥Deε∆Xr∥2

2]dr

+ 2E[ ∑
m∈N0

∫
t

0
⟨eε∆Xr, em⟩d⟨ηr, eε∆em⟩] +E[∥eε∆Wt∥2

2].

(4.35)

Recalling De�nition 4.5 and invoking Remark 4.9, one arrives at the equality:

E[∥eε∆Xt∥2
2] + 2∫

t

0
E[∥Deε∆Xr∥2

2]dr =E[∥eε∆X0∥2
2] +E[∥eε∆Wt∥2

2]

+ 2E [∫
t

0
e2ε∆Xr ⋅ dηr] .

(4.36)

Combining with the inequality (4.32), recalling (3.11) and passing to the limit as ε→ 0,
this implies that

lim
ε↘0

E [∫
t

0
e2ε∆Xr ⋅ dηr] = E[∥Xt∥2

2] + 2∫
t

0
E[∥DXr∥2

2]dr −E[∥X0∥2
2] −E[∥Wt∥2

2]

≤ c1,λt −E[∥Wt∥2
2] = 0,

which completes the proof.
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4.4 De�nition and uniqueness of solutions to the rearranged SHE

Based on the analysis performed so far, we have all the required ingredients to de�ne a
solution to the rearranged SHE studied in this paper.

De�nition 4.13. On a given (�ltered) probability space (Ω,A,F,P) equipped with a Q-
Brownian motion (Wt)t≥0 with values in L2

sym(S) (with respect to the �ltration F) and
with an F0-measurable initial condition X0 with values in U2(S) (see (2.2)) and with
�nite moments of any order (see (3.9)), we say that a pair of processes (Xt, ηt)t≥0 solves
the rearranged SHE (4.1) driven by (Wt)t≥0 and X0 if

1. (Xt)t≥0 is a continuous F-adapted process with values in U2(S);

2. (ηt)t≥0 is a continuous F-adapted process with values in H−2
sym(S), starting from 0

at 0, such that, with probability 1, for any u ∈ H2
sym(S) that is non-increasing, the

path (⟨ηt, u⟩)t≥0 is non-decreasing;

3. with probability 1, for any u ∈H2
sym(S),

∀t ≥ 0, ⟨Xt, u⟩ = ∫
t

0
⟨Xr,∆u⟩dr + ⟨Wt, u⟩ + ⟨ηt, u⟩. (4.37)

4. for any t ≥ 0,

lim
ε↘0

E [∫
t

0
eε∆Xr ⋅ dηr] = 0. (4.38)

Of course, the de�nition of the integral in (4.38) is understood as in De�nition 4.5.
The next result says that, given the �ltered probability space, the rearranged SHE

has at most one solution.

Proposition 4.14. Given (Ω,A,F,P) equipped with a Q-Brownian motion (Wt)t≥0 with
values in L2

sym(S) (with respect to the �ltration F) and with an F0-measurable initial
condition X0 with values in U2(S) and with �nite moments of any order, there exists at
most one solution (Xt, ηt)t≥0 to the rearranged SHE (4.1) that satis�es De�nition 4.13.

Proof of Proposition 4.14. Consider two candidate solutions (X1
t , η

1
t )t≥0 and (X2

t , η
2
t )t≥0.

Then, by application of Itô's formula, for any ε > 0, P-a.s., for any m ∈ N0,

d⟨eε∆(X1
t −X2

t ), em⟩2

= 2⟨eε∆(X1
t −X2

t ), em⟩ [⟨∆eε∆(X1
t −X2

t ), em⟩dt + d⟨η1
t − η2

t , e
ε∆em⟩] , t ≥ 0.

(4.39)
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Writing the above in integral form and summing over m ∈ N0, one obtains (P-a.s)

∥eε∆(X1
t −X2

t )∥2
2

=2∫
t

0
⟨eε∆(X1

r −X2
r ),∆eε∆(X1

r −X2
r )⟩dr + 2∫

t

0
e2ε∆(X1

r −X2
r ) ⋅ d(η1

r − η2
r)

= − 2∫
t

0
∥Deε∆(X1

r −X2
r )∥2

2dr + 2∫
t

0
e2ε∆(X1

r −X2
r ) ⋅ dη1

r

− 2∫
t

0
e2ε∆(X1

r −X2
r ) ⋅ dη2

r

≤2(∫
t

0
e2ε∆X1

r ⋅ dη1
r + ∫

t

0
e2ε∆X2

r ⋅ dη2
r) ,

(4.40)

where we used Corollary 4.8 to establish the last inequality.
Applying expectation and setting ε→ 0, we obtain from (4.38) that X1

t =X2
t , P−a.s.

for any t ≥ 0. As X1 and X2 are modi�cations of each other and have continuous
sample paths, they are consequently indistinguishable. Since η1 and η2 are de�ned via
the processes X1 and X2 respectively, there exists a unique solution to (4.1).

Proposition 4.14 could be reformulated as follows: strong uniqueness holds true for
the rearranged SHE. By combining Propositions 4.1 and 4.14, we deduce from an obvious
adaptation of Yamada-Watanabe argument, the following theorem, which is one the main
two results of the paper:

Theorem 4.15. Given (Ω,A,F,P) equipped with a Q-Brownian motion (Wt)t≥0 with
values in L2

sym(S) (with respect to the �ltration F) and with an F0-measurable initial
condition X0 with values in L2

sym(S), there exists a unique solution (Xt, ηt)t≥0 to the
rearranged SHE (4.1) that satis�es De�nition 4.13.

Moreover, the processes {(X̃h
t ,Wt)t≥0}h>0, as de�ned in (3.3), are convergent in law

(over C([0,∞), L2(S)) equipped with the topology of uniform convergence on compact
subsets) and the limit is the law of (Xt,Wt)t≥0.

Notice that, as in Proposition 4.14, we use the same noise for the scheme and for the
limiting equation. However, in contrast to Proposition 4.14, there is no abuse in doing
so: the �rst part of the statement allows us to construct the solution to the rearranged
equation on the same �ltered probability space (equipped with the same noise) as the
scheme.

It shall prove useful to note that item 4 in De�nition 4.13 may be strengthened into

Proposition 4.16. Let (Xt, ηt)t≥0 satisfy De�nition 4.13 except item 4 therein. Then,
item 4 holds true if and only if one of the following two properties below is satis�ed:

4' For any t > 0, there exists a sequence of positive reals (εq)q≥1, with 0 as limit, such
that, in P-probability,

lim
q→∞

∫
t

0
eεq∆Xr ⋅ dηr = 0.
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4� It holds that, for any p ≥ 1, for any t > 0,

lim
ε↘0

E [(∫
t

0
eε∆Xr ⋅ dηr)

p

] = 0.

Proof. We proceed as follows. We consider a process (Xt, ηt)t≥0 satisfying De�nition 4.13
except item 4 therein. Obvious 4� implies 4, which implies in turn 4'. The only di�culty
is to prove that 4' implies 4�.

Assuming 4', we recall that, by construction, the argument inside the power function
in 4� is non-negative. We then show that, for any t ≥ 0,

∀p ≥ 1, sup
ε>0

E [(∫
t

0
eε∆Xr ⋅ dηr)

p

] <∞. (4.41)

We restart from (4.34) and we follow the derivation of (4.35) and (4.36), but without
taking the expectation therein. For a given ε > 0, we get, with probability 1, for any
t ≥ 0,

∥eε∆Xt∥2
2 + 2∫

t

0
∥Deε∆Xr∥2

2dr =∥eε∆X0∥2
2 + ∥eε∆Wt∥2

2 + 2∫
t

0
e2ε∆Xr ⋅ dηr

+ 2 ∑
m∈N0

∫
t

0
⟨Xs, e

ε∆em⟩d⟨Ws, e
ε∆em⟩.

(4.42)

Recall from the contractivity of the heat semigroup that the function

ε ∈ (0,∞)↦ ∫
t

0
∥Deε∆Xr∥2

2dr

is non-increasing (for any given realisation). Therefore, choosing ε = εq/2 for some q ∈ N0

in (4.42) and then taking the limit (in probability) as q tends to ∞, we deduce from item
4' that

∥Xt∥2
2 + 2 sup

ε>0
∫

t

0
∥eε∆DXr∥2

2dr = ∥X0∥2
2 + ∥Wt∥2

2 + 2∫
t

0
Xs ⋅ dWs.

By taking power p and then recalling (3.11) and Proposition 4.3 together with the fact
that, as a corollary to Proposition 3.7, ∥Xt∥2 has �nite moments of any order for any t,
we easily deduce from that

E[(sup
ε>0
∫

t

0
∥Deε∆Xr∥2

2)
p

] <∞. (4.43)

Back to (4.42), we can express ∫ t0 e2ε∆Xr ⋅ dηr in terms of all the other terms. Using the
Burkolder-Davis-Gundy inequality in order to handle the stochastic integral therein, the
claim (4.41) easily follows.
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Now that we have (4.41), it su�ces to prove item 4� with p = 1. The result for
p > 1 then follows from a standard uniform integrability argument. In fact, by combining
(4.41) and item 4', we already know that, for any t > 0,

lim
q→∞

E [∫
t

0
eεq∆Xr ⋅ dηr] = 0. (4.44)

It remains to observe that the limit limε↘0 E ∫ t0 eε∆Xr ⋅ dηr exists necessarily. Indeed,
taking expectation in (4.42), we observe that

lim
ε↘0

E [∫
t

0
eε∆Xr ⋅ dηr] = E[∥Xt∥2

2] + 2 sup
ε>0

E [∫
t

0
∥Deε∆Xr∥2

2dr] −E[∥X0∥2
2] −E[∥Wt∥2

2],

where we used again the contractivity of the heat semigroup to write

lim
ε→0

E [∫
t

0
∥Deε∆Xr∥2

2dr] = sup
ε>0

E [∫
t

0
∥Deε∆Xr∥2

2dr] .

The proof is complete.

Remark 4.17. The reader may wonder whether, in the proof of Proposition 4.16, we
can write

sup
ε>0

E∫
t

0
∥Deε∆Xr∥2

2dr = E∫
t

0
∥DXr∥2

2dr.

Whilst it could be proved directly by weak compactness arguments in L2([0, t]×S) that
the right-hand side is �nite and thus coincides with the left, it is worth observing that
we recover the result from our earlier construction of a solution in Corollary 4.12.

4.5 Lipschitz regularity of the �ow

We conclude this section with the following result, which is core to the rest of the paper.

Proposition 4.18. Given (Ω,A,F,P) equipped with a Q-Brownian motion (Wt)t≥0 with
values in L2

sym(S) (with respect to the �ltration F), consider (Xx, ηx) and (Xy, ηy) the
solutions to the rearranged SHE (4.1) with Xx

0 = x ∈ U2(S) and Xy
0 = y ∈ U2(S) as

respective initial conditions. Then, P-almost surely,

∥Xx
t −X

y
t ∥2

2 + 2∫
t

0
∥Deε∆(Xx

r −Xy
r )∥2

2dr ≤ ∥x − y∥2
2, t ≥ 0. (4.45)

Proof. The proof is quite similar to that of uniqueness and so we only give a sketch. For
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ε > 0, with probability 1, for any t ≥ 0

∑
m∈N0

⟨eε∆(Xx
t −X

y
t ), em⟩2 − ⟨eε∆(x − y), em⟩2

= 2 ∑
m∈N0

⟨eε∆(Xx
t −X

y
t ), em⟩ [⟨∆eε∆(Xx

t −X
y
t ), em⟩dt + d⟨ηxt − η

y
t , e

ε∆em⟩]

= −2∫
t

0
∥Deε∆(Xx

r −Xy
r )∥2

2dr + 2∫
t

0
e2ε∆(Xx

r −Xy
r ) ⋅ dηxr

− 2∫
t

0
e2ε∆(Xx

r −Xy
r ) ⋅ dηyr

≤ 2(∫
t

0
e2ε∆Xx

r ⋅ dηxr + ∫
t

0
e2ε∆Xy

r ⋅ dηyr) .

(4.46)

Following the discussion immediately after Proposition 4.11, we know that

lim inf
ε↘0

∫
t

0
e2ε∆Xx

r ⋅ dηxr = 0.

In fact, the same argument (based on Fatou's lemma) shows that

lim inf
ε↘0

(∫
t

0
e2ε∆Xx

r ⋅ dηxr + ∫
t

0
e2ε∆Xy

r ⋅ dηyr) = 0.

Taking the in�mum limit in (4.46) and recalling Corollary 4.12, we easily get the result.

As an obvious (but very useful) consequence of Proposition 4.18, we have, for all
T > 0,

sup
0≤t≤T

∥ηxt − η
y
t ∥

2,−2
≤ cT ∥x − y∥2, (4.47)

for a constant cT only depending on T . The proof follows from the identity (4.37).

Remark 4.19. Inequalities (4.45) and (4.47) say that, for each x ∈ L2
sym(S), we can �nd

versions of (Xx
t )t≥0 and (ηxt )t ≥ 0 such that, for any T > 0, the mappings (ω, t, x) ∈ Ω ×

[0, T ]×L2
sym(S)↦Xx

t (ω) ∈ L2
sym(S) and (ω, t, x) ∈ Ω×[0, T ]×L2

sym(S)↦ ηxt (ω) ∈H−2
sym(S)

are measurable, continuous in t and Lipschitz in x (with 1 and cT as respective Lipschitz
constants).

5 Smoothing E�ect

Due to the forcing term η, one does not expect to easily obtain the di�erentiability with
respect to initial condition of the solution; see however, the references [3, 4, 29, 52, 53]
cited in Subsection 1.3 for positive results in this direction but in �nite dimension.

However, as will be demonstrated below, it is possible to show that the semigroup
�ow {Pt}t≥0 - de�ned by

Ptf(x) ∶= E[f(Xx
t )], t ≥ 0, x ∈ U2(S),
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for f within the set of bounded measurable functions on U2(S) - maps bounded measur-
able functions into Lipschitz continuous functions on U2(S), at least when the parameter
λ in (3.1) belongs to (1/2,1). Importantly, we prove that the rate at which the Lips-
chitz constant of Ptf blows up as t decreases to 0 is integrable, see Theorem 5.11 below
together with Remark 5.12 for possible applications to in�nite dimensional PDEs.

We �rst consider a �nite dimensional reduction of the problem. For a given truncation
level M ∈ N0 and for any v in L2

sym(S), we let

vM ∶=
M

∑
m=0

⟨v, em⟩em(⋅), v∗,M ∶= (
M

∑
m=0

⟨v, em⟩em(⋅))
∗

.

Clearly, v∗,M is an element of U2(S) parametrised by a �nite number of parameters,
namely by the Fourier modes (⟨v, em⟩)m=0,⋯,N . We let EM ∶= {vM , v ∈ L2

sym(S)} and

E∗,M ∶= {v∗,M , v ∈ L2
sym(S)}. Obviously, EM ≅ RM+1. The point is then to prove that,

for any t > 0, the mapping
x ∈ EM ↦ Ptf(x∗,M),

is Lipschitz continuous, with a Lipschitz constant that is independent of M . We then
get the expected result by taking the limit as M tends to ∞. Reducing the dimensional-
ity allows us to use many tools from �nite dimensional analysis, notably Rademacher's
theorem which we invoke quite often in this section. Together with Proposition 4.18, the
latter says that, for a given t > 0, the �ow

x ∈ EM ↦Xx∗
t

is almost everywhere (for the Lebesgue measure on EM ) di�erentiable. This is a way to
circumvent the issues of trying to establish the (everywhere) di�erentiability of the �ow,
a property that is not clear to us at this stage.

The second step is then to consider, for x, v ∈ L2
sym(S), δ ∈ R and T > 0, the di�erence

PT f((x + δv)∗,M) − PT f(x∗,M) = E[f(X(x+δv)∗,M
T )] −E[f(Xx∗,M

T )], (5.1)

and then to represent it via use of a Girsanov transformation. This adapts earlier ar-
guments from Malliavin calculus, see for instance Bismut [12] and Norris [57], and from
the proof of the so-called Bismut-Elworthy-Li formula, see Elworthy and Li [35] and
Thalmaier [72].

The key idea is to consider the shifted process

(X(x+δ T−t
T
v)∗,M

t )
0≤t≤T

,

which satis�es X
(x+δ T−t

T
v)∗,M

0 = (x + δv)∗,M and X
(x+δ T−t

T
v)∗,M

T = Xx∗,M
T . It is then shown

that, under a particular change of measure, the shifted process is the unique solution to
the rearranged SHE started from (x+ δv)∗,M . To make sure that the change of measure
satis�es the standard conditions of Girsanov transformation, we need however to localise
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the dynamics in a suitable manner and in particular to enact the shifting up to a stopping
time, the form of which is clari�ed in de�nition (5.26).

Throughout the section, we use the convenient notation

yt(v, δ) ∶= y + δ
T − t
T

v,

y∗t (v, δ) ∶= (y + δT − t
T

v)
∗

, t ∈ [0, T ], y, v ∈ EM , δ ∈ R.
(5.2)

Pay attention that the time horizon T is implicitly understood (and thus omitted) in the
two left-hand sides and that the initial condition y is manifested by the notations yt and
y∗t . For another initial condition, say x ∈ EM , we write xt(v, δ) and x∗t (v, δ). Moreover,
many times below, we take derivatives with respect to the �nite-dimensional variable
y ∈ EM . The gradient is denoted ∂y. Notice also that for y ∈ EM , both y and y∗ can be
regarded as elements of L2

sym(S). By Lemma 2.4, ∥y∗∥2 = ∥y∥2 and, by Parseval identity,

∥y∥2 = ∣y∣ where ∣ ⋅ ∣ stands for the standard Euclidean norm on EM .

5.1 Shifted state process and tilted re�ection process

In this subsection, we address the dynamics of the shifted state process (Xy∗t (v,δ)
t )0≤t≤T

and the corresponding forcing term (ηy
∗
t (v,δ)
t )0≤t≤T , for y and v in EM and δ ∈ R. Until

further notice, the number M of low frequency modes to which the initial condition is
truncated is considered as �xed and consequently, the indexing with respect to M is
omitted.

To identify the dynamics, one begins by studying the time evolution of the Fourier
modes of the shifted process integrated against a test function ϕ ∈ C∞0 (EM). To this end,
we expand

(∫
EM

⟨em,Xy∗t (v,δ)
t ⟩ϕ(y)dy)

0≤t≤T

,

with ⟨em,Xy∗t (v,δ)
t ⟩ standing for the mth Fourier mode of X

y∗t (v,δ)
t . Changing variables

and recalling the dynamics (4.2), we have

∫
EM

⟨Xy∗t (v,δ)
t , em⟩ϕ(y)dy

= ∫
EM

⟨Xy∗
t , em⟩ϕ(yt(v,−δ))dy

= ∫
EM

⟨Xy∗
0 , em⟩ϕ(y − δv)dy + ∫

EM
∫

t

0
⟨Xy∗

s ,∆em⟩ϕ(ys(v,−δ))dsdy

+ ∫
EM

(∫
t

0
ϕ(ys(v,−δ))d ⟨ηy

∗
s , em⟩)dy + ∫

EM
(∫

t

0
ϕ(ys(v,−δ))d⟨Ws, em⟩)dy

+ δ
T ∫EM ∫

t

0
⟨Xy∗

s , em⟩∂yϕ(ys(v,−δ)) ⋅ v dsdy,

(5.3)

where ∂yϕ(ys(v,−δ))⋅v represents the gradient of ϕ in the direction of v at point ys(v,−δ).
Notice that the well-posedness of the second integral in the penultimate line is guaranteed
by the stochastic version of Fubini's theorem stated in [24, Theorem 4.33].
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Ideally, we would like to revert back the variables in the various integrals appearing
in the expansion (5.3) and hence to compute the test function ϕ at the generic point
y instead of ys(v,−δ). The main di�culty in this regard is to perform the change of
variable in the integral

∫
EM

(∫
t

0
ϕ(ys(v,−δ))d⟨ηy

∗
s , em⟩)dy (5.4)

driven by the re�ection term (⟨ηy
∗
t , em⟩)0≤t≤T . Notice that the existence of the time

integral in the right-hand side follows from the two bounds (4.27) (applied say with
y = 0) and (4.47), the latter ensuring in particular the measurability of the mapping

(ω, t, y)↦ ⟨ηy
∗
t (ω), em⟩. The combination of both guarantees that, with probability 1,

∀R > 0, sup
0≤t≤T

sup
∣y∣≤R

∥ηy
∗
t ∥

2,−2
≤ sup

0≤t≤T
∥η0
t ∥2,−2

+ cTR <∞, (5.5)

for a constant cT only depending on T .
Before formulating a convenient change of variables for (5.4) in the next subsection,

we introduce in this subsection some ingredients that are essential in our analysis. This
includes de�ning a so-called tilted version (η̃y

∗
t )0≤t≤T of the re�ection process (ηy

∗
t )0≤t≤T .

In order to carry out the analysis, we proceed below as in Subsection 4.2 and formally
replace (at least for the �rst result) the realisation of the �eld ((ηyt )0≤t≤T )y∈E∗,M (note

that, in this notation, y is directly assumed to be in E∗,M ) by a deterministic �ow
((nyt )0≤t≤T )y∈E∗,M satisfying the following two properties:

(F1) For any y ∈ E∗,M , the trajectory t ∈ [0, T ]↦ nyt satis�es (E1) and (E2) in Subsec-
tion 4.2, with the latter two conditions being restricted in an obvious manner to
the interval [0, T ];

(F2) The �ow satis�es the Lipschitz condition sup
0≤t≤T

∥nxt − n
y
t ∥2,−2

≤ cT ∣x − y∣, for any

x, y ∈ E∗,M and for a �nite constant c ≥ 0, which is equivalent to saying that
sup0≤t≤T ∥nx

∗
t − ny

∗
t ∥

2,−2
≤ cT ∣x − y∣, for any x, y ∈ EM .

The reader may reformulate (5.5) accordingly.

We start with the following lemma.

Lemma 5.1. Let ((nyt )0≤t≤T )y∈E∗,M satisfy (F1)�(F2) and ((zyt )0≤t≤T )y∈E∗,M be a de-
terministic jointly continuous �ow with values in L2

sym(S), i.e., the map (t, y) ∈ [0, T ] ×
E∗,M ↦ zyt ∈ L2

sym(S) is continuous. Then, for any ε > 0, for any family {rNi }i=0,⋯,N of
subdivision points of [0, T ] with stepsize converging to 0 as N tends to ∞, i.e.

lim
N→∞

sup
i=1,⋯,N

∣rNi − rNi−1∣ = 0,
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the following identity holds true (for convenience we merely write ri for rNi ):

∑
m∈N0

∫
EM

{∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ny
∗
ri
(v,δ)

ri+1 , eε∆z
y∗ri(v,δ)
ri ⟩ − ⟨ny

∗
ri
(v,δ)

ri , eε∆z
y∗ri(v,δ)
ri ⟩]dy.

(5.6)

Proof. By Corollary 4.8, one has for a �xed value of m ∈ N0:

∫
EM

{∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy

= ∫
EM

lim
N→∞

N−1

∑
i=0

⟨eε∆zy∗ri , em⟩ϕ(yri(v,−δ)) [⟨ny∗ri+1
, em⟩ − ⟨ny∗ri , em⟩]dy

= lim
N→∞

∫
EM

N−1

∑
i=0

⟨eε∆zy∗ri , em⟩ϕ(yri(v,−δ)) [⟨ny
∗
ri+1

, em⟩ − ⟨ny∗ri , em⟩]dy,

the argument for exchanging the limit and the sum directly following from Lebesgue's
dominated convergence theorem. From Lemma 4.4, it is indeed clear that the sum
over i on the second line is uniformly bounded in N . Therefore, performing for each
i ∈ {0,⋯,N − 1} an obvious change of variable for the integral in y, we get

∫
EM

{∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

⟨eε∆zy
∗
ri
(v,δ)

ri , em⟩[⟨ηy
∗
ri
(v,δ)

ri+1 , em⟩ − ⟨ηy
∗
ri
(v,δ)

ri , em⟩]dy.

In fact, Lemma 4.4 says more: the argument inside the limit directly above decays
polynomially fast with m, uniformly in N . In particular, summing over m ∈ N0, one can
exchange the sum over m and the limit over N . We obtain:

∑
m∈N0

{∫
EM

∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ηy

∗
t , em⟩}dy

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

∑
m∈N0

⟨eε∆zy
∗
ri
(v,δ)

ri , em⟩[⟨ηy
∗
ri
(v,δ)

ri+1 , em⟩ − ⟨ηy
∗
ri
(v,δ)

ri , em⟩]dy

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨eε∆zy
∗
ri
(v,δ)

ri , η
y∗ri(v,δ)
ri+1 ⟩ − ⟨eε∆zy

∗
ri
(v,δ)

ri , η
y∗ri(v,δ)
ri ⟩]dy,

which is the desired result.

The next step in the analysis of the re�ection term in (5.3) aims at correcting the
integrator in (5.4) in order to make it additive. The following de�nition clari�es the form
of the corrected (or tilted) re�ection term:
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De�nition 5.2. Let v ∈ EM and δ ∈ R be given and M be the same level of truncation
as in (5.1). Moreover, let ((nyt )0≤t≤T )y∈E∗,M satisfy (F1)�(F2), and ((zyt )0≤t≤T )y∈E∗,M

be a deterministic jointly continuous �ow with values L2
sym(S), i.e., the map (t, y) ∈

[0, T ] ×EM ↦ zyt ∈ L2
sym(S) is continuous. Then, for any m ∈ N0, y ∈ EM and t ∈ [0, T ],

de�ne

∂∗yn
m,y
t ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂y⟨ny
∗
t , em⟩ whenever the RM -valued gradient at

point y ∈ EM in the right-hand side exists,

0 otherwise,

(5.7)

and let

⟨ñy,(v,δ)t , em⟩ ∶= ⟨ny
∗
t (v,δ)
t , em⟩ + δ

T
∫

t

0
[∂∗ynm,ws ⋅ v]

∣w=ys(v,δ)
ds. (5.8)

Measurability of (t, y) ↦ ∂∗yn
m,y
t is obvious and, in fact, the Lipschitz property (F2)

says that the derivative in the de�nition (5.2) exists for any t ∈ [0, T ], for almost every
y ∈ EM , and thus for almost every (t, y) ∈ [0, T ]×EM . When ((nyt )0≤t≤T )y∈EM is replaced
by ((ηyt )0≤t≤T )y∈E∗,M , it is standard to prove that the mapping

(t, ω, y) ∈ [0, T ] ×EM ×Ω↦ ∂∗yη
m,y
t

is measurable with respect to P×B(EM), where P is the progressive σ-algebra on [0, T ]×
Ω (Ω being equipped with the same �ltration F as before) and B(EM) is the Borel σ-
algebra on EM . Of course, in the random setting, we will use the notation

⟨η̃y,(v,δ)t , em⟩ ∶= ⟨ηy
∗
t (v,δ)
t , em⟩ + δ

T
∫

t

0
[∂∗yηm,ws ⋅ v]

∣w=ys(v,δ)
ds.

It is easy to check that ∂∗yn
y
t ∶= ∑m∈N0

∂∗nm,yt em as de�ned through the Fourier

modes (5.7) is an element of H−2
sym(S), since the series ∑m∈N0

m−4∣∂∗yn
m,y
t ∣2 is bounded.

In particular, we have
∥∂∗yn

y
t ∥2,−2

≤ Cc, (5.9)

for a constant Cc depending on c in (F2).
As a corollary of the bound (5.9), we get the following statement, which allows us to

regard (ñyt )0≤t≤T as a path with values in H−2
sym(S):

Corollary 5.3. Within the framework of De�nition 5.2, for any R > 0,

∀R > 0, sup
0≤t≤T

sup
∣y∣≤R

∥ñy,(v,δ)t ∥
2,−2

≤ sup
0≤t≤T

∥n0
t ∥2,−2

+ c(R + δ∣v∣) <∞, (5.10)

for the same constant c as in (F2).
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5.2 Integrating in space the tilted re�ection process

Based on the tilted process (η̃y,(v,δ)t )0≤t≤T introduced in the previous section, we provide
here, a convenient change of variables for (5.4). The main step in the analysis is the
following proposition.

Proposition 5.4. Let ((nyt )0≤t≤T )y∈E∗,M satisfy (F1)�(F2), and ((zyt )0≤t≤T )y∈E∗,M be a
deterministic jointly continuous �ow with values in L2

sym(S), i.e., the map (t, y) ∈ [0, T ]×
EM ↦ zyt ∈ L2

sym(S) is continuous. Then, for ε > 0 and for a function ϕ ∈ C∞0 (EM),

∑
m∈N0

∫
EM

{∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy (5.11)

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ñy,(v,δ)ri+1
, eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ñy,(v,δ)ri , eε∆z

y∗ri(v,δ)
ri ⟩]dy.

Proof. We observe that it su�ces to prove (5.11) for a �ow ((zy
∗
t )0≤t≤T )y∈EM that is

di�erentiable with respect to the variable y, with a derivative that is jointly continuous
in (t, y). Indeed, using a standard molli�cation argument in the variable y, we can

approximate any �ow ((zy
∗
t )0≤t≤T )y∈EM that is only continuous in (t, y) by a �ow that

is regular in y (with derivatives that are jointly continuous in (t, y)) and use (4.27) in

order to pass to the limit in (5.11). Below, we thus assume that ((zy
∗
t )0≤t≤T )y∈EM is

di�erentiable with respect to the variable y, with a derivative that is jointly continuous
in (t, y).

Another key observation is that (t, y) ∈ [0, T ] × EM ↦ ny
∗
t ∈ H−2

sym(S) is jointly
continuous in (t, y) and thus uniformly continuous on [0, T ] × Supp(ϕ), with Supp(ϕ)
denoting the support of ϕ. This follows from (F2) together with the fact that t ∈ [0, T ]↦
ny

∗
t ∈ H−2

sym(S) is continuous for each y ∈ EM .
Using the same notation as in Lemma 5.1, one has

∑
m∈N0

∫
EM

{∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy

= lim
N→∞

∫
EM

ϕ(y){
N−1

∑
i=0

[⟨ny
∗
ri
(v,δ)

ri+1 , eε∆z
y∗ri(v,δ)
ri ⟩ − ⟨ny

∗
ri+1

(v,δ)
ri+1 , eε∆z

y∗ri+1
(v,δ)

ri ⟩

+ ⟨ny
∗
ri+1

(v,δ)
ri+1 , eε∆z

y∗ri+1
(v,δ)

ri ⟩ − ⟨ny
∗
ri+1

(v,δ)
ri+1 , eε∆z

y∗ri(v,δ)
ri ⟩

+ ⟨ny
∗
ri+1

(v,δ)
ri+1 , eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ny

∗
ri
(v,δ)

ri , eε∆z
y∗ri(v,δ)
ri ⟩]}dy.
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Exchanging the �rst and third lines in the summand, we get

∑
m∈N0

∫
EM

{∫
T

0
⟨eε∆zy

∗
t , em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy

= lim
N→∞

{∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ny
∗
ri+1

(v,δ)
ri+1 , eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ny

∗
ri
(v,δ)

ri , eε∆z
y∗ri(v,δ)
ri ⟩]dy

+ ∫
EM

ϕ(y)
N−1

∑
i=0

⟨ny
∗
ri+1

(v,δ)
ri+1 , eε∆(zy

∗
ri+1

(v,δ)
ri − zy

∗
ri
(v,δ)

ri )⟩dy

+
N−1

∑
i=0
∫
EM

[ϕ(y) − ϕ(y + δ ri+1−ri
T v)] ⟨ny

∗
ri
(v,δ)

ri+1 , eε∆z
y∗ri(v,δ)
ri ⟩dy}

=∶ lim
N→∞

{TN1 + TN2 + TN3 }. (5.12)

Analysis of TN1 . By applying De�nition 5.2 (at point yt(v, δ) instead of y) and by using
the fact that (ñyt )0≤t≤T takes values in H−2

sym(S), we get

lim
N→∞

TN1

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ñy,(v,δ)ri+1
, eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ñy,(v,δ)ri , eε∆z

y∗ri(v,δ)
ri ⟩]dy

− δ
T lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

∑
m∈N0

[∫
ri+1

ri
(∂w[⟨nw

∗
s , em⟩]

∣w=ys(v,δ)
⋅ v) ⟨zy

∗
ri
(v,δ)

ri , eε∆em⟩ds]dy

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ñy,(v,δ)ri+1
, eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ñy,(v,δ)ri , eε∆z

y∗ri(v,δ)
ri ⟩]dy

− δ
T lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

∑
m∈N0

[∫
ri+1

ri
(∂y[⟨ny

∗
s (v,δ)
s , em⟩] ⋅ v) ⟨zy

∗
ri
(v,δ)

ri , eε∆em⟩ds]dy.

Exchanging the integral in y and the sum over m (which is possible thanks to Lemma
4.4) and then performing an integration by parts in the last line, yields

lim
N→∞

TN1

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ñy,(v,δ)ri+1
, eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ñy,(v,δ)ri , eε∆z

y∗ri(v,δ)
ri ⟩]dy

+ lim
N→∞

δ
T

N−1

∑
i=0
∫

ri+1

ri
∫
EM

(∂yϕ(y) ⋅ v)⟨ny
∗
s (v,δ)
s , eε∆z

y∗ri(v,δ)
ri ⟩dyds

+ lim
N→∞

δ
T ∫EM ϕ(y)

N−1

∑
i=0

∑
m∈N0

[∫
ri+1

ri
⟨ny∗s (v,δ)s , em⟩(∂y[⟨z

y∗ri(v,δ)
ri , eε∆em⟩] ⋅ v)ds]dy

=∶ lim
N→∞

(TN1,1 + TN1,2 + TN1,3). (5.13)
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Analysis of TN1,3 + TN2 . Using the regularity of the �ow ((zyt )0≤t≤T )y∈E∗,M , we write

lim
N→∞

TN2 = lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

⟨ny
∗
ri+1

(v,δ)
ri+1 , eε∆(zy

∗
ri+1

(v,δ)
ri − zy

∗
ri
(v,δ)

ri )⟩dy

= − lim
N→∞

δ
T ∫EM ϕ(y)

N−1

∑
i=0

(ri+1 − ri) ∑
m∈N0

⟨n
y∗ri+1(v,δ)
ri+1 , em⟩(∂y[⟨z

y∗ri(v,δ)
ri , eε∆em⟩] ⋅ v)dy

+ lim
N→∞

N−1

∑
i=0

O(ri+1 − ri),

where O is the little Landau symbol (and is here implicitly understood to be uniform in
N and i). And, then using the joint regularity of ((nyt )0≤t≤T )y∈E∗,M , we get

lim
N→∞

(TN2 + TN1,3) = lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

∑
m∈N0

[∫
ri+1

ri
⟨ny∗s (v,δ)s − ny

∗
ri+1

(v,δ)
ri+1 , em⟩

× (∂y[⟨z
y∗ri(v,δ)
ri , eε∆em⟩] ⋅ v)ds]dy

= 0.

Analysis of TN1,2 + TN3 . Adding and subtracting the quantity

lim
N→∞

δ
T

N−1

∑
i=0
∫
EM

(∂yϕ(y) ⋅ v)(ri+1 − ri)⟨n
y∗ri(v,δ)
ri+1 , eε∆z

y∗ri(v,δ)
ri ⟩dy,

we have

lim
N→∞

(TN1,2 + TN3 )

= lim
N→∞

N−1

∑
i=0

δ
T ∫

ri+1

ri
∫
EM

(∂yϕ(y) ⋅ v)[⟨ny
∗
s (v,δ)
s , eε∆z

y∗ri(v,δ)
ri ⟩ − ⟨ny

∗
ri
(δ,v)

ri+1 , eε∆z
y∗ri(v,δ)
ri ⟩]dyds

+ lim
N→∞

N−1

∑
i=0
∫
EM

[ϕ(y) + ( δT (ri+1 − ri))∂yϕ(y) ⋅ v

− ϕ(y + δ
T (ri+1 − ri)v)]⟨n

y∗ri(v,δ)
ri+1 , eε∆z

y∗ri(v,δ)
ri ⟩dy

=∶ lim
N→∞

(TN(1,2,3),1 + T
N
(1,2,3),2). (5.14)

Analysis of TN
(1,2,3),1 + T

N
(1,2,3),2. We claim that the limits of the two terms in the above

argument are 0 as we can write both of them in the form ∑N−1
i=0 O(ri+1 − ri).

The limit of (TN
(1,2,3),2)N≥1 is easily handled by using the fact that ϕ is smooth and

by invoking the duality between H2
sym(S) and H−2

sym(S) (to handle terms of the form

⟨ny
∗
ri
(v,δ)

ri+1 , eε∆z
y∗ri(v,δ)
ri ⟩).
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The limit of (TN
(1,2,3),1)N≥1 is shown to be 0 by invoking the fact that the mapping

(t, y) ∈ [0, T ] × EM ↦ ηyt ∈ H−2
sym(S) is jointly continuous in (t, y) and thus uniformly

continuous on [0, T ] × Supp(ϕ).
Conclusion. Back to (5.14), we deduce from the above analysis that

lim
N→∞

{TN1 + TN2 + TN3 } = lim
N→∞

{TN1,1 + TN1,2 + TN1,3 + TN2 + TN3 } = lim
N→∞

TN1,1.

This completes the proof.

Obviously, Proposition 5.4 is one key step for obtaining a change of variable in the
integral (5.4). It is however not enough. In particular, it is worth observing that, at this
stage, the right-hand side of (5.11) cannot be directly interpreted as an integral, even in
the simplest case where (zt)0≤t≤T is just one trajectory independent of y.

Assuming that the �ow ((zyt )0≤t≤T )y∈E∗,M in Proposition 5.4 reduces to one single
trajectory (zt)0≤t≤T , we want to rearrange the two terms in (5.11) in order to interpret
each of them as an integral. As for the left-hand side in (5.11), this is quite easy. Indeed,
for (zt)0≤t≤T a continuous path with values in L2

sym(S), for ϕ ∈ C∞0 (EM), for δ ∈ R and

for y, v ∈ EM , we can let

z̃
y,ϕ,(v,δ)
t ∶= ϕ(yt(v,−δ))zt, t ∈ [0, T ]. (5.15)

The collection ((z̃y,ϕ,(v,δ)t )0≤t≤T )y∈EM (for v �xed) is a jointly continuous �ow (in (t, y))
with values in L2

sym(S). Therefore, De�nition 4.5 (together with the bound (4.27) in

order to justify that the integral in y ∈ EM below is well-de�ned) applies and says that
(notice that the left-hand side below is the same as the left-hand side in (5.11))

∑
m∈N0

∫
EM

{∫
T

0
⟨eε∆zt, em⟩ϕ(yt(v,−δ))d⟨ny

∗
t , em⟩}dy

= ∫
EM

(∫
T

0
⟨eε∆z̃y,ϕ,(v,δ)t , dny

∗
t ⟩)dy.

(5.16)

In order to handle the right-hand side of (5.11), we let

ñ
ϕ,(v,δ)
t ∶= ∫

EM
ϕ(y)ñy,(v,δ)t dy, (5.17)

which is regarded as an element of H−2
sym(S), namely

⟨ñϕ,(v,δ)t , z⟩ = ∫
EM

ϕ(y)⟨ñy,(v,δ)t , z⟩dy,

for z a generic element of H2
sym(S). Notice that the integral in the right-hand side is

well-de�ned by means of Corollary 5.3. Then, we observe that the argument in the limit
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appearing in the right-hand side of (5.11) can be rewritten

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨ñy,(v,δ)ri+1
, eε∆zri⟩ − ⟨ñy,(v,δ)ri , eε∆zri⟩]dy

=
N−1

∑
i=0

[⟨ñϕ,(v,δ)ri+1
, eε∆zri⟩ − ⟨ñϕ,(v,δ)ri , eε∆zri⟩].

(5.18)

We get the following corollary:

Corollary 5.5. For a given v ∈ EM , let (ñϕ,(v,δ)t )0≤t≤T be as in (5.17). Assume that the
function ϕ is positive-valued, then, for ε > 0 and any z ∈ L2

sym(S) that is non-increasing,

the process (⟨ñϕ,(v,δ)t , eε∆z⟩)0≤t≤T is non-decreasing (in time).

Proof. With z as in the statement, we apply Proposition 5.4 with (zt ∶= 1[r,s](t)z)0≤t≤T

for a given pair (r, s) ∈ [0, T ]2 satisfying r < s. By (5.15), (5.16) and (5.18), we obtain

∫
EM

(∫
T

0
⟨eε∆z̃y,ϕ,(v,δ)t , dny

∗
t ⟩)dy = lim

N→∞

N−1

∑
i=0

[⟨ñϕ,(v,δ)ri+1
, eε∆zri⟩ − ⟨ñϕ,(v,δ)ri , eε∆zri⟩].

(5.19)
Regardless the choice of the subdivision {rNi }i=0,⋯,N (recall that we omit the superscript
N in the various equations), we have

N−1

∑
i=0

[⟨ñϕ,(v,δ)ri+1
, eε∆zri⟩ − ⟨ñϕ,(v,δ)ri , eε∆zri⟩]

=
N−1

∑
i=0

{[⟨ñϕ,(v,δ)ri+1
, eε∆z⟩ − ⟨ñϕ,(v,δ)ri , eε∆z⟩]1[r,s](ri)}.

If we assume that r and s belong to the collection {rNi }i=0,⋯,N , which can be done without
any loss of generality, we get

N−1

∑
i=0

[⟨ñϕ,(v,δ)ri+1
, eε∆zri⟩ − ⟨ñϕ,(v,δ)ri , eε∆zri⟩] = ⟨ñϕ,(v,δ)s , eε∆z⟩ − ⟨ñϕ,(v,δ)r , eε∆z⟩.

Then, (5.19) yields

⟨ñϕ,(v,δ)s , eε∆z⟩ − ⟨ñϕ,(v,δ)r , eε∆z⟩ = ∫
EM

(∫
T

0
⟨eε∆z̃y,ϕ,(v,δ)t , dny

∗
t ⟩)dy.

Recalling the de�nition (5.15) and using the fact that ϕ ≥ 0, we observe that (z̃y,ϕ,(v,δ)t )0≤t≤T

takes values in U2(S). By Corollary 4.8, the right-hand side is non-negative. Assuming
that z ∈H2

sym(S) and letting ε tend to 0, we complete the proof.

The above corollary shows that (ñϕ,(v,δ)t )0≤t≤T satis�es Assumption (E2) in Sub-
section 4.2. Since (E1) follows quite obviously from the joint continuity of the �ow
((nyt )0≤t≤T )y∈E∗,M , we can invoke De�nition 4.5 to give meaning to the integral

(∫
t

0
⟨eε∆zs, dñϕ,(v,δ)s ⟩)

0≤t≤T

,
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for ε > 0 and for a continuous path (zt)0≤t≤T with values in L2
sym(S), at least when ϕ takes

non-negative values. When ϕ takes values in R, we may decompose it into ϕ ∶= ϕ+ − ϕ−
(with ϕ+ and ϕ− being the positive and negative parts of ϕ) and then let

∫
t

0
⟨eε∆zs, dñϕ,(v,δ)s ⟩ ∶= ∫

t

0
⟨eε∆zs, dñϕ

+,(v,δ)
s ⟩ − ∫

t

0
⟨eε∆zs, dñϕ

−,(v,δ)
s ⟩, t ∈ [0, T ],

but we will not make use of this latter extension.
In the end, the conclusion of Proposition 5.4 may be rewritten as follows. Under the

same notation as therein and under the assumption that ϕ takes non-negative values and
that (zt)0≤t≤T is one single continuous path with values in L2

sym(S),

∫
E
(∫

T

0
⟨eε∆z̃y,ϕ,(v,δ)t , dny

∗
t ⟩)dy = ∫

T

0
⟨eε∆zt, dñϕ,(v,δ)t ⟩, t ∈ [0, T ]. (5.20)

Remark 5.6. Following Remark 4.10, all the results proven in this subsection can be
applied when ((nyt )0≤t≤T )y∈E∗,M is chosen as the realisation of ((ηyt )0≤t≤T )y∈E∗,M (which
satis�es (F1) and (F2) thanks to Remark 4.19) and ((zyt )0≤t≤T )y∈E∗,M is chosen as the
realisation of a random �ow whose trajectories are L2

sym(S)-valued, continuous in time
and Lipschitz continuous in space. We feel that it is not instructive to formalise this
here by means of rigorous statements and we refer to the next subsection for a concrete
application of the results obtained to the study of the rearranged SHE introduced in
De�nition 4.13.

5.3 Integrating in time the shifted tilted re�ection process

We now kill two birds with one stone. Not only do we make explicit the dynamics of

the shifted process (Xy∗t (v,δ)
t )0≤t≤T (for a given y ∈ EM ), but we also clarify the notion

of an integral with respect to the shifted version of the tilted re�ection process, namely

(η̃y,(v,δ)t )0≤t≤T . In brief, we are able to de�ne a pathwise integral (in time) with respect to

(η̃y,(v,δ)t )0≤t≤T by using the procedure described in Subsection 4.2. Of course, the reader
may object that we have already constructed an integral with respect to the process

(η̃ϕ,(v,δ)t )0≤t≤T de�ned in (5.17) (replacing therein (ñy,(v,δ)t )0≤t≤T by (η̃y,(v,δ)t )0≤t≤T ), but
this was only for ϕ smooth. Somehow, we want here to choose ϕ as a Dirac mass.

The �rst result of this subsection is:

Proposition 5.7. Fix δ ∈ R and v ∈ EM . Then, with probability 1, for any almost every
y ∈ EM , the path (η̃y,(v,δ)t )0≤t≤T satis�es assumptions (E1) and (E2) in Subsection 4.2.
In particular, we can invoke De�nition 4.5 in order to de�ne an integral with respect to

(η̃y
∗
t (v,δ),v
t )0≤t≤T .

The second one is
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Proposition 5.8. Fix δ ∈ R and v ∈ EM . Then, with probability 1, for almost every
y ∈ EM , one has, for any u ∈H2

sym(S),

⟨Xy∗t (v,δ),v
t , u⟩ =⟨X(y+δv)∗

0 , u⟩ + ∫
t

0
⟨Xy∗s (v,δ)

s ,∆u⟩ds + ∫
t

0
d⟨η̃y,(v,δ)s , u⟩

+ ∫
t

0
d⟨Ws, u⟩ − δ

T ∫
t

0
∂y⟨Xy∗s (v,δ)

s , u⟩ ⋅ v ds,
(5.21)

where it is implicitly understood that, with probability 1, for almost every y ∈ EM , for
almost every t ∈ [0, T ] and for any u ∈ H2

sym(S), the derivative ∂y⟨Xy∗s (v,δ)
s , u⟩ exists and

induces a jointly measurable mapping on Ω × [0, T ] ×EM .

Proof of Propositions 5.7 and 5.8. We prove the two statements at once.

As a preliminary remark, we observe that the existence of the derivatives, as stated
in the last line of the statement, follows from Rademacher's theorem. Indeed, by [13,

Theorem 4], with probability 1, for any t ∈ [0, T ], the map y ∈ EM ↦ Xy∗
t ∈ L2

sym(S) is
a.e. di�erentiable. By Fubini's theorem, it is quite easy to see that the map (ω, t, y) ↦
∂yX

y∗
t (ω) is hence de�ned up to a negligible subset of Ω×[0, T ]×EM and induces a jointly

measurable mapping on Ω× [0, T ]×EM . Since, for any t ∈ [0, T ], the map y ↦ yt(v, δ) =
y + δ(T − t)/T v preserves the Lebesgue measure, we deduce that (ω, t, y) ↦ ∂yX

y∗t (v,δ)
t

is also de�ned up to a negligible subset of Ω × [0, T ] × EM and also induces a jointly
measurable mapping on Ω × [0, T ] ×EM .

First step. We begin by expanding

∫
EM

⟨Xy∗t (v,δ)
t , u⟩ϕ(y)dy,

for a function ϕ ∈ C∞0 (EM) with non-negative values and for a given element u ∈H2
sym(S).

Notice that, once (5.21) has been proven to hold true, for a given u, with probability 1
and for almost every y, it is easy to get the result with probability 1, for almost every
y and for any u ∈ H2

sym(S). It su�ces to use the separability H2
sym(S). By a change of

variables, we get, for any u ∈H2
sym(S), with probability 1,

∫
EM

⟨Xy∗t (δ,v)
t , u⟩ϕ(y)dy = ∫

EM
⟨Xy∗

t , u⟩ϕ(yt(v,−δ))dy

=∫
EM

⟨Xy∗
0 , u⟩ϕ(y − δv)dy + ∫

EM
∫

t

0
⟨Xy∗

s ,∆u⟩ϕ(ys(v,−δ))dsdy

+ ∫
EM

(∫
t

0
ϕ(ys(v,−δ))d⟨ηy

∗
s , u⟩)dy + ∫

EM
(∫

t

0
ϕ(ys(v,−δ))d⟨Ws, u⟩)dy

+ δ
T ∫EM ∫

t

0
⟨Xy∗

s , u⟩∂yϕ(ys(v,−δ)) ⋅ v dsdy.

(5.22)

Here is the key point. By (5.15) and (5.20), we can perform a change of variable in the
penultimate line (with zt = u). As for the last line, we can make an integration by parts,
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recalling the (pathwise) Lipschitz property of the �ow, see Proposition 4.18. We get

∫
EM

⟨Xy∗t (v,δ)
t , u⟩ϕ(y)dy

=∫
EM

⟨X(y+δv)∗
0 , u⟩ϕ(y)dy + ∫

EM
∫

t

0
⟨Xy∗s (v,δ)

s ,∆u⟩ϕ(y)dsdy

+ ⟨η̃ϕ,(v,δ)t , u⟩ + ⟨Wt, u⟩∫
EM

ϕ(y)dy − δ
T ∫EM ∫

t

0
ϕ(y)∂y⟨Xy∗s (v,δ)

s , u⟩ ⋅ vdsdy.

(5.23)

Second step. Assume ϕ ≥ 0. By invoking Lemma 5.9 below and then by taking the
supremum over u ∈H2

sym(S) in (5.23) right above, we claim

∥η̃ϕ,(v,δ)t − η̃ϕ,(v,δ)s ∥
2,−2

≤ ζR(∣t − s∣)∫
EM

ϕ(y)dy, (s, t) ∈ [0, T ],

for a random �eld ζR, with values in (0,∞) and with ζR(ρ)→ 0, almost surely, as ρ→ 0.
Back to the de�nition of η̃ϕ,v in (5.17), we obtain that, for any u ∈ H2

sym(S), with
∥u∥2,2 ≤ 1,

∣∫
EM

ϕ(y)⟨η̃y,(v,δ)t − η̃y,(v,δ)s , u⟩dy∣ ≤ ζR(∣t − s∣)∫
EM

ϕ(y)dy, (s, t) ∈ [0, T ]2,

and then, we deduce that, with probability 1, for almost every y ∈ EM , for s, t in a dense
countable subset of [0, T ], for u in a dense countable subset of the unit ball of H2

sym(S),

∣⟨η̃y,(v,δ)t , u⟩ − ⟨η̃y,(v,δ)s , u⟩∣ ≤ ζR(∣t − s∣).

Therefore, with probability 1, for almost every y ∈ EM , for s, t in a dense countable
subset of [0, T ],

∥η̃y,(v,δ)t − η̃y,(v,δ)s ∥
2,−2

≤ ζR(∣t − s∣),

and then we have a continuous extension to the whole [0, T ].
Third step. We observe in a similar manner from Corollary 5.5 that, with probability 1,
for almost every y, for s, t in dense countable subset of [0, T ], for u in a countable subset
of U2(S),

⟨η̃y,(v,δ)t − η̃y,(v,δ)s , u⟩ ≥ 0.

And then, by density, we get that the continuous extension satis�es

⟨η̃y,(v,δ)t − η̃y,(v,δ)s , u⟩ ≥ 0,

for all s, t ∈ [0, T ] and u ∈ U2(S). This completes the proof of Proposition 5.7. In
particular, we can construct, almost surely, for almost every y ∈ EM , an integral with

respect to the process (η̃y,(v,δ)t )0≤t≤T as the latter satis�es (E1) and (E2) in Subsection
4.2. By combining Lemma 4.7 and Corollary 5.3, we deduce that the identity (5.17) is
preserved, despite the additional extension by continuity. Proposition 5.8 then follows
by inserting (5.17) into (5.23).
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In the proof of Proposition 5.7, we made use of the following statement:

Lemma 5.9. Let δ ∈ R and v ∈ EM . Then, for any R > 0, there exists a random �eld ζR,
with values in (0,∞) and with ζR(ρ)→ 0 almost surely as ρ→ 0, such that, for ∣y∣ ≤ R,

∥Xy∗t (v,δ)
t −Xy∗s (v,δ)

s ∥
2
≤ ζR(∣t − s∣), (s, t) ∈ [0, T ].

Proof. The proof follows from Remark 4.19, which says that the �ow ((Xy
t )0≤t≤T )y∈E∗,M

is jointly continuous in (t, y).

5.4 Dynamics under new probability measure

For δ ∈ R and v ∈ EM as before (with M ∈ N �xed), Proposition 5.8 prompts us to
implement Girsanov transformation in such a way that, for almost every y ∈ EM , under

a new probability measure Qy,(v,δ) depending on y, the process (W̃ y,(v,δ)
t )t≥0 de�ned via

Fourier modes by

⟨W̃ y,(v,δ)
t , em⟩ ∶= ⟨Wt, em⟩ − δ

T ∫
t

0
λ−1
m ∂y⟨X

y∗t (v,δ)
t , em⟩ ⋅ vds, t ≥ 0, m ∈ N0,

becomes a Q-Wiener process.

Of course, it must be stressed that, in the de�nition of ((⟨W̃ y,(v,δ)
t , em⟩)0≤t≤T )y∈EM ,

the integral process only exists for almost every ω ∈ Ω and for almost every y ∈ EM , see
the last line in Proposition 5.8. In order to remedy this issue, we use below the notation

χ
m,y,(v,δ)
t ∶= { ∂y⟨em,Xy∗t (v,δ)

t ⟩ ⋅ v if the derivative exists,

0 otherwise,
m ∈ N0, y, v ∈ EM ,

which allows one to extend the derivative when it does not exist.
Intuitively, the guess is that, for almost every y ∈ EM , the process (Xy∗t (v,δ)

t )0≤t≤T

solves under the new probability measure the various items of De�nition 4.13. As we
will see next, the main di�culty is in fact to verify (4.38). In order to de�ne the new

probability measure, it is convenient to de�ne here the processes Ly,(v,δ) = (Ly,(v,δ)t )0≤t≤T

as

L
y,(v,δ)
t ∶= ∑

m∈N0

∫
t

0
λ−1
m χ

m,y,(v,δ)
s dBm

s ,

for t ∈ [0, T ] an y, v ∈ EM . While we wish to let

dQy,(v,δ)

dP
∶= ET

⎧⎪⎪⎨⎪⎪⎩
δ
T ∑
m∈N0

∫
⋅

0
λ−1
m χ

m,y,(v,δ)
s dBm

s

⎫⎪⎪⎬⎪⎪⎭
= ET{ δT L

y,(v,δ)
⋅ }, (5.24)

where ET is a shorter notation for the Doléans-Dade exponential at time T , we are
not able to prove, at this stage of the proof, that this de�nes indeed a new probability
measure. For this reason, we employ a localisation argument by introducing the stopping
time

τy,(v,δ) ∶= inf{t ≥ 0 ∶ ∫
t

0
∑
m∈N0

∣λ−1
m χ

m,y,(v,δ)
s ∣2ds ≥ 2T 2

δ2
} ∧ T. (5.25)
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Then, we obviously have that

E[exp{1
2(

δ
T )2[Ly,(v,δ)⋅∧τy,(v,δ)]T}] = E[exp{ δ2

2T 2 ∫
T∧τy,(v,δ)

0
∑
m∈N0

∣λ−1
m χ

m,y,(v,δ)
s ∣2ds}] ≤ e.

Consequently, denoting (note that we omit the subscript (y, (v, δ)) in the index τ in the
left-hand side)

dQy,(v,δ),τ

dP
∶= ET{

δ

T
∫

⋅∧τy,(v,δ)

0
∑
m∈N0

λ−1
m χ

m,y,(v,δ)
s dBm

s } =∶ ET{ δT L
y,(v,δ)
⋅∧τy,(v,δ)}, (5.26)

one has a well-de�ned change of measure and the process (W̃ y,(v,δ),τ
t )t≥0 de�ned in Fourier

modes by

⟨W̃ y,(v,δ),τ
t , em⟩ ∶= ⟨Wt, em⟩ − δ

T ∫
t∧τy,(v,δ)

0
λ−1
m χ

m,y,(v,δ)
s ds, t ≥ 0 m ∈ N0, (5.27)

is a Q-Wiener process under Qy,(v,δ),τ .
Here is the main statement of this subsection:

Proposition 5.10. Let y, v ∈ EM and δ ∈ R. For τy,(v,δ) as in (5.25), let (omitting the
parameters (v, δ) in the notation y∗(v, δ))

X̃
y,(v,δ),τ
t ∶=

⎧⎪⎪⎨⎪⎪⎩

X
y∗t
t , t ∈ [0, τy,(v,δ)]

X
y∗τy,(v,δ)
t , t ∈ [τy,(v,δ), T ]

,

η̃
y,(v,δ),τ
t ∶=

⎧⎪⎪⎨⎪⎪⎩

η̃
y,(v,δ)
t , t ∈ [0, τy,(v,δ)]

η
y∗τy,(v,δ)
t − η

y∗τy,(v,δ)
τy,(v,δ) + η̃y,(v,δ),ττy,(v,δ) , t ∈ [τy,(v,δ), T ]

.

Then, for almost every y ∈ EM , the process (X̃y,(v,δ),τ
t , η̃

y,(v,δ),τ
t )0≤t≤T satis�es De�nition

4.13 under the probability measure Qy,(v,δ),τ .

Wile the notation looks complicated, the interpretation of (X̃y,(v,δ),τ
t , η̃

y,(v,δ),τ
t )0≤t≤T

is in fact quite simple: the shifting yt(v, δ) is enacted up until time t = τy,(v,δ).

Proof. Item 1 in De�nition 4.13 is easily checked by means of Proposition 4.18 and
Remark 4.19. Item 2 follows from Proposition 5.7 and item 3 from Proposition 5.8.
Notice that, in both cases, the properties are proved on [τy,(v,δ), T ] by applying De�nition

4.13 itself for the solution restarted from the random initial condition X
y∗τy,(v,δ)
τy,(v,δ) (omitting

the notation (v, δ) in y(v, δ)) and driven by the shifted version (Wt+τy,(v,δ) −Wτy,(v,δ))t≥0

of the noise.
The main di�culty is to check item 4 in De�nition 4.13. As above, it is in fact easily

veri�ed on [τy,(v,δ), T ] by applying De�nition 4.13 for the solution restarted from the

random initial condition X
y∗τy,(v,δ)
τy,(v,δ) (for instance, we may invoke item 4 for the restarted
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solution on the interval [τy,(v,δ), T + τy,(v,δ)] and then use the non-decreasing property of
the integral to get the result on [τy,(v,δ), T ]). The key point is thus to prove that, for

almost every y ∈ EM .

lim
ε↘0

EQy,(v,δ),τ [∫
τy,(v,δ)

0
e2ε∆Xy∗s (v,δ)

s ⋅ dη̃y,(v,δ)s ] = 0.

By Proposition 4.16, it su�ces to prove that the above convergence holds, for almost
every y ∈ EM , in Qy,(v,δ),τ probability, along a subsequence. Moreover, by the localisation
procedure (5.25), we have a bound on the moments of the density dQy,(v,δ),τ /dP and it
su�ces to establish the convergence in P probability only. Actually, since the integral is
non-decreasing in time, it is su�cient to address the convergence for the integral on the
entire [0, T ]. The argument is as follows. For ϕ ∈ C∞0 (EM) with non-negative values,
Proposition 5.4 yields, with probability 1,

∑
m∈N0

∫
EM

∫
T

0
⟨eε∆Xy∗

t , em⟩ϕ(yt(v,−δ))d⟨ηy
∗
t , em⟩dy

= lim
N→∞

∫
EM

ϕ(y)
N−1

∑
i=0

[⟨η̃y,(v,δ)ri+1
, eε∆X

y∗ri(v,δ)
ri ⟩ − ⟨η̃y,(v,δ)ri , eε∆X

y∗ri(v,δ)
ri ⟩]dy.

In the above identity, the �rst line is handled as (5.16). As for the second line, we can
invoke Proposition 5.7 and Corollary 4.8, and then regard the sum therein as a Riemann
sum associated with the integral

∫
T

0
(eε∆Xy∗t (v,δ)

t ) ⋅ dη̃y,(v,δ)t .

Recalling the inequality (4.27) together with Corollary 5.3 and the fact that, with proba-
bility 1, the �ow ((Xy

t )0≤t≤T )y∈E∗,M is jointly continuous (with values in L2
sym(S)), we can

easily exchange the limit (over N) and the integral (in y) in the second line. Therefore,
we have, with probability 1,

∫
EM

(∫
T

0
[ϕ(y∗t (v,−δ))eε∆X

y∗
t ] ⋅ dηy

∗
t )dy

= ∫
EM

ϕ(y)(∫
T

0
(eε∆Xy∗t (v,δ)

t ) ⋅ dη̃y,(v,δ)t )dy.
(5.28)

By combining Proposition 4.3, (4.24), (4.27), Corollary 5.3 and Proposition 4.18, we can
easily have a bound for (the expectation below is taken under P)

E [∫
T

0
[ϕ(yt(v,−δ))eε∆Xy∗

t ] ⋅ dηy
∗
t ]

that is uniform with respect to ε ∈ (0,1) and to y in compact subsets of EM . Therefore,
by item 4 in De�nition (4.13), we deduce that the expectation of the left-hand side in
(5.28) tends to 0 (with ε). Then, the expectation of the right-hand side also tends to 0
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(with ε). Recalling that ϕ is non-negative valued and assuming that ϕ matches 1 on a
given compact subset of EM , we deduce from Fatou's lemma that, for any R > 0,

∫
EM

1{∣y∣≤R} lim inf
ε↘0

E[∫
T

0
(eε∆Xy∗t (v,δ)

t ) ⋅ dη̃y,(v,δ)t ]dy = 0.

Therefore, for almost every y ∈ EM , there exists a subsequence (εq)q≥1 (possibly depend-
ing on y), with 0 as limit, such that

lim
q→∞

E[∫
T

0
(eεq∆Xy∗t (v,δ)

t ) ⋅ dη̃y,(v,δ)t ] = 0,

which implies convergence in probability, as we claimed.

5.5 Regularity

Now we arrive at the main statement of this section, which asserts that the semigroup
generated by the solution of the rearranged SHE maps bounded functions into Lipschitz
functions:

Theorem 5.11. Assume that λ in (3.1) belongs to (1/2,1). Let ((Xx∗
t )t≥0)x∈L2

sym(S) be
the �ow generated by the rearranged SHE, as de�ned in Remark 4.19. Then, there exists
a constant cλ, only depending on the exponent λ such that, for any t > 0, for any bounded
(measurable) function f ∶ L2

sym(S)→ R, the function

x ∈ L2
sym(S)↦ E[f(Xx∗

t )]

is Lipschitz continuous with cλt−(1+λ)/2 as Lipschitz constant.

Remark 5.12. It is important to notice that, for λ ∈ (1/2,1), the exponent (1 + λ)/2
is strictly less than 1. This guarantees that the rate at which the Lipschitz constant
blows up when time becomes small is integrable. This observation is expected to have
important applications for the analysis of related partial di�erential equations on P(R)
when driven by the generator of the process ((Xx

t )t≥0)x∈L2
sym(S).

Proof.
First step. We start with a bounded measurable function f ∶ L2

sym(S) → R. We are

also given a threshold M as in (5.1), a time horizon T > 0 and an element v ∈ EM . By
Proposition 5.10, we know that for almost every y ∈ EM , under Qy,(v,δ),τ , the process

(X̃y,(v,δ),τ
t , η̃

y,(v,δ),τ
t )0≤t≤T is the unique solution to the rearranged SHE started from y+δv

and driven by the tilted noise (5.27). By an obvious adaptation of the Yamada-Watanabe
theorem (to which we already alluded before the proof of Theorem 4.15), we deduce that
not only uniqueness holds in the strong sense (as guaranteed by Theorem 4.15) but it
also holds in the weak sense. Therefore,

E[f(X(y+δv)∗
T )] = EQy,(v,δ),τ [f(X̃

y,(v,δ),τ
T )], (5.29)
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where we recall the notations (5.25) and (5.26).

Second step. Following the notation (5.25), (pay attention that the initial condition below
is �xed and does not evolve with time) we let

τ̃y,(v,δ) ∶= inf{t ≥ 0 ∶ ∫
t

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X(y+δv)∗

s ⟩ ⋅ v∣
2
ds ≥ 2T 2

δ2
} ∧ T, (5.30)

recalling that the derivative in the integral is well de�ned, with probability 1, for almost

every (s, y). Since the law of (X̃y,(v,δ),τ
t )0≤t≤T under Qy,(v,δ),τ is the same as the law of

(Xy+δv
t )0≤t≤T under P, one has

Qy,(v,δ),τ({τy,(v,δ) ≤ T}) = P({τ̃y,(v,δ) ≤ T})

≤ P({∫
T

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X(y+δv)∗

s ⟩ ⋅ v∣
2
ds ≥ 2T 2

δ2
})

≤ δ2

2T 2
E[∫

T

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X(y+δv)∗

s ⟩ ⋅ v∣
2
ds]

= δ2

2T 2
E[∫

T

0
∑
m∈N0

∣(1 ∨m)λ∂y⟨em,X(y+δv)∗
s ⟩ ⋅ v∣

2
ds].

(5.31)

To estimate the above, return to Proposition 4.18. Taking expectation in (4.45), we
obtain for µ ∈ R and z ∈ EM ,

E [∫
T

0
∥Deε∆(X(y+µz)∗

r −Xy∗
r )∥2

2
dr] ≤ µ2∥z∥2

2.

Letting ε↘ 0 (by Fatou's lemma or by Corollary 4.12),

E
⎡⎢⎢⎢⎢⎣
∫

T

0
∑
m∈N0

m2∣⟨(X(x+µz)∗
t −Xz∗

t ), em⟩∣
2
dt

⎤⎥⎥⎥⎥⎦
≤ µ2∥z∥2

2. (5.32)

Dividing through by µ2 and sending µ to zero, we deduce from Fatou's lemma that the
last term in (5.31) is O(δ2∥v∥2

2) (for almost every y ∈ EM ), where the (big) Landau
symbol O(⋅) is uniform with respect to y, δ and v.

Then, returning to equation (5.29), one has that, for almost every y ∈ EM ,

E[f(X(y+δv)∗
T )] (5.33)

= EQy,(v,δ),τ [f(X̃
y,(v,δ),τ
T )1{T=τy,(v,δ)}] +EQy,(v,δ),τ [f(X̃

y,(v,δ),τ
T )1{τy,(v,δ)<T}]

= EQy,(v,δ),τ [f(X
y∗
T )1{T=τy,(v,δ)}] +O(δ2∥v∥2

2)

= EQy,(v,δ),τ [f(X
y∗
T )] +O(δ2∥v∥2

2). (5.34)
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Third step. By the second step, for δ ∈ R and v ∈ EM , and for almost every y ∈ EM ,

∣E[f(X(y+δv)∗
T )] −E[f(Xy∗

T )]∣ ≤ ∣EQy,(v,δ),τ [f(X
y∗
T )] −E[f(Xy∗

T )]∣ +O(δ2∥v∥2
2)

≤ ∥f∥∞dTV (Qy,(v,δ),τ ,P) +O(δ2∥v∥2
2).

where dTV is the distance in total variation (see [74, p. 22]) By Pinsker inequality (see
[74, Eq. (22.25)]), we get

∣E[f(X(y+δv)∗
T )] −E[f(Xy∗

T )]∣ ≤ ∥f∥∞

√
2EQy,(v,δ),τ (ln[dQ

y,(v,δ),τ

dP
]) +O(δ2∥v∥2

2).

By (5.26) and (5.32),

∣E[f(X(y+δv)∗
T )] −E[f(Xy∗

T )]∣

≤ ∥f∥∞
√

2EQy,(v,δ),τ (ln[ET{ δT L
y,(v,δ)
⋅∧τy,(v,δ)}]) +O(δ2∥v∥2

2)

= ∥f∥∞
δ

T
(EQy,(v,δ),τ [∫

τy,(v,δ)

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X

y∗t (v,δ)
t ⟩ ⋅ v∣

2
dt])

1/2

+O(δ2∥v∥2
2).

Since the law of (Xy∗t (v,δ)
t = X̃y,(v,δ),τ

t )0≤t≤τy,(v,δ) under Q
y,(v,δ),τ is the same as the law of

(Xy+δv
t )0≤t≤T under P, we get

∣E[f(X(y+δv)∗
T )] −E[f(Xy∗

T )]∣

≤ ∥f∥∞
δ

T
(E[∫

τy,(v,δ)

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X

(y+δv)∗
t ⟩ ⋅ v∣2dt])

1/2

+O(δ2∥v∥2
2)

≤ ∥f∥∞
δ

T
(E[∫

T

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X

(y+δv)∗
t ⟩ ⋅ v∣2dt])

1/2

+O(δ2∥v∥2
2).

(5.35)

By Cauchy-Schwarz inequality and by (4.45)�(5.32) and Proposition 4.18,

E
⎡⎢⎢⎢⎢⎣
∫

T

0
∑
m∈N0

∣λ−1
m ∂y⟨em,X

y+δv
t ⟩ ⋅ v∣

2
dt

⎤⎥⎥⎥⎥⎦
= E

⎡⎢⎢⎢⎢⎣
∫

T

0
∑
m∈N0

∣(1 ∨m)λ∂y⟨em,X(y+δv)∗
t ⟩ ⋅ v∣

2
dt

⎤⎥⎥⎥⎥⎦

≤ (E[∫
T

0
∑
m∈N0

(1 ∨m)2∣∂y⟨em,X(y+δv)∗
t ⟩ ⋅ v∣

2
dt])

λ

× (E[∫
T

0
∑
m∈N0

∣∂y⟨em,X(y+δv)∗
t ⟩ ⋅ v∣

2
dt])

1−λ

≤ c1−λ∥v∥2
2T

1−λ, (5.36)

for a constant c independent of y, v and λ.
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By combining (5.35) and (5.36), we get for every δ ∈ R and v ∈ EM and for almost
every y ∈ EM ,

∣E[f(X(y+δv)∗
T )] −E[f(Xy∗

T )]∣ ≤ cλ∥f∥∞T−(1+λ)/2δ∥v∥2 +O(δ2∥v∥2
2). (5.37)

Fourth step. We now assume that f itself is Lipschitz continuous. By Lipschitz continuity
of the �ow (Xy∗

T )y∈EM , the mapping y ∈ EM ↦ E[f(Xy∗
T )] is Lipschitz continuous (with

respect to the Euclidean norm on EM , which coincides in fact with the L2(S)-norm by
Parseval's identity). Therefore, (5.37) holds true for any δ ∈ R and y, v ∈ EM . Dividing
(5.37) by δ and then letting δ tend to 0, we get that the almost everywhere gradient of

y ∈ EM ↦ E[f(Xy∗
T )] is less than cλ∥f∥∞T−(1+λ)/2. Therefore, the Lipschitz constant

of y ∈ EM ↦ E[f(Xy∗
T )] is less than cλ∥f∥∞T−(1+λ)/2, with EM being equipped with

the L2
sym(S)-norm. Approximating any y ∈ L2

sym(S) by a sequence (yM ∈ EM)M≥1, we

deduce that the result remains true when the function y ↦ E[f(Xy∗
T )] is considered on

the entire L2
sym(S).

It remains to pass from a Lipschitz function f to a merely bounded (measurable)
function, but this may be regarded as a consequence of standard results in measure
theory, see for instance [63, Lem 2.2 p.160].
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