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Résumé La vérification formelle des réseaux de neurones a été largement étudiée ces dernières
années pour estimer la robustesse des réseaux de neurones face aux attaques.

Nous abordons le problème de spécifier des attaques génériques et composées sous forme de
domaines abstraits pour mieux caractériser les entrées d’un réseau de neurones et pouvoir
évaluer l’impact de leurs éventuelles perturbations. Nous considérons le cas réaliste avec
des attaques géométriques en perspective appliquées à des images couleurs et des effets
d’occultation sur les bords que nous corrigeons avec la méthode ”inpainting”. Nous étudions
l’effet de l’inpainting sur l’éxactitude de l’évaluation de la robustesse et estimer la différence
entre les attaques réélles et les attaques simulées.

Mots clés Rotation 3D, Interpretation Abstraite, Robustesse des réseaux de neurones pro-
fonds

Abstract The formal verification of neural networks has been widely studied in recent years
to estimate the robustness of networks against attacks. We address the problem of specifying
generic and compound attacks in the form of abstract domains to better characterize the
inputs of a neural network and be able to evaluate the impact of its possible disturbances.
We consider the realistic case with perspective geometric attacks applied to colour images
and occlusion effects on the edges that we correct with inpainting. We study the effect of
the digital inpainting on the robustness performance and evaluate the existing difference
between real and simulated attacks.

Key words 3D rotations, Abstract Interpretation, DNN robustness.

1 Introduction

Robustness of deep neural networks (DNN) is one of the most difficult tasks in machine learn-
ing domain. In the literature, DNN were often considered as an opaque box and their instability
against natural and synthetic disturbances called adversarial attacks has been proven [17],[12].
Thus, several recent work has focused on studying the robustness of deep neural network archi-
tectures in order to propose verification methods. In the literature, Ruan et al. [13] summarize an
overview of the developed approaches for deep learning robustness, such as Reluplex [6], DeepSym-
bol [8] and abstract interpretation [5]. Among these methods, we focus on those based on abstract



interpretation theory ([1], [15], [16]). Indeed, Singh et al. [16] proposed a DNN verifier called Deep-
Poly to evaluate brightness and 2D rotation attacks on deep images classifiers. In [14] and [10],
DeepPoly was extended to estimate the robustness of a DNN against 3D rotation and convolution
on images. In a recent work, 2D closed contours data was considered [7]. All the proposed method
which generalizes the notions of Upper Bound and Lower Bound and support the following attacks:
3D rotation, filtering and occlusion, was tested on simulated attacks and often on images with a
single object on a black background such as the MNIST database. However, in the real case, other
constraints can be added. Indeed, images are colored and the presence of several objects on a single
image is inevitable. Perspective effects and stretching may cause also appearance or disappearance
of regions. For these reasons, a more realistic case with compound attacks must be considered.
In this paper, we study how exact is the DNN robustness estimation using abstract interpretation.
The proposed work is aiming towards the applicability study of this certification method in the
real case and investigate the effect of the synthetic gap on robustness evaluation. As a use case,
we study the effects of the difference between simulated 3D rotation and realistic 3D rotation on
robustness value. In the last case, we use impainting method to fill the black pixels generated by
the 3D rotation. It is important to highlight that the same effect is visible for 2D rotation.

The remaining of this paper is organized as follows. Section 2 is dedicated to state the fun-
damental concepts of the Abstract Interpretation for robustness evaluation, 3D rotation theory
and the implemented approach for the inpainting. We demonstrate the different 3D rotation and
inpainting attacks on colored images within a perception context. In section 3, we present the new
algorithm to evaluate the robustness against each of these attacks. Our experimentation settings
and results are given in Section 4. Finally, in Section 5, we draw our conclusions and we discuss
some future perspectives.

2 Background

2.1 Abstract interpretation

Abstract Interpretation was developed by Cousot and Cousot [2] and adapted for logic functions
for computer programs by the same authors [3]. Recently, the abstract interpretation was adapted
for neural networks to create a new function which approximates and overestimates each step of a
given DNN architectures such as ReLU and convolution functions [5,9]. The approximation of each
step is called abstract transformer. Thus, for each function f in the DNN, an abstract transformer
Tf which overestimates the behaviour of f is constructed. In what follows, we recall in a synthetic
way some notions and notations as detailed by Gerh et al. [5].
Let X̄ be a given input. The original inputs perturbed by ε are denoted by RX̄,ε. Let CL be the
robustness condition that defines the output ensemble with the same label L, i.e the set of outputs
y describing the same label L. We denote Ȳ the set of each prediction for each element in RX̄,ε.

CL = {ȳ ∈ Ȳ | argmax ȳi = L} (1)

The (RX̄,ε,CL) property is verified only if the outputs OR of RX̄,ϵ are included in CL. However,
in reality, we have no knowledge about OR. The Abstract Interpretation is a proposed alternative
to face this shortcoming. In fact, it allows to determine an abstract domain thought transformers
and verifies the inclusion condition in new abstract domains αR, which is an abstraction of X̄. We
denote the output abstract domain αOR. The (RX̄,ε,CL) property is checked if the outputs αOR of
αR (the abstraction of RX̄,ε) are included in CL. In other words, the verification of ε perturbation
proves all perturbations smaller than ε.



2.2 3D rotation

The relationship between the object displacement and its projection on the image, can be
explained referring to the pinhole camera model described in [19]. Using the Pinhole model, one
can easily prove that there exist two elements ±k for every rotation r of the symetric space of the
rotation group SO(3) [18] such that:

k = ±
(
ā −b̄
b a

)
with,

a = ± cos(
ϕ

2
)e

i(ψ1+ψ2)
2 , b = ±i sin(ϕ

2
)e

i(ψ1−ψ2)
2

where ψ1 and ψ2 are the rotation angle in image plane, and ϕ is the rotation angle out of the image
plane [14]. Consequently, the rotation of the point z is denoted by:

k.z =
az + b

−b̄z + ā

2.3 Inpainting

The MNIST database, which contains only binary images, is not affected by the created black
parts in the image due to the rotation or translation. However, the colored images, such as CIFAR
database, which is closer to the real world, is more affected by the black parts added by the
rotation transformation, as illustrated in Fig. 1-b (Rgb image rotated with generated black regions).
The obtained images after rotation becomes not smooth and the evaluation of the robustness of
DNNs will may decrease by these black generated parts. To overcome this issue, an inpainting
and completion based on biharmonic interpolation method [4] is implemented. The biharmonic
interpolation is based on finding a function u describing the known parts in the image to fill
missed information by solving the following equation:

∆2u = 0 on Ω \ΩK
∂nu = 0 on ∂Ω

u = f on Ωk

where, ∆ denotes the Laplacian operator, Ω is the rectangular image domain, Ωk is the known
part in the image. ∂n denotes the derivatives normal to the Boundary, and f : Ω → R is smooth
function on a Bounded domain Ω with regular Boundary ∂Ω.

To define the missed regions in the image generated by the rotation, a white mask (matrix of
32 × 32, where each value is equal to 255) is rotated by the same angles. Then, a binary mask
is created separating a know and unknown region after rotation of the original image. Fig1-c
illustrates the three steps of inpainting of missed regions, which are, rotation, mask generation and
filling using the biharmonic interpolation.

3 Proposed approach

The workflow of the approach is divided into three main steps which are : (i) 3D rotation on
the three channels (RGB) of the colored image. (ii) Inpainting of missed regions in the rotated
image. (iii) Computation of Lower and Upper Bounds of each rotated image with inpainting using



(a) (b) (c)

Figure 1 – Example of 3D rotation of images from CIFAR database: (a): original image, (b) image
rotated using 3D rotation with dark regions generated by the rotation, (c) the final result with
rotation and inpainting.

abstract interpretation. Algorithms 1, 2 and 3 details the main stages of 3D rotation, implemented
in [14], bi-harmonic inpainting and abstract interpretation approaches, respectively.

Algorithm 1 shows the main steps of the rotation procedure for RGB image using the method
presented in section 2.2, followed by the Algorithm 2 for filling the missed region due to the rotation.
Thus, to estimate the robustness of a DNN against a 3D rotation R (ϕ, ψ1, ψ2) ∈ [−π, π], one have
to estimate the abstract domain expressed by Upper and Lower Bound and denoted by T ILB and
T IUB as presented in Algorithm 3. For this purpose, we begin by splitting the three intervals to
batches as described in Algorithm 3. Moreover, for each batch, we call Algorithm 1 coupled with
Algorithm 2 (if we apply impainting) to compute the Lower and Upper Bound TLB and TUB for
a given 3D rotation. By enumerating all possible integer values of clow, chigh, vlow and vhigh, we
can identify a polygon where the pixel (x′, y′) (transformation of the pixel (x, y)) is located. If the
pixel is in the center of the image, we do not perform special processing. Else, if the pixel is in
the edges of the image, we apply the interpolation to know the three RBG values. To verify that
for any image I ∈ X, for any angle ϕ ∈ [ϕmin, ϕmax] and any angle ψ1 ∈ [ψ1

min,ψ
1
max] the neural

network N classifies Iϵ=(ϕ,ψ1) to the class of I, we cannot simply enumerate all possible rotations
as done for simpler rotation algorithms and concrete images. [11]

4 Results

Our experimentation is achieved on CIFAR 10 dataset which consists of 32× 32 color images
categorized into ten classes. The proposed approach is implemented using DeepPoly 1 method
developed by [16], where six architectures are implemented and tested for different angles. Table 1
summarizes the type, number of layers and the activation function of each architecture.

1. https://github.com/eth-sri/eran



Algorithm 1 Rotate Image Im by 3D rotation

1: procedure Procedure Image Rotation
Input: Im ∈ [0, 255]m×n×3;ϕ, ψ1, ψ2 ∈ [−π, π]; T , TLB , TUB ∈ [0, 255]m×n×3

2: (a, b) = (cos(ϕ
2
)e
i(ψ1+ψ2)

2 , i sin(ϕ
2
)e
i(ψ1−ψ2)

2 )
3: for d ∈ {1, 2, 3} do
4: I = Im[:,:,d]
5: for c ∈ {1, . . . ,m}; v ∈ {1, . . . , n} do
6: (x, y, z) = (c− m+1

2
, n+1

2
− v, x+ iy)

7: z = (az+b)

−bz+a
8: (y′, x′) = (Im(z), Re(z))
9: (c′low, c

′
high)← (max(1, m+1

2
− y′),min(m, m+1

2
− y′)

10: (v′low, v
′
high)← (max(1, x′ + n+1

2
),min(n, x′ + n+1

2
)

11: RLowc,v ← min(255,minc′∈[c′
low

,c′
high

],v′∈[v′
low

,v′
high

] I[c
′, v′]

12: RHightc,v ← max(0,maxc′∈[c′
low

,c′
high

],v′∈[v′
low

,v′
high

] I[c
′, v′]

13: t←
∑c′=c′high,v

′=v′high
c′=c′

low
,v′=v′

low
max(0, 1−

√
(v′ − x′)2 + (c′ − y′)2)

14: t′ ←
∑c′=c′high,v

′=v′high
c′=c′

low
,v′=v′

low
(max(0, 1−

√
(v′ − x′)2 + (c′ − y′)2)× I[c′, v′])

15: if t ̸= 0 then
16: T [c, v]← 1

t
× t′

17: TLB [c, v]← min(TLB [c, v], R
Low
c,v )

18: TUB [c, v]← max(TUB [c, v], R
Hight
c,v )

19: else
20: T [c, v], TLB [c, v], TUB [c, v]← 0

21: Return T, TLB , TUB

Algorithm 2 Biharmonic Inpainting Algorithm

procedure biharmonic Inpainting
Input: rot image ∈ [0, 255]m×n×3, mask ∈ [0, 1]m×n

2: for i ∈ {1, ...,m}; j ∈ {1, .., n} do
pixel mask = mask(i, j)

4: if pixel mask == 0 then
inpaint image(i,j) ← biharmonic interpolation(i,j)

6: else
inpaint image(i,j) → rot image(i,j)

8: Return inpaint image

Algorithm 3 Lower and Upper Bound for 3D Rotation (on a rotation interval)

procedure Procedure Rotation Lower Upper Bound
Input: I, T ILB , T

I
UB ∈ [0, 255]m×n×3; bsϕ, bsψ1 , bsψ2 ∈ N

ϕmin, ϕmaxψ
1
min, ψ

1
max, ψ

2
mmin, ψ

2
max,∈ [−π, π]

(stepϕ, stepψ1, stepψ2)=( |ϕmax−ϕmin|
bsϕ

,
|ψ1
max−ψ

1
min|

bsψ1
,
|ψ2
max−ψ

2
min|

bsψ2
)

3: Compute lists ϕall, ψ
1
all, ψ

2
all of all values using their respective steps

for (ϕ0, ψ
1
0 , ψ

2
0) ∈ (ϕall, ψ

1
all, ψ

2
all) do

(T, TLB , TUB)← IMAGE ROTATION(I, ϕ0, ψ
1
0 , ψ

2
0)

6: T ILB = min(T ILB , TLB)
T IUB = max(T IUB , TUB)

Return T ILB , T
I
UB



Table 1 – Implemented neural network architectures for robustness evaluation
Model Type Layers Activation

4× 100 fully connected 4 ReLu

6× 100 fully connected 6 ReLu

9× 200 fully connected 9 ReLu

ConvSmall convolutional 3 ReLu

ConvMaxpool convolutional 9 ReLu

For each architecture, a metric performance of robustness (Rts) is computed following the
equation given below:

Rts =
#V I

#CI

where #V I and #CI denotes the number of verified images and well classified image respectively.

The parameters of the the three angles are given below:
— Plane rotation (ψ1 and ψ2):

— the angles ψ1 and ψ2 are equal.
— ψ1, ψ2 include to [0, 30◦]
— the interval of each angle is split into 30 batches (1 batch = 1◦)

— Spatial rotation (the third dimension ϕ)
— ψ1, ψ2 include to [0, 10◦]
— the interval is split into 50 batches (1 batch = 0.2◦

The results of our method encompass the effect of two controlled attacks, which are the plane and
the spatial rotations, and one unwanted and uncontrollable attack generated by the inpaiting and
the filling of missed regions. Indeed, as illustrated in figure 2, where only the top line and the
left column are missed (2-b) and filled by the biharmonic interpolation (2-c), the image is miss-
classified by 4-fully connected layers network (the first model in the table 1). To isolate the effect
of the inpainting attack, we evaluated the attack between the original images and the oriented
images with null angles (occlusion of the top line and the left column then inpainting). Figure
3 shows that all models are sensitive to inpaiting step. We can see that the most sensitive and
unstable model is the ConvSmall with 41% of robustness followed by 4 × 100 model with 88%.
The 6× 600, 9× 200 and ConvMaxpool models exceed the 90% of robustness with 98%, 92% and
97% respectively. According to the discussion above, the inpaiting step could affect randomly the
robustness of the model for large angles.

5 Conclusion

The estimation of DNN robustness is very important step towards the a validation of a percep-
tion system. The abstract interpretation theory and other robustness evaluation approaches could
be helpful. However, the gap between the simulated perturbation and the real perturbation impact
overly the robustness value. By applying the inpainting, it is impossible to evaluate the effect of
the perturbation and the effect of the restoration due to the inpainting step. Therefore, even if the
attacks are realistic and physically interpretable, the robustness evaluation of the model cannot
be proven only for the perturbation. The obtained results show the additional generated synthetic
perturbation such as the inpaiting in the current case.



(a) original im-
age

(b) oriented
image with zero
degree for all
angles (ϕ and
ψ1, ψ2)

(c) oriented im-
age with inpaint-
ing. Image clas-
sified as horse-
class instead of
dog-class

Figure 2 – Effect of the occlusion due to 3D rotation: (a) classified as dog and (c) classified as horse

Figure 3 – Inpainting effect and model comparison
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