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Continuous and Event-Driven Causality: A Simple Model-Based Approach

The concept of causality, though inherently challenging, plays a key role in dynamical systems, including the physical world at large. As typically approached in the physical sciences, the representation of a phenomenon of interest as a preliminary model can substantially contribute to its more objective characterization and understanding. In the present work, we describe a model-based approach to two types of causal effects respectively to the specific case of signals unfolding along time: namely continuous and event-driven. The former type is characterized by the continuous transformation of a signal into another, such as by a functional relationship. The latter case corresponds to an event along one of the signals implying a causal effect on a binary state or memory. After describing and illustrating these two types of causation in terms of respective basic models, simple respective approaches for identifying potential causality are described and illustrated. "... we live in a universe where, except possibly for the laws of physics, nothing remains unchanged.

Introduction

It has long been observed that we live in a universe where, except possibly for the laws of physics, nothing remains unchanged. Thus, our universe can be understood as a dynamic system that can hypothetically be represented, to some resolution, as a myriad of states separated in space, changing according to mutual influences. Figure 1 illustrates the representation of a small portion of the physical world in terms of a respective network in which states are represented as nodes, while influences between these states take place through respective links or connections. Needless to say, these representations are limited to some resolution and to chosen types of observable states and interactions.

A state variable, or simply state, can be understood as the measurement of some physical property of a delimited portion of the universe at a given time. As such, each state variable can be represented as a respective dynamical signal x(t) associated to a respective stochastic pro-Figure 1: A small portion of the physical world represented, to some resolution and respectively to specific types of state and influence, in terms of a respective network. Each node represents a state x i (t) whose value can vary along time, while the links express influences between pairs of states. The dashed links refer to connections to the remainder of the physical world.

cess. Possible examples of state variables include average temperatures within delimited volumes of space (or individual entities), the fact whether a living being is sleeping or awake, as well as the values of individual bits (or other chunks of data such as bytes, etc.) in a digital computer system.

The current value of a state variable can be influenced by other state variables. As a simple example, we have the fact that one sleeping individual can be awaked by another individual. In principle, there is a wide range of possible influences between states, ranging from more elementary interactions such as energy or mass flows to extremely complex information-intensive influences including those in ecologic, weather and socio-economic networks.

Figure 2 illustrates two signals x(t) and y(t) defined along time. Is there any causal relationship between these two signals? If so, how can this be inferred mathematically? In case the two signals are causally related, in which manner this interdependency is manifested?

Figure 2: Is there any causal relationship between these two signals x(t) and y(t)? How can this be determined mathematically? The possible answer developed in the present work may come as a surprise.

The modeling of physical systems in terms of networks, as briefly outlined above, relates direct and unavoidably to the key concept of causality (e.g. [START_REF] Granger | Some recent development in a concept of causality[END_REF][START_REF] Salmon | Causality and explanation[END_REF][START_REF] Pearl | Causality[END_REF][START_REF] Bunge | Causality and modern science[END_REF]), which constitutes the focus of interest of the present work.

Perhaps as a consequence of its essential importance in the physical world, at least from the point of view typically taken by humans, the concept and definition of causality, not to mention its mathematical modeling and identification, have motivated much debate and discussions (e.g. [START_REF] Salmon | Causality and explanation[END_REF][START_REF] Pearl | Causality[END_REF][START_REF] Bunge | Causality and modern science[END_REF]). One important point to be born in mind when approaching causality is that this concept is inherently related to somewhat subjective human interpretation. In other words, though many humans seem to promptly understand what causality is, it is often much more difficult to define this property in a full objective, mathematical manner.

Basically speaking, causality is often understood as the fact that some state variable X may determine or cause a change on another state variable Y . However, this is a recurrent definition and we are left with the task of specifying what determining means. One first important aspect is that the influence of X on Y can only proceed forward, and not backward, along time. Another seemingly intrinsic property of causality seems to be its directionality, in the sense that one effect can causally influence another, while not necessarily implying a reverse influence.

At the same time, causal operation seems to be related to irreversibility in the sense that, once triggered, the effect X on Y can no longer be avoided, even though this influence can last for only a period of time. However, there are several other important complementary aspects related to causality, including whether it is binary or graded, how it relates to determinism and stochasticity, the possibility of effects being delayed, superimposed or memorized, among other possibilities. It is possibly the challenge of conciliating and integrating of all these effects that has constituted one of the main substantial obstacle to progressing more deeply into causality and its modeling and identification.

The fundamental importance of causality in science and modeling has been reflected in a literature that is large enough to the point that it cannot be effectively revised in the relatively brief current work. We refer to interested reader to some comprehensive works (e.g. [START_REF] Salmon | Causality and explanation[END_REF][START_REF] Pearl | Causality[END_REF][START_REF] Bunge | Causality and modern science[END_REF]), and references therein, for additional information on causality. However, given that we shall concentrate on conceptually characterizing causality and then developing respective models, it is interesting to briefly provide respective context in terms of a few more closely related works. Among these, the concept of Granger causality and related approaches [START_REF] Granger | Some recent development in a concept of causality[END_REF][START_REF] Hiemstra | Testing for linear and nonlinear Granger causality in the stock price-volume relation[END_REF][START_REF] Baccalá | Partial directed coherence: a new concept in neural structure determination[END_REF][START_REF] Bressler | Wiener-Granger causality: a well established methodology[END_REF][START_REF] Grassmann | New considerations on the validity of the Wiener-Granger causality test[END_REF]. Briefly speaking, this approach aims at, given two time series X and Y , evaluating how any of them can be forecast by the other respectively to one or more time lags. By using statistical concepts and approaches, including regression, the possible influence of the values in X on subsequent values of Y is evaluated, frequently in terms of t-or F -tests. Formally speaking, Granger causality cannot be taken a a definitive evidence for causality, given that additional issues reaching to the philosophical level are often involved. Typically, Granger causality focuses on the relationship between two signals. Thus, situations such as that in which a third signal causes X and Y are not straightforwardly approachable. Signals that are not stationary or that involve non-linear relationships imply additional difficulties to Granger causality analysis, requiring more specific and ellaborate approaches.

The present work is aimed at considering two possible manifestations of causality, which are here identified as continuous and event-driven. The former of these types, as addressed here, is relatively simple and involves simply the continuous transformation of a signal x(t) into another signal y(t), such as in a functional relationship y(t) = cos(x(t)). In this case, the signals and relationships can be of any type, provided that they are bounded.

The second type of causality addressed in the present work focuses on the study of possible influences between events taking place along time in the signals x(t) and y(t). By event it is meant an occurrence of some particular sequence of values, which can be understood as a pattern, within a window W of width ω along any of the two sig-nals. In principle, events are completely general and can refer to any possible signal along W including, for instance, a sinusoidal oscillation or an abrupt signal variation. Moreover, these events can present some statistical variability (e.g. as a consequence of noise/interferences), therefore implying stochastic concepts and approached to be respectively applied.

A given event in one of the signals may cause another event, also of generic nature in the other signal. The estimation of possible causal relationships therefore involves the identification of the expected types of events. The present work focuses on abrupt positive variations of the signal at a given time t, in which the signal increases its value abruptly, therefore implying a high first derivative value. This type of event is frequently found in digital electronics and sequential circuits (e.g. [START_REF] Taub | Digital integrated electronics[END_REF][START_REF] Mccluskey | Logic design principles with emphasis on testable semicustom circuits[END_REF][START_REF] Micheli | Synthesis and optimization of digital circuits[END_REF]), on which the described approach has been partially motivated.

We shall start by defining a sequence of characteristics here assumed to underlie of causality, from which a textual possible description of causality is derived. A respective model is subsequently developed, focusing on abrupt events along time-discrete pairs of signals, and a simple approach for estimation of possible event-driven causality identification is then suggested and illustrated respectively to some basic signals.

It should be kept in mind that the considered concepts and methods are relaitively informal, preliminary and subject to further analysis and validation. In particular, the suggested method for identifying possible causal relationships between two time-discrete causal relationships from abrupt signal variations can only provide preliminary indication of possible causal relationship between signals, to be further investigated by complementary additional approaches methods.

At the same time, the lack of indication of possible causal relationship should not be understood as absence of this type of relationship for several reasons including the possibility of the causation involving events not corresponding to abrupt positive signal variations, among other possibilities.

Toward Causality

In this section we develop, step-by-step, the model-based approach to causality to be employed to signals in the current article.

We will henceforth consider two signals x(t) and y(t) taking real values along time t, An event is understood as any of these signals transitioning from a previous value v p to a subsequent value v s v p (it is also possible to alternatively consider v s v p ).

For simplicity's sake, we shall indicate the occurrence of events along signals x(t) and y(t), with lag > 0, as A = 1 and B = 1, with A = 0 and B = 0 indicating that the events have not taken place.

We now proceed to the following preliminary textual characterization of causality as:

An event A can be said to cause another event B if and only the latter takes place whenever A has happened, and only in that case.

We observe that alternative approaches can be taken to causality, so that the above perspective is intrinsic to the present work and should not be considered definitive or general. In addition, our approach will incorporate two additional aspects to causality slightly modifying the above conceptual definition: (i) the causality can be externally inhibited; and (ii) the event A will not cause event B if it happens while a previous event B is taking place.

The reason for the assumption (ii) above (which can be modified if necessary) is that, if every instance of A would caused B, it would be necessary to have some scheduling mechanism incorporated into the system, which would be able to queue the events and scheduling then to cause respective events B with varying lags. This would also require additional constraints on the timing of A in order to avoid jamming the causality (e.g. events A taking place continuously at time intervals smaller than the lag).

Figure 3 illustrates the basic concept of causality adopted in the present work. The occurrence of event A along signal x(t) causes a respective event B to take place along signal y(t). There are several possible types of events, including a period of sinusoidal oscillation, an smooth increase of values, or abrupt positive or negative transitions, among many other possibilities. In addition, it should be kept in mind that the observation of these events often incorporates some statistical variations induced by noise and influences from other parts of the system. A possible candidate for relating the events that comes to mind would be in terms of the implication logical connective, i.e.:

A =⇒ B

The logical table for this specific connective is presented in Table 1. from which we can readily appreciate that this connective allows B to take place even when A = 0, therefore not closely reflecting the initial textual characterization of causality as above.

A B A =⇒ B 0 0 1 0 1 1 1 0 0 1 1 1
Let us now consider as a possible alternative the logical and connective (e.g. [START_REF] Da | On counterexamples and outliers[END_REF]), specified in Table 3. Now, event B only takes place whenever A is also verified, and only in that case. However, the literal interpretation of this table could mean that the two events happen simultaneously. The problem with this instantaneous property is that it does not convey the direction of the causality, seeming to imply that A causes B and vice-versa.

A B A ∧ B 0 0 0 0 1 0 1 0 0 1 1 1
In order to incorporate directionality to causation, which is actually implied by our previous consideration of the lag , we will henceforth resource to the symbol A -→ B, indicating that event A causes B after some lag or delay . For generality's sake, we shall assume that can be as small as an infinitesimal value, while being maximally a finite quantity.

It is also interesting to consider that, in the real world, a causal relationship can often be modulated or inhibited, in the sense of not remaining enabled all the time. We shall approach this aspect by incorporating an additional reset control signal r, which can be incorporated into the above suggested notation as:

A --→ r=0 B (2) 
which means that the event A = 1 causes event B = 1 after a delay provided r remains at value 0 from the time the former event takes place up to a subsequent time period larger than . Observe also that it is understood that B = 0 whenever r = 1, which therefore provides a means for inhibiting the respective causation.

r A B A --→ r=0 B 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 0
Table 3: The modeling of signal causation as understood in the present work. Event B in signal y(t) will be caused provided r = 0 and event A is verified in signal x(t).

Another important aspect related to causality concerns irreversibility, which we shall understand as the fact that, provided the causation starts and remains enabled, the occurrence of event A = 1 will neccessary and inexorably imply B, leading to the caused signal transitioning to 1 after and remaining there for at least a time period τ > 0.

In addition, though alternative approaches can be considered, in the present work it is henceforth understood that, once the causation has been initiated by the occurrence of A = 1, no further causations can take place until the previous causation dynamics has terminated, which is understood as the logical variable B returning to value 0.

In the light of the aforementioned characteristics of causality assumed in this work, we have that while it is possible that one event A in signal x(t) may not cause a respective event B in signal y(t), as a consequence of the causality being inhibited or because event A taking place while event B is happening. However, an occurrence of an event B in y(t) will necessarily happen whenever A takes place otherwise. Thus, in case signal x(t) is causing events in signal y(t), an event A may not lead to an event B, but and event B can only take place if preceded by and event A.

In the next section we will bring all the above concepts and assumptions together in a respective modeling framework characterized by respective timing diagrams.

Event-Driven Causality by Positive Transitions

In this work, we will be limited to events corresponding to positive abrupt transitions along the signals x(t) and y(t). The diagram in Figure 4 depicts the respectively adopted model of our approach to event-drive causality.

Figure 4: Basic model of even-driven causality, corresponding to the activation of the binary state Ω as as an effect (or causation) by the signal x(t), implying an output ω. Provided the binary stat is not activated, and that r Ω (t) = 0, a pulse (see Fig. 5 for respective details) is necessarily obtained as a causation of the input signal x(t) transitioning from a value x(t) < T to a given threshold T . The output of each module can be reset at any time by the respective binary control signals rx(t) and r Ω (t). Observe the squircle representation henceforth adopted to represent binary causal states, and the double circle used to indicate a source signal.

As it does not depend of any other signal internal to the system, the signal x(t) is considered to be a source, being henceforth represented by a double circle node. A source can be understood to be an input stimulus or perturbation into the system, which can be have deterministic or stochastic nature. The latter type of stimuli, also called random cannot be fully predicted while taking into account all the information from the observable portion of the system.

In Figure 4, the source signal x(t), possibly inhibited by an external r x (t), is fed as input into the binary state Ω(), which can be possibly inhibited under the control of r Ω (t). By binary it is meant that the state can only take values 0 or 1. The inhibitory control signals operate as described in the previous section. The output ω(t) of the state Ω() is taken as the caused signal y(t).

Let us start with both signals being initially at zero value. Please refer to the time diagram in Figure 5(a). Once the input signal x(t) transitions from a value v to v + R > v, which is considered as an event, Ω will enter a transient state a, with lag duration t a , along which the causation cannot be disabled, but the output ω(t) is still at zero value. After t a , the output goes to 1 and remains at that value at least during t b along the stage b.

The above described causation cannot be reset during the stages a and b. Afterwards, unless a respective reset is activated, the output will remain at value 1 in stage c, during a period of time t c . The timing diagram defining the reset action, shown in Figure 5(b), consists in a positive transition of r Ω (t), after stages a and b, implying the output to transition to 0. In addition, during stages a to c, any eventual additional positive transitions in x(t) will be ignored.

Thus, given that the duration of stage c depends on the inhibition control action, the output along stage a followed by b can be understood as corresponding the event that necessary takes place under causation of the input x(t). Yet, to an observer, it is only the output transition from 0 to 1 taking place during stage b that allows the possible respective identification of the event-driven causality. That is why we have highlighted the stage b in red in Figure 5(a). The time period t a + t b can be understood as a refractory period, along which the state undergoes its dynamics independently of possible external influences. As a simple example of even-driven causation, we could mention playing a piano key. Some microseconds after the key is struck, required for the hammer to move from its rest position to the string, we will have the string vibrating for a variable period of time (until the key is released or the energy is mostly dissipated).

Continuous Causality

In the above discussed even-driven causality, we had an event taking place along one of the two signals causing a respective event in the other signal after a time lag > 0.

A particularly interesting situation is defined as the lage is progressively reduced, up to an infinitesimal value as close as possible to zero, but not equal to zero, i.e.:

0 = lim →0 (3)
Though infinitesimal, this lag 0 is here understood to be enough to implement the afterward effect of causality. This specific situation is henceforth called continuous causality.

A possible manner to model continuous causation is in terms of mathematical functions, i.e.:

y(t) ≈ y(t + 0 ) = f (x(t)) (4)
where f (t) is a generic bound function. Figure 6 illustrates the continuous causality implemented by mathematical functions considered in the present work. As a simple example of continuous causation, we could mention the electric current from a battery respetively to the light intensity generated by a respectively attached flashlamp: the light goes on and off subsequently to closing or opening the circuit.

Continuous causation can also take place through functions involving more than one input variable (arguments). In addition, continuous and more general event-driven components can be integrated into a same dynamic system. Interestingly, the operations of differentiation and integration of a signal, yielding respective resulting signals, can be understood as continuous causation respectively to the original signal being differentiated or integrated. Observe that, in the case of integration, initial conditions (states) need to be specified.

Recognizing Continuous Causality

In this section we describe a possible approach to be applied as an estimated means to identify continuous causal relationship between two signals x(t) and y(t). One possible manner to do so consists of experimentally recording the two signal values during a given period of time, as illustrated in Figure 7.

Then, these two signals can be plotted one in terms of the other, yielding a scatterplot revealing possible func- tional relationship between the two signals. More specifically, in case this relationship is well-defined, it is possible that y(t) is being continuously caused by x(t). Statisitical and information science-based concepts such as the Pearson correlation coefficient, conditional entropy and mutual information (e.g. [START_REF] Cover | Elements of Information Theory[END_REF]), among other possibilities, can be used to provide estimations of the level of interrelationship between signals. Observe that the Pearson correlation coefficient assumes a linear relationship between the two signals.

Figure 8 presents the scatterplot obtained for the two signals in Figure 7. A well-defined relationship between the two signals can be observed, suggesting possible causal influence. 7 represented as a respective scatterplot. The well defined relationship, which can be found to correspond to the power function f (x) = x 2 , can be observed suggesting causality between the two signals.

In the paragraph above, we said 'possible' because it may happen that the observed relationship arises from other mechanisms. For instance, though highly improbable, an observed relationship could be obtained only as a consequence of statistical fluctuations. In this case, the signals can be observed for longer periods of time, in which case the possible random origin of the relationship may become progressively more or less likely.

Another possible reason for observing a functional relationship between two signals is illustrated in Figure 9.

Here, we have that, though mathematically identical, signals x(t) and z(t) relate differently to the signal y(t). More specifically, unlike signal z(t), the signal x(t) is not connected to the node () 2 . Thus, x(t) cannot have any influence whatsoever on y(t), while the latter signal is caused by z(t). This type of situation cannot be identified simply from the respective scatterplot. Therefore, the verification of possible causation between signals involves knowledge/access to the respective physical system, e.g. by disconnecting the link between the nodes cos(t) and () 2 and observing the effect on y(t). The type of situation shown in Figure 9 leads to the conclusion that causality extends beyond the intrinsic information contained in the observed signals, meaning that possible indications of causality obtained simply by analyzing those signals need to be complemented by information about their respective interconnections, as well as eventual modification of connections in order to evaluate the respective effects on the observed signals.

Figure 9: A situation in which, though mathematically identical, signals x(t) and z(t) differ completely regarding their possible causal effects on signal y(t). In other words, y(t) can be understood as being continuously caused by z(t), while remaining completely independent of signal x(t). Now, consider that the signal y(t) receives as input both the signals x(t) and z(t). Therefore, there would be two causal effects: one from x(t) onto y(t), and another from z(t) onto y(t). Though this would not change the observed dynamics, the causality interconnections would now incorporate redundancy, in the sense that y(t) would retain its dynamics even if its interconnections with x(t) or z(t) were removed. The identification of the respectively implemented causality interrelations would require taking into account both connections, and possibly removing all their possible combinations. For instance, in case the connection from x(t) to y(t) is removed, no change would be observed in the dynamics of y(t), suggesting no respective causation. It would be necessary to remove both inputs to y(t) in order to identify the causation in this particular example.

Figure 10 illustrates, respectively to the system configuration in Figure 6, the continuous causal influence of a source signal x(t) respectively to the situation in which the signal x(t) corresponds to uniform noise in the interval [-1, 1] on signal y(t) = (x(t))

2 .

A scatterplot similar to that in Figure 8 is obtained also for the two signals in the figure. It is interesting to consider the effect of noise not only as a signal source in the previous example, but also as an incorporated influence or perturbation, as illustrated in Figure 11. A typically obtained resulting scatterplot is illustrated in Figure 12. It can be readily seen that added noise tends to blur the otherwise well-defined continuous causation between the signals, yielding a scattered set of points. However, in the case of this specific example, the relationship () 2 can still be discerned, suggesting possible continuous causation between the two signals, to be further verified and confirmed by application of complementary concepts and methods. 11. A scattered relationship of the type () 2 can now be observed, with a relationship similar to that in Fig. 8 being obtained between the signals x(t) and y(t) in this particular example.

Recognizing Event-Driven Causality

In this section, we proceed to addressing the issue of identifying possible causal effects between events taking place along a signal and a binary state or memory, according to the basic model of causality from a signal into another as illustrated in Figure 4. By event it is henceforth meant an abrupt positive of the signal values taking place along time. For simplicity's sake and compatibility with numerical approaches, time is herein represented in terms of a sequence of discrete values up to a given resolution ∆t.

We will describe a possible approach to identifying event-drive causality in terms of the following specific case-example related to the signals x(t) and y(t) presented in Figure 2. The scatterplot between these two signals, presented in Figure 13, does not seem to suggest any welldefined relationship between the two signals.

Given that our approach assumes events corresponding to abrupt positive transitions, it becomes interesting to estimate (e.g. numerically, by using finite differences) the derivatives dx/dt and dy/dt of the signals x(t) and y(t), which are respectively shown in Figure 14.

Several peaks with relatively large magnitudes can be observed along the estimated first derivatives, which can be isolated by keeping only the derivative values that are larger than a given threshold T . Here, we set T = 0.5, yielding the peak-detected signals shown in Figure 15.

The peaks along the two signals in Figure 15 correspond to possible indications of events along the two respective original signals x(t) an y(t). In order to try to recognize possible causal relationships between these obtained peaks, we obtain the scatterplots between the thresholded derivative signal derived from x(t) and lagged versions of the thresholded derivative of y(t), resulting in the scat- terplots shown in Figure 16 respectively to lags varying from 1 to 9. As in this example we are interested in indications about the causation of x(t) on y(t), the considered lags refer to delayed versions of the latter relatively to the former.
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In the case of this particular example, the observed indication of possible causation of x(t) over y(t) is indeed correct. Figure 18 presents the model used to generate those signals, where z(t) corresponds to a source signal of positive pulses taking place with probability 0.1 which, after addition with a noise source yielding the signal x(t), causes ω(t), which is then mixed with uniform noise, yielding the observed signal y(t). The period of time corresponding to t a +t b +t c can also be estimated as being upper limited by the smallest time difference between each pair of the identified successive events. In the case of the above example, we have that t b + t c ≈ 28 time steps, which is close to the exact value It is interesting to observe that, as a consequence of the lag = 5, some of the positive transitions in x(t) did not imply in a respective positive transition in y(t) by happening while a previous causation was taking place.

The identification of the possible lag parameter = 5 from the results in Figure 16 was performed by visual comparison between the respective scatterplots. It is also possible to obtain a quantitative estimative of the indication of presence of causality by taking into account the grouping of points so that x(t) ≥ T and y(t) ≥ T , where T is a suitable threshold chosen in terms of the magnitudes of the obtained signal positive transitions. In the case of the present example, we choose T = 0.5, which had already been used for identifying the points in red in Figure 16.

Among the several possible approaches for quantifying, respectively to each considered lag , the indication of causality from the obtained group of the points so that x(t) ≥ T and y(t) ≥ T , we stack their respective coordinates into a vector p, and apply the following equation:

g( ) = n C( p, 1) (5) 
where n is the number of elements in p, C( a, b) is the coincidence similarity (e.g. [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF]) between two nonzero vectors with positive entries a and b, and 1 is a vector with the same dimension of p having all elements equal to 1. The choice of 1 considered the obtained positive transitions in the signals of the particular example, so that alternative values are likely needed to be selected in other cases.

Figure 19 presents the values of g( ) obtained for the above example. A pronounced peak can be identified at = 5.

Figure 19: The quantification of the possible presence of causality in the above example, for each lag , derived by using Eq. 5 considering the group of points so that x(t) ≥ 0.5 and y(t) ≥ 0.5.

A Brief Digression on Determinism

Together with causality, the concept of determinism constitute two of the most important and challenging scientific issues. At the same time, these two concepts are intrinsically interrelated. Thus, having addressed causality in the previous sections of this work, it becomes particularly interesting to briefly address the concept of determinism, which is done in the present section.

In principle, determinism is the property of a system, given identical initial conditions (values of the existing states) and sequence of stimuli from sources, to undergo exactly the same dynamics. An important consequence of this property is that, provided we have access to the initial condition and sequence of stimuli, it becomes possible to foresee the complete dynamics unfolded by the system under those conditions.

One of the greatest current challenges in science consists of deciding whether our universe is or not deterministic. A first important constraint is to have access to the fully accurate and complete initial state and sequence of stimuli, which is virtually impossible. However, it is still interesting to discuss whether, provided we had access to those information, the physical world could still be deterministic as implied by assumed laws and hypothesis.

Consider the systems depicted in Figure 20, which is assumed not to incorporated random sources (i.e. all source signals are deterministic).

The closed system in (a) can be deemed to be istic, because its dynamics can be fully predicted provided the initial state and source signals are known. The portion of the system in (b) delimited by the dashed contour However, the open system as that illustrated in (b), in which only the information about the components within the enclosed portion is observable, will be perceived as being nondeterministic, because its dynamics will not be predictable without taking into account the external source signal and state. can be understood as being open, because it exchange information with external components, in this case corresponding to a source signal and a state. Unless we have access to these two external components, the delimited portion of the system in (b) will be perceived as being nondeterministic. In case those components become known and observable, the thus enlarged system will become deterministic to the observer.

It follows from the above reasonings that systems composed of the components considered in the present work, allowing access to the initial state and source signals, and devoid of random sources, are deterministic. Now, we briefly address the important issue of random sources. Actually, the property of being random is intrinsically related to non-determinism, in the sense that its values cannot be determined with certainty. It follows immediately that any system involving the components and hypothesis adopted in the present work, but including at least one truly random source, are non-deterministic. By truly random it means that the source values cannot be predicted to any level of accuracy by any means. It is interesting to observe that generating true random values constitutes a challenge not yet met in science.

Concluding Remarks

While stochastic and information science-based quantifications of joint variation and relationship between signals -including covariance, statistical independence and mutual information -haven been extensively applied to search for possible interactions between signals, causality remains one of the most important, and yet challenging, concepts involved while understanding the real physical world in terms of a respective dynamical system. This has motivated intense and continued interest and efforts from a wide range of areas. In particular, the approach known as Granger causality has received particular attention from the literature.

The present work has been aimed at developing an elementary approach to causality between pairs of signals unfolding along time while considering some specific aspects. In particular, motivated by concepts from digital electronics and sequential circuits, we focused on events that correspond to abrupt positive transitions of the values of the involved signals. It was therefore possible to circumvent the statistical modeling and recognition of more sophisticated events characterized by stochasticity. In addition, we described a simple model of event-driven causation that seems to involve most of the characteristics typically associated with causality, including lag, inhibition, irreversibility, and refractory periods. In addition, the case of continuous causation could then be understood as a limit case of the previous event-driven model in which the lag tends to an infinitesimal value 0 .

In particular, we have seen (e.g. Figure 9) that though eventual indications about causality of a signal onto another can be inferred from respective mathematical analysis, the confirmation of causality will require access (or full knowledge) about the respective system where the signals are taking place. In particular, this could involve identifying and temporarily removing respective physical interconnections while observing the respective effect on the signals interdependence. This means that causality goes beyond mathematical relationships between signals, also involving the respective physical scaffolding, and in particular the interconnectivity between diverse parts of a dynamical system.

The development of the basic continuous and eventdriven models of causality also allowed simple methods for recognition of respective causalities to be devised. Though limited in several aspects, including positive tran-sition events, these suggested methods have been illustrated to provide interesting indications about possible causal relationships between pairs of signals. As such, these results contribute both as rudimentary resources to be preliminary applied while trying to estimate causality as well as didactic illustrations of important concepts related to causality.

It should be kept in mind that that this work is relatively informal, requiring further extensions and verifications. In particular, the simple suggested methods can only provide preliminary indication about possible causation, to be further verified and characterized by using complementary concepts and approaches. At the same time, negative results from these methods cannot be taken as indication of lack of causality, also requiring further analysis by other methodologies.

Among the developments motivated by the reported concepts, methods, and results, we would like to highlight the possibility of identifying more general types of events by using the recently introduced concept of coincidence similarity (e.g. [START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF]). In addition, it would be interesting to extend the suggested methodology to the analysis of more than two signals, allowing causation networks to be estimated.

Figure 3 :

 3 Figure 3: The occurrence of event A along signal x(t) implying the occurrence of event B in signal y(t) after a time lag .

Figure 5 :

 5 Figure 5: Timing diagrams of: (a) the event-driven causal effect of x(t) on Ω, yielding a positive pulse as output ω, and (b) the reset action. Please refer to the text for respective explanations. The time period ta implied by stage a can be understood as the lag for the observation of the transition from 0 to 1 implied by the causal activation.

Figure 6 :

 6 Figure6: Basic model of continuous causality, corresponding to the application of a function f () on a given input signal x(t), generating y(t + 0 ) = f (x(t)) as output. The action of the signal and function components can be reset by respective binary control signals rx(t) and r f (t). More specifically, the output of the respective nodes will become equal to zero while the respective control signals are at value 1. Observe that there is no state involved and all actions are assume to take place almost instantly, i.e. after the infinitesimal time lag 0 .

Figure 7 :

 7 Figure 7: A cosine signal x(t) (a) and another signal y(t) (b). Is there any causal relationship between these two signals, such as that in Fig. 6?

Figure 8 :

 8 Figure 8: The signals x(t) and (y(t) in Fig.7represented as a respective scatterplot. The well defined relationship, which can be found to correspond to the power function f (x) = x 2 , can be observed suggesting causality between the two signals.

Figure 10 :

 10 Figure 10: An uniform noise signal x(t) in the interval [-1, 1] continuously causing signal y(t) = (x(t)) 2 . Though hardly discernible, there is indeed a continuous causal relationship between the two illustrated signals.

Figure 11 :

 11 Figure 11: The causal relationship from signal x(t) into signal y(t) as in Fig. 7, but observed in presence of the added noise n(t).

Figure 12 :

 12 Figure12:A possible scatterplot obtained for the signals x(t) and y(t) as in Fig.11. A scattered relationship of the type () 2 can now be observed, with a relationship similar to that in Fig.8being obtained between the signals x(t) and y(t) in this particular example.

Figure 13 :

 13 Figure 13: Scatterplot obtained for signals x(t) and y(t) in Fig. 2. No correlation or other possible relationship between the two signals can be discerned, except for the possible observation of the separated group of points at the right-hand side of the plot.

Figure 14 :

 14 Figure 14: The derivatives dx/dt and dy/dt of the original signals x(t) and y(t) from Fig. 2 estimated by using elementary first order finite differences. Abrupt variations in the original signals are therefore mapped into large derivative magnitude values.

Figure 15 :

 15 Figure 15: Peak-detected versions of the derivatives dx/dt and dy/dt of the original signals x(t) and y(t), considering T = 0.5.

Figure 16 :

 16 Figure 16: The scatterplots, for lag values from 1 to 9, between the peaks detected from the derivative of the signals dx/dt and dy/dt. The possible events characterized by large values of both coordinates, shown in red in the scatterplot for lag=5, are understood as being potentially related to causation from positive transitions of x(t) onto y(t).

Figure 17 :

 17 Figure 17: The signals x(t) and y(t) from Fig. 2 after identification of the possible pairs of event-driven causality. More specifically, each of the positive transitions marked as blue bars in (a) implied a possible respective positive transition marked by a red bar in (b), after a lag of ta = 5 time steps.

Figure 18 :

 18 Figure 18: The model used to synthesize the signals x(t) and y(t) shown in Figure reffig:ex. A train of pulses z(t) is mixed with uniform noise, yielding the observed signal x(t). This signal then causes ω(t), to which uniform noise is subsequently added, yielding the observed output signal y(t).

  t a + t b + t c = 25 time steps.

Figure 20 :

 20 Figure 20: A closed system involving source signals, states and continuous causation, illustrated in (a), can be understood as being deterministic.However, the open system as that illustrated in (b), in which only the information about the components within the enclosed portion is observable, will be perceived as being nondeterministic, because its dynamics will not be predictable without taking into account the external source signal and state.

Table 1 :

 1 The logical definition of the implication connective.

Table 2 :

 2 The logical definition of the and connective.

Acknowledgments Luciano da F. Costa thanks CNPq (grant no. 307085/2018-0) and FAPESP (grant 15/22308-2).

Observations

As all other preprints by the author, this work is possibly being considered by a scientific journal. Respective modification, commercial use, or distribution of any of its parts are not possible. Many of the preprints by the author are also available in Hal and/or arXiv. This work can also be cited by using the DOI number or article identification link. Thanks for reading.