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Damage and fracture in brittle materials with
enriched finite element method: Numerical study

Yue SUN, Emmanuel ROUBIN, Jean-Baptiste COLLIAT, Jianfu SHAO

Abstract The present chapter is part of an approach that attempts to represent the
mechanical behaviors of brittle/quasi-brittle materials. At the mesoscopic scale, the
studied material is considered as heterogeneous materials. The used model in this
study is referred to as the Enriched Finite Element Method (EFEM)[11, 16]. As
a Finite Element based model, this model performs two kinds of enhancements: i)
strong discontinuities, which allows illustration of cracks and fractures; ii) weak dis-
continuities, which manages to represent heterogeneities explicitly without any need
of mesh adaptation. Many existing EFEM models have shown their ability to simu-
late a lot of main features of brittle/quasi-brittle materials at the macroscopic scale,
such as the asymmetric responses in traction/compression. With a large number of
finite elements and explicit heterogeneous structures, the mechanical behaviors that
applied at the local scale could be very simple. In this chapter, we are looking for-
ward to describing more of the main characters of such material by adding a closure
mechanism to the model.
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Introduction

The growth and propagation of micro-cracks is a leading cause of fatigue and dam-
age for brittle/quasi-brittle materials, such as shale, concrete-like materials, and
rocks. The computational failure mechanics is nowadays a study of significant value.
One of the characteristics of the materials referred to above is that they are ma-
terials with complex structures. For example, beginning at the mesoscopic scale,
concrete exhibits aggregate pieces and macro-pores, and complexity of its structure
increases when increasingly finer scales are considered. Another characteristic of
these kinds of materials is that they show complex mechanical behaviors, such as
the non-symmetric responses in traction and compression as well as the hysteresis
phenomenon in cyclic loadings, see Fig. 1. From a general point of view, we can
make an assumption that those two complexities are strongly linked.

Fig. 1: Hypothesis that complex mechanical behaviors of brittle/quasi-brittle mate-
rials [6, 18, 12] can emerge from the upscaling of elements with simple behaviors
and explicit heterogeneous structure [17].

The hypothesis stems from the non-linear complex adaptive system [1]. The
essence of the complex system is that each individual constituent conforms to (very)
simple rules. However, when the system is studied as a whole, emergent responses
can be observed after upscaling which are not exist at the single element. Besides,
by understanding the behaviors of each element, it may be beneficial for us to un-
derstand the entire system.

Naturally, the macroscopic mechanical behaviors of concrete are known a pri-
ori from experimental tests, see Fig. 1. The complex heterogeneous structure of
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concrete is thus defined as the explicit heterogeneous geometry of the material.
At the mesoscopic scale, the heterogeneities are referred to as the aggregates and
macro-pores, see Fig. 1. It can be constructed within the framework of the finite
element method, with a large number of elements and explicit representation of het-
erogeneities. Moreover, a newly developed technique, namely X-ray tomography,
makes it possible to establish a morphological structure of concrete based on real
tomographic images [17]. Therefore, it is interesting to look backward to clarify the
simple rules of each element.

Based on the previous assumption, attempts to solve the simple mechanical be-
haviors of each element have been made by former studies. The used method in this
chapter is based on the strong discontinuity approach, namely the Enriched Finite
Element Method (EFEM) [11, 16]. EFEM is an element-based enhancement model,
with additional degree of freedom attached inside the element as internal variables.
It is capable of yielding the mesh dependence without adding special artificial nu-
merical parameters. As the energy is dissipated over a two-dimension discontinuity
interface, by applying a specific kinematic enhancement to the element, the total
dissipated energy becomes independent of the mesh size [16]. Besides, as the addi-
tional interval variable is an element-based enhancement, the increasing number of
cracked elements will not affect the size of the assembled stiffness matrix for the
total system. Therefore, the model is capable of simulating a system with a large
number of elements that carry strong discontinuities. The ratio of the fractured el-
ements to the total elements can be very high. Another benefit of EFEM is that the
strong discontinuities can pass through the element in an arbitrary trajectory. There-
fore, it is capable of performing simulation of complex and accurate cracks, such
as cracks with several branches, cracks stopped by heterogeneities, and a crack that
meets another crack.

Moreover, individual to strong discontinuity, the weak discontinuity [11] can be
alternatively included in the model to represent heterogeneities, even for complex
geometry [13]. Due to the non-adapted meshing method, the heterogeneities can be
taken into consideration in an explicit way [7].

The study performed in this chapter is closely related to the previous work under-
taken by [13], in which each element is governed by two mechanisms: localization
and traction-separation. It has been demonstrated that even though only “opening”
mechanism is applied to elements, the model is capable of performing failure be-
haviors of concrete in traction as well as in compression. Moreover, non-symmetric
behaviors can also be observed. However, to the author’s knowledge, the behavior
performed by crack closure in EFEM has yet to be taken into consideration. There-
fore, based on the prior studies, the closure mechanism of the cracks is also taken
into account in this chapter.
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Kinematics of discontinuities in solids

In this section, we summarize the basic notations that we used in this chapter. The
referenced domain Ω ⊂ Rndim is a solid exhibiting heterogeneities and cracks, see
Fig. 2. Its smooth boundary Γ ⊂ Rndim−1 can be divided into two disjointed bound-
aries: the displacement boundary Γu and the traction boundary Γt . Within the frame-
work of Finite Element Method, this specimen can be discretized by means of stan-
dard isoparametric elements Ω = ∪ne

e=1Ωe.
Dealing with the explicit heterogeneities, the mesh method is non-adapted. Since

the heterogeneity surfaces are defined a priori and independent to any mechanical
calculation, there will be a set of elements crossed by the interface of heterogeneity
Sε , dividing the elements into two parts Ω+

e and Ω−e with a unit vector n pointing
from Ω−e to Ω+

e .
At the inner of the dealing body, another set of elements is divided into two

parts by the failure path Su. Naturally, the discontinuity surface Sε is defined by the
geometry of material, whereas the path and orientation of the strong discontinuity
Su usually depend on particular criteria.

Fig. 2: Illustration of the heterogeneities and cracks in the referent body and the
corresponding enhanced elements.

Dealing with the weak discontinuities and the strong discontinuities, three cases
can be present in an element: i) the element contains only a weak discontinuity, ii)
the element contains only a strong discontinuity, iii) both of them are present in an
element. In the third case, it is considered that the kinematics failure will take place
in the heterogeneity interface. It implies that if the element is “close” enough to the
heterogeneity, the crack opening will be localized on the heterogeneity surface.

Furthermore, it is assumed that the bulk part has a purely elastic kinematics rela-
tionship, and the kinematic behaviors of the strong/weak discontinuity are indepen-
dent. Hence, the strain field admits an additive form

ε(x) := ∇
symu(x)+ ε̃(x)+ ε̂(x), (1)



Title Suppressed Due to Excessive Length 5

where ∇sym := 1
2 [∇(•)+∇T (•)] denotes the symmetric gradient operator. Notation

•̃ / •̂ represents the weak / strong discontinuity.

Kinematics description of weak discontinuity

In this section, interest is focused only on the elements which exhibit weak dis-
continuities. The elements of this kind contain different elastic parameters: Young’s
Modules and Poisson’s ratios, thus a strain discontinuity is emerged from this differ-
ence, as it shows in Fig.3. With the normal vector n pointing from one sub-domain

Fig. 3: Representation of the strain discontinuity in a tetrahedral element. [19]

to another, we can construct an orthonormal basis (n,m, t). The continuity of the dis-
placement field should be respected crossing the discontinuity surface, so we have:

u+(x) = u−(x),∀x ∈ Sε . (2)

The strain jump of the weak discontinuity [|ε|] := ε+(x)− ε−(x) can be calculated
by the symmetrical gradient of the corresponding displacement field

∇
symu|Sε

=
1
2
(∇u+∇

T u)|Sε
with ∇u =

∂u1,n ∂u1,m ∂u1,t
∂u2,n ∂u2,m ∂u2,t
∂u3,n ∂u3,m ∂u3,t


(n,m,t)

. (3)

It can be deduced that the jump of the strain field takes place in the direction
perpendicular to the discontinuity surface but not in the direction along the interface.
Accordingly, ∇(ũ+) ·m = ∇(ũ−) ·m and ∇(ũ+) · t = ∇(ũ−) · t. Take this into Eq. (3),
it can be seen that the last two colons of the matrix ∇u have the same value for both
sub-domains. Hence, [ε]n [ε]m [ε]m are three constants that can entirely define the
jump of strain field[14]. We can take the displacement field ũ in a first order form
[5]:

ũ(x) =Θn · (x−ξ )([ε]nn+[ε]mm+[ε]tt) with Θ =

{
Θ+ ∀x ∈Ω+

e

Θ− ∀x ∈Ω−e
, (4)
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with ξ denotes the position of interface surface Sε and n · (x− ξ ) can be seen as a
signed distance to the discontinuity surface. Θ is a still undefined function of Ωe,
the explicit expression will be given latter with the help of variational formulations.
We can obtain the weak shape of the enhanced strain field by taking the symmetrical
gradient of ũ [2]:

ε̃ = ∇
sym(ũ) =Θ([ε]nn⊗n+

[ε]m
2

(n⊗m)sym +
[ε]t
2

(n⊗ t)sym) (5)

Kinematics description of strong discontinuity

In this part, the main interest is focused on the strong discontinuity kinematics [15,
9, 21]. Let us consider an element Ωe exhibits a strong discontinuity dividing itself
into two sub-domains, the discontinuity surface is noted as Su. The discontinuity of
the displacement field can be decomposed into the following function [14]

u = ū+(HSu −ϕe)[|u|], (6)

with HSu is the Heaviside function centered on Su, ū is the regular part of the dis-
placement field to impose the standard boundary conditions [10], and [|u|] is a con-
tinuous function representing the displacement jump. For the sake of simplicity, [|u|]
is considered as a unity function over the finite element.

By taking the symmetric gradient of the displacement field, the corresponding
strain field can be obtained as:

ε =∇
symu=∇

symû︸ ︷︷ ︸
regular

+(HSu −ϕe)∇
sym([|u|])− ([|u|]⊗∇ϕe)

sym︸ ︷︷ ︸
bounded enhancement

+ δΓd ([|u|]⊗n)︸ ︷︷ ︸
unbounded enhancement

.

(7)
The strain field admits an additive form of three parts. The regular displacement

field respects the standard stress-strain constitutive equation. The bounded enhance-
ment can be simplified by taking the jump of the displacement field [|u|] as a con-
stant function. It results into a null value of (HΓd −ϕe)∇

sym([|u|]). Then we can see
that the gradient of the Heaviside function brings an unbounded enhancement part,
which bears a Dirac-delta distribution δ . Centered at the discontinuity interface, it
carries infinite value at the interface and null value otherwise. Thus far, Eq. (7) can
be written as:

ε̂ = ε̂b + ε̂u =−([|u|]⊗∇ϕe)
sym +δS([|u|]⊗n) (8)

Regarding the unbounded part in the function, some properties such as the trac-
tion continuity condition seem difficult to conform. Nevertheless, some solutions
are available within the FE context. In this study, the used solution is called Discrete
Strong Discontinuity Approach(DSDA) [8], which leads to an underlying discrete
model at the discontinuity surface. And a traction vector T which links with the
crack opening [|u|] can also be introduced
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σ
+(x) ·n = σ

−(x) ·n = T , ∀x ∈ S. (9)

It can be then used to model the failure mechanism at the local scale. And beyond
the discontinuity, the bulk Ω\S remains an elastic behavior, which can be described
by Hooke’s law

σ = C : ε. (10)

In the case of exhibiting a weak discontinuity, the two sub-domains are isotropic,
the operator C+|− is calculated separately by Young’s modulus E+|− and Poisson
ration ν+|−.

Finite Element implementation

Incompatible modes

Based on existing EFEM studies, a three-field variational formulation is used here
[20, 14, 19]:

HWû(û,ε,σ ; η̂) =
∫

Ω

∇
sym

η̂ : σdΩ −
∫

Ω

η̂ ·ρ b̄dΩ −
∫

Γ

η̂ · t̄d∂Ω = 0, (11a)

HWσ (û,ε,σ ;τ) =
∫

Ω

τ : (∇symû− ε) = 0, (11b)

HWε(û,ε,σ ;γ) =
∫

Ω

γ : (σ̌(ε)−σ)dΩ = 0, (11c)

where (û,ε,σ) represents the standard displacement field, the strain field, and the
stress field. Then three corresponding virtual field are noted as (η̂ ,τ,γ), also mutu-
ally independent.

Then a classic method of incompatible modes is introduced here, mentioned as
the Assumed Strain Method. The central idea is assuming that both actual and vir-
tual fields are enhanced in an additional way, making them divided into three parts,
the standard part, the enhanced weak discontinuity, and the enhanced strong discon-
tinuity:

ε = ∇
symû︸ ︷︷ ︸

compatible

+ ε̃︸︷︷︸
weak

+ ε̂︸︷︷︸
strong︸ ︷︷ ︸

incompatible

, and γ = ∇
sym

η̂︸ ︷︷ ︸
compatible

+ γ̃︸︷︷︸
weak

+ γ̂︸︷︷︸
strong︸ ︷︷ ︸

incompatible

. (12)

Considering the orthogonal relationship between the enhanced and the virtual
part of the strain and stress field [14], we can derive the following simplified formu-
lation:
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Ω

∇
sym

η̂ : σ̌(∇symû+ ε̃ + ε̂)dΩ −
∫

Ω

η̂ ·ρ b̄dΩ −
∫

Γt

η̂ · t̄d∂Ω = 0, (13a)∫
Ω

γ̃ : σ̌(∇symû+ ε̃ + ε̂)dΩ = 0, (13b)∫
Ω

γ̂ : σ̌(∇symû+ ε̃ + ε̂)dΩ = 0. (13c)

To ensure the convergence of the method, the patch test should be respected after
the orthogonal condition is imposed. By assuming that the discontinuity interface is
flat, which makes the normal vector of the interface n a constant over each element,
we will take the Θ as a function that depends only on the volume of sub-domains
[13]:

Θ
+ =

V−

V
and Θ

− =−V+

V
. (14)

Subsequently, the strong enhanced strain field consists of two parts: the unbounded
part δΓd ([|u|]⊗ n)s and the bounded part γ̂b. The later can be explicitly defined by
taking into consideration of the zero mean condition. Following the Enhanced As-
sumed Strain(EAS) method, the complete form of the strong enhancement of the
strain field can be obtained by

γ̂ = δΓd ([|η |]⊗n)sym︸ ︷︷ ︸
unbounded

−A
V
([|η |]⊗n)sym︸ ︷︷ ︸

bounded

. (15)

Finite Element discretization

It is present in this part the resolution of the three-field variational formulation
Eq. (13). The discretization of the strain field is different depending on whether it is
standard or virtual. The standard strain field is enhanced using KES in a kinemat-
ics point of view, whereas the virtual strain field is enhanced using the EAS (refers
to as •∗ in the following part) in a statical point of view. Based on the DSDA, the
standard discretization of the strain field contains only the bounded enhanced part,
while the virtual discretization has both the bounded and unbounded enhancement.
The discretization is written as:

ε = ∇
symû+ ε̃ + ε̂ = B d +Gw [|ε|]+Gs [|u|], (16a)

γ = ∇
sym

η̂ + γ̃ + γ̂ = B d +Gw [|γ|]+ (G∗s,b +G∗s,u) [|η |]. (16b)

Several mentioned notations above are: B(= ∂N) the standard strain interpolation
matrix, Gw the standard and virtual field corresponding to the weak discontinuity,
Gs the bounded part of the standard field corresponding to the strong discontinuity,
G∗s := G∗s,b + G∗s,u the full enhancement of the virtual field corresponding to the
strong discontinuity, d the nodal displacement field, and [|ε|] (resp.[|u|]) corresponds
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to the supplement unknown variables brought by weak (resp. strong) discontinuity.
It is worth noting that the strain fields are all expressed in Voigt notation.

Considering the discretization of the system, we can write the global equilibrium
equation in residual form

R̄ :=
ne
A

e=1
R̄e = f̄ ext−

ne
A

e=1

(∫
Ωe

BT
σdΩ

)
= 0̄, (17)

where
ne
A

e=1
represents the standard assembly operator which groups all finite ele-

ments ne of the global system, and f̄ ext denotes the external force, which writes as:

f̄ ext =
ne
A

e=1

(∫
Ωe

NT b dΩ +
∫

Γ e
t

NT t dΓ

)
. (18)

We can obtain the equations by injecting parameters of Eq. (16) into Eq. (13):∫
Ω

GT
wσ̌(d, [|ε|], [|u|]) dΩ = 0, (19a)∫

Ω

(G∗,Ts,b +G∗,Ts,u )σ̌(d, [|ε|], [|u|])dΩ = 0. (19b)

Then Eq. (15) can be changed into form:

γ̂ = (G∗s,b +G∗s,u) [|η |] =−
A
V
([|η |]⊗n)sym +δS([|η |]⊗n)sym, (20)

where (•× n)sym is noted as a operator H∗s for the rest part, leads to an equivalent
Voigt notation for the traction vector

T = σ̌ ·n︸︷︷︸
matrix notation

= H∗,Ts σ̌︸ ︷︷ ︸
Voigt notation

. (21)

By considering one of the proprieties of the Dirac-delta distribution δS,
∫

f (x)δSdx=∫
f (x = S)dx, the unbounded part of the virtual strain field can be further simplified

into the form ∫
Ω

G∗,Ts,u σ̌(d, [|ε|], [|u|])dΩ =
∫

S
T (d, [|ε|], [|u|])d∂Ω . (22)

As for the interpolation matrix corresponding to weak discontinuity, Gw is de-
fined separately in two parts Θ+|− as:

Gw =

{
G+

w =Θ+Hw = V−
V Hw in Ω+

e ,

G−w =Θ−Hw =−V+

V Hw in Ω−e .
(23)
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Recording to the equation Eq. (8), we can see that the bounded part of the strong
enhancement of the standard strain field writes as ([|u|]⊗∇ϕe)

s, which corresponds
to the term Gs [|u|] in Eq. 16a. Hence Gs can be obtained as an equivalent symmetric
operator, (•⊗∇ϕe)

s, with ϕe is an explicitly defined arbitrary function to separate
nodes at Ω+

e from Ω−e . The arbitrary function is defined as follows:

ϕe(x) =
ne

∑
a=1

Na pa with pa =

{
1 if node number a ∈Ω+

e ,

0 if node number a ∈Ω−e .
(24)

In summary, the discretized system gives as [14]

R̄ :=
ne
A

e=1

(
f̄ int− f̄ ext

)
=

ne
A

e=1

(
f̄ e

ext−
∫

Ωe

BT
σ̌(d, [|ε|], [|u|])dΩ

)
= 0̄, (25a)

R̄e
[|ε|] =

∫
Ωe

GT
wσ̌(d, [|ε|], [|u|]) dΩ = 0̄ , (25b)

R̄e
[|u|] =

∫
Ωe

G∗,Ts σ̌(d, [|ε|], [|u|]) dΩ =
∫

Ωe\S
G∗,Ts,b σ̌(d, [|ε|], [|u|])dΩ +

∫
S

T d∂Ω = 0̄.

(25c)

In the above equations, the first one Eq. (25a) represents the global equilibrium
equation of a standard Finite Element system, whereas the latter two equations
Eq. (25b) and Eq. (25c) are local equations for each element, and carry the enhance-
ment parts. The enhancements [|ε|] and [|u|] are considered as the internal variables
and are both solved at the element level. Hence, the global equilibrium equation
Eq. (25a) always has the same size no matter how many heterogeneities exist in the
system or how many elements begin to crack.

Admissible discrete model with closure mechanism on the
discontinuity surface

As it is mentioned in the previous part, a traction vector T is continuous over the
element and links the two sub-domains crossing the discontinuity surface S. Our
discrete model is formulated based on the description of the relationship between
the traction vector and the crack-opening [|u|].

In existing EFEM studies, many discrete models have been proposed and well
documented. For instance, the traction-opening fracture [14], the sliding-opening
shear fracture [4], and hydraulic mechanical coupling problem [19]. Based on these
previous works, the attempt in this section is to propose a discrete model that con-
siders the closure of cracks.
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Localization criterion

At the beginning of loading, the element has an elastic behavior, until the stress
field, or the strain field reaches a specific value, i.e., the localization criterion. Our
localization criterion is stress-based. The yield stress, note as σy, is considered as a
local parameter of the material. The localization criterion wrote as:

Φl = σeq−σy. (26)

In this equation, a negative value of Φl represents an elastic behavior of the element
while a positive value leads to the localization and appearance of the crack. As we
can see, the equivalent stress σeq is a constant value. Two cases should be consid-
ered: i) the studied element is isotropic without weak discontinuity, ii) the weak
discontinuity is present in the element.

In the first case, the equivalent stress is determined by the major principal stress,
σeq = σI. The orientation of the discontinuity interface n is the corresponding eigen-
vector, nI . The localization criterion writes:

Φ
strong
l = σI−σy. (27)

In the second case, the element carries different phases, it is assumed that the crack
opens at the heterogeneity surface between the two sub-domains. The normal vector
n is defined a priori by the geometric information of the material and thus is inde-
pendent of the stress state. The equivalent stress is calculated by the projection of
the traction vector T on the normal vector n, the localization criterion writes:

Φ
weak
l = n ·T −σy (28)

We present here an isotropic one-dimensional example. At the state of the stress
field reaches the yield stress, the localization takes place. The displacement field
and local constitutive behavior are shown in Fig. 4.

x

u

L

∆u

(a) The displacement field

εnn

σnn

E

(b) Behavior outside the dis-
continuity interface

[u]

σeq

σy

(c) Behavior at the discontinuity
interface

Fig. 4: Local constitutive model at the continuous part and at the discontinuity in-
terface at the moment of localization.
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Failure criterion - Traction separation law

Following the localization of the element, the failure behavior is driven by the
traction-separation law [14]:

Φo = σeq− ( σy−qo([u]) ), with [|u|] = [u] ·n. (29)

A positive value of the traction-separation criterion Φo means an in-equilibrium
state of the element and the crack needs to go further until it reaches an equilibrium
state. A negative value presents an elastic loading or unloading, or closure of cracks,
which we will discuss later. In this equation, qo([u]) is referred to as the hardening
function. It is a continuous simple decreasing function in terms of the opening value,
with its magnitude value is located at [u] = 0. It will approach to zero as the [u] = 0
increases. The hardening function is defined as:

qo([u]) = σy

(
1− exp

(
−

σy

Gop
[u]
))

, (30)

where σy and Gop are both local material parameters. The latter is referred to as
the fracture energy, which governs the amount of necessary energy to create a fully
opened fracture. Physically, a bigger value of the fracture energy states for a tougher
and more durable material.

x

u

[|u|]

LSu

∆u

(a) The displacement field

εnn

σnn

E

(b) Behavior outside the dis-
continuity interface

[u]

σeq

σy

Gop

(c) Behavior at the discontinu-
ity interface

Fig. 5: Local constitutive model at the continuous part and at the discontinuity in-
terface at the traction separation stage.

Assuming a the same one-dimension example as shown in Fig. 4, the traction-
separation phase is depicted in Fig. 5. As the imposed displacement ∆u increases,
the crack will propagate, and lead to decreasing value of the equivalent stress. Since
the traction continuity condition is always satisfied, the stress in the bulk volumes
Ωe\S will also decrease as shown in Fig. 5b.
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Closure criterion

Following the traction-separation law, a closure law is considered in our discrete
model if the normal stress is turned into compressive stress. As for the model ex-
hibits no closure mechanism, see Fig. 6a, the crack opening value will not decrease
even under high compressive stress. Unlike most phenomenological models that
mainly describe stress-strain curves, our model is built at the mesoscopic scale, the
complexity consists in depicting the relationship between the traction vector on the
discrete discontinuity surface and the crack opening value. Upon physical consider-
ations, the applied closure mechanism is replied on three hypotheses.

σy

[u]

σeq

G′op

[u]max

(a) Phenomenological model
without closure mechanism

σy

[u]

σeq

G′op

Gcl [u]max

(b) Phenomenological model
with exponential closing law

σy

σ ′y

[u]

σeq

(c) Phenomenological model
with damaged tensile strength

Fig. 6: Hypothesis for local constitutive models with non-linear closing laws and
damaged tensile strength at the discontinuity interface.

• Hypothesis 1. The closing criterion is driven by an exponential and continuous
function, [u] will approach towards zero if the equivalent stress turns to infinite
compression but will never close completely, see Fig. 6b.
This hypothesis is proposed upon a physical consideration, that an already cre-
ated crack of a brittle/quasi-brittle material should not disappear even is applied
high compressive stress. Furthermore, this driven function also verifies sort of
the spirit of “symmetric”, that in the opening phase, the material will become
progressively fragile, and in the closing stage, the closing of crack will become
more and more difficult.

• Hypothesis 2. The amount of required energy for a complete closing G′op equals
to the energy dissipated at the opening phase Gcl.
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The design of this hypothesis is an attempt to make the model remain simple and
clean. No additional parameters are needed to depict the closure mechanism.

• Hypothesis 3. As the element reopens after the closing phase, the calculation of
the new traction-separation law will base on the residual tensile strength σ ′y and
the residual fracture energy Gre, see Fig. 6c.
This third hypothesis is proposed to deals with the already damaged elements.
Physically, the damaged element should be weaker and more fragile than the
sound elements. Even though the crack can be partially closed during the closing
phase, the yield stress of the element can not be restored to the value of the sound
element. And a certain amount of fracture energy has already been dissipated in
the opening phase. Therefore, the calculation of the reopening criterion is defined
based on the residual tensile strength and fracture energy. As a result, damages
that have occurred to an element throughout history are irreversible.

Unloading procedure

The first procedure that occurs to an element subsequently to the opening phase is
the unloading procedure. This procedure takes place on the bulk volumes outside the
discontinuity surface, which means that the crack opening value [u] will not change.
After the opening stage, an amount of tensile energy is stored in the bulk volumes.
The discontinuity surface will always under tensile stress until the elastic energy
is totally released, i.e., the strain field is null on the bulk volumes. Therefore, the
unloading procedure is a pure elastic phase. We can see from Fig. 7 that it happens
when ∆u = [u].

x

u

[|u|]

L

∆u

(a) The displacement field

εnn

σnn

E

(b) Behavior outside the
discontinuity interface

[u]

σeq

σy

G′op

(c) Behavior at the discon-
tinuity interface

Fig. 7: Local constitutive model at the continuous part and at the discontinuity in-
terface as the imposed displacement decrease.
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Closure of cracks

After the unloading process, the closure of the crack occurs when the stress on the
discontinuous surface switches to compressive stress. The decreasing of the crack
opening value is driven by the closing criterion. As it is shown in Fig. 8, the closing
criterion is non-linear and continuous. It is assumed that the necessary needed en-
ergy for a complete close Gcl equals to the amount of energy that dissipated at the
opening stage G′op. The closing procedure will become more and more difficult and
as a result, the crack can never completely closed.

x

u

[|u|]
∆u = 0

L

(a) The displacement field

εnn

σnn

E

(b) Behavior at the continuous
part

σy

G′op
[u]

σeq

Gcl

Gre

[u]max

(c) Behavior at the discontinuity
interface

Fig. 8: Local constitutive model at the continuous part and at the discontinuity in-
terface at the crack closing phase.

It is worth some particular attention at the point of ∆u = 0, where the imposed
displacement equals to zero, whereas the crack opening value is still positive, and
the element is under compressive stress.

Reloading procedure

Let us now apply a reloading displacement to the element. Firstly, the element will
release the stored compressive energy in bulk volumes. Then the stress on the dis-
continuity surface will turn to positive as the reloading continues until the equivalent
stress reaches the residual critical tensile strength σ ′y. And the fracture energy is also
taken as the residual value Gre,see Fig. 9, which leads to a weaker and more fragile
material than the sound one.
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x

u

[|u|]

L

∆u

(a) The displacement field

εnn

σnn

E

(b) Behavior at the continuous
part

σy

σ ′y
[u]

σeq

[u]cl

Gre

(c) Behavior at the disconti-
nuity interface

Fig. 9: Local constitutive model at the continuous part and at the discontinuity in-
terface as the imposed displacement reloads.

Governing equations

In the previous parts, the kinematics behaviors of the model on the discontinuity sur-
face have been decomposed into several different phases. In the closing process, it is
assumed that the necessary energy for a total crack closure equals to the dissipated
energy in the opening phase. This amount of energy is calculated as:

Eop =
∫ [u]max

0
σeq([u]) d[u] = Gop(1− exp(−

σy [u]max

Gop
)) = Gcl. (31)

As a result, the driven function of the closing phase can be completely defined by the
material’s parameters Gop, σy, and the maxim opening value [u]max, no additional
parameters are required. The closing energy should respect the following equation:

Ecl =
∫ 0

[u]max
σeq([u]) d[u] = Eop = Gcl. (32)

The choice made here is :

Φc =−σeq +
Gcl

[u]max
ln
(

[u]
[u]max

)
︸ ︷︷ ︸

qc

, (33)

where qc is referred to as the hardening function during the closing procedure. A
positive value of Φc means that the crack should continue closing to reach the equi-
librium state, and a negative value of Φc means that the element is under elastic
unloading or reloading. Since the maximum crack opening value [u]max is always
greater than or equal to the actual crack opening [u], it is impossible to have Φo and
Φc both positive at the same time.
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In the reopening phase, the critical parameters of the traction-separation law are
taken as the residual tensile strength (marked as σ ′y in Fig. 9c) and the residual frac-
ture energy (marked as Gre in Fig. 8c and Fig. 9c). The updated traction-separation
law writes as

Φo = σeq−σ
′
y

(
1− exp

(
−

σ ′y
Gre

[u]
))

,with

σ ′y = σy exp
(
−σy([u]max−[u]cl)

Gop

)
Gre = Gop exp

(
−σy([u]max−[u]cl)

Gop

) .

(34)

Numerical resolution of the discrete Finite Element system

In this section, the interest is focused on the numerical resolution of the discrete
system, i.e., Eq. (25). The former equation presents a standard global system, while
the latter two equations are formulated at the local scale, and carry non-linear kine-
matics behaviors. Hence, the system to be solved is non-linear. The linearisation of
equations is present in the following part. Then the resolution of the global and local
system is also introduced in this section.

Linearisation of equations

The integration of the global system (Eq (25a)) and the weak enhancement (Eq. (25b))
are given as the following equations [13]:

f e
int =

∫
Ωe

BT
σ̌(d, [|ε|], [|u|])dΩ = Kbbd +Kbw[|ε|]+Kbs[u], (35)

R̄e
[|ε|] =

∫
Ωe

GT
wσ̌(d, [|ε|], [|u|]) dΩ = Kwbd +Kww[|ε|]+Kws[u], (36)

with
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Kbb = BT (V+C++V−C−
)

B

Kbw =
V+V−

V
BT (C+−C−)Hw

Kbs = BT (V+C++V−C−)Gsnp

Kwb =
V+V−

V
Hw

T (C+−C−)B

Kww =
V+V−

V
Hw

T (V−C++V+C−)Hw

Kws =
V+V−

V
Hw(C+−C−)Gsnp.

Based on the Newton’s method, their linearisation formulation gives as [14]

ne
A

e=1

(
Kbb∆d

∣∣∣(k+1)

n+1
+Kbw∆ [|ε|]

∣∣∣(k+1)

n+1
+Kbs∆ [u]

∣∣∣(k+1)

n+1

)
=−

ne
A

e=1

(
f e

int

∣∣∣(k)
n+1
− f e

ext

)
,

Kwb∆d
∣∣∣(k+1)

n+1
+Kww∆ [|ε|]

∣∣∣(k+1)

n+1
+Kws∆ [u]

∣∣∣(k+1)

n+1
=−R̄e

[|ε|]

∣∣∣(k)
n+1

.

The linearisation of the strong enhancement should be discussed in two cases
depending on the element is in the opening stage or the closing stage. Assuming
that the discontinuity surface is flat and the stress over the element is constant, the
traction vector T can be calculated based on the average value of weighted volumes
of sub-domain V+|−:

T =
1
V

H∗,Ts (V+
σ̌
++V−σ̌

−). (37)

The linearisation of the strong enhancement of the traction-opening phase writes as
[13]:

Ks∗b

∣∣∣(k)
n+1

∆d
∣∣∣(k+1)

n+1
+Ks∗w

∣∣∣(k)
n+1

∆ [|ε|]
∣∣∣(k+1)

n+1
+(Ks∗s +Kqo)

∣∣∣(k)
n+1

∆ [u]
∣∣∣(k+1)

n+1
=−Φo

∣∣∣(k)
n+1
(38)

with

Ks∗b =
∂σeq

∂T
1
V

H∗,Ts (V+C++V−C−)B

Ks∗w =
∂σeq

∂T
V+V−

V
H∗,Ts (C+−C−)Hw

Ks∗s =
∂σeq

∂T
1
V

H∗,Ts (V+C++V−C−)Gsnp

Kqo =
σ2

y

Gop
e−σy[u]/Gop
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As for the element in the closing stage, the closure criterion Φc =−σeq +qc([u])
have to be taken into consideration. It is a function in terms of two variables:
{T , [u]}, thus the increment of Φc gives as:

∆Φc =−
∂σeq

∂T
∆T +

∂qc

∂ [u]
∆ [u], (39)

=−Ks∗b∆d−Ks∗w∆ [|ε|]−Ks∗s∆ [u]+Kqc∆ [u], with Kqc =
Gcl

[u]max[u]
. (40)

Hence, the linearisation of the strong enhancement that in closing stage is written
as:

−Ks∗b

∣∣∣(k)
n+1

∆d
∣∣∣(k+1)

n+1
−Ks∗w

∣∣∣(k)
n+1

∆ [|ε|]
∣∣∣(k+1)

n+1
−(Ks∗s−Kqc)

∣∣∣(k)
n+1

∆ [u]
∣∣∣(k+1)

n+1
=−Φc

∣∣∣(k)
n+1

(41)

Solving the system

Depending on the status of the element is opening or closing, we can write the
linearisation of the three equations into a matrix form:Kbb Kbw Kbs

Kwb Kww Kws
Ks∗b Ks∗w Ks∗s +Kqo

(k)

n+1

 ∆d
∆ [|ε|]
∆ [u]


(k+1)

n+1

=


−( f e

int− f e
ext)

−Re
[|ε|]

−Φo


(k)

n+1

, (42)

or Kbb Kbw Kbs
Kwb Kww Kws
−Ks∗b −Ks∗w −Ks∗s +Kqc

(k)

n+1

 ∆d
∆ [|ε|]
∆ [u]


(k+1)

n+1

=


−( f e

int− f e
ext)

−Re
[|ε|]

−Φc


(k)

n+1

. (43)

The matrix is solved at two levels, global scale, and local scale. Since the strong
kinematics enhancement Φo and Φc are both non-linear, Newton’s method is prac-
ticed here for the resolution of the internal variables [|ε|] and [|u|]. It is assumed that
the displacement field d remains constant during the resolution of the local system.
So we have :

Re
[|ε|] = 0, (44a)

Φo = 0 or Φc = 0. (44b)

Re
[|ε|] = 0 has been developed in Eq. 36, we can see that it is a linear equation. The

non-linear aspect of the local system originates from Φo = 0 or Φc = 0. Assum-
ing that the equation (44) is now solved, the modified stiffness matrix Ksc for the
element in the opening procedure and in the closing procedure can be written as:
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Ksc

∣∣∣(k)
n+1

= Kbb−
[
Kbw Kbs

]([Kww Kws
Ks∗w Ks∗s +Kqo

](k)
n+1

)−1 [
Kwb
Ks∗b

](k)
n+1

, (45)

and

Ksc

∣∣∣(k)
n+1

= Kbb−
[
Kbw Kbs

]([ Kww Kws
−Ks∗w −Ks∗s +Kqc

](k)
n+1

)−1 [
Kwb
−Ks∗b

](k)
n+1

. (46)

The assembled matrix Ksc is then calculated by bringing the stiffness matrix Ksc of
each element together:

Ksc

∣∣∣(k)
n+1

=
ne
A

e=1
Ksc

∣∣∣(k)
n+1

, (47)

By using the static condensation, the resolving equations at global level writes as

Ksc

∣∣∣(k)
n+1

∆d
∣∣∣(k+1)

n+1
=−

ne
A

e=1
{ f e

int− f e
ext}
∣∣∣(k)
n+1

. (48)

From Eq. (45) to Eq. (48), we can see that the stiffness matrix Ksc has the same
size of matrix Kbb, which equals to the size of the global system no matter how many
heterogeneities exist in the system or how many elements start to fail. The degree
of freedom of the solving system is constant. In terms of numerical resolution, this
feature brings a benefit that the computational solving memory will not increase
with the increasing number of failed elements.

Resolution of the cohesive criterion

Both traction-opening process and the closing process in the strong discontinuity of
mode-I are described in non-linear forms. In order to solve the equations at the local
scale (Eq. 44), let us assume that the local system has already been solved, with
Re
[|ε|] = 0 and Re

[|u|] = 0, which give:

Kwbd +Kww[|ε|]+Kws[u] = 0, (49)

and

Ks∗bd +Ks∗w[|ε|]+Ks∗s[u]−σy exp
(
−

σy

Gop
[u]
)
= 0 for opening procedure

(50a)

−Ks∗bd−Ks∗w[|ε|]−Ks∗s[u]+
Gcl

[u]max
ln
(

[u]
[u]max

)
= 0 for closing procedure.

(50b)
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By replacing all terms of [|ε|] by d and [u], the non-linear traction-opening equa-
tion can be solved as [14]:

Te +M[u] = σy exp(−
σy

Gop
[u]), (51)

with

Te =
(
Ks∗b−Ks∗wK−1

wwKwb
)

d,and (52)

M =
(
Ks∗s−Ks∗wK−1

wwKws
)
. (53)

A solution can only be solved if Te > σy and M < 0. With the help of the Lamber W
function [3] W0, an analytical solution can be deduced as:

[u]sol =
Gop

σy

W0

σ2
y exp( σyTe

GopM )

GopM

− σyTe

GopM

 . (54)

As for the non-linear closing procedure, the cohesive criterion can be reformed as

−Te−M[u] =
Gcl

[u]max
ln
(

[u]
[u]max

)
, (55)

and the analytical solution for [u] can be solved:

[u]sol =−GclW0

−M[u]2max exp(Te[u]max
Gcl

)

Gcl

/(M[u]max) . (56)

The resolution of the non-linear traction-separation criterion and the closing crite-
rion is plotted separately in Fig. 10a and Fig. 10b.

[u]

σy

Te

[u]sol

Φo
M

(a) Traction-opening procedure

[u]

−Te

[u]sol [u]max

Φc

−M

(b) Closing procedure

Fig. 10: Resolution of the strong discontinuity equation at the local scale.
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Once the opening value [u]sol is determined, the value of weak discontinuity
[|ε|]sol can be analytically calculated as [13]

[|ε|]sol =−K−1
ww (Kwbd +Kws[u]sol) (57)

Numerical application to a cubic specimen with heterogeneous
structure

In this section, we will focus on the capabilities of the EFEM model by applying it
to a heterogeneous specimen. The proposed numerical example is performed on a
cube whose length is equal to 100 millimeters. Two phases are modeled, the hetero-
geneous structure is present by a set of spherical aggregates that disperse randomly
in the cube, see Fig.11. Two groups of aggregates are modeled to represent a total
volume fraction of 20%, in which 60% of the spherical aggregates have a radius
between 3 and 5 millimeters, and the rest of them are between 8 and 12 millimeters.

Fig. 11: Represent of the projection of the cube to mesh with aggregate disperse in
the matrix and weakly enhanced elements between them.

Aiming at modeling the main features of brittle/quasi-brittle materials, Table. 1
lists the parameters of the two phases in the specimen, including the interfaces be-
tween them. Each of them contains two elastic parameters and two failure param-
eters. The aggregates are assumed to be more rigid than the matrix, and remain
elastic. The cracks can only initiate and propagate in the matrix and interfaces. For
the sake of simplicity, it is considered that the interface element carries the same
failure parameters as the matrix element.
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Table 1: Considered material parameters for the cube and its rigid inclusions.

Phase E [GPa] ν [-] σy [MPa] Gop [J/m]

Matrix 22.0 0.2 4.0 1.0
Interface - - 4.0 1.0
Aggregate 78.0 0.2 - -

The specimen is then applied by mechanical loadings. Starting from the sim-
ple uniaxial loading. The macroscopic responses of the specimen are displayed in
Fig. 12. In order to illustrate the effect of the closure mechanism, the model with
and without crack closures are compared in this figure. From Fig. 12, we can see
that firstly in the elastic phase, the two models carry the same value of macroscopic
Young’s module, which is equal to 27.4 GPa. Second, even though the failure crite-
rion at the mesoscopic scale is proposed only in traction, the failure behavior at the
macroscopic scale in compression is observed for both models. A reasonable ratio
between the traction and compression resistance can be found between 13.05 and
13.49. Third, the difference between the two models’ responses is slight in traction,
whereas in compression, the model with closure mechanism shows a little higher
resistance.
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Fig. 12: The comparison between the model with/without closure law for the cube
under monotonic loading.

To analysis the failure process in traction and the role of the closure mechanism,
we choose here four loading stages, see Fig. 12. The crack patterns of these four
stages are displayed in Fig. 13.
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(a) εM = 1.2×10−4 (point (1) in Fig. 12)

(b) εM = 1.8×10−4 (point (2) in Fig. 12)

(c) εM = 2.2×10−4 (point (3) in Fig. 12)

(d) εM = 3.0×10−4 (point (4) in Fig. 12)

Fig. 13: Cracks (in the middle) and dissipated energy at crack closures (in the right)
at four different loading stages for simple traction, they are overlaid in the left, and
the rigid inclusions are marked in gray.
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Fig. 13a displays the crack patterns at the loading stage (1), which corresponds
to the material just before the maximum resistance. A number of micro-cracks can
be observed that diffuse over the cube, especially beside the inclusions because of
the stress concentration. No crack closure can be observed at this phase.

The crack pattern in the post-peak stage is shown in Fig. 13b. We can see that the
number of failed elements is heavily increased. The diffused cracks become denser
and begin to coalesce to macroscopic cracks. A very small number of cracks can be
found starting to close.

From Fig. 13c to Fig. 13d, the macroscopic response of the material tends to
stabilize, whereas the crack pattern continues to change. The major crack continues
to propagate and numerous crack closures occur in the specimen. Depending on the
evolutions of major cracks, we can roughly classify the closing elements into two
main categories. For the sake of clarity, three major cracks are presented here as
examples, see Fig. 13d.

Fig. 14: Cracks for the model without closure law at the stage (4), and the increasing
values of crack opening from the stage (3) to the stage (4).

The first closing category is present by crack 1 and 2. We can see that they are
almost entirely closed from the stage (3) to stage (4). They are located at the upper
or lower parts of other major cracks. The crack closures of this kind originate from
the stress release which is caused by the rapid development of other major cracks
(crack 3 in this case). For the model without closure mechanism, this stress-relieving
effect can also be observed, see Fig. 14. Even though the cracks can not close for the
model without crack closures, it can be seen that the cracks in the stress release area
(crack 1 and 2) stop propagating from the stage (3) to stage (4) during the imposed
loading increases.

The closing elements in crack 3 belong to another category of closure patterns.
They are also triggered by stress release, but the stress release derives itself from the
center of cracks, where the failed elements develop faster than the other elements.



26 Yue SUN, Emmanuel ROUBIN, Jean-Baptiste COLLIAT, Jianfu SHAO

This observed phenomenon originates from the imposed model at the local scale, in
which the equivalent stress on the discontinuity surface will decrease as the crack
opening increases, meaning that the failed element propagates more and more easily.
The consequence of this type of closure element is that, compared to the model
without closure mechanism, the major crack in the model with closure mechanism
will become narrower and clearer.
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(a) Model with closure mechanism
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(b) Model without closure mechanism

Fig. 15: Distributions of crack opening values for the model with and without clo-
sure mechanism in traction.

The crack evolution of the two models is plotted and compared in Fig. 15. It can
be observed from the figure that their main differences appear from the stage (3) to
stage (4), i.e., after crack closures start to occur massively in the specimen for the
model with closure mechanism. During this period, the number of elements with
relatively higher crack opening values gradually increases for both models, corre-
sponding to the propagation of major cracks. While for the number of elements with
low crack opening values, the two models show different trends. There are a num-
ber of elements that admit a closing behavior for the model with closing mechanism,
which leads to an increasing number of elements with small crack opening values.
Whereas for the model without closing mechanism, this number remains almost
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constant.

Next, a loading-unloading displacement is applied to the specimen to illustrate
the EFEM model’s ability in terms of the unilateral effect. It is also one of the main
characters of brittle/quasi-brittle materials. The macroscopic responses of the model
are plotted in Fig. 16a.
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(a) Numerical simulation results of the model with and without closure mechanism

(b) Behavior of a concrete beam under low cycle bending [6]

Fig. 16: Illustration of the unilateral behaviors of concrete.

In Fig. 16a, we can see that for both models, the stiffness of the material can be
fully recovered even the specimen is very damaged in traction. The reason for this
recovery, though, is a little different between the two models. As for the model with-
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out crack closures, the stiffness of the material is recovered right after the traction
loading switches to unloading. This is because the failure behaviors of the element
are applied only on the discontinuity interface, the bulk volumes have always pure
elastic kinematics. Hence the unloading displacement will be applied to these elastic
bulk volumes since the crack openings can not be decreased. These crack openings
are also the resource of the permanent plasticity that can be seen in the figure.

As for the model with closure mechanism, the macroscopic response of the spec-
imen under unilateral loading is related to the closure of cracks. In the first phase
of unloading, a number of failed elements admit a closure behavior, which leads to
a partial recovery of the material stiffness, and also to an amount of energy dissi-
pated in the closing phase. Then, as the imposed displacement recharges, the failed
elements reopen, and a hysteresis loop can be observed. This phenomenon shows
a good consistency with the experimental observations (Fig. 16b). And when the
imposed displacement unloads to compression, we can see that the specimen has
its stiffness fully recovered at the point (3). Some permanent plasticity can also be
observed at point (2), but much less than for the model without closing mechanism.
This is due to crack closures in the sample.

(a) Point (1), εM = 3.0×10−4 (b) Point (2), εM = 0.9×10−4 (c) Point (3), εM = −0.33 ×
10−4

Fig. 17: Variation of the cracks of the material during the unloading process in a
unilateral test, the points are marked in Fig. 16a.

Interested in the crack patterns of the model with closure mechanism along
with the unilateral loadings and its consistency with the experimental observation
(Fig. 16b), we label here three stages as shown in Fig. 16a. Their crack patterns are
displayed in Fig. 17. It can be seen that:

• At the point (1), a large amount of crack openings apparent in the specimen,
accompanied with the loss of stiffness of the material.

• At the point (2), the state of null stress, the cracks are partially closed while lead-
ing to an amount of plastic strain, the resource of which is the residual openings.
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• At the point (3), the cracks are almost entirely closed, leading to the recovery of
the stiffness of the specimen.

Finally, a compressive cyclic loading is applied to the material to analyze the
performance of the model. The displacement-controlled trajectory is displayed in
Fig. 18. and the macroscopic responses of the two models are given in Fig. 19.

0 0.5 1 1.5 2 2.5 3 3.5 4

−0.3

−0.2

−0.1

0

Cycle [-]

D
is

pl
ac

em
en

t[
m

m
]

Fig. 18: Proposed displacement path for the cyclic loading.

We can see from Fig. 19 that both models carry an amount of volumetric dilata-
tion, and this phenomenon is more obvious pour the model without closure mech-
anism. This is because the volumetric dilatation derives itself from the crack open-
ings. And the crack closures in the model with closure mechanism may restrict this
effect.

Then in Fig. 20, several differences between the two models can be notices. First,
we can see that the first cycle is purely elastic, and starting from the second cycle,
the model with closure mechanism losses less of the macroscopic stiffness than
the other model. Displayed in the figure by dashed lines, the model with closure
mechanism has 42.3% of the initial stiffness at the end of loading, while the model
without crack closures has only 18.5%. This can be explained by the crack closures
in the unloading phase, which leads to the stiffness of the material partially recovers.

Second, it can be seen that the model with closure mechanism has slightly higher
plasticity at the third cycle, which equals to ε

p
with closure = 2.2×10−4, while the value

for the model without closure mechanism is ε
p
without closure = 2.0× 10−4. Unlike in

traction loadings that the plasticity is directly related to the residual crack opening,
the observed plasticity in compression is the result of emergence from the meso-
scopic to macroscopic scale since the closing procedure brings additional dissipated
energy. It should be noted that at the local scale, no plastic deformation is formulated
in the constitutive model.

Finally, the hysteresis phenomenon can be observed for the model with closure
mechanism, which is one of the main characteristics of brittle/quasi-brittle materials.
The source of this observed phenomenon comes from several ingredients, such as
the capability of recovery stiffness, and to dissipate energy during the closing phase.
And both of them are part of the effects of the closure mechanism.



30 Yue SUN, Emmanuel ROUBIN, Jean-Baptiste COLLIAT, Jianfu SHAO

−4 −2 0 2 4

·10−3

−40

−20

0

Strain [-]

St
re

ss
[M

Pa
]

Model with closure

−4 −2 0 2 4

·10−3

−40

−20

0

Strain [-]

Model without closure

Ax or Tr Vol

Fig. 19: Macroscopic response of monotonic/cyclic tests for model with/without
adding closure law, in terms of axial (note Ax) transversal (note Tr) and volumetric
strain (note Vol).
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Fig. 20: Illustration of the loss of stiffness and the plastic deformation in cyclic
loading for model with/without crack closures.
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Conclusion

In existing EFEM methods, many models have shown their ability to simulate many
of the main characters of brittle or quasi-brittle materials. For example, the asym-
metric behaviors in traction and compression loadings, the volumetric dilatation,
and the progressive loss of stiffness. In this chapter, we applied a closure mecha-
nism to the model to investigate if more behaviors can be observed.

The model is tested to a concrete-like specimen with mesoscopic structural het-
erogeneities. Intricate crack pattern can be observed during the fracture process,
and the propagations of cracks may influence each other. The crack closures can be
observed not only in cyclic loadings , but also in monotonic loadings. The model
shows also similar behaviors as experimental observations in unilateral loadings,
including the hysteresis loops, irreversible deformations, and stiffness recovery. In
compressional cyclic loading, The hysteresis phenomenon can be observed. Even
the friction between the lips of cracks is not taken into concern, the fatigue behav-
iors can be seen by adding a closure mechanism to mode-I separation crack at the
local scale. However, the hysteresis loops are not very significant. This may related
with the lack of consideration of the friction between the cracks. In future works, it
would be interesting to take this into concern.
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