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Abstract

The human perception system is often assumed to recruit motor
knowledge when processing auditory speech inputs. Using ar-
ticulatory modeling and deep learning, this study examines how
this articulatory information can be used for discovering speech
units in a self-supervised setting. We used vector-quantized
variational autoencoders (VQ-VAE) to learn discrete represen-
tations from articulatory and acoustic speech data. In line with
the zero-resource paradigm, an ABX test was then used to in-
vestigate how the extracted representations encode phonetically
relevant properties. Experiments were conducted on three dif-
ferent corpora in English and French. We found that articulatory
information rather organises the latent representations in terms
of place of articulation whereas the speech acoustics mainly
structure the latent space in terms of manner of articulation. We
show that an optimal fusion of the two modalities can lead to a
joint representation of these phonetic dimensions more accurate
than each modality considered individually. Since articulatory
information is usually not available in a practical situation, we
finally investigate the benefit it provides when inferred from the
speech acoustics in a self-supervised manner.
Index Terms: representation learning, speech perception, zero-
resource, articulation, speech production, phonetic features

1. Introduction
The discovery of phonological units from the speech input is a
crucial stage in the development of infants and children. A long-
standing question concerns the nature of phonetic cues enabling
to establish and then access phonological units. Importantly,
while much effort has been done to determine acoustic cues and
possible acoustic/auditory invariants (e.g. [1]), the role of artic-
ulatory knowledge has been proposed as critical in this process
[2, 3], particularly concerning the representation of consonan-
tal features independently of their vowel context (the so-called
“search for invariance” [4]).

The question of self-supervised unit discovery is also in-
creasingly considered in the field of automatic speech process-
ing. It is of potential great interest to design speech technology
for low-resource languages and it is one of the main tasks of the
recent series of “zero-resource challenges” aiming at develop-
ing speech recognition and synthesis systems without textual re-
sources [5, 6]. Still, most recent developments in this field only
exploit the raw audio signal speech (e.g. [7, 8, 9]) and the use of
articulatory knowledge is rarely considered (or indirectly, by at-
tempting to extract categorical articulatory or phonological fea-
tures from sound, e.g. [10]). This is mainly for practical rather
than theoretical reasons. Articulatory data are generally not di-
rectly available in practical systems, and inferring them auto-
matically from the audio speech signal of any arbitrary speaker
(i.e. acoustic-to-articulatory inversion) is a difficult task.
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Figure 1: Proposed framework for discrete representation
learning of speech from articulatory and acoustic speech data
using VQ-VAE.

In a series of previous studies, we have shown how in-
troducing an explicit articulatory prior knowledge in the latent
space of a variational auto-encoder (VAE) improves robustness
to noise [11]. We have then proposed a self-supervised ap-
proach for learning a DNN-based acoustic-to-articulatory inver-
sion model [12] trained end-to-end to “repeat” auditory speech
inputs from any arbitrary speakers. In the present study, we
specifically address the question of introducing articulatory
knowledge in speech units discovery and focus on the ques-
tion of invariance of consonants in varying vocalic context. In
line with previous studies conducted in the scope of the zero-
resource challenge [13, 14], we use the VQ-VAE technique to
learn quantized representational spaces likely to provide a basis
for units representations. A set of VQ-VAEs were trained from
ground truth articulatory data derived from available datasets
for English and French, and compared with VQ-VAEs trained
from their acoustic counterpart. For this comparison, we have
used the ABX methodology [15]. It assesses which linguistic
invariants are encoded by the latent dimensions (in this frame-
work, speech units can be defined from the emergence of sound
categories well discriminated in the ABX paradigm). In line
with the theoretical context mentioned previously, we focus on
consonants, looking for representations that are robust to vary-
ing vocalic context. Then, we investigated how acoustic and ar-
ticulatory modalities can be combined efficiently. Finally, as a
first step toward a practical system, we replaced ground truth ar-
ticulatory data by data inferred from the acoustic-to-articulatory
inversion model proposed in our previous study [12].



2. Material and methods
2.1. Datasets

Two publicly available acoustic-articulatory datasets were used
for this study. The first one is the Multichannel Articulatory
Database (MOCHA) [16]. Two speakers (fsew0, female and
msak0, male) uttered 460 sentences extracted from the British
TIMIT corpus, representing 20.6 minutes of speech for fsew0,
and 17.4 minutes of speech for msak0. For this corpus, each ar-
ticulatory observation is a 14-dimensional vector gathering the
2D coordinates of 7 electromagnetic articulatory (EMA) coils
describing the lips, tongue, jaw and velum positions in the mid-
sagittal plane of each speaker’s vocal tract, every 10 ms.

The second dataset is the PB2007 French dataset [17] con-
taining 1,109 items (15 minutes of speech) produced by a refer-
ence speaker (PB, male) 1. Here, each articulatory observation
is a 12-dimensional vector (every 10 ms) gathering the 2D co-
ordinates of six coils only compared to the MOCHA dataset,
since the movements of the velum were not recorded. An ad-
ditional database of audio-only data was recorded by two other
male speakers (TH and GB). Both were asked to pronounce the
same corpus as the one recorded by the speaker PB.

2.2. Articulatory and acoustic features

In order to extract a set of dimensions which are interpretable
in terms of articulatory control/function in speech production
[18], we applied the general methodology originally proposed
by Maeda [19] and often referred to as the articulatory “guided-
PCA”. This linear dimensionality reduction technique aims at
disentangling the movements of each speech articulator (e.g.
by estimating the movements of the tongue and lips, inde-
pendently of the jaw). To be concise, we do not recall here
the details of this technique and we invite the reader to re-
fer to [11] (section 2.2). After processing, the raw EMA data
were reduced to a set of 7-dimensional feature vectors for the
MOCHA dataset (1 for the jaw, 2 for the lips, 3 for the tongue,
and 1 for the velum) and 6-dimensional feature vectors for the
PB2007 dataset (same as MOCHA but with no velum). For both
datasets, a 40-dimensional mel-spectrogram was used to repre-
sent the acoustic content of the speech signal (extracted from
the 16-kHz speech waveform recorded synchronously with the
articulatory movements, with a window size of 25 ms and a hop
size of 10 ms using the Python librosa toolkit).

2.3. Vector Quantized Variational Autoencoder

A vector quantized variational autoencoder (VQ-VAE) [20] can
be seen as a discrete version of the variational autoencoder
(VAE) [21, 22]. It has an encoder-decoder architecture, the de-
coder defining a posterior distribution pθ(x|z) of the input ob-
servation x given a latent variable z. The parameters of this dis-
tribution are provided by a DNN (with weights θ). Symmetri-
cally, the encoder defines a posterior distribution qϕ(z|x) of the
latent variable z given an input observation x (also parametrized
by a DNN with weights ϕ). However, contrary to the VAE, this
posterior distribution is categorical, such as:

qϕ(z = k | x) =

{
1 for k = argminj ∥ze(x)− ej∥2
0 otherwise

(1)

1Dataset available at https://doi.org/10.5281/zenodo.
6390598

with ze(x) the output of the encoder, and {ei} with
i ∈ 1, 2, . . . ,K a set of K D-dimensional latent embedding
vectors. Therefore, in a VQ-VAE, the latent variable z is dis-
crete. It is defined as the index of the closest embedding vector
w.r.t. the output of the encoder (nearest neighbour look-up).
This embedding vector is then used as the input of the decoder.
The set of embedding vectors (i.e. the codebook) is estimated
from the data in a self-supervised manner, in addition to the pa-
rameters of both encoder and decoder neural networks.

2.4. Implementation details

As illustrated in Figure 1, for each speaker and for each dataset,
we trained one VQ-VAE from articulatory data only, referred to
as the “articulatory VQ-VAE” and a second one from the cor-
responding acoustic data (“acoustic VQ-VAE”). As a first way
of combining both modalities, we investigated an “early fusion”
strategy based on the concatenation of articulatory and acoustic
feature vectors (resulting model is named “articulatory-acoustic
VQ-VAE”). For each VQ-VAEs, the encoder was built with 3
fully connected layers of 256 neurons each, with the hyperbolic
tangent used as the activation function (dropout and batch nor-
malization layers were inserted after each fully connected layer
with a dropout ratio of 0.25), and with a final linear layer of the
size the dimension of the embedding vectors (i.e. D). A similar
structure was used for the decoder, but with the final linear layer
adapted to the size of the input data.

For each experiment, training data were z-scored. Model
training was done using back-propagation with Adam opti-
mizer, on mini-batches of 8 sequences of feature vectors. The
implementation was done using the PyTorch toolkit2 [23].

For each experience, the datasets were randomly partitioned
with 80% of the data used for training and the remaining 20%
used for testing. 20% of the training set was used as a validation
set (for controlling the early stopping). For better robustness of
the experimental results, each VQ-VAE model was trained and
evaluated 5 times, with each time a different (random) parti-
tioning of the datasets. We report here the average performance
over these 5 evaluations.

2.5. ABX evaluation

In line with the zero-resource challenge, the phonetic proper-
ties of the latent representations (i.e. the embedding vectors)
learned by the different VQ-VAEs were assessed using a series
of ABX tests. This method is based on the idea that the learned
representation of two occurrences of the same phoneme (A and
X) should be closer to each other than to any other phoneme
(B). As stated previously, the study is focused on consonants
in varied left and right vocalic contexts. For each dataset and
speaker, and for each related test set, we extracted all vowel-
consonant-vowel (VCV) sequences and their related (discrete)
representations in latent spaces of all trained VQ-VAEs (articu-
latory, acoustic and articulatory-acoustic VQ-VAE). From these
sequences, and for all consonants, we built a set of triplets A, B,
X with A and X the representations associated with two occur-
rences of a same consonant but potentially in a different vocalic
context, and B, the representations associated with an occur-
rence of a different consonant. We then compared the distance
between A and X on one hand, and the distance between B and
X on the other hand.

2The source code for the different experiments is available at:
https://gricad-gitlab.univ-grenoble-alpes.fr/
georges1/articulatory-acoustic-vq-vae
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Here the distance is defined as the mean frame-wise cosine
distance along a dynamic time warping (DTW) path, computed
as follows: 1) for each VCVs (A, B and X), we extracted the
sequence of corresponding embedding vectors using the differ-
ent VQ-VAEs (articulatory, acoustic or articulatory-acoustic),
2) we kept only the frames corresponding to the central conso-
nant (we rely here on the available segmentation at the phonetic
level of PB2007 and MOCHA datasets), 3) we time-aligned the
consonants of A and X on one hand, and B and X on the other
hand using the DTW algorithm, 4) we calculated the average
cosine distances along the DTW path for both A vs. X (dA,X )
and B vs. X (dB,X ) (for this procedure, we used the toolkit pro-
vided in [24]). A single ABX test is considered as a “success”
when dA,X < dB,X .

To limit the computational cost, this ABX test was not done
for all possible A, B, X triplets in each dataset, but only from
a randomly selected subset of 5,000 (A, B, X) triplets ensuring
that each (A, B) pair is evenly represented. For each VQ-VAE,
and for each speaker, a global discriminability score was de-
fined as the average success rate of all individual ABX tests.

In addition to the early-fusion strategy mentioned above
based on the concatenation of articulatory and acoustic feature
vectors and their modeling using a single VQ-VAE (as illus-
trated in Figure 1), we investigated another approach for com-
bining the two modalities for the ABX tests. When processing
A and X stimuli, we computed dmerge

A,X = ω.dac
A,X + dart

A,X where
dac
A,X is the distance between A and X obtained for the acoustic

VQ-VAE (using the DTW-based procedure described above),
and dart

A,X is the distance between A and X but obtained with
the articulatory VQ-VAE, and ω a weighing factor. We did the
same for the (B, X) pair. A single ABX test was then considered
as a “success” when dmerge

A,X < dmerge
B,X . This approach is referred

here to as “late fusion”.

2.6. Speech unit discovery from inferred articulatory data

Since ground truth articulatory data are usually not available
in a practical system, we investigated the use of an acoustic-
to-articulatory inversion technique to recover them automati-
cally from the raw speech signal. Acoustic-to-articulatory in-
version is a well known regression problem which has been ad-
dressed with supervised [25, 26] or semi-supervised techniques
[17, 27]. In line with the zero-resource framework, we inves-
tigated for the present study the use of a self-supervised ap-
proach, and more specifically the one proposed in our previous
study [12]. This approach is based on the coupling of a DNN-
based acoustic-to-articulatory inversion model with a DNN-
based articulatory-to-acoustic synthesis model, the latter being
pre-trained in a supervised manner on articulatory-acoustic data
of a reference speaker. The inversion model is trained to re-
cover articulatory features in the vocal tract space of the refer-
ence speaker from audio-only inputs (potentially from any arbi-
trary speaker). The inferred articulatory features are then pro-
cessed by the articulatory synthesizer which generates an audio
output. The system is trained to minimize the discrepancy be-
tween audio inputs and corresponding synthetic audio outputs.
For the present study, we pre-trained the articulatory synthesizer
from the acoustic-articulatory data of the reference speaker PB
in PB2007 dataset. We then trained the inversion model from
the audio data of speakers TH and GB (from the same dataset),
while freezing the parameters of the synthesis model. Both in-
version and synthesis models were implemented as 4 fully con-
nected layers with 256 neurons in each layer (with dropout and
batch normalization technique used to improve generalization

Figure 2: ABX discriminability scores for each pair of conso-
nants computed for speaker PB (diagonal is empty because a
consonant is never tested against itself).

capability). We used the same train/validation/test partitioning
as the one described in section 2.4. More details about the ar-
chitecture of the model can be found in [12].

3. Experiments and Results
In order to calibrate the different VQ-VAE models used in the
present study, we first conducted a series of preliminary sim-
ulations for assessing the impact of the number of embedding
vectors (i.e. K) and their dimensionality (i.e. D). We did not
observe significant improvements (in terms of overall ABX dis-
criminability score) for K ≥ 64 and D ≥ 32. Thus, we report
here only the results for models trained with these lower bounds
(i.e. K = 64 and D = 32).

3.1. Articulatory vs. acoustic VQ-VAEs

For the 3 speakers PB, fsew0 and msak0, the ABX discrim-
inability scores were respectively 86.4%, 78.4%, 78.8% for the
acoustic VQ-VAEs, and 77%, 76.7%, 78.3% for the articula-
tory VQ-VAEs. Therefore, the acoustic and articulatory mod-
els behave differently only for the speaker PB. This may be
explained by the lack of information about the velum for this
speaker which makes it difficult for the learned representations
to encode the nasality feature.

To better understand the error patterns for each modality,
we report in Figure 2 the average ABX discriminability score
for each pair of consonants, for speaker PB. We observe that for
the articulatory VQ-VAE, the discriminability scores are lower
for pairs of consonants with the same place of articulation (e.g.
palatals [s] vs. [d] or labials [f] vs. [b]) whereas for the acoustic-
VQ-VAE, scores are lower for pairs of consonants with the same
manner of articulation (e.g. unvoiced fricatives [f] vs. [s]).

Then, we conducted a more fine-grained analysis in order
to better investigate how the learned representations discrimi-
nate the consonants w.r.t. their place and manner of articulation.
To that purpose, we defined two distinct ABX discriminability
scores, respectively called “manner of articulation ABX score”
and “place of articulation ABX score”. To compute the first one
(focusing on the manner of articulation), we grouped the con-
sonants in three subgroups with similar place of articulation,
that are labiodentals, palatals and dorsals. We applied the ABX
testing methodology within each group (e.g. for the labioden-
tal group, A is [abo], X is [iba] and B is [uvo]) and we calcu-



lated the success rate averaged over the three groups. To com-
pute the second score (focusing on the place of articulation), we
applied the same procedure but after grouping the consonant
w.r.t. their manner of articulation. We considered the following
five subgroups: voiced stop consonants, voiceless stop conso-
nants, voiced fricatives/affricates, voiceless fricatives/affricates
and sonorants i.e. liquids and nasals.

We reported these two scores for each speaker in Figure 3
(left column, blue and orange dots). The results confirm that ar-
ticulatory information rather organises the latent representations
in terms of place of articulation whereas the speech acoustics
mainly structure the latent space in manner of articulation. The
different patterns between French and English speakers could
be explained by the linguistic content of each dataset (mostly
VCVs vs. sentences).

3.2. Early vs. late fusion of the modalities

We reported also in Figure 3 the place vs. manner of articulation
ABX discriminability scores, for both the early fusion (concate-
nation of acoustic and articulatory feature vectors, left column,
green dots) and the late fusion strategies (combination of the
ABX distances of the acoustic and articulatory VQ-VAEs, col-
ored lines). The early fusion strategy gives slightly better results
than the articulatory-only VQ-VAEs in term of place of articu-
lation and a moderately weaker performance than the acoustic-
only VQ-VAE in terms of manner of articulation.

As for the late fusion strategy, when modulating the contri-
bution of both acoustic and articulatory VQ-VAE (i.e. ω varying
between 10−1 and 101), the performance follows a path with an
optimum value that gives nearly as good performances as each
modality taken independently for the PB2007 dataset and even
better performances for the MOCHA dataset. Therefore, these
experiments tend to demonstrate that these fusion strategies can
take advantage of both acoustic and articulatory modalities for
speech unit discovery.

3.3. Speech unit discovery from inferred articulatory data

The experiments based on articulatory data inferred automat-
ically from the speech audio signal were conducted on the
PB2007 dataset only. The overall ABX discriminability scores
for the speakers PB, GB and TH are also displayed on Figure 3
(right column). First, the results obtained with speaker PB show
that the representations are less structured in terms of place of
articulation than the ones learned from ground truth articula-
tory data (see the “place of articulation ABX scores” of blue
dots, comparing right and left top plots, 68% vs. 86%). Nev-
ertheless, for this speaker as well as for the speaker GB, we
still see a lower ’manner of articulation ABX’ score and higher
’place of articulation ABX score’ for the articulatory VQ-VAEs
than for the acoustic VQ-VAEs. Indeed to a lesser extent than
when considering the ground truth articulatory data, we do also
see an advantage to combining the two modalities. However,
for the TH speaker the acoustic score is already high (and much
higher than for PB and GB) and as a consequence the inferred
articulatory modality does not provide improvement.

4. Conclusions
We investigated the use of articulatory data for learning discrete
representations of speech using VQ-VAEs. Experiments con-
ducted on both English and French languages, show a potential
importance of such data, at least for consonantal features. These
results fit well with expectations about the role of articulatory

Figure 3: ABX scores w.r.t. place and manner of articulation for
early and late fusion strategies, with ground-truth (left) and in-
verted (right) articulatory data. Late fusion performance varies
with ω ranging from 10−1 (cyan) and 101 (purple).

features in the representation of consonant place of articulation
[28]. The proposal of fusion strategies, either early or late, adds
further light, suggesting that the complementarity of acoustic
and articulatory representations could indeed be crucial for pro-
viding robust and complete phonetic representations.

The passage to inferred articulatory input is less convincing.
These representations, inferred in a completely self-supervised
process driven by speech inputs from different speakers, are
far from providing the complete information potentially avail-
able in the speaker’s articulatory knowledge. Since these in-
ferred articulatory inputs actually provide rather efficient acous-
tic outputs [12], this suggests that they are based on articula-
tory strategies more or less adequate in acoustic terms, but not
sufficiently realistic in articulatory terms. The consequence is
that VQ-VAEs based on these representations are actually close
to acoustic VQ-VAEs. Future work will aim at extending the
articulatory-to-acoustic self-supervised learning process in [12]
to better exploit the present developments about the discovery of
speech units, relating the imitation and unit discovery processes
in a computational model of sensory-motor speech learning.
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