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All theoretical calculations on boron nitride moiré bilayers report the properties of, at most,
two possible stackings which preserve the monolayer hexagonal symmetry (i.e. the invariance upon
rotations of 120◦). In this work, we demonstrate that, for a given moiré periodicity, the same
symmetry is respected by five different stackings and not only two as always discussed in literature.
We introduce some definitions and an appropriate nomenclature to identify unambiguously the
twist angle and the stacking sequence of any BN bilayer with order-3 rotation symmetry. The
nomenclature we introduce here and the method to calssify stacking sequences and the angles is
completely general and can be applied to homobilayers of any hexagonal 2D materials. Moreover, we
produce density functional theory predictions of the electronic structure of each of the five stacking
sequences at six different twist angles and discuss the evolution of the gapwidth and band structure
and as a function of these parameters. We show that the gap is indirect at any angle and in any
stacking and we identify features that are conserved at any angle within the same stacking sequence.

Initiated by twisted bilayer graphene, moiré systems
formed by 2D atomic layers have recently been estab-
lished as a unique playground for highlighting novel and
fascinating properties [1]. A tiny twist between the two
van der Waals atomic layers can modify deeply their
electronic properties. In the case of graphene bilayers,
a moiré mini-band with flat dispersion appears when-
ever the layers are stacked at specific twist angles, called
magic angles [2, 3]. Such a feature enhances the effects
of electron interaction, thus opening up new perspectives
for the exploration of highly correlated systems [4–6].

In twisted bilayers formed of gapped materials (e.g.
semiconducting transition metal dichalcogenides) the for-
mation of moiré flat bands has an impact on the optical
properties. For instance, recent experiments demonstrate
that the twist angle can be used as a knob to modulate
the exciton lifetime [7], or the energy and intensity of
emitted light [8–11]. Moreover specific orientation con-
ditions are not required to form flat bands [12–14]. This
is still true for hexagonal boron nitride (hBN) which is
a key compound in 2D materials research. In contrast
to graphene, hBN is a wide band gap semiconductor
(> 6 eV) [15, 16] and is therefore attracting interest for its
strong photoluminescence properties [17, 18]. Strong ex-
citonic effects have already been observed in the bulk and
even more important effects are predicted in single layers
where optical properties are expected to be driven by ex-
citons [19]. Recently, experimental techniques inherited
from graphene studies have been applied to the fabrica-
tion of bilayers of hBN with a controlled twist angle to
achieve engineered ferroelectrics, thus expanding the ca-
pabilities of 2D materials for various applications [20, 21].
Regarding optical properties of hBN bilayers, Lee and
coworkers [22] observed an increase of the luminescence
intensity and a decrease of the moiré sub-band gapwidth

for increasing twist angles. From the standpoint of atom-
istic simulations, geometries of stackings with a small
angle of rotation require very large periodic cells (order
of thousands of atoms), but numerical approaches based
on self-consistent calculations are rather limited to some
hundreds of atoms in the calculation cell [23]. As for
graphene [2, 24], tight-binding (TB) or continuous mod-
els based on k · p approximations are more adapted to
deal with very large systems and have therefore been de-
veloped [6, 14, 25, 26]. However, detailed results for
the electronic structure as a function of the twist angle
are still lacking. More precisely, the very nature of the
band gap is still not elucidated/discussed while it obvi-
ously strongly drives the optical and excitonic properties
of monolayer and bulk BN [15, 16, 27]. In the case of
untwisted BN bilayers, it has been shown that the long
range interplanar interaction, and hence the stacking se-
quence [28, 29], strongly influences the character of the
gap [19, 28]. However, all stacking geometries existing
in such heteregenous twisted BN structures, which are
much more complex, were not addressed.

In this Letter, we want to investigate the electronic
structure of twisted BN bilayers by taking into account
fully and on the same footing its dependence on the twist
angle and the stacking sequence. As a first step, we
demonstrate the existence of five and only five different
stacking possibilities to construct BN bilayers with order-
3 symmetry and provide a non-ambiguous nomenclature
that can be applied to untwisted configurations and to
any other homo-bilayer formed of hexagonal 2D materi-
als. From this symmetry analysis, we investigated the
evolution of the band structure as a function of the twist
angle for each of the five stackings with density functional
theory (DFT) paying a special attention to the indirect
nature of the band gap.
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FIG. 1. a) Graphical representation of θ and θ′ angles according to the (p, q) integers. b) The lower layer supercell is always
the (q, p) with a boron atom at the origin. In our example p = 2 and q = 1. c) d) and e) the three (p, q) supercells of the upper
layer in yellow with respectively B, N or hexagon at the origin, and in blue the correspnding (−q, p+ q) supercells.

The usual way to construct a tiling of rotated bilayers
that preserves long range translational symmetries, is to
place the two layers into coincident supercells. Let us
take a honeycomb lattice with primitive vectors a1 and
a2 forming an angle of 60◦, and two atoms per primitive
cell separated by the vector τ . Then we create two new
supercell vectors A1 and A2 by means of the matrix M
according to Ai =

∑
j Mijaj . The supercell itself is also

hexagonal if

M =

[
p q
−q p+ q

]
(1)

with p and q integers. We will name it the “(p, q) super-
cell”. We can construct a first kind of moiré bilayer by
placing a (p, q) cell above its mirrored image (q, p). The
angle of misorientation (twist angle) is fixed by the {q, p}
pair according to the formula:

tan θ =
√

3
p2 − q2

p2 + q2 + 4pq
. (2)

A second kind of structures exists, based on a similar
coincidence. The application of a π/3 rotation on the
(p, q) supercell vectors Ai is equivalent to construct them
from the basis {a2,a2 − a1} instead of {a1,a2}. The
corresponding matrix writes:

M′ =

[
−q p+ q
−p− q p

]
. (3)

Let us call this “(−q, p+ q) supercell”. It spans the same
area as the previous (p, q) supercell, but the atomic dis-
position inside it is different. Now, placing this (−q, p+q)
supercell over the (q, p) one leads to a different twist an-
gle defined by

tan θ′ =
√

3
q2 + 2pq

2p2 − q2 + 2pq
. (4)

The three supercells defined above and the resulting an-
gles θ and θ′ are sketched in Figure 1.a. The p and q
integers obey to some constraints however: they must be
different and non zero, they must have no common divi-
sor, and the cases p− q multiple of 3 have to be excluded
as they correspond to angles of 0° and 60°, or to non
primitive moiré supercells. However, the nomenclature
introduced here for twisted bilayers can be employed also
for untwisted structures by considering the (0, 1) case.
Moreover, since the angles (2) and (4) are defined mod-
ulo 60°, the definitions (1) and (3) are not unique. In
order to establish a non ambiguous set of structures we
will impose arbitrarily p > q > 0 implying that both θ
and θ′ are positive and θ + θ′ = 60°.

Designing moiré bilayer hexagonal structures requires
then two integers p and q, as well as the respective posi-
tions of layers. Let us introduce the notation (p, q)X , X
being the origin of the supercell. It can be either a boron
B (“A” sublattice), a nitrogen N (“B” sublattice) or an
hexagon H. The origin of the lower layer is arbitrarily
located on a site of the “A” sublattice (i.e. a boron atom
in case of hBN) and its supercell is accordingly labeled
(q, p)B . The upper layer supercell is either based on the
(p, q)X or on the (−q, p+ q)X construction, with X = B,
N or H. As a consequence, one ends up with six bilayers
that can be identified by the supercell indexes p and q
and the origin of the upper layer X. The construction is
sketched in Figure 1 where we report the example of the
(1, 2)B supercell for the lower layer (panel b) and either
the (2, 1)X supercells (in blue) or the (−2, 3)X ones (in
yellow) for the upper layer (panels c-e), with X = B,
N or H. The six stacking geometries are listed in Ta-
ble I. Note that in Table I angles appear with a sign.
It is worth stressing that this sign is actually meaning-
ful because moiré bilayer honecomb systems are chiral
structures. We hence define the sign of the twist angle
as the screw angle separating BN bonds at the atom-on-
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upper layer angle group stacking double SC

(p, q)B +θ p321 BB no

(p, q)N −θ′ p321 BNNB yes

(p, q)H +θ p321 NN no

(−q, p+ q)B −θ′ p312 BBNN yes

(−q, p+ q)N +θ p3 BN no

(−q, p+ q)H +θ p3 BN no

TABLE I. Overview table summarizing the geometry of the
five stackings of hBN twisted bilayers. The lower layer is
based on the (q, p)B supercell.

atom coincidence sites of the supercell, as depicted in the
insets of the Figure 2.

Depending on the coincident atoms, one can distin-
guish between (i) two geometries with a double sublattice
coincidence per cell, the (p, q)N and the (−q, p+q)B , and
with an angle of twist −θ′ defined by equation (4) and (ii)
four geometries with a single sublattice coincidence per
cell, (p, q)B , (p, q)H , (−q, p+ q)N and (−q, p+ q)H , with
an angle of twist θ defined by equation (2). It is trivial
however to remark that the latter two are related by a
simple inversion and are therefore identical. All this boils
down to five hexagonal stackings for the generic twisted
hBN bilayer. While (q, p) identifies the supercell, and
is therefore related to the moiré periodicity and angles,
we will adopt the notation BBNN, BNNB, BB, BN and
NN to identify the five hexagonal stacking of the generic
supercell, inspired by the coincident atoms between the
two layers. Images of these stackings, their layer symme-
try group (p3, p321 or p312) and the transformations to
be applied to switch from one stacking to another (swap-
ping of B/N atoms in one layer or translation by ±τ ) are
summarized in Figure 2 and Table I.

For comparison, in the case of graphene bilayers both
A and B sublattices vertces are carbon atoms and there
is no need to explore the different origins of the supercell
(both start from “A” sublattice). It results that only
two stacking sequences are possible. The first is related
to equations (1) and (2), it belongs to the p321 layer
group and to the odd bilayer graphene (BLG) set [24, 30–
32], has a single sublattice vertical coincidence per cell
and the twist angle is θ. The second graphene bilayer is
related to equations (3) and 4, it belongs to the p622 layer
group and to the even BLG set with hexagon-hexagon or
double sublattice coincidence. Its rotation angle is −θ′.

At last, remembering that the twisted bilayers are chi-
ral structures, if we swap the value of p and q we obtain
five new stackings, based on the (p, q) lower layer super-
cell. They are exactly the mirror images of the five (q, p)
structures with the same electronic structure and with
the twist angles +θ′ for the BNNB and BBNN and −θ
for the BB, BN and NN stackings. Complete definitions
and demonstrations are given in the Supplemental Ma-
terials.

−θ′

θ

sublattice
coincidence

double

sublattice
coincidence

single

BBNN

BNNB

NN

BB

transl.

BN

transl.

transl.
p321

p321

p321

p3

p312

swap
B/N

swap
B/N

FIG. 2. The five stackings of hBN moiré structures, with
p = 2 and q = 1. The sublattice coincidences are highlighted
with red circles.

Based on our robust symmetry analysis, five differ-
ent stackings are thus clearly identified in the case of
BN bilayers whereas only two of them have been so far
considered in litterature (i.e. NN and BN [23]). For
these two, very specific electronic properties have been
reported, demonstrating that a complete study involving
all the stackings is mandatory.

Now that we have identified all stacking possibilities
and established an unambiguous nomenclature to dis-
tinguish them, we can study how the stacking sequence
modifies the band structure at fixed supercell. To this
aim we have performed first-principle simulations in the
density functional theory (DFT) framework in the gen-
eralised gradient approximation [33]. All the calculation
parameters and the procedure to determine the equilib-
rium interlayer distance of the bilayers can be found in
the Supplemental Materials. In a previous work [28] we
highlighted that interlayer coupling is crucial in the for-
mation of the indirect band gap of the bulk phase.In this
context, particular care has been taken to obtain accu-
rate results at the gap level. As a first step, the structural
stabilities of the five principal untwisted bilayers are in-
vestigated highlighting two main groups (see Figure 10 of
the Supplemental Materials). Indeed, the three most sta-
ble structures (BN(0,1), BNNB(0,1) and BB(0,1)) have a
smaller equilibrium interlayer distance, whereas the two
least stable ones (BBNN(0,1) and NN(0,1)) are around
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Structure
Top valence Bottom conduction

@M @K @M @K

BNNB(1,2) 83 - 25 -

BN(1,2) 61 - 104 -

NN(1,2) 148 20 178 -

BB(1,2) 38 - 232 110

BBNN(1,2) 163 20 273 110

TABLE II. The band splitting (meV) at M and K in the
top valence and bottom conduction of the (1,2) supercells.
The symbol ‘-’ indicates a band crossing. These features are
highlighted with red vertical lines in figure 3.

10 meV per formula unit higher in energy and have a
larger equilibrium interlayer distance. Regarding the
electronic properties, untwisted bilayers with a boron-
on-boron conicidence (BBNN(0,1) and BB(0,1)) have an
indirect band gap whereas the other structures have an
indirect gap. More details about the untwisted bilayers
can be found in the Supplemental Materials.

We now focus on twisted bilayers and we adopt the
(1, 2) configuration for all stackings because of computa-
tional convenience and because notable effects are more
distinguishable. The nomenclature we adopted has the
advantage of immediately telling what atomic species are
on top of each other and this characteristic has clear sig-
natures in the band structure. The DFT results are re-
ported in Figure 3. Note that the momentum path is
traced inside the bilayer supercell. It is important to
recall that the preservation of the hexagonal symmetry
of the supercell implies the conservation of their order-3
rotation axes without which the moiré superstructure is
not hexagonal and the equivalence between the K points
of the Brillouin zone is broken. Interestingly, our calcu-
lations reveal that the gap is always indirect whatever
the stacking with a constant value around 4.3 eV (see
Table.III). By analyzing in details the electronic struc-
ture, we can distinguish the stackings according to their
behavior at the K and M points. In the valence region
we observe that when N atoms are on top of each other
(the NN and the BBNN stackings), a band crossing is
avoided in the top valence at K while the splitting be-
tween the HOMO and HOMO-1 at M is the largest. On
the conduction band, the splitting between the LUMO
and the LUMO+1 at M is reduced along the sequence
BBNN, BB, NN, BN and BNNB while the presence of
B atoms on top of each other (BB and BBNN stackings)
prevents a band crossing at K otherwise clearly observ-
able in the other bilayers. All the features discussed here
are highlighted with dashed vertical red lines in Figure 3
and reported in Table II. We expect these effects to be
less important at small twist angles because the immedi-
ate surroundings of each atom change more progressively
than at large twist angles.

We can now pass to the investigation of the evolution of

FIG. 3. Bottom conduction and top valence of the five princi-
pal stackings in the (1, 2) supercell. Red vertical dashed lines
highlight the notable splittings at M and K in the top valence
and bottom conduction regions. Their values are reported in
Table II.

FIG. 4. Bottom conduction and top valence of the BN and
NN stackings at different twist angles.
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family supercell BNNB BN NN BB BBNN

δ = 1

(1,2) 4.325 (71) 4.318 (76) 4.296 (88) 4.299 ( 55) 4.284 (60)

(2,3) 4.221 (30) 4.217 (34) 4.211 (38) 4.203 ( 41) 4.202 (42)

(3,4) 4.153 (15) 4.153 (16) 4.151 (17) 4.145 ( 18) 4.146 (19)

(4,5) 4.102 ( 5) 4.103 ( 5) 4.101 ( 5) 4.098 ( 5) 4.099 ( 5)

δ = 2
(1,3) 4.284 (137) 4.284 (137) 4.284 (137) 4.284 (136) 4.284 (136)

(3,5) 4.240 ( 72) 4.241 ( 72) 4.240 ( 72) 4.240 ( 72) 4.241 ( 72)

TABLE III. Energy gap (eV) of the indirect band gap at different twist angles and stacking sequences. In parenthesis: energy
difference between the direct and the indirect band gap in meV.

the band structure as a function of the twist angle. More
precisely, we calculated the band structure of thirty BN
bilayers corresponding to six twist angles (i.e. six (p,q)
pairs) for each of the five hexagonal stackings. In the
main text we discuss two paradigmatic stackings, the BN
and the NN one and we report the corresponding twelve
band structure plots in Figure 4. We refer the reader to
the Supplemental Materials for the other structures.

First, we observe that the gap varies strongly with the
twist angles. More precisely, it gets smaller (higher) for
smaller θ (θ′), demonstrating a trend opposite to what
predicted by continuous models [22]. Typically, for θ
varying from 21.79◦ to 7.34◦, the gap decreases signifi-
cantly by ∼5%. Secondly, we observe that the gap re-
mains indirect irrespective of the angle in all stackings.
This finding contrasts with less accurate calculations
based on density-functional tight-binding method where
a direct gap is obtained at all twist angles [23]. Lastly,
conduction and valence bands get flatter at smaller angles
as seen in Figure 4. For example, in the BN stacking at
θ =7.34◦, the HOMO and LUMO states are characterized
by bandwidths around 0.09 eV and 0.16 eV, respectively.
A complete analysis detailed in the Supplemental Mate-
rials allows us to affirm that it is not an artifact coming
from σ or nearly-free-electron states located at higher en-
ergies. Consequently, two localized states tend to arise
in the gap for small angles. Obviously, the presence of
very flat bands is not observed since it would require to
consider much smaller angles. As a result, our calcula-
tions show that by reducing the twist angle it may be
possible to tune/reduce the difference between indirect
and direct gap, hence convert progressively the radia-
tive decay pathway from a phonon-assisted emission to a
direct recombination. This may have strong impact on
the intensity of emitted light (probability of recombina-
tion), its temperature dependence (through the coupling
with phonons) and finally the life time of excitations. At
this point we should stress that these results are reliable
as long as one considers energy differences and trends.
In fact, quasiparticle corrections, included for instance
via the GW approximation, will not change significantly
form one system to the other and have minor effect on
the dispersion of s and p states.

In addition we noted that (p, q) configurations can be
grouped in families defined by the parameter δ = |p− q|
that characterizes the interplay between crystalline struc-
ture (twist angle) and electronic structure (bands). In
fact, the bands around the gap within the same family
look similar but shrunk and flattened at smaller angles.
Consider, for example, the first four plots from the left
in the band plots of Figure 4, which belong to the family
δ = 1. Here the valence band present a maximum in K
and is formed by two bands dispersing almost paraboli-
cally, up to the M point where one of the two exhibits
a small bump. In conduction, two valleys are well dis-
cernible around M and between K and Γ, the former
constituting the conduction band minimum. The last
two plots from the left in the band plots of Figure 4 be-
long to the δ = 2 family. Characteristics of the conduc-
tion and valence are very different from the other family,
even though the gap remains indirect with the top va-
lence at K. However, as before, one can identify similar
features within the same family that remain unchanged

ind
ire

ct 
ga

p

di
re

ct
 g

ap

indirect gap

direct gap

single coincidence double coincidence

FIG. 5. Indirect gap (solid lines) and lowest direct transition
(dashed lines) of the five stackings as a function of the twist
angle (θ or θ′ depending on the stacking) within the δ = 1
family.
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despite the band shrinking. This is quite evident for the
valence band, with a characteristic double-dome shape
(with a dome on top of another) and a maximum in K.
In the conduction band, similarities are less evident, but
one can see that the two bottom bands almost coincide
in the M −K line and present two minima much closer
to Γ than in the δ = 1 family. We verified that the bot-
tom conduction in the δ = 2 does fall in the Γ−M high
symmetry line (see Supplemental Materials). The DFT
values of the indirect band gap and the difference be-
tween direct and indirect gap for both families in the six
considered supercells are reported in Table III.

To conclude, we have demonstrated that, at variance
from graphene bilayers, in BN bilayers there are more
possibile stackings at a given moiré periodicity. We have
demonstrated that there are only five stackings that are
invariant under rotations of 120◦ as the pristine BN
monolayers. We have listed the symmetry groups of
these stackings, shown how to construct them and how
to transform one into another and we have introduced a
physically informative nomenclature allowing to identify
them unambiguously and define precisely the twist an-
gle (θ or θ′ depending on the stacking). Moreover this
nomenclature is completely general and can be applied
to any homobilayer formed of hexagonal 2D materials
(twisted as well as untwisted). By performing DFT sim-
ulations at the GGA level, we have done a thorough study
of the electronic structure of BN bilayers taking into ac-
count both its dependence on the stacking sequence and
the twist angle. In the first case, we have traced a corre-
lation between the B-on-top-of-B or N-on-top-of-N coin-
cidences and some features of the band structure in the
top valence and bottom conduction regions. In the sec-
ond case, we have shown that the gapwidth is always in-
direct irrespective of the twist angle and it decreases for
decreasing θ or for increasing θ′, differently from what
previously predicted on the basis of less sophisticated
theoretical models.[22] . Finally we have identified the
geometrical parameter δ = |p − q| which allows to clas-
sify bilayers into families with similar band structures.
The stacking- and angle-dependent properties discussed
in this letter are expected to have a strong impact on the
optical properties of such bilayers and in particular on
the direct manipulation of interlayer excitons which can
be stabilized through the application of an external field.

SUPPLEMENTAL MATERIALS

Asymetric honeycomb supercells

The boron nitride moiré structures are 2D periodic
structures based on honeycomb networks. We choose
the two primitive vectors a1 = a(

√
3/2,−1/2) and a2 =

a(
√

3/2, 1/2) with an angle of 60◦ and define the three

v1 =
2
3
A1 − 1

3
A2

A1 = p a1 + q a1

A2 = −q a1 + (p + q)a1

v2 =
1
3
A1 +

1
3
A2

v3 = −1
3
A1 +

2
3
A2

FIG. 6. The upper layer asymmetric supercell (p, q) with
p = q+3t. It is always possible to construct a smaller supercell
since v1, v2 and v3 are vectors of the honeycomb lattice. In
other words, the twisted bilayer geometries made from the
(q, q + 3t) supercell are not primitive cells of the moire.

vectors separating the B and the A sublattices like:

τ1 = +a1/3+a2/3 τ2 = τ1−a1 τ3 = τ1−a2 (5)

The new periodic super-lattice is constructed with the
new transnational vectors A1 and A2 written on the base
{a1,a2} like Ai =

∑
j Mijaj . The supercell is hexagonal

if and only if its matrix can be written like

Mlower =

[
m n

−n m+ n

]
(6)

with n and m integers, and vertical mirror planes along
high symmetry directions of the supercell are lost only if

m,n 6= 0 and m 6= n

and the supercell is asymmetric.
The asymmetric supercells belong th the 2D layer

group p6 (obviously, the internal translation are ne-
glected). This group contains three axes of improper
rotations 6 selon z respectively located in (0 0), ( 1

3
1
3 )

and ( 2
3

2
3 ) highlighted with red dots in Figure 6.

Lastly, the m and n integers define also the parameter
length, the surface and the numer of atoms of the the
supercell

|Ai| = a
√
m2 + n2 +mn (7)

Ω = Ω0

(
m2 + n2 +mn

)
Nat = 2

(
m2 + n2 +mn

)
with Ω0 = a2

√
3

2 is the surface, and a is the cell parameter
of the honeycomb primitive cell.

Why the case (p− q = 3t) is useless?

The case α = 0 corresponds to moiré supercells where
p− q = 3t. As we sketched in figure 6, starting from the
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Screw axis 21

Rotation 2

Rotation 3z

Rotation 2z

Rotation 6z

p321 p312 p3 c211 (b)p622 c211 (a)

FIG. 7. All the possible layer groups of the moire bilayer graphene and h-BN periodic structures (adapted from [34], see text).
The trivial group p1 is not shown.

(p, q) supercell vectors A1 and A2, we can define new
shorter vectors

v1 =
2

3
A1 −

1

3
A2 = (q + 2t)a1 − ta2 (8)

v2 =
1

3
A1 +

1

3
A2 = ta1 + (q + t)a2 (9)

v3 = −1

3
A1 +

2

3
A2 = (−q − t)a1 + (q + 2t)a2 (10)

and since q and t are integers, the vectors vi are honey-
comb bravais lattice vectors.

Moreover, when p = q + 3t the equations of the twis
tangles read

tan θ =
√

3
3t2 + 2qt

2q2 + 3t2 + 6qt

tan θ′ =
√

3
q2 + 2qt

q2 + 6t2 + 6qt

Layer groups of moiré structures

The layer group of a graphene monolayer asymmetric
supercell is the p6/m, neglecting translations occurring
inside the defined cell. For a boron nitride (or a transition
metal dichalcogenide) supercell, the layer group is p6 [34].
All the symmetry groups graphical representations are
sketched in the figure 7.

When stacking two supercells as described above, the
3 rotation axes are always preserved. In the case of
pure graphene bilayers, the (−q, p + q)-on-(q, p) struc-
ture geometry has a double sublattice coincidence and
an “hexagon-hexagon” 6-order rotation axis (in addition
to two 3-order axis). Its layer group is p622. The case
of (p, q)-on-(q, p) structure corresponds to the single sub-
lattice coincidence and two “hexagon-atom”. It contains
three 3-order rotation axes. The group is p321 for this
case.

Hexagonal BN monolayer has a smaller symmetry
group than graphene.

At last, the lowest symmetry situation occurs when
stacking a (p, q) or a (−q, p+ q) supercell on a (q, p) cell
with a totally random translation. All the point sym-
metry operations are lost, the crystal system is oblique,
the layer group is the simplest p1 and only the +k/− k
symmetry is conserved in the reciprocal plane (hence, the
three point K, K′ and K′′ are nonequivalent)

Computational details

Calculations have been done with the free simulation
packages Quantum ESPRESSO [35, 36] (band structure
of twisted bilayers) and ABINIT [37, 38] (stability of
twisted and untwisted bilayers).

In both cases norm-conserving pseudopotentials have
been used. We checked that changing from one software
to the other was not introducing major errors in the main
characteristics discussed in the paper. In both groups of
calculations, the cutoff energy was 30 Ha and we sampled
the Brillouin zone with a Monkorst-Pack grid of 5× 5×
1 k-points in all supercells (9 × 9 × 1 in the untwisted
cases). The equilibrium interlayer distance has been fixed
at 3.22 Å in all bilayers as detailed below. The in-plane
cell parameter was a = 2.23 Å and no in-plane relaxation
has been done. A cell height L =15 Å has been used in
all calculations unless specified differently. This value has

BB(1,2)

BB(2,3)

BN(1,2)
NN(1,2)
BNNB(1,2)
BBNN(1,2)

equilibrium
interlayer 
distance

FIG. 8. Total energy calculation of the five stackings in
the (1,2) supercell as a function of the interlayer distance
h. The BB(1,2) is the full black line with black bullets and
the BB(2,3) is the dotted line with empty circles. The other
(1,2) stackings are superimposed to the BB(1,2) curve almost
exactly and are reported with different colors and symbols.
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been fixed by paying attention to the alignment of the σ
and π conduction bands. In fact, as already pointed out
by several authors [15, 39–44] the bottom conduction in
Γ is composed of nearly-free-electron (NFE) states that
extend for several Ångströms above the layer and thus
converge very slowly with the amount of vacuum (see
the dedicated Appendix for more details).

Stability and interlayer distance

To fix the interlayer distance, we calculated the total
energy per unit formula E(h) at different input values of
the interlayer distance h. Results are reported in Figure 8
and summarized in Table IV. We took the BB(1,2) and
the BB(2,3) bilayers as reference structures. For these
bilayers, we sampled h on a fine grid. Both bilayers have
the energy minimum at h = 3.22 Å, with a negligible
energy difference (∼ 0.1 meV per formula unit). Then
we computed E(h) for the BN(1,2), NN(1,2), BNNB(1,2)
and BBNN(1,2) bilayers on a coarser grid and found that
the points fell basically on top of the BB(1,2) curve. Fol-
lowing this analysis, we assumed that we can safely fix
the equilibrium distance at h = 3.22 Å irrespective of the
stacking or the twist angle. We note however that this
value may be inaccurate for very small twist angles that
are not investigated in this work.

Untwisted bilayers

It is possible to extend the nomenclature we introduced
in the main text also for untwisted bilayers. In this case,
only the stacking label is meaningful, the (q, p) pair being
trivially 1 and 0 (see Figure 10).

In Figure 10 we report an image of the structure of the
five untwisted stackings and their stability curve E(h)

s
pz

L=30 Å

h=3.22 Å

FIG. 9. Orbital momentum component of the conduction
bands conduction bands of the BN(1,2) bilayer (fat bands)

together with that of the BB(1,2) bilayer. We observe
that the three most stable untwisted structures, i.e. the
BN(0,1), the BNNB(0,1) and the BB(0,1) have a smaller
equilibrium distance, whereas for the two most unsta-
ble, the NN(0,1) and the BBNN(0,1), the equilibrium
h is larger, so that the twisted bilayers falls somewhat
between the two groups. This makes sense if one reckon
that inside the same twisted bilayer one can find domains
with a local stacking intermediate to the five untwisted
ones.

In experiments it is observed that, far from certain an-
gles, it is pretty easy to move or twist a BN flake on
top of another, and this is consistent with the negligible
energy differences we calculated between different stack-
ings at fixed angle and between the two reference calcu-
lations with the same stacking sequence. However when
the twist angle gets close to some specific values, the flake
gets stuck and no further twist is possible. In fact, the
large energy differences with the untwisted configurations
(order of 10 meV per unit formula) suggest that when ap-
proaching small twist angles the bilayer falls into one of
the energetically more favorable configurations, possibly
undergoing large in-plane deformation to maximize the
size of the untwisted domains. [21, 45–47].

The equilibrium distances, the total energy per BN
pair with respect to the BB(1,2) bilayer and the values
of the DFT direct (at K) and indirect band gaps (be-
tween valleys close to K and the point M) are reported
in Table IV.

System h (Å) EBN (meV) Eind (eV) Edir (eV)

BBNN(0,1) 3.425 8.7 3.957 4.037

NN(0,1) 3.375 6.8 4.345 4.037

BB(2,3) 3.220 0.1 4.217 4.251

BB(1,2) 3.220 0 4.318 4.394

BB(0,1) 3.150 -8.3 3.950 4.436

BNNB(0,1) 3.125 -11.1 4.649 4.398

BN(0,1) 3.100 -12.8 4.463 4.438

TABLE IV. Equilibrium interlayer distance h, total energy
per formula unit EBN with respect to the (1,2) bilayers, small-
est indirect gap Eind (eV) and energy of the smallest direct
transition Edir (eV) (direct gap).

Nearly-free-electron states

As already pointed out by Blase and coworkers in the
case of bulk hBN [15], the conduction states at Γ converge
very slowly with the amount of vacuum because they
correspond to some unoccupied N-centered nearly-free-
electron (NFE) state extending for several Ångströms
above the BN layer [15, 39–44]. These NFE states have
a neat 3s orbital component, as shown in the fat-band
plot reported in Figure 9.
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BBNN(0,1)
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B
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bl
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or

e 
st
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le BB(1,2)

BB(0,1)
BNNB(0,1)

BN(0,1)

NN(0,1)

BBNN(0,1)

NN(0,1)

BN(0,1) BB(0,1)BNNB(0,1)

FIG. 10. The five hexagonal stackings in untwisted bilayers and their stability curves with respect to the BB(1,2) twisted
bilayer (thick black solid line).

Their alignment with respect to the π bands is a deli-
cate issue on the purpose of this article because the en-
ergy difference between the bottom of the unoccupied σ
band and the bottom of the unoccupied π band are very
close in energy and they may compete in determining the
indirect nature of the gap. Therefore, it is worth paying
much attention to their convergence. To this aim, we
made a series of two test calculations in a BN(1,2) bi-
layer. First we tested the evolution of these states as a

a2
L=30 Å
h=3.22 Å

L=20 Å
h=3.22 Å

L=15 Å
h=3.22 Åa1 a3

a: Varying the cell height L

L=60 Å
h=20 Åb1

bilayer
monolayer

b: Varying the interlayer distance h (fix L-h)

L=50 Å
h=10 Åb2 b3

L=47.5 Å
h=7.5 Å

FIG. 11. The evolution of the NFE states as a function of the
simulation parameters in the BN(1,2) bilayer. a: evolution
as a function of the cell height L at fixed interlayer dsitance
(h = 3.22 Å). L = 30, 20 and 15 Å in panels a1, a2 and
a3 respectively. b: evolution as a function of the interlayer
dsitance h at fixed vacuum (L − h = 40 Å). h = 20, 10 and
7.5 Å in panels c1, c2 and c3 respectively. In panel b1,
the band structure of the BN(1,2) bilayer (flashy green) is
compared with that of the isolated monolayer (black).

function of the height of the simulation cell at fixed in-
terlayer distance (the three panels of Figure 11a). This
test shows that by reducing the cell height, these states
are pushed toward higher energies because of fictitious
cell-to-cell interactions. Replicas of the system must be
separated of around L ∼ 20 Å for the band dispersion
and alignment to be converged. Note that we decided on
purpose to carry out our simulations with a slightly lower
value (15 Å) because the fact of pushing the NFE states
to higher energies is not detrimental to our investigation
and allows us to reduce the computational workload.

Then we tested the evolution of the NFE state as
a function of the interlayer distance leaving a constant
amount of vacuum (L − h) of 40 Å, which is largely
enough to prevent cell-to-cell interactions. In the pan-
els of Figure 11b, we report three calculations of the
BN(1,2) bilayer with a varying interlayer distance (20,
10 and 7.5 Å respectively in panels b1, b2 and b3). In
the b1 panel, we also plot in black the conduction band of
the isolated monolayer in the (1,2) supercell and we no-
tice that it coincides with the h = 20 bilayer calculation.
This test demonstrates that moving two layers closer to
each other induces a bonding/antibonding splitting of the
NFE states which increases as the layers get closer.

Since there is no difference between the interlayer dis-
tance separating two layers inside the cell and the space
separating replicas of the simulated system, one should
pay attention that these two effects (pushing to higher
energies and band splitting) happen at the same time.

Gap crossover from the monolayer to the bilayer

In a previous article,[28] some of us showed that the
interlayer coupling is crucial in the formation of the in-
direct band gap of the bulk phase. To check it also
in the bilayer, we calculated the band structure of the
BN(1,2) bilayer for h varying in the range between 10 Å
and 3.22 Å within supercells of height L = 30 Å. Results
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NFE NFE

NFE NFE

FIG. 12. Bottom conduction bands of a BN(1,2) supercell at
different values of the interlayer distance h ranging from 10 Å
(top left) to the equilibrium distance 3.22 Å (bottom right).
Arrows indicate how the π bands evolve when reducing the
interlayer distance. The NFE bands are highlighted with a
label. A dotted red line highlights the gap crossover (see
text).

are reported in Figure 12.

We found that in all calculations the top valence was
at K (not shown). At the equilibrium interlayer distance
(h=3.22 Å), an indirect band gap is formed between the
top valence at K and a point close to M . At variance,
in the monolayer limit (h = 10 Å), the gap is direct with
a bottom conduction at K as predicted by several the-
oretical studies.[15, 16, 28, 44, 48–52] Please, note that
the band structure looks quite different from the plots
published elsewhere, because we worked with a (1,2) su-
percell even in the monolayer limit. Besides the valley in
K, two other valleys can be distinguished: one at around
M and another at approximately 30% of the K − Γ line
(above the long arrows in the Figure 12). All these states
have a π (pz) orbital character. As h gets smaller, these
two side valleys go down in energy faster than the levels
at K, and eventually end up forming the bottom conduc-
tion at the equilibrium interlayer distance.

On the other hand, for h below the monolayer limit
but still large (10 Å< h < 4 Å), the actual bottom con-
duction is at Γ. This is due to the interaction between
nearly-free-electron (NFE) states with the s orbital char-
acter [15, 39–44] floating above the surfaces of the BN
layers. These states move globally upward when the dis-
tance between two layers is reduced, but at the same
time the bonding/antibonding splitting due to their in-
teraction increases violently, pushing the NFE contribu-
tion to low energies. The result of this competition is
that for large h (between 20 Å and 7.5 Å), the bonding
states move to low energy and constitute the bottom of
the conduction band, but for h < 7.5 Å, they retract

FIG. 13. Energy surface of the lowest empty band (top pan-
els) and the highest occupied band (bottom panels) of the
BN(1,3) and the BN(3,5) bilayers from left to right. The
top valence and the bottom conduction states are highlighted
with red hexagons.

and move back to higher energy. At around h =4 Å,
there is a gap crossover highlighted by a red dotted line
in the corresponding panel. At this interlayer distance,
the π side valleys gets to lower energies than the rest of
the conduction band giving origin to the indirect band
gap of the equilibrium configuration. Details on the or-
bital character of the conduction band and the delicate
convergence of the NFE states have been discussed on a
previous Appendix.

These simulations suggest that it may be possible to
control the nature of the bandgap by intercalation (K →
M , or K → K for π → π transitions, or K → Γ for
π → σ transitions) and possibly take advantage from the
competition between two indirect and one direct emission
pathways.

Band gap of the δ = 2 family

In the main text we give the values of the gapwidth of
the five stackings of the (1,3) and (3,5) supercells. The
values have been extracted from the corresponding band
plots, so they refer to gapwidths calculated along spe-
cific high symmetry paths in the Brillouin zone. In this
section we report a more complete mapping of the band
structure of the top valence and bottom conduction of
the BN stacking, chosen as representative of the bilay-
ers. In Figure 13 we report the energy surface of the
highest occupied states and the lowest unoccupied states
in the BN(1,3) and BN(3,5) bilayers. With this analysis
we demonstrate that the values reported in the main text
are meaningful because the bottom of the conduction and
the top of the valence fall indeed on the high symmetry
lines.

For this analysis we acknowledge F. Paleari who kindly
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provided us with a dedicated analysis post-processing
tool.

Band structure of the other stackings

Here below we report the band plots missing in the
main text corresponding to stackings BBNN , NN and
BNNB.

δ=1 δ=2

FIG. 14. Band structure as a function of the twist angle of
the BBNN, BB and BNNB stackings from top to bottom.
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