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Neurodegenerative diseases (NDs), including the most prevalent Alzheimer’s

disease and Parkinson disease, share common pathological features. Despite

decades of gene-centric approaches, the molecular mechanisms underlying

these diseases remain widely elusive. In recent years, transposable elements

(TEs), long considered ‘junk’ DNA, have gained growing interest as patho-

genic players in NDs. Age is the major risk factor for most NDs, and several

repressive mechanisms of TEs, such as heterochromatinization, fail with age.

Indeed, heterochromatin relaxation leading to TE derepression has been

reported in various models of neurodegeneration and NDs. There is also evi-

dence that certain pathogenic proteins involved in NDs (e.g., tau, TDP-43)

may control the expression of TEs. The deleterious consequences of TE acti-

vation are not well known but they could include DNA damage and genomic

instability, altered host gene expression, and/or neuroinflammation, which are

common hallmarks of neurodegeneration and aging. TEs might thus represent

an overlooked pathogenic culprit for both brain aging and neurodegeneration.

Certain pathological effects of TEs might be prevented by inhibiting their

activity, pointing to TEs as novel targets for neuroprotection.

Keywords: aging; Alzheimer’s disease; gene dysregulation; genomic

instability; heterochromatin destructuration; neurodegenerative diseases;

neuroinflammation; oxidative stress; Parkinson disease; retrotransposons

Neurodegenerative diseases (NDs) affect several mil-

lion people worldwide and have become a major

hurdle in societies with aging populations. They

result from the progressive loss of brain functions,

which inexorably leads to severe disability and death

[1]. The elucidation of the molecular mechanisms

underlying these diseases and the development of

effective therapies that either slow down or reverse

the neurodegenerative process are urgently needed.

Unfortunately, despite extensive gene-centric research

carried out during the past several decades, our

knowledge of the etiology of NDs remains rudimen-

tary [2,3].

Since protein-coding DNA represents only about 2–
3% of the human genome, the focus has shifted in

recent years to exploring the noncoding portion of

human DNA with the hope that this endeavor may

provide novel clues for a better understanding of the

molecular basis of NDs and human diseases, in gen-

eral. A large proportion of the human genome is com-

posed of repetitive DNA sequences [4], which were

considered junk DNA for decades. The initial
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sequencing of the human genome revealed that about

45% of the human DNA is derived from transposable

elements (TEs) [5]. First discovered in maize by Bar-

bara McClintock more than 70 years ago as ‘control-

ling elements’ implicated in the regulation of genes [6],

TEs have long been considered selfish genetic elements

that jump from one genomic location to another. It

has become evident from the research performed dur-

ing the past decades that TEs have played an impor-

tant role in shaping mammalian genomes during

evolution and TE-derived sequences have been co-

opted for many gene regulatory functions in different

organisms [7,8]. Noteworthily, certain TEs are still

capable of mobilization in mammalian genomes, but

they normally remain ‘dormant’ in somatic tissues.

However, a partial reawakening of TEs in somatic tis-

sues has been observed in many human diseases [9,10]

and is well documented in cancer [11]. In recent years,

several studies have provided evidence that TE activity

is associated with neurodegeneration [12,13].

This review elaborates on the emerging concept that

TEs might be unsuspected pathogenic drivers of neu-

rodegeneration through diverse mechanisms. We will

discuss how the activity of TEs, certain pathological

hallmarks of aging and NDs, could be interconnected

and why TEs may provide novel druggable therapeutic

targets in NDs.

Hallmarks of NDs

Striking characteristics and shared pathological

features

The clinical manifestations of NDs, among which Alz-

heimer’s disease (AD) and Parkinson disease (PD) are

the most common, depend upon the neuronal popula-

tions affected in selected regions of the brain. For

instance, degeneration of hippocampal and cortical

neurons is associated with memory loss, cognitive

impairment, and dementia in AD, whereas a progres-

sive loss of dopaminergic neurons in the substantia

nigra par compacta (SNpc) in the midbrain leads to

the cardinal motor symptoms (resting tremor, bradyki-

nesia, and rigidity) in PD. Dopaminergic neurons of

the SNpc send long projections to innervate the dorsal

striatum, forming the nigrostriatal pathway, and pro-

gressively degenerate in PD in a retrograde manner

[14,15]. Among other devastating adult-onset NDs,

amyotrophic lateral sclerosis (ALS) results from degen-

eration of upper and lower motor neurons (causing

fatal paralysis with respiratory failure), while fron-

totemporal dementia (FTD) arises from progressive

degeneration of frontal and temporal lobes. The

mechanisms underlying the selective vulnerability of

specific neuronal populations affected in different NDs

remain unknown [16].

One of the major hallmarks shared by several NDs

is protein aggregation [17]. Senile plaques, specific to

AD, are formed by insoluble fibrillar aggregates of

amyloid-ß (Aß). Neurofibrillary tangles found in many

neurodegenerative conditions, including AD and FTD,

contain the hyperphosphorylated fibrillar forms of

microtubule-associated protein tau and are hence

referred to as tauopathies. Similarly, PD is character-

ized by the widespread presence of a-synuclein aggre-

gates in Lewy bodies and neurites in the nervous

system [18]. ALS is known to have inclusions of TDP-

43 (TAR DNA-binding protein 43), a protein involved

in RNA metabolism. FTD can be driven by tauopathy

or TDP-43 pathology. A subset of FTD patients with

TDP-43 pathology is thought to have an FTD-ALS

spectrum disorder considering the closely related

pathologies of these two diseases [19]. TDP-43 aggre-

gation can also be found in 37% of AD patients [20],

illustrating that these different protein aggregations

overlap among these NDs. A striking feature of aber-

rantly folded and aggregating proteins (i.e., Aß and

a-synuclein) is their ability to spread in the nervous

system in a prion-like manner [21,22]. Where the for-

mation of these aggregates begins remains unclear.

The Braak hypothesis stipulates that protein aggrega-

tion in AD and PD may initiate in the gut or the

olfactory bulb and then progressively ascend to differ-

ent brain regions [23].

Genetic studies of familial forms of NDs have iden-

tified mutations in several genes. These include the fol-

lowing: SNCA (a-synuclein), LRRK2 (leucine-rich

repeat kinase 2), PRKN (or Parkin; parkin RBR E3

ubiquitin protein ligase), Pink1 (PTEN-induced kinase 1),

and PARK7 (or DJ-1; parkinsonism-associated degly-

case) in PD [24]; APP (amyloid beta precursor pro-

tein), PSEN1 (presenilin 1), PSEN2 (presenilin 2), and

MAPT (microtubule-associated protein tau) in

AD/tauopathies [25]. Although TDP-43 pathology is

observed in about 95% of ALS patients and all FTD-

TDP patients, TDP-43 mutations are not common dri-

vers of these pathologies. Among many mutations with

large effects found in ALS, the most common are

repeat expansions in C9orf72 (C9orf72-SMCR8 com-

plex subunit). For familial forms of ALS, the overlap

with FTD drivers is very high, but this represents only

10% of all ALS patients [19]. Studies involving

genome-wide associations have also revealed many dis-

ease risk loci that are associated with NDs. The

genetic basis of the common idiopathic or sporadic

forms of NDs remains largely unknown. Functional
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studies of genes mutated in the familial forms of NDs

have been instrumental in shedding some light on the

mechanisms that may contribute to neurodegeneration.

Besides protein aggregation, the pathological fea-

tures shared by NDs include mitochondrial dysfunc-

tion, oxidative stress, impaired ubiquitin-proteasomal

pathway, altered autophagy, and neuroinflammation

[17]. Mitochondrial dysfunction has received particu-

lar attention in PD ever since the discovery that

inhibition of mitochondrial complex I activity by

certain neurotoxins (e.g., 1-méthyl-4-phényl-1,2,3,6-

tétrahydropyridine, MPTP) or pesticides (e.g., rote-

none) can lead to parkinsonism in humans [26,27]. It

was shown that genes mutated in PD (i.e., Pink1,

Parkin) directly or indirectly affect mitochondrial

activity [28]. Many other disease-related proteins (i.e.,

Aß or phosphorylated tau in AD) have been reported

to interact with mitochondria and alter mitochondrial

processes, such as mitophagy [29,30]. Mitochondrial

function/dysfunction and different energy require-

ments of the diverse neuronal populations in various

brain regions could partly explain selective neuronal

vulnerability in different NDs [31]. In addition to

producing ATP, mitochondria also play an important

role in the quality control of proteins produced and

the disposal of protein aggregates [32]. Unfortunately,

most efforts to develop animal models of NDs were

unsuccessful as many of the mutations linked to these

diseases did not fully recapitulate the disease symp-

toms [33]. In the context of PD, it is noteworthy that

certain transcription factors (i.e., Engrailed), required

for the development of dopaminergic neurons, con-

tinue to be expressed in adulthood and play a critical

role for the lifelong survival of these neurons [34].

Interestingly, targeted disruption of one Engrailed-1

(En1) allele in mice provides a valuable PD model

with progressive loss of dopaminergic neurons in the

SNpc [35]. These En1+/- mice recapitulate several

pathological features of PD, including altered mito-

chondria, impaired autophagy, retrograde degenera-

tion, and inflammation [36,37]. Other studies lend

support to the idea that genes involved in the devel-

opment of dopaminergic neurons could also be

involved in the development of PD [38].

Aging and neurodegeneration: Is a key player

missing?

Although genetic and environmental factors are cer-

tainly at play, age remains the major risk factor for

NDs [39,40]. In PD, for instance, the appearance of

the first classical motor symptoms is preceded by a

prodromal (nonsymptomatic) pre-ND phase typically

presenting nonmotor symptoms (i.e., olfaction loss,

constipation, sleep disorders) that can last up to

20 years [41]. How the aging process contributes to

neurodegeneration remains unknown. It is noteworthy

that many pathological features of NDs are aggravated

hallmarks of brain aging [42]. Neurodegeneration might

thus be seen as a continuity of aging and the manifesta-

tion of NDs as accelerated aging (Fig. 1). To date, nine

established hallmarks of aging have been defined: mito-

chondrial dysfunction, loss of proteostasis, DNA dam-

age and genomic instability, epigenetic alterations,

dysregulated nutrient sensing, cellular senescence,

telomere attrition, stem cell exhaustion, and altered

intercellular communication [43] of which genomic

instability and epigenetic alterations are considered to

be the primary hallmarks. The brain shows aging hall-

marks very similar to those of other tissues, and many

processes altered during aging have also been impli-

cated in different neurodegenerative contexts [40,42].

As mentioned above, mitochondrial dysfunction is an

established hallmark of aging and plays an important

role in age-related NDs. Mitochondria are critical regu-

lators of cell death, which is a common feature of NDs.

Mitochondrial insults can lead to increased reactive

oxygen species (ROS) production, and mutations in

mitochondrial DNA (mtDNA) and oxidative stress can

both contribute to the aging and development of NDs

[29]. Several DNA repair pathways keep mtDNA intact

to minimize these alterations [44]. Strategies that target

mitochondrial processes such as energy metabolism,

ROS production, or the interaction of disease-related

proteins with mitochondria may have therapeutic

potential. We will mainly focus here on the two pri-

mary hallmarks of brain aging, namely genomic insta-

bility and epigenetic alterations, which have so far

remained widely unrecognized as potential pathogenic

drivers of neurodegeneration.

A feature unequivocally linked to brain aging is the

accumulation of unrepaired DNA that can jeopardize

genome integrity [45]. High energy consumption, espe-

cially by neuronal cells, must impose a significant

oxidative burden (i.e., ROS production), which is con-

sidered a major source of DNA damage in the brain

[46]. It is noteworthy that sheer physiological neuronal

activity causes DNA strand breaks, which are rapidly

repaired [47]. Postmitotic neurons mainly rely on non-

homologous end-joining for DNA repair, which is

error-prone. This leads to the accumulation of small

deletions in the genome, compromising genome integ-

rity over time [48,49]. Acceleration of this process by

genetic or environmental factors could deteriorate gen-

ome integrity to a point where normal cellular func-

tions can no longer be sustained. A progressive decline
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in DNA repair mechanisms during brain aging might

lead to the accumulation of unrepaired DNA strand

breaks. The presence of unrepaired DNA lesions initi-

ates altered cellular processes, including senescence

and apoptosis [50], which altogether could be sufficient

to initiate a neurodegenerative process [51]. A poten-

tial link between DNA damage/repair and neurodegen-

eration is further emphasized by the fact that

mutations in several genes encoding DNA repair

enzymes such as ataxia telangiectasia mutated (ATM)

are associated with NDs [48]. Furthermore, accumula-

tion of DNA strand breaks has been reported in the

brains of AD, PD, and ALS patients [52–54], and a

number of proteins (e.g., tau, a-synuclein, TDP-43)

involved in these diseases also participate in DNA

repair [55–57]. Malfunctioning of the DNA repair

machinery leads to the degeneration of the nigrostri-

atal pathway in different mouse models [58]. Inefficient

DNA repair has also been suggested to be an aging-

related disease modifier in a mouse model of PD [53].

Indeed, mice lacking the DNA excision repair protein

ERCC-1 (excision repair cross-complementation group

1) in dopaminergic neurons become more vulnerable

to MPTP. The DNA repair system is also impaired in

AD [59,60]. In addition, Aß aggregates have been

shown to exacerbate the levels of DNA strand breaks

in models of tauopathy [47]. It is noteworthy that

DNA repair involves transient and local chromatin

relaxation [61]. However, excessive chromatin disorga-

nization could be deleterious and contribute to neu-

rodegeneration.

DNA is structured and compacted into chromatin,

which can be further organized in euchromatin (tran-

scriptionally active) or heterochromatin (denser, tran-

scriptionally inactive). Constitutive heterochromatin is

enriched in repetitive sequences and has structural

functions [62]. In contrast, facultative heterochromatin

contains coding sequences and is essential during

development and in determining cell-type specificity

[62]. Chromatin in these domains is more versatile and

can revert to euchromatin under certain conditions

[63]. It is now well established that epigenetic modifica-

tions, namely DNA methylation and post-translational

modifications (i.e., methylation or acetylation) of vari-

ous histones, play crucial roles in the structuration of

DNA into euchromatin or heterochromatin domains

[64]. There is mounting evidence that epigenetic

changes are implicated in normal brain aging and NDs

[65–68]. Such modifications could alter gene expression

and regulation. In accordance, many enhancers associ-

ated with genes involved in the early cell cycle, inflam-

mation, and amyloid neuropathies have recently been

shown to be differentially methylated in AD [69]. Dys-

regulation of histone acetylation has been reported

Fig. 1. Aging hallmarks and neurodegeneration—TEs as a missing link. Age is a major risk factor for NDs like AD and PD, and aging is considered

an accelerating factor for the development of NDs, inducing a ‘pre-ND’ state. Primary hallmarks of aging are DNA damage and epigenetic

alterations, which are both related to TE activity. Epigenetic alterations derepress TEs, some of which are themselves a source of DNA damage

(and epigenetic alterations). Secondary hallmarks of aging show a significant overlap with known altered pathways of neurodegeneration, which are

thought to result from a combination of genetic and environmental factors. TE activation might be amplified by several deregulated pathways like

mitochondrial dysfunction, oxidative stress, impaired autophagy or neuroinflammation, and TEs might maintain or amplify this dysregulation (i.e.,

neuroinflammation). Subsequently, these deregulated pathways could progressively lead to neurodegeneration.
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near genes involved in aging and AD or tauopathy

[70,71]. Widespread alterations in histone acetylation

have also been documented in the brains of PD

patients [72]. Genome-wide epigenetic changes could

disorganize the entire chromatin landscape, resulting

in altered gene expression and regulation during aging

and neurodegeneration. Similar to the heterochromatin

loss model of aging [73], this suggests that normally

repressed genes contained in heterochromatin domains

may become accessible and re-expressed during aging.

Global heterochromatin loss in the brain during aging

could indeed be a key feature of NDs. Widespread

destructuration of heterochromatin resulting in aber-

rant gene expression has been reported in drosophila

and mouse models of tauopathies and in AD patients

[74]. Furthermore, the distribution of histone H3

lysine 9 trimethylation (H3K9me3) and heterochro-

matin binding protein 1a (HP1a) was altered in neu-

rons from tau-deficient mice [75]. Interestingly, gene

expression profiles obtained by analyzing transcrip-

tomes from AD brains were similar to those of a fetal

brain [74], suggesting that heterochromatin structure

in postmitotic neurons might be reverted to a de-

differentiated state. Heterochromatin decondensation

(indicated by the loss of repressive histone marks) was

also reported in the En1+/� mouse model of PD and

in cellular models of oxidative stress [31].

Importantly, epigenetic alterations and heterochro-

matin loss could cause the activation of dormant TEs.

TEs, in turn, might become an additional source of

DNA damage and genome instability and possibly

contribute to several other pathological features of

aging. We discuss below the emerging concept that

TEs may represent new pathogenic players in NDs

and a missing link between aging and neurodegenera-

tion (Fig. 1).

TEs as sleeping culprits within the
genome

Overview of TEs

As mentioned above, a large portion of the human

DNA is composed of repetitive sequences derived from

TEs (also known as ‘jumping’ genes or mobile ele-

ments), which have self-amplified in the mammalian

genomes during evolution (Fig. 2A) [76]. TEs comprise

DNA transposons and retrotransposons (RTEs). DNA

transposons, the TE class discovered by Barbara

McClintock, mobilize using a ‘cut-and-paste’ mecha-

nism. They have been very active during primate evolu-

tion but are now inactive in humans [77]. RTEs use a

‘copy-and-paste’ mechanism to self-amplify via an

RNA intermediate (retrotransposition). Depending

upon the presence or absence of long terminal repeats

(LTRs), they are divided into LTR RTEs (i.e., endoge-

nous retroviruses, ERVs or human ERVs, HERVs;

Ty1-copia, Ty3-gypsy; terminal-repeat retrotransposon

in miniature, TRIM) and non-LTR RTEs (i.e., Long

INterspersed Repeat-1, LINE-1; Short INterspersed

Elements, SINEs; SINE-VNTR-Alu, SVA). SVA ele-

ments are evolutionarily derived from SINEs. While

the LTR RTEs seem to have lost the ability to mobi-

lize, and most of them have recombined to generate

solo LTRs, the non-LTR RTEs are still mobile in

humans [78]. LINE-1 elements are autonomous RTEs,

whereas SINEs, comprised of human Alu sequences,

and SVAs are nonautonomous RTEs that hijack the

LINE-1 machinery for self-amplification (Fig. 2A)

[79,80]. LINEs are the most widespread TEs, represent-

ing about 21% of the human genome. There are

roughly 500 000 LINE-1 copies in the human genome,

but most of them are fossilized (either mutated or trun-

cated) and unable to move. Yet, more than 100 full-

length LINE-1 (human-specific LINE-1 L1HS and

older L1PA2 LINE-1) have retained their coding

capacity and can potentially retrotranspose. However,

only a limited number of these LINE-1 loci seem to

account for the bulk of retrotransposition in the human

population [81–83]. The number of potentially active,

full-length LINE-1 elements in the mouse (L1Md-Tf, -

A, and -Gf families) is much higher (around 3000) [84].

Full-length LINE-1 is composed of a 50 untranslated

region (UTR) containing two promoters on the sense

and antisense DNA strands followed by two open read-

ing frames (ORFs) and a 30UTR, which contains a

polyadenylation signal.

ORF1 codes for an RNA binding protein (ORF1p)

whereas ORF2 codes for ORF2p that encompasses

endonuclease and reverse transcriptase activities

(Fig. 2A). The antisense transcript codes for ORF0 and

could possibly yield fusion proteins and contribute to

retrotransposon-mediated diversity at the level of gene

expression [85]. LINE-1 retrotransposition involves sev-

eral steps. Following transcription, LINE-1 mRNA is

translocated to the cytoplasm for translation. The

resulting proteins, ORF1p and ORF2p, bind to the

LINE-1 mRNA forming ribonucleoprotein particles

(RNPs), which translocate to the nucleus. The endonu-

clease activity of ORF2p generates a nick in the geno-

mic DNA at a consensus site (50TTTT/AA30). The

reverse transcriptase activity of ORF2p makes use of

the exposed poly-T stretch as a primer to generate

LINE-1 cDNA (target-primed reverse transcription,

TPRT), which results in LINE-1 insertion within the

genome [86–88]. Most insertions result in truncated
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LINE-1 copies, as DNA repair pathways disrupt retro-

transposition (Fig. 2B) [89,90]. It was recently shown

that LINE-1 ORF2p binding in cis to the 30 poly(A)

tail of LINE-1 RNA is required for LINE-1 retrotrans-

position, and binding in trans to the 30 poly(A) tract of

cellular or other RNAs is required for their mobiliza-

tion [91]. The 30 poly(A) tails of Alu RNAs efficiently

compete with LINE-1 30 poly(A) tracts for the binding

of LINE-1 ORF2p. Although TEs have played an

important role in generating diversity and shaping the

human genome throughout evolution, TEs can be an

important source of mutation and genomic instability

at the level of an individual. Indeed, LINE-1 insertions,

depending upon the location, can lead to deleteri-

ous mutations, and ORF2p endonuclease activity,

required for retrotransposition, can generate numerous

additional DNA strand breaks, compromising genome

integrity (Fig. 2B). To date, over a hundred human dis-

eases have been linked to retrotransposition events [9].

Several means to restrict LINE-1 activity exist at a cel-

lular level, but as discussed in the following section,

these repressive mechanisms start to fail with age.

Failure of mechanisms repressing TEs with aging

The activity of TEs is kept in check by several epige-

netic modifications (DNA methylation and/or histone

methylation) favoring heterochromatin formation

(Fig. 2B) [92,93]. TEs silencing pathways work the

same way for most transposons [94,95]. We illustrate

here some of the mechanisms used for LINE-1 repres-

sion in particular. The CpG islands within the 50UTR

Fig. 2. RTE structure and their potential

involvement in DNA strand breaks and

genome instability. (A) Structure of LTR

and non-LTR RTEs that have self-amplified

in the human genome by a ‘copy and

paste’ mechanism during evolution. The

percent human genome represented by

these RTEs is indicated on the right. (B)

Failure of epigenetic repressive

mechanisms with aging and LINE-1

activation could lead to DNA strand breaks

and genomic instability. See text for

details.
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of LINE-1 become methylated during early develop-

ment. These repressive marks are maintained by DNA

methyltransferases (i.e., DNA methyltransferase 1,

DNMT1) and allow negative regulation (suppression

of LINE-1 expression) by the methyl-CpG-binding

protein 2 (MeCP2) [95–97]. LINE-1 repression also

involves histone modifications. For instance, nucleoso-

mal and remodeling deacetylase (NuRD) multiprotein

complexes form on LINE-1 promoters [98,99], which

also possess binding sites for repressive transcription

factors like Rb (retinoblastoma) or E2F that can

recruit histone deacetylases (HDAC1, HDAC2).

Kruppel-associated box (KRAB)-associated protein 1

(KAP1), a scaffolding protein, plays a central role in

silencing LINE-1 elements [100]. KAP1 is recruited by

KRAB-containing zinc finger proteins, a large family

of transcription factors, upon binding to LINE-1 pro-

moters. KAP1 then recruits SET domain bifurcated

histone lysine methyltransferase 1 (SETDB1), a histone

methyltransferase (HMT) that deposits H3K9me3

marks, as well as HDACs, NuRD complex proteins,

and DNA methyltransferases (DNMTs). Similarly, the

human silencing hub (HUSH) complex deposits

H3K9me3 marks to repress young retrotransposons,

including LINE-1 [101]. In addition, the sirtuin 6

(SIRT6) also participates in LINE-1 repression by

ribosylating KAP1 [102]. This modification facilitates

the interaction of KAP1 with its partners, particularly

HP1a (heterochromatin binding protein 1a) that con-

tributes to transcriptional repression through hete-

rochromatinization of LINE-1 promoters. H3K9me3 is

an important repressive chromatin mark, which con-

tributes to LINE-1 silencing. H1 linker histones also

silence repetitive elements by promoting both histone

H3K9 methylation and chromatin compaction [103].

Polycomb repressive complex 2 (PRC2) also partici-

pates in repressing young LINE-1 elements and other

TEs through deposition of histone H3 lysine 27

trimethylation (H3K27me3) marks [94,104–106]. In

addition, DNMT1 has been recently shown to recog-

nize histone H4 lysine 20 trimethylation (H4K20me3)

marks in heterochromatin to reinforce LINE-1 methy-

lation [107]. Human TRIM5a (tripartite motif-

containing protein 5a) also senses and restricts LINE-1

elements [108]. In the germline, the small RNA-based

P-Element induced wimpy testis (PIWI)-PIWI interact-

ing RNA (piRNA) system silences TEs at the transcrip-

tional level by promoting the recruitment of DNMTs

and HMTs to TEs promoters, as well as at the post-

transcriptional level [109]. Small interfering RNAs (siR-

NAs) resulting from bidirectional transcription of

LINE-1 50UTR [110] and microRNAs are involved in

the degradation of LINE-1 mRNA in somatic cells; for

example, the microRNA mir-128 was shown to bind to

LINE-1 mRNA and promote its degradation [111].

LINE-1 activity is also restricted at the post-

transcriptional level by proteins such as APOBEC

(apolipoprotein B mRNA-editing enzyme, catalytic

polypeptide-like) cytidine deaminases or TREX1 (the

three prime repair exonuclease 1) [112,113]. Several host

factors binding to the ORF1p protein were recently

identified, which control LINE-1 retrotransposition at

the post-transcriptional level [114–116]. Despite these

multiple layers of repressive mechanisms, LINE-1

repression seems to decline with age (Fig. 2B). Expres-

sion of TEs, generally low in somatic tissues, increases

with age in several tissues, including the brain [117–
119]. The derepression of LINE-1 could thus contribute

to the loss of genome integrity that characterizes aging

[120].

In this context, it is interesting to recall the ‘trans-

poson theory of aging’, which hypothesizes that epige-

netically silenced TEs become reactivated as cellular

defense and surveillance mechanisms break down with

age [121,122]. It was indeed reported in drosophila

that loss of heterochromatin with aging leads to unsi-

lencing of heterochromatin repressed genes, including

TEs [121]. Overexpression of proteins involved in hete-

rochromatin maintenance was shown to stabilize chro-

matin, mitigate the age-related derepression of TEs,

and increase healthy lifespan. Healthy aging was also

promoted by degrading TE mRNAs or by blocking

the reverse transcriptase activity of TEs. In contrast,

inhibition of TE mRNA degradation following arg-

onaute RISC (RNA-induced silencing complex) cat-

alytic component 2 (Ago2) mutation led to a

shortened lifespan [121]. Another striking example of

the failure of TE repressive mechanisms with aging is

provided with SIRT6 (sirtuin 6). As mentioned above,

SIRT6 is an important LINE-1 repressor, but it also

promotes longevity through different pathways, that

is, promoting DNA repair, suppressing inflammation,

and tumorigenesis. As DNA damage increases with

age, SIRT6 accumulates at DNA strand breaks to

coordinate DNA repair. This leads to a depletion of

SIRT6 from LINE1 promoters, which results in their

derepression [102]. Altogether, these results suggest

that unsilencing of TEs resulting from heterochromatin

loss could be an important contributor to aging.

The fact that activation of TEs during normal brain

aging can be linked to functional neuronal decline was

first shown in drosophila [117]. Bearing in mind that

aging is the major risk factor for NDs, several groups

have started to explore the role of TEs in the patho-

genesis of NDs. Although previously seen as sleeping

dogs in the genome, the reawakening of TEs is now
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beginning to be documented in the context of NDs

and provides a previously unrecognized link between

aging, TEs, and neurodegeneration.

Reawakening of TEs in
neurodegeneration

Heterochromatin decondensation and TE derepression

have now been documented in many models of NDs.

Mutant tau (R406W) was shown to induce heterochro-

matin loss and neurodegeneration in a drosophila

model of tauopathy [74]. Recently, an increase in TE

transcripts has also been observed in these flies

[123,124]. Pathogenic tau seems to accelerate the age-

associated activation of TEs in the mouse central ner-

vous system [125]. Dysregulated expression of TEs was

also reported in the post-mortem brain tissues of

patients with AD and progressive supranuclear palsy

(another tauopathy) [126]. Hence, this pathologic char-

acteristic might be conserved in human tauopathies.

The fact that heterochromatin loss and derepression of

TEs could be linked to neurodegeneration is further

supported by the AD-like phenotype of mice lacking

Bmi1 (BMI1 Proto-Oncogene, Polycomb Ring Finger),

a protein involved in chromatin compaction. Indeed,

in addition to the heterochromatin loss induced by

Bmi1 haplo-deficiency, these mice develop cognitive

deficits with age and present neurodegenerative fea-

tures similar to AD in addition to a derepression of

repetitive elements [127]. Interestingly, Bmi1 levels

were also decreased in the brain of AD patients [128].

In the context of PD, epigenetic alterations reflecting

heterochromatin loss and increased LINE-1 expression

were also observed in dopaminergic neurons subjected

to oxidative stress and in the En1+/� mouse model of

PD [129]. Furthermore, global disruption of the DNA

methylation landscape, induced by overexpression of

Gadd45b (growth arrest and DNA damage-inducible

beta, a protein involved in the brain in active DNA

demethylation in the brain), was sufficient to induce

chromatin disorganization, altered expression of key

genes, and loss of dopaminergic neurons of the SNpc

[130]. These alterations were accompanied by enhanced

sensitivity to oxidative stress, extensive DNA damage,

and increased LINE-1 transcripts and Orf1p protein

levels, all preceding neurodegeneration. Derepression

of LINE-1 and other TEs remains to be examined in

PD patients.

The reawakening of TEs has also been reported in

ALS and FTD [131]. These neurodegenerative diseases

are characterized by cytoplasmic aggregates, which

result in a loss of nuclear TDP-43 [132]. The nuclear

RNA- and DNA-binding protein TDP-43 has been

shown to bind to LINE-1 DNA and TE transcripts

[131,133,134]. Indeed, TDP-43 directly binds to TE

mRNAs, and loss of TDP-43 results in overexpression

of those particular LINE-1 targets and other TEs

[134]. A good correspondence was found between the

genomic TDP-43 targets and the specific mRNAs that

are upregulated in ALS patients with TDP-43 pathol-

ogy. These observations suggest that this protein either

silences or regulates TE expression in the nucleus. A

recent study further showed that neuronal nuclei lack-

ing TDP-43, isolated from ALS patients, display

increased chromatin accessibility around LINE-1 ele-

ments, indicating that TDP-43 is implicated in the

silencing of TEs [133]. LINE-1 DNA copy numbers

were also increased in TDP-43 negative nuclei [133],

consistent with previous reports of increased reverse

transcriptase activity in ALS [135,136]. This suggests

that LINE-1 retrotransposition events might take place

in ALS, but this still needs to be established [137]; this

aspect is further discussed below. However, quantita-

tive PCR (qPCR) measures of LINE-1 DNA must be

taken with caution since they may also reflect aberrant

or abortive reverse transcription events rather than

retrotransposition [138–140]. Fly models of human

TDP-43 also display impaired siRNA-mediated silenc-

ing and derepression of TEs, including LINE-1 and

ERVs [141]. Derepression of HERV-K, a human ERV

encoding the gag, pol, and env proteins, has also been

documented in ALS, and derepression of the highly

active mouse ERV IAP (intracisternal A-type particles)

and production of IAP-encoded gag protein were

reported in AD mouse models [125,142]. The role of

ERVs in neurological disorders has been discussed in

more depth in a recent review [143].

Altogether these studies support a pathogenic mech-

anism common to several NDs where epigenetic alter-

ation and chromatin destructuration could lead to the

derepression of normally silenced TEs. However,

other TE repressive cellular functions, such as

impaired autophagy or mitochondrial dysfunction, are

impaired in NDs and might contribute to TE activa-

tion. Autophagy has been shown to support genomic

stability by degrading RTE RNA [144]. Impaired

autophagy might thus lead to the accumulation of

LINE-1 transcripts and eventually proteins. Mito-

chondrial dysfunction, a prominent feature of several

NDs, might also trigger TE activity. A recent study

using a reporter system revealed that mitochondrial

stress increases LINE-1 retrotransposition in cultured

cells [145]. In addition, ORF1p binds to several mito-

chondrial genome-encoded RNAs, and these RNAs

are presumably released from dysfunctional mitochon-

dria [146].
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Through various downstream events following TE

derepression that are not dependent on retrotransposi-

tion per se, the activation of TEs could contribute to,

maintain, amplify, or even initiate neurodegeneration

(Fig. 1). Chromatin destructuration might be a general

hallmark of NDs and other neurological disorders.

Expression of repetitive elements, including TEs,

increased LINE-1 DNA copy numbers, and the loss of

repressive chromatin marks on such sequences have been

documented in several neurological pathologies, from

NDs to psychiatric disorders [96,123,124,127,129,

131,133,142,147–160] as summarized in Table 1. The

reawakening of TEs might thus well be a common fea-

ture in neurodegeneration as well as other neurological

disorders [155,161].

TEs as potential pathogenic drivers

Although the molecular mechanisms through which

TEs may contribute to the neurodegenerative process

are not fully dissected, a scenario emerges whereby

TEs might drive neurodegeneration through several

different pathways or a combination thereof. Which

pathway predominates might additionally be depen-

dent on cell type, brain region, and the TE-activating

trigger.

TEs and genomic instability

As mentioned above, the accumulation of DNA strand

breaks was reported in several models of NDs and dis-

eased brain tissues. In addition to many other known

sources (e.g., oxidative stress) that cause DNA dam-

age, the reawakening of TEs in NDs could be an addi-

tional source of DNA strand breaks compromising

genome integrity (Fig. 2B) [162], and thereby con-

tributing to neuronal death. Overexpression of LINE-1

ORF2p in human cells induces numerous DNA strand

breaks [163]. Whether LINE-1 activation leads to

DNA strand breaks in the context of NDs was

explored in the En1+/� mouse model of PD [129].

Acute oxidative stress, as expected, led to DNA dam-

age in mouse dopaminergic neurons but also increased

LINE-1 expression. Interestingly, the increase in

Table 1. Increased expression of TEs and other repetitive DNA-derived transcripts in neurodegenerative and neurological disorders.

Disease

TEs/

repetitive

family Observationa,b References

Alzheimer’s disease

(AD)/tauopathies

LINE-1

HERVs

SINEs

Satellite

DNA

Increased TEs transcript levels. Increased satellite DNA

transcripts (mouse model). Loss of heterochromatin and

presence of DNA damage response at satellite sequences

[123,124,127]

Parkinson disease (PD) LINE-1 Increased LINE-1 transcript levels (mouse model) [129]

Amyotrophic lateral sclerosis

(ALS)–frontotemporal dementia

(FTD)

LINE-1

HERV-K

LTRs

SINEs

Increased TE transcript levels. Chromatin decondensation around

LINE-1 sequences. Increased LINE-1 copy number

[131,133,142,147,148]

Multiple sclerosis (MS) HERVs Increased transcript levels [149]

Fragile X-associated tremor/ataxia

syndrome (FXTAS)

LTRs Increased transcript levels (fly model) [150]

Ataxia telangiectasia (AT) LINE-1 Increased LINE-1 copy number [151,152]

Macular degeneration Alu Increased transcript levels [153]

Rett syndrome (RTT) LINE-1 Increased LINE-1 copy number [96]

Sporadic Creutzfeldt–Jakob

disease

HERVs Increased transcript levels in CSF [154]

Aicardi-Gouti�eres syndrome (AGS) LINE-1 Increased transcript levels. Increased LINE-1 copy number.

Accumulation of cytosolic RNA/DNA (mouse model)

[155]

Autism spectrum disorder (ASD) LINE-1

HERVs

Alu

Loss of repressive marks on TEs. Increased TEs and Alu

transcript levels (HERVs in PBMCs). Increased LINE-1 copy

number

[152,156,157]

Bipolar Disorder (BD) HERVs Increased transcript levels [158]

Schizophrenia (SCZ) LINE-1

HERVs

Increased TE transcript levels. Increased LINE-1

Copy number (insertion in synapse and SCZ-related genes)

[158–160]

aUnless stated otherwise, the observations were made in the post-mortem brain tissues of patients.; bThe analysis of LINE-1 DNA copy

number by qPCR must be taken with caution as discussed in the text. CSF, cerebrospinal fluid; PBMCs, peripheral blood mononuclear cells.
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LINE-1 transcripts preceded the occurrence of DNA

strand breaks, suggesting that LINE-1 activity could

contribute to oxidative stress-induced DNA damage.

This was further supported by the fact that anti-

LINE-1 strategies such as siRNA targeted against

ORF2, Piwil1 overexpression, or a reverse transcrip-

tase inhibitor (stavudine) all reduced DNA breaks

induced by oxidative stress. Overexpression of LINE-1

in embryonic midbrain neuronal cultures (following

transfection) increased DNA damage, which was miti-

gated by anti-LINE-1 strategies. Increased DNA dam-

age following the unsilencing of TEs has also been

reported in the Bmi1 knockout mouse model of AD

[127].

Although LINE-1 retrotransposition has been

reported in certain neurological disorders such as

schizophrenia [159,160], the question as to whether

retrotransposition events can take place in postmitotic

neurons in the adult is still a matter of debate.

De novo LINE-1 insertions were initially thought to

occur only in the germline. However, a growing body

of evidence supports retrotransposition of LINE-1 in

the healthy brain, at least in neuronal progenitor cells

(NPCs) and during adult neurogenesis [151,164,165].

These somatic insertions seem to be rather specific to

brain tissue. Compared to the germline, these inser-

tions are mainly located in genes associated with neu-

rogenesis and synaptic functions [164], a stochastic

way to achieve neuronal mosaicism [165], although the

frequency at which retrotransposition occurs is still

debated and technical issues are not entirely resolved

[140]. From a pathological point of view, abnormal

expression of TEs and/or LINE-1 retrotransposition in

neuronal progenitors during brain development might

be at the origin of certain neurological disorders

appearing in the adult age [12]. Interestingly, LINE-1

retrotransposition was recently demonstrated in vitro

in nondividing mature neurons using a LINE-1 retro-

transposition assay, suggesting that retrotransposition

might also take place in postmitotic neurons in vivo

[166]. Whether new insertions occur in mature neurons

in the adult brain and contribute to the pathogenesis

of NDs needs to be further investigated.

TEs and aberrant gene expression

Another way in which TEs could be pathogenic drivers

is by contributing to the aberrant gene expression pat-

terns observed in NDs [167,168]. It is now well docu-

mented that TEs can serve as regulatory elements

during development [7,169,170]. The presence or

absence of epigenetic marks on TE sequences can

impact host gene transcription. TEs are thought to be

heavily repressed in adulthood. However, several

genome-wide studies mapping transcriptional activities

or binding of transcription factors suggest that TE

repression might not be drastic but rather dynamic

[171], allowing TEs to participate in gene regulation

[172]. Indeed, whether full-length and actively tran-

scribed or fossilized and inactive, these sequences con-

tain promoters, binding sites for transcription factors,

and cryptic splice sites [173–175]. Some TEs might

have been co-opted by the cell and have become part

of regulatory networks throughout evolution, while

others may have remained tightly silenced by repressive

epigenetic marks. For instance, using a CRISPR (Clus-

tered Regularly Interspaced Short Palindromic

Repeats) and guide RNA (gRNA) multiplexing

method, it has been established in human embryonic

cells that transcriptional activation or silencing of

LTR-5Hs elements (isolated promoters from a young

human HERV-K family) was correlated to the up- or

downregulation of hundreds of human genes, reinforc-

ing the idea that HERVs can act as early embryonic

enhancers [176]. Epigenetic modifier drugs (DNMT

and HDAC inhibitors) induce transcription from

LTRs and lead to a high number of chimeric RNAs

[177]. It was recently shown that primate-specific

KRAB zinc finger proteins and their target retrotrans-

posons control gene expression in human neurons

[178]. Activation of LINE-1 elements was also shown

in human neuronal progenitors following global DNA

demethylation [12]. The loss or alteration of repressive

marks during aging or in NDs could allow TE

sequences to alter the expression of hosting or neigh-

boring genes [179]. For instance, intronic LINE-1 can

modify the splicing of their host gene through a mech-

anism called exonization, leading to the presence of the

LINE-1 as an additional exon in the gene transcript

[174,180]. Alterations in gene splicing could disrupt

gene expression by changing the reading frame, intro-

ducing premature stop codons, or decreasing transcript

stability. Several RNA binding proteins which repress

splicing were found to bind young LINE-1 sequences

present in introns of pre-mRNAs to prevent alternative

splicing and exonization of LINE-1-derived sequences

by insulating numerous splice sites contained in active

LINE-1 retrotransposons [174]. The polyadenylation

signal in the 30UTR of LINE-1 could alter the elonga-

tion of host gene transcription, resulting in fewer nor-

mal or shortened transcripts, leading to truncated

proteins or even loss of proteins. Binding of transcrip-

tion factors to promoters, such as LTRs or the 50UTR

of LINE-1, could modulate transcription of neighbor-

ing genes in an enhancer-like fashion. TE promoters

could also serve as alternative promoters yielding
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chimeric transcripts due to the sense and antisense pro-

moters present in the 50UTR of LINE-1 initiating bidi-

rectional transcription [179]. It was recently shown

that G-quadruplexes originating from evolutionarily

conserved LINE-1 elements interfere with neuronal

gene expression in AD [181]. Some of these mecha-

nisms through which TEs can alter host gene expres-

sion are illustrated in Fig. 3.

Even though TE repression might not be as rigid as

previously thought, repressive marks of heterochro-

matin present on these elements could spread over

short distances, thus participating in local chromatin

organization. Loss of these marks could derepress

genes (in the vicinity), with potentially deleterious con-

sequences, when expressed. As mentioned above, gene

expression profiles from the brain of AD patients

resemble that of fetal brains, which includes the re-

expression of cell-cycle genes and might partly be due

to TE dysregulation. The expression of cell–cycle genes

indicates a loss of postmitotic neuronal identity and

results in an attempt to re-enter into the cell cycle, a

process which can lead to neurodegeneration

[74,182,183]. Interestingly, mounting evidence suggests

the direct effects of TE transcripts in the regulation of

gene expression. LINE-1 transcripts, for instance, bind

H2B histones and participate in chromatin decom-

paction [184], and m6A modification of LINE-1 tran-

scripts might enhance their association with DNA to

stabilize heterochromatin [185]. It was recently sug-

gested that m6A RNA modification, which enhances

LINE-1 mRNA translation and increases retrotranspo-

sition, might have been a driving force for the success-

ful amplification of LINE-1 elements during evolution

[186]. As mentioned above, it is conceivable that

LINE-1 retrotransposition events could actively take

place in the aging brain following neuronal de-

differentiation. To what extent epigenetic modifications

and/or expression of TEs contribute to transcriptional

dysregulation in NDs remains to be dissected.

Finally, recent studies support the idea that TEs

could be involved in higher-order 3D chromatin orga-

nization [187–189], suggesting that alteration of their

epigenetic state might perturb chromatin structuration

and affect gene expression globally. The 3D organiza-

tion of chromatin is essential for the formation of

complex regulatory networks, allowing long-range

interactions between enhancers and promoters [190].

TEs are suspected to have contributed to the emer-

gence of species-specific loops in mammals and gen-

ome regulation by harboring binding sites for

regulatory factors, like CCCTC-binding factor

(CTCF). TEs constitute up to 15% of CTCF-binding

sites in the genome [191], implicating TEs as topologi-

cally associating domain (TAD) organizers. The identi-

fication of CTCF as a factor binding to the 50 and

30UTRs of LINE-1 further suggests their possible

involvement in 3D chromatin structuration [124]. It

was reported that LINE-1 transcription per se during

early mouse development could increase global chro-

matin accessibility [192]. More recently, ERVs have

also been shown to demarcate TAD boundaries in

chromosomes [193]. Since the binding of CTCF to

DNA is methylation-dependent, it is conceivable that

DNA methylation changes during aging and in NDs

might induce not only derepression of TEs but also a

profound perturbation of the 3D organization of chro-

matin.

TEs and neuroinflammation

Neuroinflammation is a common feature of brain

aging and NDs [194], but the origins have so far

Fig. 3. TE contribution to altered host

gene expression. Some striking

mechanisms through which TEs could

affect host gene expression are depicted.

Modulation of host gene expression could

occur through bidirectional transcription

from intronic TEs and the extent of

epigenetic modifications of TEs.

Premature termination of transcription and

alternative splicing could also affect host

gene expression. See text for further

details.
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remained elusive. In recent years, mitochondria have

emerged as an important player in activating innate

immune response and neuroinflammation. The release

of mitochondrial constituents (i.e., mtDNA fragments

or mitochondrial RNAs) in the cytoplasm, following

mitochondrial stress, activates the innate immune sys-

tem through the cytosolic DNA sensing cGAS (cyclic

GMP-AMP synthase)-STING (stimulator of interferon

response CGAMP interactor 1) or Toll-like receptors

(TLRs) pathways [195,196]. Interestingly, the PD-

related genes Parkin and PINK1 seem to mitigate

STING-induced inflammation [196]. It should be

recalled that the presence of cytoplasmic double-

stranded RNA (dsRNA) is a hallmark of viral infec-

tions [197]. In mammalian cells, the detection of viral

nucleic acids activates a signaling pathway that culmi-

nates in the expression of type I IFN (IFN1) and acti-

vation of proinflammatory cytokines. TE activity is a

potential source of unusual, virus-resembling intracel-

lular nucleic acid conformations (i.e., RNA stem

loops, dsRNA, ssDNA, or DNA:RNA hybrids)

detected by the innate immune surveillance system and

triggering an antiviral IFN1 response. Although this

activation is a critical antiviral response, uncontrolled

production of interferons (IFNs) could contribute to

inflammatory or autoimmune diseases. As discussed

above, repetitive element transcripts have been associ-

ated with toxicity and increased repetitive element

expression has been observed in several NDs. For

instance, transcripts from multiple classes and sub-

classes of repetitive elements (i.e., LINE-1, ERVs,

DNA transposons, simple repeats, etc.) were signifi-

cantly increased in the frontal cortex of C9orf72 ALS

patients [148]. Alu RNAs are known to be the most

important source of dsRNA-mediated IFN response

[198,199]. It was reported that cGAS detection of TE

transcripts drives noncanonical-inflammasome

activation in age-related macular degeneration [200].

Interestingly, the nuclear RNA helicase DHX9

(DExH-Box Helicase 9) neutralizes RNA processing

defects caused by Alu invasion by resolving long

dsRNAs, allowing proper RNA processing and

nuclear export [201]. Moreover, constitutive activation

of MDA5 (melanoma differentiation-associated protein

5, a cytosolic innate immune receptor that recognizes

long dsRNA) in Aicardi Gouti�eres syndrome (AGS)

results from the loss of tolerance to cellular dsRNAs

formed by Alu retroelements [202].

Nucleases such as TREX1 or RNase H2 also pre-

vent the accumulation of cytoplasmic nucleic acids

derived from TEs. Mutations resulting in loss of

TREX1 activity lead to autoimmune or inflammatory

diseases like AGS or some familial forms of lupus. A

recent AGS study provided the proof of principle that

LINE-1 cDNA accumulation could be a source of

neuroinflammation [203]. TREX1 deficiency led to the

accumulation of extranuclear single-stranded DNA

(ssDNA) in the cytoplasm of both neurons and glial

cells. This was prevented by short-hairpin RNA

(shRNA) targeted against LINE-1 mRNA, indicating

that LINE-1 activity contributes to the accumulation

of cytoplasmic nucleic acids. The accumulation of

LINE-1-derived cDNA in the cytosol leads to the neu-

rotoxic secretion of IFNs. The phenotype resulting

from TREX-1 deficiency was rescued by using reverse

transcriptase inhibitors or blockers of neuronal IFN

receptors. Thus, increased LINE-1 reverse transcrip-

tase activity can mediate neuroinflammation and neu-

rotoxicity through the IFN pathway (Fig. 4).

Furthermore, two other studies recently supported the

capacity of LINE-1 activation to trigger an inflamma-

tory phenotype. LINE-1 derepression resulting from

SIRT6 deficiency was identified as a source of inflam-

mation in different tissues, including the brain. The

Fig. 4. TE activation as a potential source

of neuroinflammation. Increased LINE-1

reverse transcriptase activity can lead to

the accumulation of cytosolic cDNA, which

could result in activation of IFN1 response,

neuroinflammation, and neurotoxicity via

the cGASSTING pathway. See text for

details.
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SIRT6 knockout mouse is a progeroid model of accel-

erated aging and displays growth retardation, elevated

LINE-1 activity, and shortened lifespan. SIRT6 defi-

ciency led to the accumulation of cytoplasmic LINE-1

cDNA in cells and tissues in this model, which trig-

gered a strong inflammatory response by activating the

IFN1 response through the cGAS-STING pathway

[203,204]. Reverse transcriptase inhibitors improved

the lifespan of these mice and mitigated the IFN

response. LINE-1 knockdown using siRNAs reduced

the IFN response as well as DNA damage in SIRT6-

deficient cells. Likewise, LINE-1 transcripts, cytoplas-

mic cDNA, and IFNs were all elevated in aged wild-

type mice, supporting the hypothesis that LINE-1

derepression is involved in sterile inflammation that

occurs in aging (known as ‘inflammaging’). The

HUSH complex was also reported to be a gatekeeper

of IFN1 through epigenetic regulation of LINE-1

[205]. As repressive mechanisms decline with age,

LINE-1 derepression and increased reverse transcrip-

tase activity of ORF2p in proliferating cells could acti-

vate the IFN1 response and lead to senescence-

associated secretory phenotype (SASP) [206]. Neurons

(as nondividing cells) can also present a senescent-like

phenotype, and various senescent markers have been

found in glial cells of AD and PD patients [207]. Neu-

roinflammation has also been observed in the En1+/�

mouse model of PD [37], which shows elevated levels

of LINE-1 expression. However, an effect on cytosolic

cDNA accumulation in dopaminergic neurons has not

yet been tested in this model. A recent study showed

that LINE-1 reverse transcriptase could also generate

cDNA within the cytoplasm using SINE RNA as a

template following self-priming [208], bringing closer

to the possibility of LINE-1 RNA serving as a tem-

plate to generate LINE-1 cDNA in the cytoplasm

(Fig. 4). Finally, the production and aggregation of

proteins encoded by ERVs activated during develop-

ment were found to be another source of neuroinflam-

mation appearing in the adult age. More importantly,

this study showed for the first time that TEs expres-

sion alone in the absence of other alterations or

pathology can be sufficient to induce microglial activa-

tion, a characteristic feature seen in most NDs [209].

Further studies are needed to examine whether and to

what extent reawakening of TEs and LINE-1 activity

contribute to neuroinflammation in NDs.

TEs and mitochondria

Emerging evidence suggests that mitochondrial integ-

rity could also be impaired by TE activity. In the con-

text of age-related macular degeneration, Alu elements

could be involved in mitochondrial dysfunction. Alu

RNA can provoke mtDNA release into the cytosol by

promoting the opening of mitochondrial permeability

transition pore [200]. Moreover, in the absence of the

endoribonuclease DICER1, the accumulation of Alu

RNA leads to mitochondrial ROS production

[210,211]. These two phenomena activate the NLRP3

(NLR Family Pyrin Domain Containing 3)-dependent

inflammasome pathways. It is also noteworthy that

Alu sequences appear to be preferentially located in

introns of genes implicated in mitochondrial pathways,

and epigenetic dysregulation of Alu elements could

ultimately disrupt mitochondrial homeostasis within

the central nervous system and contribute to the devel-

opment of NDs [212]. LINE-1 ORF1p and ORF2p

proteins interact with mitochondrial proteins [114].

ORF1p binds to ERAL1 (Era Like 12S mitochondrial

rRNA chaperone 1), a mitochondrial GTPase, whereas

ORF2p binds to TIMM13 (translocase of inner mito-

chondrial membrane 13) and TOMM40 (translocase of

outer mitochondrial membrane 40), but the role of

these interactions remains unknown [115,116]. All

these observations point to important connections that

might exist between the activity of TEs, mitochondrial

dysfunction, and other pathological hallmarks of NDs

(Fig. 1).

TEs as new therapeutic targets

It emerges from all the studies discussed above that

inhibiting TE expression and/or blocking their activity

could constitute a novel therapeutic approach in age-

related pathologies and, more specifically, in NDs. In

several models, targeted degradation of TE transcripts,

delivery of transcriptional repressors, or use of reverse

transcriptase inhibitors conferred neuroprotection and

anti-inflammatory properties, extended healthy lifes-

pan, and rescued pathological phenotypes in general.

As mentioned above, anti-LINE-1 strategies prevent

the loss of dopaminergic neurons in the En1+/� mouse

model of PD. It is noteworthy that the Engrailed pro-

tein itself is a therapeutic protein and protects

dopaminergic neurons by directly repressing LINE-1

elements [129]. It would be interesting to test the thera-

peutic potential of strategies that block the expression

or activity of TEs in NDs. Indeed, several ongoing clin-

ical trials are currently testing the safety and tolerability

of reverse transcriptase inhibitors in AD (https://

clinicaltrials.gov/ct2/show/NCT04500847; https://

clinicaltrials.gov/ct2/show/results/NCT04552795), ALS

[213], and AGS (https://clinicaltrials.gov/ct2/show/

NCT02363452). These approaches are based on the use

of reverse transcriptase inhibitors either alone or in
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combination with anti-HERV integrase inhibitors [143]

to target different TEs. Another therapeutic target

could be chromatin itself since chromatin relaxation

occurs in aging and several NDs. Preventing the loss of

repressive marks might avoid the expression of TEs

and associated deleterious pathological effects. More

importantly, epigenetic modifications of TEs might

alter the entire spatial organization of chromatin.

Maintaining a juvenile and healthy chromatin state

could also prevent genome-wide alterations of the tran-

scriptome observed with aging and neurodegeneration

[214]. One way to prevent chromatin loss could be to

overexpress proteins involved in heterochromatin main-

tenance. Indeed, overexpression of genes known to

affect heterochromatin structure like Sirt2 (sirtuin 2),

the orthologue of Sirt1 (sirtuin 1; a deacetylase impor-

tant for gene silencing), Su(var)3-9 (an H3K9 methyl-

transferase), or DICER 2, which recruits Su(var)3-9 at

TEs sites, led to increased lifespan in drosophila,

whereas shRNA against those genes accelerated aging

and shortened lifespan [121]. Alternatively,

heterochromatin-promoting drugs such as remodelin

[215] or methotrexate [63] shown to restore a juvenile

chromatin state in models of accelerating aging or

autoimmune diseases could also have a therapeutic

potential in NDs.

Conclusions and perspectives

In conclusion, all of the studies discussed in this review

support the concept that TEs represent a key patho-

genic culprit linking brain aging and neurodegenera-

tion. They also unveil a new unifying pathogenic axis

for NDs in which age-induced chromatin destructura-

tion could lead to TE activation and its resulting dele-

terious effects, cumulating in neurodegeneration as

illustrated in Fig. 5. Activation of TEs and a number

of pathological features are common to various NDs,

thus suggesting that they might be interconnected. As

discussed above, this new axis also suggests important

connections between mitochondrial activity and TEs.

These new findings should revive interest in further

exploring the role of ‘the dark side’ of DNA in neu-

rodegeneration and other human diseases. It is tempt-

ing to speculate that TE activation might represent the

tenth hallmark of aging and neurodegeneration. It is

then not surprising that TEs are also being regarded

as appealing targets for novel therapeutic interventions

Fig. 5. A new emerging pathogenic axis for NDs. Chromatin relaxation with oxidative stress and aging can result in LINE-1 activation leading

to several pathological consequences common to many NDs, namely DNA strand breaks and genomic instability, neuroinflammation, and

gene dysregulation. A possible interplay between mitochondria and TEs is also depicted. Inhibition of TEs activity or chromatin rejuvenation

represents potential targets for neuroprotection.
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for aging and NDs. In this regard, it will be particu-

larly interesting to evaluate the therapeutic efficacy of

reverse transcriptase inhibitors for neuroprotection in

NDs.
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105 Ragazzini R, Pérez-Palacios R, Baymaz IH, Diop S,

Ancelin K, Zielinski D, Michaud A, Givelet M,

Borsos M, Aflaki S et al. (2019) EZHIP constrains

polycomb repressive complex 2 activity in germ cells.

Nat Commun 10, 3858.
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