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1 Introduction

The historical study and dimensioning of communication systems (communication
networks but also supply chains) have been successful in great part due to the existence
of robust performance evaluation tools. Even when the statistical traffic characteristics
are unknown (or very poorly modeled), under certain conditions, the performance
evaluation of the system might only depend on first moment estimations. The first
theoretical evidence in that direction was given in 1917 with the celebrated Erlang
formula [3]which gives the blocking probability of a set of servers (formerly telephone
lines), relating in that way the quality of service to the number of available servers.

Many communication systems have nowadays reached very complex architectures
and loadmanagementmechanisms needing the resolution of difficult control problems
linked to resource allocations. Classical examples are bandwidth sharing problems in
wiredorwireless networks,while examples ofmore recent applications are data centers
with redundancy and load balancing mechanisms. This complexity and the need of
control schemes have been tackled since a few decades by research inMarkov decision
processes (MDP) when aMarkovian model for the system is assumed to be known and
reinforcement learning (RL)—the precise transitions are unknown—where learning
is added to control in the model-free setting.

The robustness properties of performance evaluation formulas echo the huge lit-
erature in robust statistics and learning where researchers have looked not only at
corrupted data but also at the notion of mismatch model (see the notion of minimax
theory [9]). However, the theory of robustness in control of queueing systems and
more generally of generalized MDP (for instance, partially observed MDP, MDP in
random environment) is still to be fully developed.

Going beyondqueueing theory, it is crucial to develop aminimax theory (seeSect. 3)
for an extended class of MDP and RL problems where realistic statistical assumptions
are muchmore general than the ones supposed (while incorporating these assumptions
into a Markovian description would lead to an intractable model).
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2 Insensitive policies

Many MDP representing queueing systems have been studied under the condition of
(quasi-)reversibility of the Markov queue lengths process Xt (when service times are
exponential). This property implies (and is equivalent in somecases to) the insensitivity
of the stationary distribution of the queue lengths process which depends on the jobs
size distribution through their mean only [1, 2]. We shall refer to policies leading to
the quasi-reversibility of Xt as insensitive policies, and they were characterized in [1,
6, 7] in the context of dynamic load balancing problems.

It is interesting to note that depending on the specific problem considered (setting
and cost criterion), the price of insensitivity (see Sect. 3 for a precise definition),
though not characterized in general, was shown to have completely different values.
For instance, it was shown for networks with a unique class of traffic and blocking
that the best insensitive policies compare very accurately to optimal policies for the
original MDP in terms of blocking, while they are less efficient in terms of delay
[1, 2]. The performance penalization imposed by reversibility is significantly greater
for multi-class networks [6, 7]. Hence, a small to moderate price has to be paid for
robustness for finite state space. However, for models with infinite buffers, this price
becomes very high. It was indeed proved for the problem of dynamic load balancing
(according to queue lengths) that the optimal insensitive policy for any convex cost
criterion is static (i.e., does not depend on the queue-lengths) if the state space is infinite
[4]. It is hence much less efficient than a state-dependent but sensitive load balancing.

3 Minimax formulation for an extended queueing system control and
the price of insensitivity

Consider a queueing system with Poisson arrivals where transitions depend on an
action a ∈ A . It could be, for instance, a routing decision in load balancing problems
and/or a service policy. Consider first the case of exponential service time.We can then
describe the control problem as a Markov decision process where Xt , t ≥ 0 describes
the queue lengths process, on a state space χ under the average cost criterion. To
simplify, let us assume that the policies π are (possibly random) functions of Xt and
that Xt is irreducible. Let pπ (x) and r(x), x ∈ χ , denote the (unique) steady-state
distribution and the mean reward in state x , respectively. The long-run expected cost
is CE (π) := ∑

x r(x)p
π (x). The optimal policy satisfies the Bellman equation and

is denoted π∗ (see [8]), and the associated cost is denoted by CE = CE (π∗).
Now let P be a set of service time distributions. We can extend the control prob-

lem to dynamics with distributions of service times in P . For a fixed policy π and
a fixed service time distribution (denoted θ ), we obtain a new stochastic process
X̃t = X̃t (θ, π) for the queue lengths which is not Markov but still has (under mild
assumptions) a unique stationary measure. We denote by C(θ, π) the corresponding
average cost. The minimum cost of the extended control on the set of distributionsP
is defined as:

CP = inf
π∈Π

sup
θ∈P

C(θ, π).
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When this cost is actually attained by a policy, we call the latter the optimal robust
policy π̂ = argminπ∈Π supθ∈P C(θ, π). On the other hand, the set of insensi-
tive policies Πr considered in the previous section contains policies πr such that
C(θ, πr ) = C(E, πr ), for all θ (in the set of distributions of positive random vari-
ables with finite mean). We denote by Cr the optimal cost among insensitive policies
Cr = infπr∈Πr C(E, πr ).
Open questions. Given the previous definitions, we can ask several crucial questions:

1. For a given control problem, can we compute or find generic bounds for CP for a
given set of service time distributions?

2. Can we bound for a given θ and P the price of robustness |CP − infπ C(θ, π)|,
and the price of insensitivity |CP − Cr | ?

3. When they can be defined, do optimal reversible policies π̂r coincide with optimal
robust policies for some set of distributionsP?

To illustrate the problematic defined, let us come back to the case of the load
balancing problem [1, 4] considered in the previous section where Xt is the number
of customers in a set of K servers with state space χ and r(x) = −1x∈B where B is
the set of blocking states.

• If χ = N
K , using [5], the optimal insensitive policies are the Bernoulli routing

policies which have no state dependency. Hence, both CE and Cr can be easily
computed (at least numerically). The value of cP , however, is unknown. The
optimal robust policy is also unknown.

• If χ is finite and there is a single class of traffic, using [1] the optimal insensitive
policies are the so-called simple policies which can be computed explicitly. The
price of robustness and insensitivity is unknown, but simulations suggest that (for
the specific cost associated with blocking), the cost of insensitivity is small.
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