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Vertical motion in wall bounded turbulence using conditionnal sampling

Large Reynolds number turbulent boundary layers are characterized by a -1 range in the turbulent spectrum. An explanation of this phenomenon was attempted at the end of the 1990s in terms of eddy distributions and top-down motion. However, at that time, due to limited Reynolds number of direct numerical simulations (DNS), a very detailed analysis of flow structure was not possible, and the debate came to a draw. With progress of DNS it is now possible to reconsider this debate through conditional sampling.

Introduction

At the end of the 1990s, it became apparent that large Reynolds number turbulent boundary layers contain some large scale correlations which can be analysed in terms of a -1 range in the turbulent spectrum (see for example [START_REF] Hunt | Statistical structure at the wall of high Reynolds number turbulence[END_REF]). A physical explanation of this phenomenon was attempted in terms of eddy distributions and topdown eddy motion (see the cat-paws of [START_REF] Hunt | Eddy structure in turbulent boundary layers[END_REF] and also [START_REF] Ph | Numerical and experimental investigation of the neutral atmospheric surface layer[END_REF] and references therein). These ideas were used to get a better parametrisation of near surface turbulence in numerical codes (e.g. Redelsperger & al. (2001)). However, many litterature references explain the input of energy into the turbulent cascade through viscous instabilities very close to the wall (see for example [START_REF] Pope | Turbulent flows[END_REF] and references therein). This theory is called the top-down model of the turbulent boundary layer. At that time, due to limited Reynolds number of direct numerical simulations (DNS), a very detailed analysis of flow structure was not possible and no conclusion could be made.

The aim of this paper is to look back onto the debate of discriminating top-down and bottom-up models with DNS data. Section 2 discusses tools for characterising vertical motion. Section 3 applies the tools to DNS data from [START_REF] Laadhari | Reynolds number effect on the dissipation function in wall-bounded flows[END_REF]. Section 4 is the conclusion.

Here, x is the streamwise direction, y the direction perpendicular to the wall (vertical). The friction velocity is u * = τ p /ρ and we define y * = ν/u * . For a smooth wall, we define y + = y/y * and velocity profile is U = u * κ ln Ey + with with E = 8 to 10 in the so-called log-layer. For a rough wall, the log-layer writes U = u * κ ln y/y 0 with y 0 the roughness length. Thus, defining for the rough boundary layer y + = y Ey0 , we assume that data at a given y + may be compared for smooth and rough boundary layers. For typical values in an atmospheric boundary layer, y + = 100 corresponds to a height between 40 to 100 m.

Tools for characterising vertical motion

A classical tool for studying the statistics of turbulence in wall bounded flows is quadrant analysis. Writing (U, 0, 0) the average velocity field and (u, v, w) the fluctuating one, it is said that there is an ejection event at location (x, y, z) and time t if u(x, y, z, t) < 0 and v(x, y, z, t) > 0. A sweep event corresponds to u(x, y, z, t) > 0 and v(x, y, z, t) < 0. As soon as average velocity increases with height, the sum of sweep and ejection events dominates over the two other possible events as shown by the analysis of the possibles evolutions of a small parcel of fluid located at height y 1 at time t (this is the parcel of fluid used by [START_REF] Prandtl | Essentials of Fluid Mechanics[END_REF] to derive the mixing length theory).

The repartition between sweeps and ejections is often computed to analyse vertical fluctuating motion. For example [START_REF] Ph | Numerical and experimental investigation of the neutral atmospheric surface layer[END_REF] shows that in an atmospheric boundary layer, sweeps dominate ejections at height y + = 22, 70 et 120, which is interpreted as being in favour of the top-down model. However, as may be understood from a simple model of two point vortices impinging onto a rigid wall in a perfect fluid, based on image method (see figure 1), the domination of sweeps on ejections is not a sign of the behaviour of coherent eddies of concentrated vorticity. Thus, vertical eddy motion cannot be studied with quadrant analysis. From the same argument, analysing averages of vertical mass fluxes odd moments do not indicate any preferential direction for intense events, since < v n >= 0 for any odd value of n in the image method flow.

As a consequence, we decide to define eddies as parts of the flow with intense fluctuating vorticity ω = rot u. We define the local instanteous enstrophy Ω = |ω| 2 and we scale it on the local mean shear S = ∂U ∂y . Vorticity will be considered as intense at a given location when Ω(x, y, z)/S(y) > α, α being a threshold to be chosen. Define averages of vertical velocity conditionnal to the presence of intense vorticity (x and z are the two coordinates parallel to the wall):

v -(α) = v ( √ Ω<α|S|) v < + (α) = v ( √ Ω≥α|S| et v≤0) v > + (α) = v ( √
Ω≥α|S| et v>0) and the probability of occurence:

γ -(α) = 1 A A χ ( √ Ω<α|S|) (x, z)dxdz γ < + (α) = 1 A A χ ( √ Ω≥α|S| & v≤0) (x, z)dxdz γ > + (α) = 1 A A χ ( √ Ω≥α|S| & v>0) (x, z)dxdz
with A a reference horizontal area and χ (a<b) = 1 if a < b, 0 otherwise. Since the total probability is 1 and the average vertical velocity is 0, we have:

γ -(α) + γ < + (α) + γ > + (α) = 1, γ -(α)v -(α) + γ < + (α)v < + (α) + γ > + (α)v > + (α) = 0.

Upwards and downwards motions in a boundary layer

In the present section, we use DNS data from [START_REF] Laadhari | Reynolds number effect on the dissipation function in wall-bounded flows[END_REF]. The centerline velocity and channel width Reynolds number is 12580 and Re τ = hu * /ν is 590. For a given α we plot horizontal cuts of the domain with the following color map (figure 2): green if

√ Ω ≤ α|S|, bleue if √ Ω > α|S| et v ≤ 0, red if √ Ω > α|S| et v > 0.
Accordingly, intense top-down motion is depicted in blue and intense bottom-up motion is depicted in red. For α = 1 (figure 2), there is a qualitative domination of red for y + 20, 40 and 50. For y + = 250, red and blue are balanced. If the green areas are small (as it is for y + =40, 50 and 250), we get γ

< + (α) + γ > + (α) = 1 and γ < + (α)v < + (α) + γ > + (α)v > + (α) = 0.
Thus, if a type of event dominate in probability of occurence, the other type dominates in terms of strength. The difficulty of using color maps as 2 is that the interpretation depends on the choice of α. In order to avoid this difficulty, we analyse for a given height quantities γ < + , γ > + , v < + and v > + as functions of α. Figure 3 (based on a private communication from F. Laadhari), drawn for y + = 100 shows that the curves cross each other for α ≈ 0, 5, with probability of occurence of bottom-up events dominating for α < ∼ 0, 5 but not above. As noticed before, since above α ≈ 0.5, bottom-up event do not dominate in probability of occurence, they dominate in strenght.

Note that this figure is only a kinematic analysis, and brings no dynamical explanation of turbulence structure from Navier-Stokes equation. Even though a type of event dominate in strength, they may be triggered by the other familly of events.

Conclusion

In the present work, we used conditional sampling according to a vorticity threshold to identify eddies in boundary layer high Reynolds number turbulence. With increasing value of the threshold defining intense eddies, the number of bottom-up events gets larger than the number of top-down ones and the average vertical velocity of top-down events gets smaller than the one of bottom-up events. As next step of the study, Lagrangian forward and backward tracking of large enstrophy patches should be performed. 
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 1 Figure 1. Sketch representing the method of images for an eddy constituted of two point vortices impinging onto a rigid wall in a perfect fluid (Γ represent the circulation of an individual point vortex).
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 2 Figure 2. Horizontal color map of the flow for α = 1: green for low enstrophy, red large enstrophy and bottom-up motion, blue large enstrophy and top-down motion; left to right and top to bottom: y + = 20; y + = 40; y + = 50; y + = 250.
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 3 Figure 3. For y + = 100, (a): proportion of intense events as function of α; (b): average vertical velocity of intense events as function of α (solid line: bottom-up event; dashed line: top-down event).
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