
HAL Id: hal-03799536
https://hal.science/hal-03799536

Submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SDN-TSCH: Enabling Software Defined Networking for
Scheduled Wireless Networks with Traffic Isolation

Farzad Veisi Goshtasb, Julien Montavont, Fabrice Theoleyre

To cite this version:
Farzad Veisi Goshtasb, Julien Montavont, Fabrice Theoleyre. SDN-TSCH: Enabling Software Defined
Networking for Scheduled Wireless Networks with Traffic Isolation. IEEE International Symposium
on Computers and Communications (ISCC), Jun 2022, Rhode Island, Greece. �hal-03799536�

https://hal.science/hal-03799536
https://hal.archives-ouvertes.fr


SDN-TSCH: Enabling Software Defined
Networking for Scheduled Wireless Networks with

Traffic Isolation
Farzad Veisi, Julien Montavont and Fabrice Theoleyre

ICube, CNRS / University of Strasbourg, France
{veisigoshtasb,montavont,theoleyre}@unistra.fr

Abstract—The Industrial Internet of Things (IIoT) applica-
tions need to rely on a wireless infrastructure able to provide
low end-to-end latency, and high reliability. Software-Defined
Networking (SDN) is promising to make the network more agile,
pushing the decision process to a controller. However, radio links
are unstable while the controller needs to construct an accurate
view of the network to schedule the transmissions efficiently. We
propose here SDN-TSCH to separate the data and control planes
for a scheduled network. We construct a reliable control plane,
maintaining a collision-free path to and from the controller.
Besides, SDN-TSCH guarantees flow isolation: each flow can
reserve dedicated resources so that end-to-end reliability and
latency constraints can be respected per flow. Finally, we also
dedicate resources for best-effort traffic, to accommodate various
applications. Our Cooja simulations highlight the flow isolation
characteristics of SDN-TSCH: we provide very high reliability
even in presence of best-effort traffic.

Keywords—Industrial Internet of Things; Software-Defined
Networking; scheduling; dedicated control plane; flow isolation

I. INTRODUCTION

Industry 4.0 aims to modify the industrial processes to make
them more flexible, through reconfigurable assembly lines.
Cyber Physical Systems collect measurements in real-time and
take proper decisions to optimize the system: inserting novel
devices expands the capabilities of the system [1]. For this
purpose, Industry 4.0 relies extensively on wireless transmis-
sions to create the Industrial Internet of Things (IIoT) [2].
A large collection of sensors and actuators (aka motes) are
disseminated in the environment to control, continuously
retrieving measurements to take smart decisions. Because the
devices are battery powered, the community has redesigned
energy efficient protocols to use scarcely the resources, turning
off the motes most of the time.

However, wireless networks are known to be lossy: de-
pending on channel conditions, a packet may or may not be
decoded by the receiver. The link quality is even time-variant:
external interference may arise, which negatively impacts the
reliability if the Signal To Noise Ratio (SNR) is too low. In
these conditions, providing high reliability and low delays,
as required by most industrial applications, is particularly
challenging.

To cope with these constraints, deterministic Medium Ac-
cess Control (MAC) protocols have been proposed in the
literature. Typically, IEEE 802.15.4-TSCH [3] relies on a
strict schedule of the transmissions to avoid collisions. The

scheduling matrix defines, for each timeslot, if a device
has to stay awake, and on which channel (frequency) to
listen/transmit a frame. IEEE 802.15.4-TSCH supports both
centralized and distributed scheduling algorithms [4].

In recent years a novel paradigm emerged based on
Software-Defined Networking (SDN) [5]. The approach
clearly separates the control and data planes so that all
decisions can be centralized in a controller. To our mind, such
centralization has two major assets: i) the network devices are
simpler, and just enforce rules provided by the controller, ii)
with a complete view of the network conditions, the controller
makes optimal decisions.

OpenRadio [6] already advocates for a more agile wireless
stack, with a processing and a decision plane for cellular
networks. SDN-WISE [7] introduces a pioneering piece of
work to adapt the SDN paradigm to the Internet of Things.
To our mind, an SDN solution should focus on connectivity,
and must support scheduled networks. Data processing and
in-network aggregation may be achieved rather by Network
Function Virtualization (NFV) [8] to maintain layer indepen-
dence. We have also to address the unreliability problem in
the control plane: a command or report packet may be lost
between the controller and network devices. Such unreliability
should not impact the convergence of the network.

The contributions of this article are as follows:
1) we propose mechanisms to support a control plane in

scheduled networks. In particular, we provide a join pro-
cess so that a device can discover neighbors and contact
the controller. In return, the controller reconfigures the
control plane for the novel device;

2) we provide a compact resource allocation for the control
plane, which is still collision-free while limiting the
number of cells to allocate so that a device has both
upward and downward routes to reach the controller;

3) we detail how to reserve resources in the data plane for
critical flows, while still guaranteeing flow isolation;

4) we evaluate the performance of our SDN-TSCH solution
in Cooja, and compare it against Orchestra [9], and high-
light how it can respect per flow guarantees (reliability
and latency).

II. BACKGROUND & RELATED WORK

We detail here background notions and related work on
scheduled low power networks, and SDN.



Sink

A

C

B S

BSAB BS CB

DS

broadcast
(shared cell)

channel
offsets

Dedicated cells

radio link

Slotframe

timeslot

D

Fig. 1: Simple TSCH schedule with shared and dedicated cells

A. IEEE 802.15.4-TSCH

IEEE 802.15.4 TSCH [3] targets industrial wireless net-
works. Slow channel hopping combats external interference: if
a packet cannot be decoded, it is retransmitted through another
channel. Besides, IEEE 802.15.4-TSCH relies on scheduled
access: a scheduling matrix (a slotframe) is composed of cells
(pairs of timeslots and channel offsets). Since the slotframe
repeats over time, a transmitter that is assigned to a cell,
has a reserved bandwidth for its transmissions. The Absolute
Sequence Number (ASN), defines a global clock in the
network and corresponds to the number of timeslots since the
sink has bootstrapped. More precisely, the standard supports
two types of cells in the scheduling matrix:
shared cells implement a contention resolution for acknowl-

edged packets. More precisely, if the transmitter does not
receive an ack, it skips a random number of shared cells
(corresponding to its backoff value) before retransmitting
the same packet. Hopefully, different transmitters will
choose different backoff values. However, the backoff is
among and not inside the cells, and is thus expensive
in bandwidth because collisions are frequent for medium
densities [10]. Typically, the shared cell in Fig. 1 may be
used for non critical broadcast traffic such as Enhanced
Beacons (EBs);

dedicated cells have no contention resolution. Thus, a ded-
icated cell should be allocated to non interfering trans-
missions to avoid collisions. In particular, different links
may use different channel offsets in the same timeslot
to multiplex the transmissions across different channels,
increasing the network capacity.

TSCH supports both centralized and distributed scheduling
algorithms [4]. A centralized scheduler may construct non-
colliding schedules since it has a complete knowledge of
all the transmissions. Distributed approaches need to detect
and correct collisions. For flow isolation, the scheduler must
allocate different cells for the different flows. In Figure 1, the
flows from A (in red) and C (in gray) use different cells when
they are transmitted through the link B → S.

Orchestra [9] is a very efficient solution to construct the
IEEE 802.15.4-TSCH schedule in a distribued manner. Or-
chestra relies on RPL [11] to construct a route toward the sink.
Once RPL has converged, a device derives the cells used by
each of its neighbors, using their ID. More precisely, a pseudo-
random function derives a timeslot and channel offset from the

ID, for each slotframe. Cells can be shared, receiver-based,
or sender-based. The two first categories require contention
resolution as multiple transmitters can use those timeslots.
Orchestra relies on three different slotframes, to handle En-
hanced Beacons, RPL packets, or data packets. However, the
number of slotframes, the size of each slotframe and slot types
should be hardcoded in devices before running the network.

B. SDN paradigm
Software-Defined Networking (SDN) [5] has been very

popular to make the network more agile. SDN removes the
network intelligence from the network devices by separating
the forwarding process of network packets (data plane) from
the routing process (control plane). One or multiple controllers
centralize the network intelligence and form the control plane
while the network devices form the data plane. The controller
is provided with a complete view of the network and can
therefore make optimal decisions on traffic forwarding. Typi-
cally, the network devices start with no knowledge and ask the
controller how to handle the received packets. The controller
then enforces forwarding rules on network devices that match
specific packets of flows, e.g., drop the packet or forward it
through a specified output queue if the flow-id is equal to i.

Wireless networks are unreliable: the control plane needs
mechanisms to measure the link quality, to provision enough
retransmission opportunities, etc. Besides, many nodes are
battery-powered, and the network must minimize the amount
of control (and data) packets to forward. SDN-WISE focuses
on in-network aggregation [7]. Stateful tables in each node
enforce rules to apply for each received packet, based on
the reading of the packets and their content. A node may be
configured for instance to forward a packet from node B, if
the last temperature value forwarded from the node C exceeds
a threshold value. While SDN-WISE pushes the computation
as close as possible to the data producers, it needs to read the
packets and their payload, with fixed size headers.

Industrial wireless sensor networks rely on scheduling to
avoid collisions and to respect end-to-end guarantees. Orozco-
Santos et al. [12] enhanced SDN-WISE to support scheduled
networks. The objective is to construct a schedule, such that
a deadline can be respected, specific to each flow, whenever a
packet is generated. The controller computes both the routes
and the schedule. It applies a Dijkstra strategy to compute
shortest routes, based on a pressure metric. This pressure is
typically proportional to the amount of traffic that each node
has to forward. Then, the controller schedules first the flows
with most stringent deadlines. They extend then this scheme
to support multicast traffic [13]. However, the control plane is
still unreliable since it relies on shared cells, that are used for
Enhanced Beacons, report packets, and commands from/to the
controller. Shared cells are known to be very lossy, particularly
for bursty traffic [10], e.g., when a network reconfiguration is
required.

uSDN [14] implements the SDN concept in the 6TiSCH
stack. Relying on RPL and a distributed scheduling function,
each node reserves a dedicated track toward the controller to
maintain the control plane. The Control plane maintenance



does not rely on the controller. However, we are convinced
that the controller should allocate resources for the control
plane: which route(s) to use, and how many cells to reserve.

III. SDN-TSCH

We propose here a novel SDN scheme tailored for industrial
wireless sensors networks. SDN-TSCH constructs a wireless
infrastructure able to:

• respect per flow guarantees (minimum end-to-end Packet
Delivery Ratio, and maximum end-to-end latency) for
critical flows;

• operate on top of a scheduled MAC layer (here IEEE
802.15.4-TSCH), separating clearly the control and the
data planes, with dedicated radio resources;

• set-up a reliable control plane: we exploit dedicated (non
colliding) cells, with a collision free path to and from
the controller for each network device. We propose an
efficient way to exploit a single cell from one node to all
its children, to make the schedule more compact and to
save energy;

• exploit label switching, so that a packet is forwarded
transparently to the destination. The controller keeps
the full control, and can establish a specific path for a
given flow, with dedicated resources to guarantee flow
isolation;

• configure both the control and the data planes when a
novel device has to be admitted.

We detail now the operations of SDN-TSCH to enable SDN
in an industrial wireless sensor network.

A. Label switching

To simplify the behavior of all the nodes, we implement a
label switching approach, that relies on a flow-id piggybacked
in the SDN headers of any packet. Each enqueued packet has
a flow-id, that defines the path(s) to the destination. Indeed,
a flow-id is defined by the controller, that maintains also a
flow-id table per node. Thus, at the beginning of a TX cell,
the transmitter extracts the corresponding flow-id from the
flow-id table, and dequeues the first packet in the queue that
corresponds.

A specific flow-id exists for the control traffic destined to
the controller (”to controller”). Here, the radio resources are
reserved by the controller for all the convergecast paths. Sym-
metrically, another flow-id exists for the packets generated by
the controller, to any node in the network (”from controller”).
We will explain in section III-D how such packet reaches its
unicast destination.

B. Discovery process

Let us assume here that the network is configured (control
and data planes):

1) the node is synchronized, and has an installed schedule;
2) the control plane is configured, and each device has

dedicated cells to and from the controller. Thus, hop-
by-hop, a path to and from the controller exists, with
dedicated resources.

A novel node has to trigger a discovery process to identify
an already attached neighbor. We reuse here the classical
Enhanced Beacons (EB), sent periodically by each node.
These EBs have two purpose:

1) synchronization for the unattached nodes, that can adjust
their clock to follow the schedule of the network;

2) configuration which is piggybacked in an Information
Element (IE). This IE allows the receiver to know the
Absolute Sequence Number (ASN), the slotframe length,
the number of shared cells, etc.

We keep also the default behavior of IEEE 802.15.4-TSCH
where EB are transmitted through shared cells, to which all
the nodes have to listen to. To reduce the latency and the
collisions, we distribute uniformly the shared cells in the
slotframe [15].

A node maintains a list of neighbors, and counts the number
of received EB from each neighbor as a link quality indicator.
Just a counter is maintained: since the transmissions are
periodic, the associated Packet Delivery Ratio can be derived
safely later by the controller from the counter.

C. Join process
A novel node has to announce its presence to the controller.

In return, the controller will configure the control plane to
admit the novel node.

An unattached node collects continuously all the EBs
received during the discovery process. In particular, a node
should not stop the discovery as soon as an EB is received:
another neighbor may constitute a better choice. While the
controller will detect it later, a reconfiguration is expensive
and useless.

When a sufficient time has elapsed, the novel node con-
structs a report packet in which it includes the list of its
neighbors, as well as the number of EB received since the
beginning for each of the neighbors (i.e., the EB counter).
The novel node adopts a hot potato strategy: it can use any
shared cell to send the report to any of its neighbors.
The transmission is in unicast, and the novel node waits for
an ack. It is worth noting that the controller may typically
choose for the novel node a routing parent different from this
neighbor (cf. Figure 2). Thus, we do not constrain the routes
with this pragmatic strategy.

An attached node that receives a report has to forward
it to the controller. Fortunately, its control plane has already
been configured, and a path exists with dedicated cells to
the controller. Hop-by-hop, the report packet will reach
the sink, that will forward the SDN packet to the controller.
Since the path is collision free, we expect a reliable control
plane, through the link layer retransmissions. Our simulations
validate this assumption.

A node continuously monitors the reception of EB and
updates the EB counter, even after having joined the network.
Besides, it keeps on sending periodical report packets to
the controller, so that the controller can detect link quality
changes.

Figure 2 illustrates a simple scenario in which node A
is a novel node while the rest of the topology is already



Sink

A

C

B S A⇾BB⇾* C⇾*B⇾S S⇾*

D⇾SD⇾S

A⇾B

C⇾B

C⇾B*⇾* D⇾*

B⇾S

D
C⇾B

B⇾*

Shared cell*⇾*

From controller (from B to children)

To controller (from C to B)

config
packets

report
packet

C⇾B Best effort (to sink)

AS B

route

1:4,00:∅

C,4 B,5

List of neighbors

schedule

4 70

0

1

From
controller 0

Flow-id

AS B 1:7,00:∅ To 
controller 1 AS B 1:8,00:∅ Best effort 2

2

3

Fig. 2: Join process for a novel node

configured. Just after the discovery process, node A sends
a report packet to C through one shared cell. C receives
the report, and needs to forward it. C is already configured,
and has already a dedicated cell (for the flow-id to controller).
Hop-by-hop, the report packet is received by S.

D. Admission and configuration of a novel node

When the controller receives a report packet, it searches
the source in the list of already configured nodes. If it is
not present in this list, it corresponds to a novel node, that
needs to be configured. The controller extracts first the list
of neighbors and their EB number from the report packet.
Then, the controller identifies the best neighbor to serve as
parent. To maximize the reliability of the control plane, the
controller selects the neighbor with the highest counter of EB.
This neighbor presents the highest reliability and maximizes
the probability to receive later the report packets from the
node.

The controller selects also an available dedicated cell in the
scheduling matrix from and to the controller for this novel
node. A timeslot is candidate if the timeslot is unused by the
best neighbor (half duplex condition). In that case, a random
channel offset is selected, while verifying the same cell is
not given to an interfering transmitter. The controller has not
to verify that the cell is also unused by the novel node: its
schedule is by definition empty (except the shared cells).

Then, the controller prepares a config packet, that is
composed of:
seqnum specifies the sequence number of config packet. It

helps to handle timeouts and retransmissions of config
packets;

client-req-id identifies the application that asked for the
admission of a novel flow. Thus, a single node may
support several critical flows;

Cycle indicates the period of the schedule in the config
packet. More precisely, the given timeslot is reserved
every cycle timeslots;

flow-id identifies the flow in each intermediary hop for label
switching. It is unique in the network;

SFid identifies the slotframe ID;
route (Lroute): the list of addresses of each node in the

path toward the novel node, that the config packet
must follow. We implement source routing to give the

full control to the controller. Each node in the path
that receives the config packet extracts its position in
the route and finds the next-hop address to which the
config packet has to be forwarded;

schedule (Lschedule): the list of timeslots and channel offsets
that correspond to TX cells. For a novel node, only the
two last hops of the route (i.e., the last link) have to
modify their schedule: the rest of the nodes just forward
the config packet. However, the format is sufficiently
generic to accommodate more complex situations (cf.
section III-F).
More precisely, the schedule is encoded into a list
of <number_of_cells,list_of_cells>. It is
worth noting that Lroute − 1 = Lschedule. Indeed, the
route comprises the destination, that has no TX cell to
install.

A node that receives a config packet will read the head-
ers. It processes the configuration part and installs the cells
and flow-id in the scheduling and flow-id tables respectively.
Let us consider that the node identifies that it is the ith hop
in the route. It executes the following actions:

1) it then extracts the cells for the ith element in the
schedule, and install them as TX cells, with the flow-
id contained in the header of the config packet;

2) it extracts the TX cells for the i + 1th element in the
schedule (if it exists). The cells are installed as RX cells;

3) it extracts the i + 1th id in the route, and replaces the
link layer destination address in the frame.

Such config packet can then be used unchanged to configure
the data plane, as explained below in section III-F.

Let us continue our example illustrated in Figure 2. The
controller that received the report packet from A needs
to configure the network for the novel node. The controller
selects B as the parent of node A (to reach the controller in
the control plane). It generates two config packets:

from controller: the route to follow is (S,B,A). Besides,
the controller piggybacks the schedule in the download
direction (to children): the timeslot 4 (channel offset 0)
has to be installed in TX mode by the node B, and in
RX mode by the node A. The flow-id corresponds here
to 0 (=”from controller”);



to controller: the config packet follows the same route,
but piggybacks the schedule for upload, with the timeslot
7, and channel offset 0. The flow-id corresponds here to
1 (=”to controller”).

As one can note, we use a single cell for one node to
all its children, to make our schedule more compact, and to
save energy. Indeed, all the children are in RX mode, and
will receive the config packet. However, only the child
with the correct link-layer destination address will process it,
other children will drop the packet. Over-listening is counter
balanced by the more compact schedule for the control plane
brought by this children mutualization.

Since the novel node is not yet configured, the last hop
is handled as a specific case. The node which is the before
last id in the route will use one shared cell to forward the
config packet to the novel node. Indeed, no dedicated cell
exists yet to/from the novel node. However, the load is very
low (only for novel nodes), and the next updates will use the
novel dedicated control plane cells installed by the novel node.

In Figure 2, node B receives the config packet from
controller. It extracts the item in the schedule that corresponds
to its TX cells (i.e., the first one). Here, the timeslot 4
is already present in its schedule (it corresponds to the to
children / from controller case), and B skips it. It then extracts
the TX cells corresponding to the next hop: none exists, and
the packet is then forwarded to the next hop (A in the route).

After the two config packets have been received by the
node A, the control plane is configured, and a collision-free
path exists from and to the controller. A can start sending
Enhanced Beacons for unattached neighbors.

E. Best Effort Traffic

We propose a best-effort strategy in which right after joining
the control plane, each device receives cells for its best-effort
traffic toward the sink. More precisely, the controller generates
a novel config packet to reserve BF TS cells per slotframe
from the novel node to its parent. No collision can occur since
one single transmitter is active during this cell. However, all
the best-effort flows use the same cells, and data packets may
be dropped because of a buffer overflow.

In Figure 2, the controller would send a novel config
packet to announce the best-effort cell (timeslot 8, channel
offset 0) for the link A → B.

F. Admission of a novel critical flow

SDN-TSCH supports also flow isolation. Each critical ap-
plication has specific Quality of Service (QoS) requirements,
and defines its minimum end-to-end reliability and maximum
end-to-end latency. When the application opens an UDP
connection, the transport layer asks the controller for a novel
reservation, with the application profile. The SDN layer of the
source creates a flow-request packet and sends it to the
controller through the control plane, using the to controller
flow-id.

The flow-request contains i) the socket address, ii)
the traffic profile. Thus, the controller knows exactly the

TABLE I: Simulation parameters

Platform OS: Contiki-ng
Simulator: Cooja

Common
parameters

Network sizes: 5 or 10 or 15
Number of critical nodes: 3
Traffic pattern: Convergecast
Critical traffic: Constant Bitrate, 1 packet every 5s
Best-effort traffic: Poisson, on average 1 packet every 5s
TSCH EB period: 10s

SDN-TSCH Slotframe length: 509
Number of best-effort cells (BF TS): 1 or 5

Orchestra

EB Slotframe len: 397
RPL Slotframe len: 31
Data Slotframe len: 17, 53, 151
RPL: storing mode

requirements, and can compute a schedule to reserve enough
bandwidth for the novel flow:

• it provisions additional cells along the path to respect the
end-to-end reliability;

• it tries to schedule the cells back-to-back (the forwarding
cell after the last retransmission cell of the previous hop)
to minimize the end-to-end latency.

In our solution, one config packet is enough to configure
a new flow-id and the schedule for the whole path. We use
source routing, such that the route contains two parts:

1) from the sink to the destination: the schedule of this part
is empty (no cell has to be reserved);

2) from the destination to the source: each hop has a
certain number of cells in the schedule part of the
config packet. Since the packet is then routed from
the destination to the source, the source can be sure
that everything has been configured when it receives the
config packet. It can safely start transmitting the data
packets corresponding to the novel application.

IV. PERFORMANCE EVALUATION

To assess the performance of SDN-TSCH, we simulated
SDN-TSCH and Orchestra [9], which represents a state-of-
the-art distributed scheduler for IEEE 802.15.4-TSCH.

A. Evaluation setup

We use the Contiki-ng operating system and the Cooja sim-
ulator to implement SDN-TSCH. We compare Orchestra [9]
and SDN-TSCH. We simulate networks with 5, 10, or 15
nodes, and a convergecast traffic pattern. We simulate two
types of flows:
critical: the controller reserves a flow-id and a set of cells for

a single critical flow. Three nodes are selected randomly
in the topology to generate one critical flow. Critical
applications generate a data packet every 5 s and need a
99% end-to-end Packet Delivery Ratio;

best-effort applications generate Poisson traffic with an aver-
age of one packet every 5 seconds. The best-effort traffic
mimics for instance event-triggered flows. All the nodes
not selected for the critical flows generate one best-effort
flow.

Orchestra is run with different application slotframe sizes to
quantify the cost of high PDR against the energy consumption.



5 10 15
Network size

0

20

40

60

80

100

PD
R

(%
)

ORCH-SF17
ORCH-SF53
ORCH-SF151

SDN-TSCH-CR (BF_TS5)
SDN-TSCH-BF (BF_TS5)

SDN-TSCH-CR (BF_TS1)
SDN-TSCH-BF (BF_TS1)

Fig. 3: End-to-end Packet Delivery Ratio per Flow

Similarly, we consider in SDN-TSCH two values for BF TS
(number of best effort-cells from a node toward the sink
in each slotframe): 1 and 5. We keep the default slotframe
sizes for the RPL and EB slotframes in Orchestra, as defined
in [9]. Orchestra does not support flow isolation, and the same
resources are used for best-effort and critical flows. Table I
regroups the different values of our parameters.

We use a simple greedy scheduling algorithm, to focus
on the SDN-TSCH architecture, and not on the scheduling
algorithm itself. Indeed, many centralized algorithms exist in
the literature and may be adapted to SDN-TSCH. To meet the
required end-to-end PDR, the scheduler

1) allocates greedily more cells (for retransmissions) to the
weakest link along the flow path. It stops the process
when the end-to-end PDR constraint is respected: it
obtains a number of cells for each hop [16].

2) reserves greedily cells from the scheduling matrix for
each hop, respecting the number of cells per hop. To
minimize the end-to-end delay, the scheduler allocates
the first timeslots available after the last timeslot of the
previous hop.

B. Results and comments

We first measure the end-to-end Packet Delivery Ratio
(PDR). More precisely, we measure the end-to-end PDR for
each flow at the end of each simulation. Then, Figure 3
represents the distribution of the PDR for all the flows, for
different network sizes. For SDN-TSCH, we report separately
the per-flow average PDR for critical flows and for best-effort
flows. SDN-TSCH respects the constraints for the critical
flows: their PDR is equal to 100%, whatever the conditions.
On the contrary, best-effort flows may be a bottleneck when an
insufficient number of best-effort cells is reserved. However,
we keep on providing an average PDR of 100% with 15 nodes,
while a few flows may exhibit a lower PDR.

Orchestra is run with the same traffic profile. However, It is
not able to respect per flow guarantees, and thus the PDR of
critical and best effort flows is the same. Besides, the slotframe
size should be sufficiently small to give enough transmission

5 10 15
Network size

0

50

100

150

200

250

E
nd

-t
o-

E
nd

 d
el

ay
(s

)

ORCH-SF17
ORCH-SF53
ORCH-SF151

SDN-TSCH-CR (BF_TS5)
SDN-TSCH-BF (BF_TS5)

SDN-TSCH-CR (BF_TS1)
SDN-TSCH-BF (BF_TS1)

Fig. 4: End-to-end latency per flow

5 10 15
Network size

0

5

10

15

20

Sc
he

du
le

d 
tim

es
lo

ts
(%

)

ORCH-SF17
ORCH-SF53

ORCH-SF151
SDN-TSCH (BF_TS5)

SDN-TSCH (BF_TS1)

Fig. 5: Number of cells scheduled per node

opportunities. When Orchestra operates with a similar number
of cells per slotframe as SDN-TSCH (slotframe length of 151
for orchestra, and 5 best effort cells in a slotframe length of
509 in SDN-TSCH), Orchestra provides a lower PDR than
SDN-TSCH for larger networks. For 15 nodes, the PDR is
equal on average to 87% for Orchestra vs. 100% for SDN-
TSCH. Orchestra should operate with a smaller slotframe
length, which consumes obviously more energy.

Then , Figure 4 illustrates the distribution of the end-to-end
latency. The latency remains ultra-small whatever the network
size with SDN-TSCH. A centralized scheduling algorithm,
combined with a reliable control plane is particularly efficient.
The latency tends to increase for Orchestra. It is worth noting
that for 15 nodes, the latency is significantly higher for
Orchestra than for best-effort flows in SDN-TSCH, even when
a single best-effort cell (BF TS) is reserved per slotframe
with SDN-TSCH. The funneling effect [17] is very detrimental
to Orchestra with much more collisions, and longer queuing
delays.

Finally, we measure the number of scheduled cells per
node (Figure 5). Indeed, a node which is active in a larger
number of cells has to wake-up more frequently, and will
consume more energy. Besides, the network capacity is also



reduced if a node has on average more active cells. Because
it is not traffic aware, Orchestra has a fixed number of cells
per node, whatever the conditions. Thus, to provide high
reliability, Orchestra needs to operate with short slotframes,
which has a negative impact on the energy consumption. SDN-
TSCH is much more flexible and is able to adapt to the
conditions: the energy is reduced for only best-effort traffic,
while maintaining a reasonable energy consumption to support
critical applications, with flow isolation.

V. CONCLUSION & PERSPECTIVES

We have presented here SDN-TSCH, able to efficiently
implement a SDN architecture in a scheduled, industrial wire-
less sensor network. Each device is admitted in the network,
and the controller configures the control plane to maintain a
collision-free path from and to the controller. The controller
also collects the report packets to maintain a consistent view of
the link qualities, and to construct a schedule which respects
the end-to-end guarantees. The controller has a full control on
the network, and can reserve dedicated resources for critical
vs. best-effort flows. Our performance evaluation demonstrates
the ability of SDN-TSCH to support flow isolation, with
a small number of active cells, and thus, a lower energy
consumption.

In a future work, we plan to extend the controller to enable
continuous optimization, to save energy when the network
characteristics change (e.g., volume of traffic, link quality). In
particular, we expect to evaluate the performance of different
routes and schedules on the energy consumption as well as
the fault tolerance. Our architecture also naturally supports
multipath, since a given flow-id may be associated with
multiple TX cells, to different neighbors. Thus, we expect
to investigate the fault-tolerance properties of our solution to
provide very high reliability even in presence of faults.

ACKNOWLEDGMENT

This work was partly supported by the French National
Research Agency (ANR) project Nano-Net under contract
ANR-18-CE25-0003.

REFERENCES

[1] Xiaomin Li, Di Li, Jiafu Wan, Athanasios V. Vasilakos,
Chin-Feng Lai, and Shiyong Wang. A review of indus-
trial wireless networks in the context of industry 4.0.
Wireless Networks, 23(1):23–41, Jan 2017.

[2] M. Wollschlaeger, T. Sauter, and J. Jasperneite. The
Future of Industrial Communication: Automation Net-
works in the Era of the Internet of Things and Industry
4.0. IEEE Industrial Electronics Magazine, 11(1):17–27,
March 2017.

[3] Ieee standard for low-rate wireless networks. IEEE Std
802.15.4-2020 (Revision of IEEE Std 802.15.4-2015),
pages 1–800, 2020.

[4] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice
Theoleyre. Scheduling for IEEE802.15.4-TSCH and

Slow Channel Hopping MAC in Low Power Industrial
Wireless Networks. Comput. Commun., 114(C):84–105,
December 2017.

[5] Murat Karakus and Arjan Durresi. A survey: Control
plane scalability issues and approaches in software-
defined networking (sdn). Computer Networks, 112:279–
293, 2017.

[6] Manu Bansal, Jeffrey Mehlman, Sachin Katti, and Philip
Levis. Openradio: A programmable wireless dataplane.
In HotSDN, pages 109–114, 2012.

[7] Laura Galluccio, Sebastiano Milardo, Giacomo Mora-
bito, and Sergio Palazzo. Sdn-wise: Design, prototyping
and experimentation of a stateful sdn solution for wire-
less sensor networks. In INFOCOM, 2015.

[8] Mike Ojo, Davide Adami, and Stefano Giordano. A
sdn-iot architecture with nfv implementation. In IEEE
Globecom Workshops, pages 1–6, 2016.

[9] Simon Duquennoy, Beshr Al Nahas, Olaf Landsiedel,
and Thomas Watteyne. Orchestra: Robust Mesh Net-
works Through Autonomously Scheduled TSCH. In
SenSys, pages 337–350. ACM, 2015.

[10] Fabrice Theoleyre and Georgios Z. Papadopoulos. Ex-
perimental validation of a distributed self-configured
6tisch with traffic isolation in low power lossy networks.
In MSWiM, pages 102–110. ACM, 2016.

[11] T. Winter. Routing protocol for low-power and lossy
networks. rfc 6550,6551,6552, IETF, 2012.

[12] Federico Orozco-Santos, Vı́ctor Sempere-Payá, Teresa
Albero-Albero, and Javier Silvestre-Blanes. Enhancing
sdn wise with slicing over tsch. Sensors, 21(4), 2021.

[13] Federico Orozco-Santos, Vı́ctor Sempere-Payá, Javier
Silvestre-Blanes, and Teresa Albero-Albero. Multicast
scheduling in sdn wise to support mobile nodes in indus-
trial wireless sensor networks. IEEE Access, 9:141651–
141666, 2021.

[14] Michael Baddeley, Reza Nejabati, George Oikonomou,
Sedat Gormus, Mahesh Sooriyabandara, and Dimitra
Simeonidou. Isolating sdn control traffic with layer-
2 slicing in 6tisch industrial iot networks. In 2017
IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), pages 247–
251. IEEE, 2017.

[15] Rodrigo Teles Hermeto, Antoine Gallais, and Fabrice
Theoleyre. Experimental in-depth study of the dynamics
of an indoor industrial low power lossy network. Ad Hoc
Networks, 93:101914, 2019.

[16] Guillaume Gaillard, Dominique Barthel, Fabrice Theo-
leyre, and Fabrice Valois. Kausa: KPI-aware Scheduling
Algorithm for Multi-flow in Multi-hop IoT Networks. In
ADHOC-NOW, pages 47–61, 2016.

[17] Hongyan Xin and Xuxun Liu. Energy-balanced trans-
mission with accurate distances for strip-based wireless
sensor networks. IEEE Access, 5:16193–16204, 2017.


