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Abstract Model (2) can be recast to obtain the nonlinear V(1) Z(1)
differential-algebraic equations (DAE) > G(s) >

. . . — 4 o~ - _ . - _ - —> —
The purpose of this work is the control-oriented mod- M(q) —Alg)"| [ C(q,q) + Qlq) — M(q,q) ¢ F
eling of cable-driven parallel manipulators when the Alq) O N _A(qjq)q - |-
cables are not considered as straight but show trans- = X7 - T Y - ut) i)
verse vibrations due to fast movements of the plat- (3)
form. The model has been derived from Lagrange equa- I K(s) -
UO%S with tmglhtpl(l[e)r;Em or(;jelg t%)hdeal Wt')th H]le Kine- Two approaches of linearization of the DAE have been
Mmatic constraints nodel). The hUmber OF gener followed to obtain a linear model suitable for control: Figure 2: M., control schema.

alized coordinates have been reduced by performing a

transformation of the DAE model to an ODE model. Al. The left-hand side matrix in the model (3) can be Simulation and results

The ODE model has been linearized and an H.. con- inverted in order to reveal a second order ODE model
troller has been synthesized to control the cable ten- G = f(q,q,u) depending on 3n + 3 state variables and | |
sion and enable the platform to track a reference tra- linearized at the point z. = ¢, ¢e, .. " The linear ODE model has been implemented to
jectory. The results in detailed have been published in synthesize an H, controller to control the cables
'Saadaoui et al.. 2022]. 0] O(VTLF) s OV~ F) Y OV~ F) 5 mean tension and the platform position and rotation
O\ _\ dq JQL ql\ g J:,Je ql\ ou Jx‘e ¢ (xpaypacV)'
_ _ - ) X By = The results in Figure 3 and Figure 4 show a good
Overview of cable-driven parallel robots (4)  trajectories tracking and disturbance rejection.
(CDPRSs) where u are the inputs of the robot (are the winder’s
torques).
CDPRs are robots that have a moving platform connected The state space representation is given: 1.5
to the ground via n several cables. Winding and unwind- ;
ing of the cables allows t.he displ.acemeht of the p!atform K _ 0O I ]lq N [0/ w (k=3n+3) (5) 1] " "
c;yer Iarlg? workspaces with possibly a high dynamics (see I _z‘hm Azkxk_ q| | B, :
sUre L A2. The model (3) can be directly linearized as a linear 05-  N_ . e r—
Ay A descriptor model ([Duan, 2010]) at the point ‘ i | Trajectory
o . — I N ' —t,=7.99s
Le = (e, (e, )\67 Ue. \E; 0 - - S — t,=12.99s
: | | —t,=17.99s
Platf pCable3 . 8F1 aFl i 8F1 8F1 _05‘_ L_\__\__/_J
Cable 4 atform M| o0¢q=——| 0q+——| 0¢g+—=—| OA+——]| ou. o
—— dq g O\ ou -
B3 M, N Le, \ ¢, \ ¢, \ Le, - Cable 1 Cable 2
, - X, X, X, ¥ Al
I Bt (=2 (6)
> _
Yil=yp)-— B, A5 e e
Cable 1 : i aF aF -1.5 -1 -0.5 i E)m) 0.5 1 1.5
v o b Al, 0§ = 5’—2 Sq+——| 04 (/)
1 P1 : | ~ q X aq x . - . . . .
G e A o A Ao 'y g X g Figure 3: Position and rotation trajectories tracking of
the platform.
Yg A | o The state space representation is given:
0 ; ?lC x1(=x | 3|C - 9 .- - 9 0 - - ~
g Xg XA, 1(=xB,) *p I O O g O I O q O ” — T
| | . O My O |g| =|A1 A As| |¢ By| u. (8) T —T,
Figure 1. Schematic representation of a planar four cable robot. _@ A, @_ _)\_ _A4 A @_ _)\_ _@_ L /ﬂ _13
The obtained linear models in (5) and (8) were found or LI
Modeling approach non-controllable and non-observable due to the 20 :
variables dependency. 2}
Parameterization and cables deformation Ordinary differential equation model (ODE) 6:
The platform configuration (z,,y,,a) and the AQ QDE model h.as been derived by transforming the Al
variables describing each cables (length 1. flex- original parametﬂzahoan to a .reduced set of Parameters 1
ible mode w;, orientation ;) are gathered in qr = {’w1 Wy Ty Yy Oé} by using the geometric 0 | | | | | |
g = [51 iy W W D1 P Ty Yy &}T that forms constraints that express some variables as functions of : ; " Time (5) N N N
others. This leads to a model with n + 3 independent

the generalized coordinate vector of the system.

variables as. Figure 4. Cables tensions and mean tension reference.
Cables are flexible elements which deform during the G-=M"(C.+Q, — M., ) =TI (9)
movement. flexibilities are modeled by a combination : : :
. . . The model has been linearized at the point :
of polynomial functions using the method of assumed T | . POl Conclusion
modes [Meirovitch, 1967] as Pre = Gres e re:
’ ' In this work, the dynamic modeling of a planar CDPR
S : 0, = ol 0 ol 0 ol 0 10 ith -straight cables | idered. Th d
Y(z,t) = quj(ilf) Wi (i=1,...,n) (1) Gy = 9, » g, + i » G, + S0 u. (10) with non-straig ‘cables s considered. The assume
j=1 — N N modes approach is used to model the flexibility of ca-
An Ary Bry bles. The obtained DAE model has been transformed

with N is the number of flexible modes w; and = € |0, ;. into an ODE model and an .. controller has been syn-

The state space representation is given: . . |
thesized to control the translation and rotation of the

G| [0 I]][g N O | 1) platform, in addition to the mean tension of cables.

Differential-algebraic model (DAE) G| A Anl |G B, “
The dynamic model was obtained using Lagrange formal- The ODE linear model was found controllable and References
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