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Abstract

The purpose of this work is the control-oriented mod-

eling of cable-driven parallel manipulators when the

cables are not considered as straight but show trans-

verse vibraধons due to fast movements of the plat-

form. Themodel has been derived from Lagrange equa-

ধons with mulধpliers in order to deal with the kine-

maধc constraints (DAE model). The number of gener-

alized coordinates have been reduced by performing a

transformaধon of the DAE model to an ODE model.

The ODE model has been linearized and an H∞ con-

troller has been synthesized to control the cable ten-

sion and enable the plaĤorm to track a reference tra-

jectory. The results in detailed have been published in

[Saadaoui et al., 2022].

Overview of cable-driven parallel robots
(CDPRs)

CDPRs are robots that have a moving plaĤorm connected

to the ground via n several cables. Winding and unwind-

ing of the cables allows the displacement of the plaĤorm

over large workspaces with possibly a high dynamics (see

Figure 1 ).

Figure 1. Schemaধc representaধon of a planar four cable robot.

Modeling approach

Parameterizaধon and cables deformaধon

The plaĤorm configuraধon (xp, yp, α) and the

variables describing each cables (length li, flex-

ible mode wi, orientaধon ϕi) are gathered in

q =
[
l1 . . . ln w1 . . . wn ϕ1 . . . ϕn xp yp α

]T
that forms

the generalized coordinate vector of the system.

Cables are flexible elements which deform during the

movement. flexibiliধes are modeled by a combinaধon

of polynomial funcধons using the method of assumed

modes [Meirovitch, 1967] as :

Y (x, t) =
N∑

j=1
φj(x) wji(t). (i = 1, . . . , n) (1)

with N is the number of flexible modes wi and x ∈ [0, li].

Differenধal-algebraic model (DAE)

The dynamic model was obtained using Lagrange formal-

ism [Goldstein et al., 2002] as:

M q̈ + Ṁ q̇︸ ︷︷ ︸
d
dt

∂T
∂q̇

= C︸︷︷︸
∂T
∂q

+Q(q) + AT λ. (2)

with q verifying the constraints Ȧ q̇ = 0 and T is the kineধc

energy.

Model (2) can be recast to obtain the nonlinear

differenধal-algebraic equaধons (DAE)[
M(q) −A(q)T

A(q) O

]
︸ ︷︷ ︸

V

[
q̈
λ

]
=

[
C(q, q̇) + Q(q) − Ṁ(q, q̇) q̇

−Ȧ(q, q̇) q̇

]
︸ ︷︷ ︸

F

=
[
F1
F2

]
.

(3)

Two approaches of linearizaধon of the DAE have been

followed to obtain a linear model suitable for control:

A1. The leđ-hand side matrix in the model (3) can be

inverted in order to reveal a second order ODE model

q̈ = f (q, q̇, u) depending on 3n + 3 state variables and

linearized at the point xe = qe, q̇e, ue.[
δq̈
δλ

]
= ∂(V −1 F )

∂q︸ ︷︷ ︸
A1

|
xe

δq+∂(V −1 F )
∂q̇︸ ︷︷ ︸
A2

|
xe

δq̇+∂(V −1 F )
∂u︸ ︷︷ ︸
B1

|
xe

δu

(4)

where u are the inputs of the robot (are the winder’s

torques).

The state space representaধon is given:

[
q̇
q̈

]
=

[
O I

A1k×k
A2k×k

] [
q
q̇

]
+

[
Ok×n

B1k×n

]
u. (k = 3n + 3) (5)

A2. The model (3) can be directly linearized as a linear

descriptor model ([Duan, 2010]) at the point

xe = qe, q̇e, λe, ue.

M |xe︸ ︷︷ ︸
M0

δq̈ = ∂F1

∂q


xe︸ ︷︷ ︸

A1

δq+∂F1

∂q̇


xe︸ ︷︷ ︸

A2

δq̇+∂F1

∂λ


xe︸ ︷︷ ︸

A3

δλ+∂F1

∂u


xe︸ ︷︷ ︸

B1

δu.

(6)

A |xe︸ ︷︷ ︸
A0

δq̈ = ∂F2

∂q


xe︸ ︷︷ ︸

A4

δq + ∂F2

∂q̇


xe︸ ︷︷ ︸

A5

δq̇. (7)

The state space representaধon is given:

 I O O
O M0 O
O A0 O


q̇

q̈

λ̇

 =

O I O
A1 A2 A3
A4 A5 O


q

q̇
λ

 +

OB1
O

 u. (8)

The obtained linear models in (5) and (8) were found

non-controllable and non-observable due to the

variables dependency.

Ordinary differenধal equaধon model (ODE)

An ODE model has been derived by transforming the

original parametrizaধon q to a reduced set of parameters

qr =
[
w1 . . . wn xp yp α

]T
by using the geometric

constraints that express some variables as funcধons of

others. This leads to a model with n + 3 independent

variables as:

q̈r = M−1
r (Cr + Qr − Ṁr q̇r) = Γr. (9)

The model has been linearized at the point

xre
= qre

, q̇re
, ure

.

δq̈r = ∂Γr

∂qr
|

xre︸ ︷︷ ︸
Ar1

δqr + ∂Γr

∂q̇r
|

xre︸ ︷︷ ︸
Ar2

δq̇r + ∂Γr

∂u
|

xre︸ ︷︷ ︸
Br1

δu. (10)

The state space representaধon is given:[
q̇r

q̈r

]
=

[
O I
Ar1 Ar2

] [
qr

q̇r

]
+

[
O
Br1

]
u. (11)

The ODE linear model was found controllable and

observable.

H∞ synthesis

The H∞ control approach (see Figure 2) aims to find

a controller K(s) which makes the closed-loop system

stable and minimizes the H∞ norm of the transfer

funcধon Tzv(K) as:
min

K(s) stabilize Tzv

‖Tzv(K)‖∞ . (12)

Figure 2: H∞ control schema.

Simulation and results

The linear ODE model has been implemented to

synthesize an H∞ controller to control the cables

mean tension and the plaĤorm posiধon and rotaধon

(xp, yp, α).
The results in Figure 3 and Figure 4 show a good

trajectories tracking and disturbance rejecধon.

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

Cable 1 Cable 2

Cable 3Cable 4

Reference
Trajectory
t
1
=7.99s

t
2
=12.99s

t
3
=17.99s

Figure 3: Posiধon and rotaধon trajectories tracking of

the plaĤorm.
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Figure 4: Cables tensions and mean tension reference.

Conclusion

In this work, the dynamic modeling of a planar CDPR

with non-straight cables is considered. The assumed

modes approach is used to model the flexibility of ca-

bles. The obtained DAE model has been transformed

into an ODE model and an H∞ controller has been syn-

thesized to control the translaধon and rotaধon of the

plaĤorm, in addiধon to the mean tension of cables.
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