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2Sorbonne Université, CNRS, UMR 7190, Institut Jean Le Rond ∂’Alembert, F-75005 Paris, France
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The effect of freezing on contact line motion is a scientific challenge in the understanding of
the solidification of capillary flows. In this letter, we experimentally investigate the spreading
and freezing of a water droplet on a cold substrate. We demonstrate that solidification stops the
spreading because the ice crystals catch up with the advancing contact line. Indeed, we observe the
formation and growth of ice crystals along the substrate during the drop spreading, and show that
their velocity equals the contact line velocity when the drop stops. Modelling the growth of the
crystals, we predict the shape of the crystal front and show that the substrate thermal properties
play a major role on the frozen drop radius.

When freezing occurs during capillary flows, such as for
droplets impacting very cold substrates [1, 2] or trickles
flowing over subzero substrates [3, 4], the modification of
wetting due an ice layer formation leads to the creation
of surprising ice patterns. The interplay between contact
line motion and phase change received increasing atten-
tion over the past years [5–7]. In particular, understand-
ing the dynamics of contact line in the presence of solidi-
fication enables the tuning of the interaction between the
ice and the solid [8, 9] and finds numerous applications
over various fields going from metallurgy [10] to icing/de-
icing in aeronautics [11] or inkjet like ice printing [12].

An important question that arises often in these situ-
ations, is the arrest of a moving contact line because of
solidification. Despite numerous studies looking at the
arrest criteria for a moving contact line on a sub-cooled
substrate, the different potential mechanisms are still de-
bated, lacking a global understanding. They include dis-
sipation increase at the contact line due to solidification
[13, 14], solidification of a critical volume [15], or crystal
growth pinning [16–18].

In this letter, we investigate experimentally the spread-
ing and arrest of a water drop deposited on a cooled
substrate for temperatures down to Ts = −25◦C. We
observe that, in this temperature range, the colder the
substrate, the smaller the arrest radius. We demonstrate
for the first time that this is due to ice crystals that catch
up with the advancing contact line. Indeed, we observe
the ice crystals growing in the drop at the contact with
the substrate while the droplet spreads, and show that
the crystal growth velocity along the substrate equals
the contact line advancing velocity at the time of arrest.
Based on the strong heat transfer between the ice and
the substrate, we propose a model for the crystal growth
dynamics that matches our experimental measurements
and allows us to predict the shape of the crystal front.
Our study discriminates therefore between the debated
mechanisms behind contact line arrest due to solidifica-
tion.

In the experiments, a droplet of initial tip radius r0 =

3.1±0.23 mm is brought in contact with a cold sapphire of
temperature Ts, thermal diffusivity Ds = 11.5 mm2.s−1,
and thickness 5 mm, cooled using liquid nitrogen. The
drop-sapphire contact angle was measured as θ ≈ 61◦.
The droplet is attached below a flat glass plate (see Fig-
ure 1 (a)) which is then moved downward at low velocity
until the drop touches the cold sapphire. As the spread-
ing lasts less than a second, the position and the tempera-
ture of the glass plate can be considered constant during
the experiment. To avoid frost formation, the setup is
placed in a humidity controlled box with relative humid-
ity Hr < 3%. The droplet initial temperature Td is equal
to the box temperature and constant in all experiments,
close to 10◦C. The spreading dynamics is recorded from
two synchronised high speed cameras at 6,000 fps. One
provides a side-view of the spreading, using a 205mm lens
and the other one a top-view, using a x12 Navitar lens.
The top-view pictures are recorded under cross-polarised
light to directly observe the crystal growth.

Figure 1 (b) shows a side view recorded time sequence
of a droplet spreading on the cold substrate. After con-
tact with the substrate, the contact line advances at early
times symmetrically and ultimately the spreading stops,
with an arrest radius ra. The spreading typically lasts
few tenths of millisecond.

Figure 2 displays the rescaled arrest radius ra/r0 plot-
ted against the undercooling ∆T = Tm − Ts where
Tm = 0◦C is the melting temperature of the ice. It shows
a clear decrease of the maximum spreading radius as ∆T
increases. For some experiments, the arrest radius is not
the same on the left and the right sides of the image,
an effect represented with the error-bars on the graph.
Noticeably, the arrest radius decreases by a factor 3 over
the range of temperatures explored. The inset of Figure 2
displays, in a log-log scale, the evolution of the rescaled
radius r(t)/r0, with the time normalized by the inertial-

capillary time τc =
√

ρ r30
γ ≈ 21 ms, for three undercool-

ings. It confirms that the substrate temperature has a
strong effect on the arrest radius (see horizontal dashed
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FIG. 1. (a) Schematic side-view of the experiment. (b) Tem-
poral sequence of a droplet spreading on sapphire cooled at
Ts = −3.2◦ C observed from the side. The contact line speed
decreases with time until it gets pinned by solidification as
seen in the final picture.

lines ra/r0), and shows that the spreading dynamics itself
is neither affected by ∆T nor by the solidification [16].

In the first stage of the drop spreading, inertia resists to
the liquid motion and the evolution of the droplet radius
follows :

r(t)

r0
= C

(
t

τc

)α
(1)

where the theoretical prediction gives α = 1/2 [19],
valid for both wetting and partially wetting substrates
at short times [20].

The inset of Figure 2 shows that (i) the spreading dy-
namics observed on cooled substrates can be well mod-
elled by this law until the time of pinning, (ii) the fit-
ted coefficients C and α are independent of the substrate
temperature, and (iii) the exponent α = 0.47±0.05 agrees
with the theoretical prediction (see also Supplementary
Materials). These results are in agreement with former
studies realised with other liquids and smaller tempera-
ture range [16, 18].

To understand the mechanism responsible for the ar-
rest of the contact line and its dependence with the sub-
strate undercooling, we performed direct visualisations
of the ice growth and its interaction with the spreading
front. Figure 3 shows top views of the experiment under
cross-polarised light, enabling a clear visualisation of the
crystal growth, as seen on the sequence of Figure 3 (a),
and on the final shape of the deposits (Figure 3 (b)). The
temporal evolution can be divided into four phases. First,
the drop spreads without ice nucleation: the contact line
is circular (t<0.8 ms). Then, nucleation happens within
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FIG. 2. Rescaled arrest radius ra/r0 as a function of the un-
dercooling ∆T . Error bars are computed based on spreading
asymmetry. The circular marker represents the isothermal
case. The inset shows a log-log temporal evolution of the
rescaled spreading radius. Before pinning, all curves superim-
pose and the coefficients fitted from Eq 1 are C = 1.15± 0.06
and α = 0.47 ± 0.05. The arrest diameter ra/r0, in dotted
lines ( ) is determined at the time where the curve departs
from the power-law behaviour.

the wetted disc (t=0.8 ms), and nuclei grow without af-
fecting the contact line shape nor the dynamics (t<3.7
ms). Third, the contact line gets locally pinned (t=3.7
ms), either by nucleation of crystals very close to it, as
it is the case at the lower part of the drop, or by growing
crystals catching it, as seen on the right of the drop be-
tween 2.7 and 3.7 ms. Here it seems that pinning occurs
when the growing crystals catch the contact line. Finally,
the contact line is entirely stopped when pinned on its
full perimeter by the crystals (t=24 ms). Then, the ice
grows perpendicular to the substrate in the droplet bulk.

The final contact line shapes of the deposits, displayed
on Figure 3 (b), show a global decrease of the frozen
drop radius with lower substrate temperatures, as seen
on Figure 2. These pictures also enable to see clearly the
crystal shape when the drop stops spreading. In Figure 2,
ra is the mean radius determined from the side views,
and larger error-bars at intermediate undercoolings are a
consequence of the symmetry breaking in the contact line
shape. Other definitions for the arrest radius have also
been tested, such as the equivalent radius determined
from the area of the final deposit, or the radius of the
first pinned point of the contact line, showing however
no qualitative change in the results (see Supplementary
Materials).

From the time-sequences of Figure 3 (a), the crystal-
growth radial velocity Vc can be extracted for different
temperatures of the substrate. Vc is observed to be con-
stant with time as shown in the Supplementary Materi-
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FIG. 3. (a) Temporal evolution of the spreading at −13◦C. Nucleation is designated by white arrows. Local pinning events
are emphasised with small arrows at t = 3.7 ms. (b) Final contact line shapes for different temperatures.

als. In a typical experiment, around 10 crystals are ob-
served and their velocity is the same with small variations
that can be attributed to thermal fluctuations within the
water or the substrate. Thus, for each temperature, a
single crystal-growth radial velocity Vc is measured with
the associated relative error.

Similarly, the arrest velocity Va, the velocity of the
contact line just before stopping, can be determined from
the side views, taking the derivative of Eq. (1) at the time
of arrest ta, and using the fitted values of C and α for
each experiment:

Va =
r0Cα

ταc
tα−1
a =

r0Cα

τc

(
ra

Cr0

)α−1
α

. (2)

As illustrated in the inset of Figure 2, the transient
time from spreading to arrest is very short, allowing a
clear definition for the time of arrest ta and its corre-
sponding arrest velocity. The remaining uncertainty on
ta leads to error bars smaller than the ones induced by
the asymmetry of the arrest. In Figure 4 (a), the arrest
velocity Va is plotted as a function of the crystal growth
velocity Vc for a large range of temperatures shown with
a color bar. The dashed line represents the line Va = Vc

and it is striking to notice that the arrest velocity is al-
ways roughly equal to the crystal growth velocity. This
confirms our hypothesis on the mechanism responsible
for the arrest of a contact line catched up by ice crystals:
the contact line has to slow down to the crystal velocity
to get caught by the crystal. Strictly speaking, this pro-
vides an upper limit for the arrest velocity. Hence, the
pinning occurs when Va . Vc. Consequently, we observe

smaller deposits when ∆T increases (Figure 3(a)): the
contact line is caught earlier by the crystal as the crystal
velocity increases with the undercooling.

Noticeably, in this scenario, the nucleation process
plays a small role on the arrest criterion but could ex-
plain the small deviations observed, namely that the ar-
rest velocity always seems to be slightly smaller than the
crystal one (Figure 4 (a)). Once the velocity criterion
is met, a ”lag time” would still be necessary so that the
contact line can be caught up by the crystals. Qualita-
tively, we often see that the contact line is first arrested
by crystals nucleating very close to it and hence catching
it quickly when the velocity criterion is met. This lag be-
comes negligible at high undercoolings, where nucleation
is very dense and uniformly distributed on the surface
[18, 21]. This could explain the small influence of the
nucleation rate on the arrest mechanism.

Thanks to the visualisations, we can now discuss the
measured crystal growth velocities. As can be seen on
Figure 3 (a), part of the liquid is not immediately solid-
ified after contact, and subsequently gets cooled by the
substrate. We can assume that the liquid temperature
close to the substrate is the so-called contact tempera-
ture that arises when two bodies of different temperature
are suddenly in contact Tc = Ts + (Td − Ts)(1 + es/ew),
where es and ew are the effusivities of the substrate and
water respectively, ek =

√
λkρkCp,k [22]. In such config-

uration, the temperature in the water varies on a typical
diffusive lengthscale δ ≈

√
Dwτc ≈ 10−5 m, with Dw the

heat diffusion coefficient in water. δ is thus far larger
than the characteristic size of an ice nucleus (few nm)
and of the tip radius of an ice dendrite growing in water
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FIG. 4. (a) Arrest velocity against crystal growth velocity.
Colours indicate the surface temperature. The inset shows a
sketch of the model of ice crystal growth near a substrate. (b)
Arrest and crystal growth velocities as a function of the sub-
strate undercooling. The dashed line represents the dentritic
growth velocity and the plain one the model we developed.
The inset shows that the tip radius of the crystal parabola
increases linearly with ∆T .

at supercooled temperature Tc (few µm) for our range of
substrate temperatures [23]. This allows us to approxi-
mate the temperature of the water surrounding the ice
crystals as Tc.

When ice grows in supercooled water, the ice formation
occurs through a series of nucleation and growth of crys-
tals [24]. In the liquid bulk, the growth velocity is con-
stant [25] but the mechanism that sets the velocity is not
completely understood. Indeed, at large undercoolings,
despite a good agreement between the experimental data
available, theoretical models hardly catch the growth dy-
namics [26, 27]. More precisely, the work of Shibkov et al.

[27] on ice growing freely in an infinite supercooled bulk
provides a strong set of experimental data, and fitting
a power-law over their whole experimental range gives
Vd = K(Tm − Tw)γ , Tw being the liquid undercooling,
with K = 4.83 × 10−5 S.I and γ = 2.78 for the growth
velocity, consistent with other studies [17, 28]. This ex-
perimental fit is shown with the grey dashed line on Fig-
ure 4 (b) using Tw = Tc. In this Figure, our velocities Va

(black diamonds) and Vc (blue dots) are represented as
a function of ∆T . Our crystal growth velocities are sys-
tematically higher than the above power-law accounting
for the ice growth velocity in liquid bulk. In fact, several
differences can be pointed out between these two exper-
imental configurations, among which the heterogeneity
of the water temperature, the motion in the surrounding
fluid (however the two effects should lead to a decrease
of the Shibkov prediction), and finally the presence of a
cold substrate in the present case.

The effect of the latter was recently explored [29, 30]
[31] showing a strong coupling between the advancing
crystal and the substrate. Indeed, latent heat due to
solidification is also transferred to the substrate and in
the case of a very effusive substrate (es > ei) a higher
solidification rate was clearly observed experimentally.
To rationalize our experimental observations, we pro-
pose to enrich the model originally proposed by Schremb
et al. [29], which fails to reproduce our data on the
whole range of investigated temperatures. Following
their approach, we assume that the vertical growth of
the ice is well accounted by the 1D solidification prob-
lem, as illustrated on the inset of figure 4 (a). How-
ever, here, we take into account the thermal diffusion
in all three phases (water, ice and substrate), and ob-
tain that the growth of the ice front obeys a square-root
law in time h =

√
Deff∆t where ∆t is the time of so-

lidification. Deff depends on the substrate and water
temperatures and is deduced from the self similar solu-
tion of the coupled heat equations for the three phases
(see Sup. Mat.), generalising previous results [32, 33].
Using this square-root law solution and knowing that
the crystal growth radial velocity is constant, we obtain:

h(x, t) =
√
Deff(t− x

Vc
) =

√
Deff

xtip−x
Vc

. Subsequently,

the shape of the crystal is a parabola and its tip radius
is expressed as Rtip = Deff

2Vc
.

Measuring Vc and calculating the theoretical value of
Deff , we can compute Rtip for each of our experiments,
plotted in the inset of Figure 4 (b) as a function of the
undercooling. By contrast with former studies, where
Rtip was found constant [29, 30] or with dendritic growth
where the tip radius decreases with the undercooling, we
obtain a clear linear dependence Rtip = k∆T , with k =
2.10−8 m/K. Using this fitted law for Rtip in the formula
above relating the tip radius and Vc, we obtain Vc = Deff

2k∆T
corresponding to the green plain curve on Figure 4 (b)
which, by construction, shows a very good agreement
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with our experiments. The linear law for Rtip, together
with our refined model, allows a good understanding of
our results over the whole temperature range.

In conclusion, when a drop spreads on a cold substrate,
its decelerating contact line is eventually caught up and
arrested by ice crystals growing at the substrate-water
interface. The race between the spreading line and the
solidification front determines an arrest criterion, quali-
tatively similar to the ones proposed in previous studies
[16–18]. However, the new experiments proposed here,
on water and at large undercoolings, provide a direct vi-
sualisation of the growing crystals, and the model reveals
the role of the substrate thermal properties on the arrest.
Finally, the physical mechanism leading to the pinning of
the contact line when reached by the crystal still needs
to be elucidated. Several theories have already been pro-
posed [13–15] and this phenomenon, which takes place at
very small time and length scales, should be the object
of future experimental investigations.
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