
HAL Id: hal-03799437
https://hal.science/hal-03799437

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robustness and efficiency of phase stability testing at
VTN and UVN conditions

Dan Vladimir Nichita

To cite this version:
Dan Vladimir Nichita. Robustness and efficiency of phase stability testing at VTN and UVN condi-
tions. Fluid Phase Equilibria, 2023, 564, pp.113624. �10.1016/j.fluid.2022.113624�. �hal-03799437�

https://hal.science/hal-03799437
https://hal.archives-ouvertes.fr


 1 

Robustness and efficiency of phase stability testing at VTN and UVN conditions 

 

Dan Vladimir Nichita 1,* 

 
1 CNRS UMR 5150, Laboratoire des Fluides Complexes et leurs Réservoirs, Université de Pau 

et des Pays de l’Adour, B.P. 1155, 64013 Pau Cedex, France 

 

__________________________________________________________________________________ 

 

Abstract 

 

 Beyond the well-documented conventional phase equilibrium calculations at pressure and 

temperature (PT) specifications, other specifications, such as volume, temperature and moles (VTN) and 

internal energy, volume and moles (UVN) have received an increasingly interest in the last years. Whatever 

the selected set of independent variables, phase stability at UVN conditions can be asserted by solving 

simpler VTN or PT stability problems (a non-linear equation is solved only once at UVN specifications for 

temperature). In VTN stability, modified Newton iterations were previously used to achieve convergence, 

since successive substitution iterations (SSI) may exhibit problematic convergence.  

 A mathematical analysis of convergence properties of the successive substitution (SSI) method for 

VTN stability reveals its potential instability, unlike for PT stability, in which SSI is very robust. This 

problem can be theoretically overcome by using a damping factor, but severe damping may lead to 

unacceptable slow convergence rates. It is shown that the SSI method should never be used alone, 

combined undamped SSI-standard Newton method is neither robust nor efficient as claimed previously and 

must be avoided; moreover, damped SSI can be used with caution only in early iteration stages. 

 The convergence behavior of several methods for VTN stability is analyzed for a variety of 

mixtures and the numbers of iterations are compared with those reported in the literature. Several domains 

in the molar density-temperature plane were identified, where SSI is either systematically not detecting a 

phase split (converging to the trivial solution from all initial guesses) or systematically diverges. Our 

calculation procedures are highly robust and systematically faster than previous methods (for some test 

points up to one or even two orders of magnitude) and are able to find the global minimum of the TPD 

function in all test cases, unlike previously proposed SSI/Newton methods, which either are strongly 

attracted by local minima or they diverge. This paper gives for the first time a detailed mathematical and 

numerical analysis of the convergence behavior of SSI and combined SSI-Newton methods in VTN 

stability testing. 
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1. Introduction 

 

 Phase equilibrium calculations at pressure and temperature (PT) specifications, consisting in the 

minimization of the Gibbs free energy (for phase splitting) [1] and of the Tangent Plane Distance (TPD) 

function (for phase stability testing) [2,3] with respect to component mole numbers, are the most commonly 

used and there are very well documented in the literature. Many robust and efficient methods were 

presented and reliable solvers are available for these kinds of calculations. However, in some practical 

applications (e.g. in chemical engineering, compositional reservoir simulation and a variety of 

environmental-related problems), phase equilibrium calculations at volume, temperature and moles (VTN) 

specifications (isochoric-isotherm conditions) and at internal energy, temperature and moles (UVN) 

specifications (iso-energetic-isochoric conditions) are required. These kinds of phase equilibrium 

calculations have received an increasing interest in the last decade. Even though a number of papers are 

treating the phase splitting problem at UVN conditions [5-12], UVN stability testing has received relatively 

little attention [6,8,9,13], despite its high importance in initialization of UVN flash calculations. 

 Phase equilibrium at UVN conditions consists in a maximization of entropy. The expression of the 

TPD function for UVN stability is given in Michelsen and Mollerup [14] and a first derivation of the TPD 

function was presented by Castier [6]. Smejkal and Mikyška [8,9] provided a comprehensive analysis of 

UVN stability testing; they used modified Newton iterations to maximize the TPD function. Bi et al. [13] 

used a combined SSI-Newton method in VTN stability to find the stationary points of the TPD function in 

UVN stability. 

 Several formulations of the TPD function are possible: i) in terms of mole fractions, molar volume 

and molar internal energy [6]; ii) in terms of mole numbers, volume and internal energy (as will be shown 

in this work) and iii) in terms of component molar densities and internal energy density [6,8]. For each 

formulation, the TPD functions for UVN stability have opposite signs and the same stationary points as 

their VTN stability [8] and PT stability [6] counterparts. Thus, UVN stability can be analyzed by solving 

simpler VTN stability (by solving for a temperature T0 a nonlinear equation at the UVN specifications) or 

PT stability (at a pressure calculated at temperature T0 and specified volume) problems.  

 Expressions of the TPD function for PT volume-based phase stability testing were given by 

Michelsen [2] (in molar volume and mole fractions) and Nagarajan et al. [15] (in component molar 

densities). Derivations of the TPD function for VTN stability can be found in Castier [16] and Mikyska and 

Firoozabadi [17]. Note that TPD functions for VTN stability and PT volume-based phase stability are 

formally identical [17-19]. 

 The VTN stability and PT volume-based stability problems were solved using various methods, 

such as global optimization methods (Tunneling, Nichita et al. [20,21], Castier [6] , Branch and bound, 

Smejkal and Mikyška [22]), standard Newton method (Mikyska and Firoozabadi [17]), modified Newton 

methods (Nagarajan et al. [15], Castier [6], Nichita [18,19]), constrained optimization methods (Pereira et 

al. [23,24]), Sherman-Morrison iterations (Smejkal and Mikyška [25]) and evolutionary methods (S. Sun’s 
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group [26-28]). Some compositional simulators [29,30] use VTN phase equilibrium calculations and 

include a VTN phase stability routine. VTN phase stability is also highly important in initialization of 

VTN flash calculations [31-34], even for two-phase vapor equilibrium problems. 

 In PT phase equilibrium calculations, the first-order successive substitution iteration method (SSI) 

is extremely robust and the combined SSI-Newton method is widely used (being highly robust, although 

slow in some cases [35,36]), with SSI in early iteration stages and as a safety feature when Newton method 

fails to provide a descent direction for the objective function. However, many authors stated that the SSI 

method is problematic [4,10,17,18,33,37] or it simply cannot be used [38,39,41,42] in phase equilibrium 

problems with specifications other than pressure and temperature. In VTN and volume-based PT phase 

equilibrium calculations, various implementations of modified Newton methods were used to overcome this 

problem for stability testing [15-19] and flash calculations [15,31,32,39,40]; modified RAND methods were 

proposed for flash calculations [10,11,14] and “partial Newton” methods were suggested to replace SSI in 

early iteration stages [4,41,42]. 

 Recently, Bi et al. [13] advocated the use of the combined SSI-Newton method for VTN stability, 

claiming its robustness and efficiency, in contradiction with previous research warning on the instability of 

SSI (particularly Refs [17,18] addressed the VTN stability problem). It will be shown in this work that the 

combined SSI-Newton method is neither robust nor efficient in VTN stability testing (hence, neither in 

UVN stability testing). A thorough analysis of SSI and combined SSI-Newton methods for VTN stability 

testing is missing from the literature. This paper gives for the first time a detailed (theoretical and 

numerical) analysis of the convergence behavior of SSI and combined SSI-Newton in VTN stability, and 

discusses how problems related to the instability of SSI can be overcome. 

 Whatever the specifications, the singularities in phase stability testing are at the stability test limit 

locus (STLL) [43-46] and at spinodal conditions [2,45]. The most challenging conditions for any gradient-

based methods are in the vicinity of the STLL and in a domain (possibly wide) outside the STLL in the 

plane defined by the specifications, e.g. T-P or molar density (or volume)-temperature planes. Most papers 

on phase stability are not addressing this very important feature. In this work, it will be shown that SSI is 

particularly problematic and practically it cannot be safely used without damping, alone or in combination 

with the Newton method. 

 

 The paper is structured as follows. After briefly recalling VTN and UVN stability formalisms, 

calculation algorithms are presented and then the instability of successive substitutions in VTN stability is 

analyzed. Results are given for several mixtures from the literature with different complexity and then 

convergence behavior, speed and reliability of various algorithms are analyzed. A discussion including a 

suggested algorithm for efficient and safe use of combined SSI-Newton methods is presented before 

concluding. 
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2. VTN stability testing 

 This section briefly recalls some equations for VTN stability testing (a detailed analysis can be 

found in Refs. [18,19]), needed later in this paper in the analysis of SSI instability and of the relation 

between UVN and VTN stability. The specifications are 0 0( , , )V T 0n , with 0 1,0 ,0( ,..., )T

ncn n=n . Derivations 

of the TPD function for VTN stability were given in Mikyska and Firoozabadi [17] and Castier [16]. The 

change in the Helmholtz free energy between the original state 0 (assumed stable) and a state 1, in which an 

infinitesimal amount of incipient phase is formed, is (at constant temperature) 

 ( ) ( )1 0 0 0

1

nc

i i i

i

A A A n V P P
=

 = − =  − − −      (1) 

 The system is stable if 0A   for all admissible states; otherwise, if a state with 0A  exists, the 

system is unstable. This function is an extensive property and one extensive variable of the trial phase need 

to be fixed, that is, it must be normalized to unit mole numbers or unit volume. Dividing Eq. (1) by the 

number of moles in the trial phase, nt 

 ( ) ( )0 0

1

nc

v i i i

i

D x v P P
=

=  − − −       (2) 

where / tv V n=  is the molar volume. The specifications are 0 0( , , )v T z . 

 It appears that the TPD function in Eq. (2) was presented for the first time by Michelsen [2] for 

volume-based PT stability. The problem consists in a constrained minimization of ( , )vD vx , subject to the 

equality constraint 1ix = , linear inequality constraint ( )v b x and to bounds 0x . It is however more 

convenient to use mole numbers and volume as independent variables; Nichita [19] presented a modified 

TPD function in volume and formal number of mole for volume-based PT stability but formally the same in 

VTN stability (see Appendix). 

 Dividing Eq. (1) by V and further by RT, the TPD function (Nagarajan et al. [15]) is, at 0T T=  

 ( ) ( ) ( ) 
( ) ( )

RT

PP
ffdD

nc

i

iii
0

0

dd
ddd

−
−−=

=1

lnln     (3) 

with component molar densities as independent variables (note that we keep the terminology and notation 

from Ref. [15], also used in our previous papers). The specifications are 0( , )T 0d , with 0 1,0 ,0( ,..., )T

ncd d=d  

and 0 0 0/i id n V= . The search is performed in the nc-dimensional space defined by 1( ,..., )T

ncd d=d . Castier 

[16] also set 1v =  in Eq. (2) and used i in d=  as independent variables. 

 This is a constrained minimization problem, subject to a linear inequality constraint  

 ( ) 01
1

−=
=

nc

i

ii dbc d         (4) 

(equivalent to v>b) and to the bounds on variables 

 ncid i ,1;0 =          (5) 

 The elements of the gradient vector are 



 5 

 ( ) ( ) ( )ln ln ln ln ; 1,i i i i i i

i

D
g f f d h i nc

d


= = − = +  − =


0d d d    (6) 

where the density function ( ) ( ) /i i if d =d d  was defined in such a way that molar densities are isolated in 

zero-gradient equation [18,19] and ( ) ( )0ln ln lni i i ih f d= = + 0 0d d . 

 The Newton iteration equation is 

 gdH −=          (7) 

where the Hessian matrix can be split as += UH , where U is a diagonal matrix with elements 

iijij dU /=  and the matrix  contains the partial derivatives of density functions with respect to molar 

densities. 

 If the natural logarithms of molar densities are the independent variables, the Newton iteration 

equation is 

 glndJ −=          (8) 

and the Jacobian matrix is 

 
11 −− +== UIHUJ          (9) 

where iijij dU =−1
, or 

 
ln

; , 1,i
ij ij j

j

J d i j nc
d

 
=  + =


       (10) 

 The elements of the “ideal” part of the Hessian matrix, iijij dU /= , may span many orders of 

magnitude, leading to a poor scaling. Scaling is very important (see discussion in Refs. [18,19,47]), thus a 

change of variables [18], similar to Michelsen’s one for PT stability [2], is recommended 

 2i id =          (11) 

Using the αi variables, the gradient vector is 

 
1/2−=*

g U g          (12) 

And the Hessian matrix is 

 
1/2 1/2 1/2 1/2− − − −= = + + +*

H U HU I U U D = B D      (13) 

where 

 
1/2 1/2− −= +B I U U         (14) 

and 1/ 2ij ij iD g=   vanishes at the solution and are neglected ( =D 0  and =*
H B ). 

 The Newton iteration equation becomes 

 
1/2− = −*

H U g         (15) 

Eq. (15) can be obtained directly by left-multiplication of Eq. (7) with the preconditioning matrix 
1/2−

U . 
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3. UVN stability testing 

 This section briefly recalls equations for UVN stability; the specifications are 0 0( , , )U V 0n . The 

change in entropy between the original state 0 (assumed stable) and a state 1, in which an infinitesimal 

amount of incipient phase is formed, is 

 0 0
1 0

1 0 0 0

1 1nc
i i

i

i

P P
S S S n U V

T T T T T T=

      
 = − = − − + − + −    

     
    (16) 

 The mixture is stable if 0S   for all admissible states; otherwise, if any 0S   the system is 

unstable. As discussed earlier, an extensive variable must be fixed in Eq. (16).  

 Dividing Eq. (16) by the number of moles in the trial phase, the TPD function of mole fractions, 

molar volume and molar internal energy ( , , ) /uvD u v S n= x  is obtained [6] 

 









−+










−+







 
−


−= 

= 0

0

01 0

0 11

T

P

T

P
v

TT
u

TT
xD

nc

i

ii
iuv     (17) 

where / tu U n=  is the molar internal energy, T0 is the temperature of the original single-phase mixture, 

( )0 0 0, ,T T u v= z  (calculated from the nonlinear equation ( )0 0 0, ,u u v T= z ) and 0 0 0( , , )P P v T= z . In the uvx 

space, there are nc+2 variables (xi, v and u) and nc+2 equations (stationarity conditions). Castier [6] showed 

that a simpler PT stability problem can be solved at 0T T=  and 0P P=  to assess UVN stability. The only 

limitations are that such an approach is not applicable to negative pressures and to pure components. 

However, for calculation purposes, it is more convenient to use mole numbers, volume and internal energy 

instead of mole fractions, v and u; this leads to a modified TPD function in UVN stability, *

UVD , presented 

in the Appendix. 

 Dividing Eq. (17) by the molar volume, the TPD function of molar densities and internal energy 

density ( ) / /ud uvD u S V D v =  =d  at specifications 0( , )u 0d is obtained (Smejkal and Mikyška [8]) 

 0 0

1 0 0 0

1 1nc
i i

ud i

i

P P
D d u

T T T T T T=

      
= − − + − + −    

     
     (18) 

where vuVUu // ==  is the internal energy density, ( )0 0 0,T T u= d  and ( )0 0 0,P P T= d . In the ud  space, 

there are nc+1 variables, di and u  and nc+1 equations (the zero-gradient equations) [8] 

 0

0,

0; 1,

j i

ud i i

i u d

D
i nc

d T T


   
= − + = = 

 
      (19a) 

 
0

1 1
0udD

u T T

 
= − =  d

        (19b) 

Note that ( , )T T U= d  is required and the nonlinear equation ( ),U U T= d  is solved for temperature at each 

iteration. The partial derivatives required to assemble the Hessian matrix can be found in Castier [6]. 

 As shown in Ref. [8], the nonlinear system can be simplified at 0T T= , leading to a VTN stability 

problem. At the stationary points, 0T T=  from Eq. (19b) and the gradient vectors are related by 
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0

, ,

0; 1,

j i j i

ud

i iu d T d
T

D D
R i nc

d d
 

    
= = =   

    
     (20) 

from Eqs. (6) and (19) and the TPD function is 

 udD R D= −          (21) 

that is, the TPD functions udD  and D have the same stationary points and opposite signs. Therefore, a 

simpler VTN stability problem can be solved instead of a UVN one. It must be noted that the stationary 

points of TPD functions udD  and *

UVD  are different (the latter has the same stationary points as Michelsen’s 

[2] modified TPD in PT stability, see the Appendix); the sign of *

UVD  at the stationary points is controlled 

by (1 )nS− , while the sign of Dud is controlled by 0( )P P− . 

 Smejkal and Mikyška [8] proposed a simplex-based initialization method, starting from the 

observation that the set of admissible molar densities (the feasible domain) forms an nc-simplex. The first 

nc+2 initial guesses are the barycenter of the simplex and the midpoints between the barycenter and the 

nc+1 vertices of the simplex. Additional initial guesses are generated at several temperatures giving 

7(nc+2) initial guesses (IG) in the Ud space. Their first (nc+2) initial guesses can be used to initialize a 

VTN stability test at 0TT =  in the d space.  

 Also Smejkal and Mikyška [8] stated that “It is thus tempting to use the TVN-stability testing 

algorithm […], but our numerical experiments show that this procedure does not provide good results in 

some cases” and further “The viable alternative is to apply the algorithm described in the previous 

subsection to the reduced system of equations”. This is confusing, because solving their reduced system is 

exactly a VTN stability test at 0TT = , only the initialization is changed; in fact, they correctly observed that 

the “two-sided” initialization from Ref. [17], which is reliable in two-phase vapor-liquid systems, may not 

be reliable for multiphase or liquid-liquid systems. 

 

4. Algorithms for VTN stability testing 

 As shown in Refs. [8,16] and in the Appendix, whatever the set of independent variables and the 

form of the TPD function, the UVN stability problem can be reduced to a VTN stability problem, at 

specified volume V0 and 0T T= , calculated at the 0 0( , , )U V 0n  specifications. The effective search is 

performed in the VTN space instead of UVN space. This section briefly recalls the Newton method, 

presents the SSI method and a mathematical analysis of its convergence properties for VTN phase stability. 

 

4.1. Newton method 

 

 Different versions of the Newton method were used in VTN [16,17,18], PT volume-based 

[15,19,23,24] and UVN [6,8,9,13] stability testing. In our previous work on VTN stability [18,19], a 

modified Cholesky factorization [48] was used, with a two-stage line search procedure, described in detail 

in Refs. [18,39]. If during iterations an eigenvalue of H becomes negative (this is revealed in the standard 
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Cholesky decomposition for solving the linear system of equations), the Newton method is not providing a 

descent direction and a diagonal correction (DC) is applied to restore positive definiteness of the Hessian 

matrix. The linear system of equations 

  = −H g          (22) 

where  is the vector of independent variables (i can be di, αi or lndi [18]) is replaced by 

 ( ) gEH −=+          (23) 

and the diagonal matrix E is chosen such that ( )EH +  is “sufficiently” positive definite [48]. Using the 

modified Cholesky factorization in the implementation of Schnabel and Eskow [49,50]. 

 In the stopping criteria, the Euclidian norm of the gradient vector 

 

1/2

2

2
1

nc

g i

i

S g
=

 
= =  

 
g         (24) 

and the Euclidian norm of the direction vector 

 ( )
1/2

2

2
1

nc

d i

i

S
=

 
=  =  

 
        (25) 

are calculated, where ( ) )()1()( k
i

k
i

k

i −= + . 

 The modified Newton method was tested using various sets of independent variables [18] for seven 

mixtures from Mikyska and Firoozabadi [17] by spanning the molar density-temperature plane and for 

several hydrocarbon mixtures (synthetic and reservoir fluids) [19] in PT volume-based stability at T0 and P0 

(which is equivalent to a VTN stability at T0 and ( )0 0 0 0, ,V V P T= n  [17,18]). 

 Variables αi appeared, from far away, to give the most robust and efficient formulation, with no 

failure for all test problems, whilst failures (convergence not achieved in the allowed maximum number of 

iterations) were reported in Refs. [17-19] for the variables di. In the rest of the paper, the variables αi are 

used, unless stated otherwise. 

 

4.2. SSI method 

 

 The SSI iteration equation can be obtained from the Newton method in the minimization of the 

tangent plane distance function, by neglecting the partial derivatives of the density function with respect to 

component molar densities, that is, setting =J I  in Eq. (8). The SSI iteration equation is 

  = −lnd g          (26) 

or, from the zero-gradient equation 

 
( 1) ( )ln ln ( )k k

i i id h+ = −  d        (27) 

and 

 
( 1) ( ) ( ) ( ) ( )ln ln ln ln ( )k k k k k

i i i i id d d d g+ = +  = − d      (28) 

where (k) is the iteration level. 
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 The above iteration equation is formally the same as for PT stability, but here i play the role of the 

fugacity coefficients and di that of formal mole numbers Yi [2]. Note that since ln = d U d , Eq. (26) is 

equivalent to 1− = −d U g , that is, gradient iterations in the minimization of D with respect to di, in which 

the gradient vector is pre-multiplied by a semi-positive definite diagonal matrix (the eigenvalues of 1−
U  are 

id ). Eq. (28) takes the form  

 ( 1) ( ) ( ) ( )( )k k k k

i i i id d d g+ = − d        (29) 

 The SSI iteration equation in Bi et al. [13] (although the authors claimed to propose a new method) 

is exactly that of Mikyska and Firoozabadi [17] and Nichita [18] (both not referenced in Ref. [13]), the 

former presented directly as a fixed-point method and the latter obtained from setting =J I  in the Newton 

equation for the TPD function minimization. In VTN stability, a step length reduction to keep variables 

within the feasible domain (LS1) may be required; this very important feature is used in Ref. [17], but not 

even mentioned in Ref. [13]. Unlike in PT stability, in VTN stability a decrease in the objective (TPD) 

function is not ensured (the convergence is not monotonic or divergence occurs). Moreover, in SSI for PT 

stability the independent variables (lnYi) are unbounded, whilst in VTN stability di must satisfy the 

inequality constraint in Eq. (4). 

 

4.3. Instabilty of SSI in VTN phase stability testing 

 

 At PT specifications, the SSI method has unproblematic convergence in both stability [2] and flash 

calculations [1], except in some rare cases [51]. This is not the case for VTN stability; our analysis follows 

those of Heidemann and Michelsen [51] and Michelsen [2] for PT stability. 

 The direct substitution method for solving a non-linear system of equations ( ) ( )= − =h t f t t 0  is 

( 1) ( )( )k k+ =t f t , for 0k  ,with a solution 
* *( )=t f t . The convergence behavior depends on the 

eigenvalues of the matrix S of elements 

 
*

i
ij

j

f
S

t
=

 
=  
  t t

         (30) 

 For VTN stability, lni it d=  and from Eq. (27), 
( 1)ln ln k

i i i if h d += −  = , thus 

 
*

( 1)

( )

ln

ln

k

i
ij k

j

d
S

d

+

=

 
=  
  lnd lnd

        (31) 

or 

 
*

ln i
ij j

j

S d
d

=

   
= −  

    d d

       (32) 

From Eq. (10), the matrix JIS −= , or, from Eq. (9) 

 
1−−= US           (33) 

 An eigenvalue of S matrix must satisfy 
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 xSx S=          (34) 

where ( , )S x  is an eigenvalue-eigenvector pair of S. From Eqs. (33) and (34) 

 xxU S−=
−1          (35) 

By left-multiplying with 2/1−
U , putting vxU =− 2/1  and adding vIv = to both sides of Eq. (35), one obtains 

 ( ) ( )1/2 1/2 1 S

− −+ = − I U U v v        (36) 

or, from Eq. (14) 

 ( )1 S= − Bv v          (37) 

where v is an eigenvector of B, corresponding to an eigenvalue 1B S = −  . Therefore, the relation 

between the eigenvalues of matrices S and B is  

 1S B = −           (38) 

 At a minimum, 0B  , thus if all 1S  , SSI converges to a local minimum of D. The necessary 

and sufficient condition for a monotonic convergence of direct substitution iterations [52,53] is 

 ( ) 1 S          (39) 

where the spectral radius of the matrix S is ( ) max iS
i

 = S . The convergence is linear, with an asymptotic 

rate of convergence ( ) ( )10logR = − S S , controlled by the dominant eigenvalue of the matrix S [2,52]. 

 It must be noted that the instability of SSI is not given by its failure to provide a descent direction 

(since the matrix U is always positive definite and  = −U d g ), but by taking a too large step on the descent 

direction, leading to several kinds of non-convergent behavior or to convergence to the same local 

minimum starting from all initial guesses, as described later in this paper. 

 Even though formally similar to Michelsen [2] in PT stability, the gradient and Hessian matrix 

(here expressed in terms of density functions i, instead of fugacity coefficients and the partial derivatives 

are with respect to molar densities) differ. However, unlike in PT stability, in VTN stability ( ) S  is often 

greater than unity, leading to multiple convergence problems, as will be shown in the test examples. As 

pointed out by Michelsen, “composition independent fugacity coefficients at constant T, P does not imply 

independence at T, V” [38]. When setting to zero ln /i jd   , both the dependences of fugacity 

coefficient and pressure on composition are neglected. Michelsen [4,41] recommended the use of “partial 

Newton” methods in early iteration stages to include partial derivatives of pressure with respect to 

composition. 

 Michelsen also noticed [2] that for PT stability exactly one eigenvalue of S equals unity at critical 

points. In fact, an eigenvalue of S is one along the spinodal and STLL curves, where the Hessian matrix is 

singular ( 0B = ), not only at critical points. This feature holds for VTN stability as well. 
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4.4 Damped SSI 

 

 The SSI iteration equation can be modified as 

 m m = −lnd g          (40) 

where m is a damping factor and the subscript m indicates a damped process, or 

 ( )( 1) ( ) ( )

,ln lnk k k

i m i id d mg+ = − d        (41) 

or further 

 
( 1) ( )
,ln ( ln ) (1 ) lnk k

i m i i id m h m d+ = −  + −       (42) 

 For the damped process 
( 1)

, ,ln k
i m i mf d +=  and  

 
* *

( 1)
,

, ( )

ln ln
(1 )

ln

k
i m i

ij m j ijk
jj

d
S m d m

dd

+

= =

      
= = − + −     

         lnd lnd d d

   (43) 

thus the matrix Sm is related to the matrix S by 

 (1 )m m m= + −S S I         (44) 

One can note that when 0m → , m →S I , that is, , 1S m → . Similarly as for the original process, 

 ,1B S mm = −           (45) 

 By combining Eqs. (38) and (45), the relation between eigenvalues for damped and undamped SSI 

iterations is obtained 

 , 1 (1 )S m Sm = − −          (46) 

The above relation was given without proof in Heidemann and Michelsen [51] for PT stability. 

 The SSI method always provides a descent direction for the TPD function. Unlike in PT stability, 

for which the convergence is monotonic, in VTN stability the step length along this direction may be too 

large; iterations may overshoot the solution and even jump in another valley of the objective function. By 

monitoring the step length, it is possible to find an optimal damping factor. Damping in Eq. (40) is 

equivalent to a line search (LS) along the descent direction, to obtain a decreasing sequence of D(k). The 

idea of damping is to bring all eigenvalues of S within the unit circle. However, Heidemann and Michelsen 

[51] noted that a severe damping (a small m) could push the positive eigenvalues closer to unity (see Eq. 

46), leading to very slow convergence. 

 A two-stage line search (LS) is used in SSI, as previously used for the Newton method in a variety 

of volume-based phase equilibrium problems [18,19,33,39]: 

i) A full step with m1=1 is accepted if the point is within the feasible domain (given by the inequality 

in Eq. 4). if the inequality constraint is violated, that is ( )( 1) 0kc + d , in the first stage (LS1), 

1 1m am= , with [0.5,0.9]a , until ( )( 1) 0kc + d . This (inexpensive) step is specific to VTN [17,18] 
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or volume-based PT [19,39] phase equilibrium problems. Note that for SSI, unlike in Newton 

iterations, bound violation in Eq. (5) must not be checked, since the variables are lndi.  

ii) In a second stage (LS2), if ( ) ( )( 1) ( )k kD D+ d d  the step is accepted; otherwise a line search is 

performed within the interval ( )10,m m . An inexact line search using quadratic and cubic 

backtracking is recommended, as described in Refs. [35,47]. 

 As will be shown in the next sections, SSI as presented in Mikyska and Firoozabadi [17] (with LS1 

and no LS2) or Bi et al. [13] (with no LS at all) are not recommended for VTN phase stability testing (and 

consequently also for UVN stability and for volume-based stability at PT specifications). 

 

4.5. Combined SSI-Newton method 

 

 The combined SSI-Newton method is widely used in PT stability testing and flash calculations. It 

takes advantage of the strengths and avoids disadvantages of each method. The robust first-order SSI 

method is used in early iteration stages when it generally ensures a good advance towards the solution, then 

a switch is performed to the second-order Newton method. Additionally, as a strong safety feature, a 

switch-back to SSI can be performed when H is not positive definite (too early switch), leading to very 

robust algorithm, albeit very slow in some cases [35,36]. Bi et al. [13] stated that the combined SSI-Newton 

method is also robust and efficient in VTN stability, which is not the case because of SSI instability. Many 

examples will be given in the next section, showing the convergence behavior of the combined SSI-Newton 

in VTN stability. The switching criterion is d SWS   , with lni id =  in Eq. (25) and SW the switching 

tolerance. 

 

4.6. Initial guesses 

 

 Two initialization schemes are used in this work. The first one is the simplified simplex-based 

initialization method of Smejkal and Mikyška [8] (using only nc+2 IGs at 0TT =  in the d space), denoted 

here SM-IG. The IG at the barycenter is denoted SM-B IG. For a binary mixture, the vector containing the 

coordinates of the barycenter is 
(0)

1 2(1 / 3 ,1 / 3 )T

B b b=d  and the IGs at midpoints are denoted M0, M1 and 

M2, of coordinates 
(0)

M0 1 2(1 / 6 ,1 / 6 )Tb b=d , 
(0)

M1 1 2(2 / 3 ,1 / 6 )Tb b=d  and 
(0)

M2 1 2(1 / 6 ,2 / 3 )Tb b=d , respectively 

[13], where b1 and b2 are the covolumes of the two components. 

 The second initialization procedure used in this work is that of Mikyska and Firoozabadi [17], as 

presented in Nichita [18] in terms of equilibrium constants (denoted here KWV IG). Two-sided initial trial 

phase compositions are calculated using equilibrium constants from Wilson’s relation [54] at T0 and 

0 0 0( , , )P P V T= 0n ; if 0 0P   then 0iniP P= , otherwise if 0 0P  , Pini is calculated as described in Ref. [17]. 

Trial phase and feed volumes are calculated at T0 and Pini, giving from two to four initial guesses 

(depending on whether the cubic EoS has one or three real roots; in the latter case, the maximum and 

minimum volume roots are retained, with the volume root giving the smaller Gibbs free energy tried first). 
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For a vapor-like mixture (trial phase is liquid), this initialization is denoted as type V and for a liquid-like 

mixture (trial phase is vapor) it is denoted as type L (see details in Refs. [17,18,19]). 

 

5. Results 

 

 In this section, convergence of various methods for phase stability testing using different 

initialization procedures is analyzed for Problems 1 to 8 from Castier [6] (also addressed by Smejkal and 

Mikyška [8] and recently by Bi et al. [13]). The reason why these particular points were selected as test 

problems for UVN phase equilibrium was discussed by Castier [6]. The Peng-Robinson (PR) EoS [55] is 

used in all examples. Expressions of functions and of required partial derivatives can be found in Refs. 

[18,19,57] for a general form of two-parameter cubic EoS, including the Soave-Redlich-Kwong (SRK) EoS 

[56] and the PR EoS [55]. Component properties and non-zero binary interaction parameters (BIPs) are 

those given in Ref. [8]. The expression of the ideal gas isobaric molar heat capacity is a third-order 

polynomial, with coefficients taken from Ref. [8]. VTN stability testing calculations are performed at the 

specified volume and at the temperature T0, calculated from the non-linear equation ( )0 0 0 0, ,U U V T= n . For 

sake of comparison, the tolerance in the convergence criterion (Eq. 25, with = d ) is taken the same as in 

Ref. [13], that is, 
1010d

− = . The gradient norm Sg (Eq. 24) is also monitored and iterations are stopped 

when ggS   or d dS   ; in this work 1210g

− = . The convergence behavior is analyzed for direct 

Newton, SSI and combined SSI-Newton methods; in the latter, the focus is on switching tolerances 

0.1sw =  (early switch, denoted ESW) and 510sw

− =  (late switch, denoted LSW) used in Ref. [13]. Bi et 

al. [13] did not mention what IG they used; one can suppose that they reported the number of iterations 

starting from the SM-B IG and the analysis below will focus on this particular IG (which was also used in 

Ref. [8] and it is naturally the first one tried among the SM IGs). 

 To facilitate the lecture of this section, the reader is encouraged to consult the list of abbreviations. 

 

5.1. Binary mixtures methane-hydrogen sulfide 

 

 Problems 1 to 4 from Castier [6] consist in C1-H2S mixtures, at specifications given in Table 1. The 

BIP is 0.083. 

 

5.1.1 Problem 1 

 

 The test point is located inside the spinodal curve in the d-T plane. There are two minima of D, the 

GM and a non-trivial LM, as given in Table 2. Bi et al. [13] reported convergence to the LM in 27+2 SSI-

Newton iterations. The Euclidean norm (Fig. 1a) and the TPD function (Fig 1b) are plotted vs. the iteration 

level for various methods (direct Newton, SSI, SSI-LS2 and combined SSI-Newton) starting from the SM-

B IG. For this initial guess, SSI converges to the LM in 45 iterations, SSI-Newton also converges to the LM 

in 7+5 iterations for an ESW and in 23+2 iterations for an LSW; SSI LS2-Newton converges in 52+4 

iterations to the GM for an ESW. Note that “ns+nn iterations” means everywhere in the text ns SSI 
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iterations followed by nn Newton iterations. The step length is truncated (LS1) in the first three SSI 

iterations (the full steps are out of the feasible domain) and a negative curvature region is crossed (indicated 

by a negative eigenvalue of the Hessian matrix); a negative D=-126.38 is reached in three iterations. At the 

fourth iteration, a full step is taken and the TPD function jumps to D=0.37 and from here both SSI and 

Newton converge to the LM. Direct Newton method converges to the GM for two KWV IGs and to the LM 

for the two remaining ones and it converges to the GM from all four SM IGs (see Table 3 giving the 

number of Newton iterations using various IGs). If a switch is performed after three iterations (just before 

an increase of the objective function between two SSI iterations; this kind of switch is denoted SWI), 22 

Newton iterations are required for convergence to the GM (SSI brings iterations in a domain of negative 

curvature in which very small steps are taken in LS1 for the Newton method). If the switch is performed 

later (denoted SW+), SSI-LS2-Newton converges in 7+4 iterations. 

 SSI converges to the LM from all four SM IGs and all four KWV IGs. The TPD functions vs. 

iteration level for SSI are plotted for the early iteration stages in Fig. 2, from all four SM IG and for an 

additional IG, taken extremely close to the GM, showing a chaotic behavior and convergence to the LM in 

all cases, no matter how close the IG is to the GM. A similar behavior is observed for two out of four KWV 

IGs; for the remaining two IGs the convergence of SSI is monotonic to the LM. The eigenvalues of S at the 

GM and LM are listed in Table 4. At the GM, the spectral radius ( ) 1 S  (indicating instability of SSI) 

and at the LM ( ) 1 S . Once an iteration lands within the valley of the TPD surface containing the LM 

(such a jump occurs usually before an ESW), SSI iterations, as well as Newton iterations after the switch, 

converge monotonically towards it. 

 Let us analyze the convergence behavior at different molar density and temperature conditions for 

the same composition. The phase envelope of the binary mixture is plotted in Fig. 3 in the molar density-

temperature plane [57]; the test points for problems 1 and 4, as well as several additional test points are 

marked. 

 Between the spinodal curve and the phase boundary (lower dew point), there are one negative GM 

and one trivial LM. On the 0TT =  isotherm, at d0=0.1 Kmol/m3 (near the lower dew point locus), SSI 

converges to the trivial solution (LM) from all four SM IGs and from all four KWV IGs (two with jumps 

between valleys of D, two directly to the TS). When the norm 0.1dS   (ESW criterion), iterations are 

already close to the TS and after switch the Newton iterations also converge to the TS. The Euclidean norm 

(Fig. 4a) and TPD function (Fig. 4b) are plotted vs. the iteration level, starting from SM-B IG. SSI exhibits 

a fast convergence to the LM (in 13 iterations). SSI initially progresses towards the GM, reaching a large 

negative TPD, then it jumps to positive values and eventually converges to the TS. SSI-LS2 very slowly 

converges to GM (however, an ESW is reached in 12 iterations and then 7 Newton iterations are required 

for convergence to the GM). This convergence behavior is explained by the eigenvalues of S (-163.081 and 

3.5e-5 at the GM, 0.0953 and 5.6e-4 at the LM. If the TPD function is not monitored (no mention is given 

in Bi et al. [13] about tracking the value of D), the final D=0 at convergence of SSI-Newton will indicate a 

stable state when the true state of the mixture is an unstable one. Direct Newton converges to the GM in 5 
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iterations from one KWV IG and to the TS from the three others in 6-8 iterations. Newton converges to the 

GM for all 4 SM IGs; in 28 iterations (two DC, and LS1 for 19 iterations) from SM-B, 14 iterations (3 DC 

and small step lengths in LS1) from SM-M0, 89 iterations from SM-M1 (4 DC and small step lengths until 

the last few iterations) and 10 iterations from SM-M2 (with one DC). Note that a negative curvature domain 

is crossed in early iteration stages for all four SM-IGs, whilst unproblematic and fast convergence is 

obtained from one KWV IG.  

 On the same isotherm, at d0=1.14 Kmol/m3 (very close to spinodal, see Fig. 3) the same behavior is 

observed but with a very slow convergence (SSI reaches ESW in 7 iterations and LSW in 456 iterations). 

SSI-Newton converges to the LM (TS) from all four SM IGs and KWV IGs. Direct Newton converges to 

the GM in 13 Newton iterations (with 2 DC) from the SM-B IG and in 5 and 15 (2 DC) iterations from the 

KWV IGs. The eigenvalues of S are =-2053.3 and 0.0005 at the GM, 0.9975 and 0.0607 at the LM (one 

eigenvalue of H close to zero due to the proximity of the spinodal is the cause of slow convergence). 

 At T=300 K and d0=4 Kmol/m3, close to the spinodal (see Fig. 3), the Euclidian norm and the TPD 

function are plotted for various methods during iterations (staring from SM-B IG) in in Fig. 5a and Fig. 5b, 

respectively. SSI detects instability at the first iteration, then it jumps to positive TPD values at the third 

iteration; the ESW is reached in 13 iterations and Newton converges to the LM (TS) in 6 iterations. SSI-

LS2 slowly converges to the GM and SSI-LS2-Newton (ESW) in 49+5 iterations. Direct Newton converges 

in 9 iterations and SSI-LS2-Newton (ISW) in 4+6 iterations. Note that SSI converges to the TS from all SM 

and KWV IGs. The eigenvalues of S are -5.098 and 0.0241 at the GM and 0.997 and 0.0023 at the LM 

(TS). Again, using SSI-Newton as in Bi et al. [13] (without tracking the TPD function) for this point would 

erroneously give a stable system. 

 

 On the isotherm T0= 151.83 K, a three phase VLL domain is predicted (a PT multiphase flash 

routine [35] is used to locate the three-phase line) in the molar density range from 13.67 Kmol/m3 to 32.22 

Kmol/m3, and a LL region exists at higher molar densities. In fact, the equilibrium state at these conditions 

possibly includes precipitation of a solid phase [58], but analysis of these details is beyond the scope of this 

paper. 

 Within the entire LL region, direct Newton converges to the GM from one KWV IG (in 6-8 

iterations, except at very high molar densities, where the number of iterations approaches 20) and for one 

SM IG, precisely SM-M1 (excepting a few points above d0=36 Kmol/m3, where it converges to the TS). 

From the remaining IGs convergence is to the TS. For an IG considering the trial phase almost pure 

methane, direct Newton converges in 6 to 10 iterations to the GM. In the LL region, SSI diverges from all 

IGs. Note than one eigenvalue of S ranges from -6 to about -10,000 (near the limit of the feasible domain at 

very high pressures) at the GM and from -52 to about -6000 at the LM (TS). For instance, at d0=33.1 

Kmol/m3, for all four SM IGs, SSI (although it detects phase instability) diverges (the norm Sd in never less 

than unity, thus even the tolerance for an early switch is not reached). At the GM, ( ) S =15.63 and 

( ) S =70.61 at the LM. SSI-LS2 converges to negative TPD from three SM-IGs (very slow, with small 

step lengths in LS2). The convergence behavior is depicted in Fig. 6a (Euclidian norm) and in Fig. 6b 
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(TPD function), starting from SM-B IG. SSI-LS2 reaches an ESW in 84 iterations and convergence to the 

GM is achieved in three Newton iterations. If the switch (SWI) is performed after one SSI, Newton 

converges to the GM in 14 iterations. Direct Newton converges to the TS in 13 iterations from SM-B IG 

and to the GM from SM-M1 IG in 7 iterations. 

 The next test points are in the single-phase region. At T0= 250 K and d0=28 Kmol/m3, the Euclidian 

norm (in Fig. 7a) and the TPD function (in Fig. 7b) are plotted vs. iteration number for SSI, SSI-LS2, SSI-

LS2-Newton (ESW) and direct Newton methods, starting from SM-B IG. Direct Newton converges in 8 

iterations at the GM (TS), SSI diverges and SSI-LS2-Newton converges in 48+4 iterations for an ESW and 

in 97+3 iterations for an LSW. The eigenvalues of S at the GM are -9.085 and 0.335, indicating problematic 

convergence of SSI. On the same isotherm, at d0=30 Kmol/m3, the convergence behavior starting from SM-

B IG is illustrated in Fig. 8a (Euclidian norm) and Fig. 8b (TPD function). SSI diverges, direct Newton 

converges in 8 iterations and SSI-LS2-Newton converges in 76+4 iterations (ESW) and in 228+2 iterations 

(LSW). For both test points, SSI diverges from all IGs. At d0=28 Kmol/m3, the minimum norm reached by 

SSI is slightly smaller than 0.1 from one IG, while for the remaining ones even the ESW is not reached. At 

d0=30 Kmol/m3, the ESW is never reached. The SSI-Newton method as presented in Ref. [13] cannot give 

an answer about the state of the mixture for these points. 

 Another typical convergence behavior of SSI is illustrated at d0=20 Kmol/m3 and T=370 K. Starting 

from SM-B IG, the variations of the Euclidian norm and of the TPD function during iterations for various 

methods are plotted in Fig. 9a and Fig. 9b, respectively. SSI diverges (even the ESW is not reached), direct 

Newton converges in 10 iterations and SSI-LS2-Newton converges in 6+8 iterations (for an ESW) and 

22+8 iteration (for an LSW). 

 

5.1.2 Problem 2 

 

 The test point is near the bubble point curve, between the phase boundary and the spinodal. There 

are two minima, the GM and a trivial LM. Table 3 gives the number of Newton iterations starting from 

various IGs. For two out of four KWV-IGs, only 5 and 7 iterations are required for convergence, while Bi 

et al. [13] reported a failure using direct Newton. Form two out of four SM-IGs, direct Newton crosses a 

negative curvature region and DCs are applied. The eigenvalues of S (given in Table 4) indicate non-

problematic convergence of SSI. If we get closer to the phase boundary, the number of SSI iterations will 

significantly increase, while Newton will exhibit rapid convergence starting from KWV-IGs. 

 

5.1.3 Problem 3 

 

 The test point is near the dew point curve, between the phase boundary and the spinodal with a GM 

and a trivial LM. Only 4 Newton iterations are required from a V-type KWV IG and 10 iterations from SM-

B IG (see Table 3), whilst in Bi et al [13] hundreds of SSI iterations are required before switch. The 

eigenvalues of S at the GM and LM are given in Table 4; even though at the GM ( ) S =2.2, there are no 

convergence problems for this point. 
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5.1.4 Problem 4 

 

 The test point is at near-critical conditions, inside the spinodal curve (see Fig. 1). The calculated 

[59] critical point is Tc=361.9564 K, dc=10.194904 Kmol/m3 and Pc=101.54 bar. There are two non-trivial 

minima with very small negative TPD functions, as given in Table 5, and spectral radii very close to unity 

(see eigenvalues of S in Table 4). Bi et al. [13] reported 820+5 (ESW) and 3855+3 (LSW) SSI-Newton 

iterations to find the LM (in this work 12+8 and 1500+2 iterations are required, respectively). Direct 

Newton exhibits unproblematic convergence to the GM in 14 iterations from SM-B IG and 10 iterations 

from one of the KWV IGs. As for Problems 1 to 3, from additional SM-IGs the convergence is problematic, 

requiring one DC and an increased number of iterations for one SM IG (M1), see Table 3. 

 Let us select conditions very close to the critical point, at T0= 361.95 K and d0= 10.194 Kmol/m3, 

with two minima, the GM with D= -2.15e-8 and ( ) S =0.999899 and a LM with D= -2.10e-8 and 

( ) S =0.9999. Direct Newton converges to the GM in 19 iterations from SM-B IG and in 15 iterations from 

one KWV IG (type V); from KWV IG (type L) convergence is to the LM in 16 iterations. The LSW is 

reached in 6506 SSI iterations and convergence of SSI-Newton is to the LM whatever the switching 

tolerance. 

 

5.2. LPG mixtures 

 

 The next two examples (Problems 5 and 6 from Castier [6]) are liquefied petroleum gas (LPG) 

mixtures. Specifications are given in Table 6. All BIPs are set to zero [8] in the PR EoS. The phase 

envelope (two-phase boundary) of the LPG mixture is plotted in Fig. 10 in the molar density-temperature 

plane [57]; the test points are marked. 

 

5.2.1 Problem 5 

 

 The test point is inside the spinodal curve (Fig. 10) and the TPD function has two minima, the GM 

and a non-trivial LM, as given in Table 7. Starting from SM-B IG, direct Newton converges to the GM in 

12 iterations (with LS1 in the first 5 iterations and LS2 in third and fourth iteration). The Euclidean norm 

and the TPD function during iterations are plotted in Fig. 11a and Fig. 11b, respectively. SSI exhibits a fast 

convergence to the LM in 9 iterations; it reaches a D=-108.8, then jumps to D=-4.24 at the third iteration 

and eventually converges to the LM in 9 iterations, as shown in Fig. 11b. SSI-Newton converges to the LM 

in 4+2 iterations for an ESW (5+2 iterations in Ref. [13]) and in 6+1 iterations for an LSW; at switching 

conditions, the LM is already an attractor for Newton iterations that also converge to the LM. SSI-LS2 is 

very slow (very small m) and reaches the early switch tolerance in more than 100 iterations. At the GM, 

( ) S =511.59 and at the LM, ( ) S =0.015 (the eigenvalues of S are given in Table 8). An eigenvalue at the 

GM has a very large negative value, indicating potential instability of SSI; eigenvalues at the LM indicates 

rapid convergence towards it. Direct Newton converges to the LM for all four KWV IGs, in 8 to 10 
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iterations (see Table 9). In this case, 00 P  and the calculated pressures from K-Wilson have very small 

positive values (see Table 7). If the initial pressure, Pini is set to any Pini >1 bar, the Newton method 

converges to the GM from two out the three KWV IGs in 20 and 22 iterations (with very small step lengths, 

LS1 and LS2 in most iterations, except the final ones; damped SSI is extremely slow in this case). This 

suggests a modification of the KWV initialization procedure, by setting a minimum positive pressure to be 

used in K-Wilson relation, as follows. When 00 P  

 ( ), minmax ,ini M iniP P P=         (47) 

where Pmin is set to a small positive value (in the range 1-10 bar). This minor modification can provide an 

additional IG allowing convergence to the GM when the convergence is to an LM from other IGs. A similar 

procedure previously used to improve IGs for VTN flash calculations has proved its effectiveness [33]. 

 

5.2.2 Problem 6 

 The test point is located at near-critical conditions (the calculated [59] critical point is at Tc=395.64 

K, dc=4.1316 Kmol/m3, Pc=43.43 bar),between the spinodal and the phase boundary (dew point), but not 

very close to the critical point, as can be seen in Fig. 10 . There are two minima of the TPD function, the 

GM and a trivial LM, as given in Table 7. At the GM, ( ) S =0.9508 and at the LM, ( ) S =0.9898 (the 

eigenvalues of S at the stationary points are listed in Table 8). One eigenvalue is close to unity due to the 

proximity of the critical point. 

 Bi et al. [13] reported 23 direct Newton iterations, 294+4 (ESW) and 478+2 (LSW) SSI-Newton 

iterations to find the GM. In this work, direct Newton exhibit unproblematic convergence, in 6 iterations 

from one KWV IG (4+6 SSI-Newton iterations for an ESW) and 13 Newton iterations from SM-B IG (see 

Table 9). Starting from SM-B IG, SSI and SSI-Newton (whatever the switching tolerance) both converge 

to the trivial LM; apparently, results reported in Ref. [13] were obtained from a different unspecified IG. 

 Again, getting very close to the critical point (at T0=395.634 K and d0=4.1315 Kmol/m3), there are 

two minima, the GM with D=-1.40e-10 and ( ) S =0.99998746 and a non-trivial LM with D=-1.40e-10 and 

( ) S =0.99998722. Direct Newton converges in 20, 14 and 17 iterations, starting from SM-B, KWV (type 

V) and KWV (type L) IGs, respectively. From SM-B IG, ESW is reached in 6 SSI iterations and LSW is 

reached in 2599 iterations (with D>0 at switch); 10 Newton iterations are then required for convergence in 

both cases. 

 

5.3. Problem 7. LPG mixture with water  

 

 In Problem 7 [6], water is added to the LPG mixture. Specifications are given in Table 6. Two 

minima were found (the GM and a non-trivial LM, as given in Table 7). Eigenvalues of matrix S are listed 

in Table 8. At the GM, the spectral radius is large, ( ) S =9325.45 and an eigenvalue is very close to one; at 

the LM ( ) S =0.01. Bi et al. [13] found the LM in 5+2 SSI-Newton iterations. Staring from SM-B IG, SSI 
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converges in 10 iterations (as shown in Fig. 12a), with a rapid descent towards the GM, then a jump at the 

6th iteration (small LS1steps are required in all iterations before the jump) and rapid convergence to the LM 

(as shown in Fig. 12b). SSI-Newton also converges to the LM. Starting from KWV IGs, SSI also converges 

rapidly to the LM in 5 (type V) to 8 (type L) iterations. Direct Newton converges to the LM from all four 

KWV IGs (in 10 to 12 iterations, see Table 9).  

 For this problem, reaching the GM (reported by Smejkal and Mikyška [8] as found in 124 Newton 

iterations) starting from the SM-B IG is a very difficult problem. The trial phase at the GM is almost pure 

water with only traces of hydrocarbon components. The GM is found in 75 Newton iterations (convergence 

behavior illustrated in Fig. 12a and Fig. 12b), with DCs required for the first 63 iterations; a negative 

curvature domain is slowly crossed from the IG up to a vicinity of the GM. The solution is close to 

boundaries of the feasible domain, requiring very small steps (LS1) on the Newton direction in final 

iterations. Note that using the variables di, the convergence is achieved in 129 iterations. Iterations were 

stopped when Sd<1e-10, at a still large gradient norm; this indicates a very slow progress towards a sharp 

minimum. However, the TPD function in the UVN space (Dud=9,870,738) is slightly greater than that 

reported in Ref. [8] (Dud=9,790,660); it is very likely that in Ref. [8] iterations were also stopped well 

before the criterion on the gradient norm was fulfilled. The comparison of number of iterations in Bi et al. 

[13] with Ref. [8] and this work is meaningless, since different minima were found.  

 With an IG generated considering the trial phase as almost pure water with only traces of 

hydrocarbon components (zw=0.999999 and equal feed compositions for the remaining components, such as 

compositions sum up to unity) and volume calculated using the liquid root in the EoS, the GM is found in 

23 Newton iterations. If KWV IGs are used with Pini from Eq. (47), the GM is found from one of the IG 

(type V) in 15 iterations. The initial value is D(0)=-1184.7, which is close to the GM. The convergence 

behavior is shown in Fig. 13a (Euclidian norm) and Fig 13b (TPD function). 

 

5.4. Problem 8. Pure CO2 

 

 The last test example is Problem 8 from Castier [6], consisting in pure CO2 at specifications U=-

8721137574 J, V= 1 m3 and n0=10 Kmol. The calculated temperature is T0= 280 K. The TPD function has 

two minima, an LM with D=-0.489610 at d=2.789743 Kmol/m3 and the GM with D=-0.554759 at 

d=19.489914 Kmol/m3. Bi et al. [13] reported 40+2 SSI-Newton iterations to find the LM, whilst Smejkal 

and Mikyška [8] reported 71 Newton iterations to find the GM, starting from the barycenter. In this work, 

fast convergence is obtained with the Newton method, in 6 iterations to GM starting from SM-B IG 

(
(0) 1/ 2Bd b= ; the mid-interval IG is close to the GM), in 6 iterations to GM starting from SM-M0 IG 

(
(0)

M0 1/ 4d b= ; located in a negative curvature region) and in 7 iterations to GM starting from SM-M1 IG 

(
(0)

M1 3 / 4d b= ). If the molar density is the independent variable, the numbers of Newton iterations staring 

from these three IGs are 5, 37 and 8, respectively. 
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6. Discussion 

 

 Stability testing at UVN specifications can be reduced to a VTN stability problem, because the 

stationary points in the VTN (or dT) space at T=T0 are identical to those in the UVN (or Ud) space [8]. 

Mikyska and Firoozabadi [17] analyzed the convergence properties of SSI in VTN stability, concluding that 

the SSI method is not robust. In my opinion, even though no examples were given, their analysis is correct. 

This work provides several concrete examples to illustrate various convergence problems of the SSI 

method. Nichita [18] reported that in the VTN phase stability testing, the absolute value of the largest 

eigenvalue of the matrix JIS −=  can be greater than unity at some stationary points and the SSI method 

may not converge without a line search in these cases (a similar behavior was reported for SSI in VTN flash 

calculations [33,37]). Additionally, the number of iterations is higher than the one required by SSI in PT 

stability at the same conditions (VTN iterations have a lower implicitness level as compared to PT ones, as 

explained in Refs. [19,33,39]). 

 Somehow surprisingly, the robustness of a combined SSI-Newton method in VTN stability was 

claimed in Bi et al. [13], without even mentioning previous work warning on potential instability of the SSI 

method in VTN phase equilibrium [4,17,18,39,41,42]. The method presented by Bi et al. [13], which is a 

combination of previously described methods (SSI from Refs. [17,18] and Newton from Refs. [8,17,18]) 

and uses the simplified initialization scheme from Ref. [8], is neither robust nor efficient. It is unreliable 

because of SSI instability, use of basic Newton (without diagonal correction) and of molar densities as 

independent variables (giving a poor scaling; scaling is very important, as shown in Refs. [18,19,47]). Bi et 

al. [13] are not even mentioning LS1 (documented earlier in Refs. [8,17,18,19]), which is crucial in VTN 

stability and have not even detected the non-monotonic convergence of SSI before switch (e.g. in Problems 

1, 5 and 7). Additionally, starting from SM IGs, SSI-Newton can miss instability; if not stopped, it may 

converge to a trivial stationary point, which is a strong attractor (see examples for Problem 1).  

 

 Bi et al. [13] reported the number of iterations starting from a single IG (not explicitly mentioned 

which one, apparently from the SM-B IG). Even though instability is correctly detected in all cases, they 

have not found the global minimum (convergence is to a negative LM, but non-monotonic convergence 

with a jump from lower values of the TPD function was not observed) for 5 out of 8 test problems. Table 

10 gives the number of iterations for various methods (starting from SM-B IG), reported in Refs [8,13] and 

obtained in this work for Problems 1 to 8. 

 

 If we safely admit that the computational cost of a Newton iteration is at most that of two SSI 

iterations for cubic EoS [60], near phase boundaries the direct Newton method can be at least one order of 

magnitude faster (see Problems 2, 3 and 5) than the combined SSI-Newton method. In the near-critical 

region, it can be at least two orders of magnitude faster (see Problems 4 and 6). SSI-Newton can be faster 

than direct (modified) Newton for some “easy” points (as for instance in Problems 5 and 7, but note that 

convergence is to an LM). Moreover, the combined SSI-Newton and SSI methods are unable 

(systematically for some domains) to find the GM whatever the IG. As shown earlier, these methods may 
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converge to an LM (which can be the TS) from all IGs. It was stated in Bi et al. [13] that “the proposed 

approach results in a reduced number of unknowns and does not require a large number of iterations to 

achieve convergence in Newton's method.” The first statement is nothing else than what Smejkal and 

Mikyška [8] have proposed earlier. The second statement is misleading, since in their examples the price 

paid for a reduced number of Newton iterations is a large number of SSI iterations (of the order of hundreds 

in some examples), corresponding to a late switch (an early switch may lead to divergence, since the 

standard Newton methods has often a small convergence radius). 

 

 It was shown in this work that SSI with simplex-based IGs systematically fails at certain conditions, 

converging to a trivial solution, even for two-phase systems in which the two-sided KWV IG correctly 

detects instability without problems. Moreover, in the two-phase vapor-liquid region, using SM IGs, 

Newton iterations must cross, or even are staring from a negative curvature region, contrary to the KWV 

initialization. This could make a simple problem a very difficult one (requiring multiple DCs in Newton 

iterations), or at least a very slow one (SSI needs either many iterations to escape this domain or it jumps in 

another valley of the TPD function). Also SM IGs can miss instability in a liquid-liquid region, as shown 

for an example in Problem 1. As can be seen in Table 10, direct Newton starting from KWV IGs is 

systematically faster than starting from the SM IGs. Thus, SM IGs are not recommended for single-phase 

stability in two-phase vapor-liquid systems. On the other hand, using only KWV IGs may not be enough to 

detect instability in some cases [8,33]. More elaborate initialization schemes may require a large number of 

initial guesses [6], which is computationally expensive. It appears that initialization of VTN stability testing 

requires further investigation. 

 

 The SSI method often does not exhibit monotonic convergence in VTN stability (as usually in the 

widely used SSI for PT stability and flash). Iteration points may often jump from one valley of the objective 

function to another, with a high increase of the objective function between two iterations. For certain two-

phase conditions, SSI initially progresses towards a negative TPD solution, reaches negative values of the 

TPD function, then jumps to a positive TPD and eventually converges to the TS, and this from all SM IGs. 

In these cases, SSI detects instability in early iteration stages, but at switching tolerance (even for an early 

switch) iteration points are already in the basin of attraction of Newton for the TS (in Bi et al. [13], this kind 

of behavior is not even mentioned). SSI may converge to the TS even if the TPD is negative at the initial 

point (an example is given for Problem 7). In some cases, SSI diverges no matter how close the initial 

estimate is from the solution (this feature was mentioned by Mikyska and Firoozabadi [17]). Here an 

example was given for the composition in Problem 1, in which even if the IG is very close to GM, SSI 

converges to the LM. This kind of behavior was found to be systematic and it occurs when the spectral 

radius of S is greater than unity at the GM (in some cases taking very large values, ( ) 1 S ), leading to 

instability of SSI (see Table 4 and additional test points for Problem 1) and ( ) 1 S  at the LM (see also 

Table 8). The LM is a strong attractor for SSI and once an iteration lands within the valley containing the 

LM, subsequent iterations converge monotonically towards it. 
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 SSI using a damping factor to ensure a decrease of the TPD function during an iteration (that is, a 

monotonic convergence) may often be extremely slow (the eigenvalues of the damped process are pushed 

towards unity by very small damping factors, corresponding to very large spectral radii) and convergence 

may not be achieved within a reasonable predetermined number of iterations (in some cases given 

tolerances, even for an early switch, are not yet reached after a very large number of iterations). 

 

 Bi et al [13] and Smejkal and Mikyška [8] analyzed only unstable points and no details were given 

by Mikyska and Firoozabadi [17] about convergence behavior of VTN stability methods in the single-phase 

region (the important conditions near the STLL are not even mentioned). In the phase stability problem, the 

stationary points are saddle points at the STLL and at spinodal conditions. At saddle points, the Hessian 

matrix is singular and indefinite; the number of iterations is dramatically increasing as these conditions are 

approached and any gradient-based method will diverge exactly at a saddle point. Problematic convergence 

of the Newton method from some initial guesses was observed in both PT and VTN stability testing in the 

vicinity of the STLL and in a domain outside the STLL in P-T [35,36,44,46] and V-T (or d-T) planes 

[18,19], corresponding to the most challenging conditions for phase stability testing [4346]. The direct 

Newton method (without any diagonal correction) often diverges (its convergence radius may be very 

small). Note that in PT stability, SSI is very slow in the vicinity of the STLL, but unproblematic monotonic 

convergence is guaranteed (the TPD function always decreases during SSI iterations); many iterations may 

be required to reach the switching criterion (even an early one) and Newton iterations diverge for a too 

early switch. In VTN stability, as shown here for several test points, SSI is not stable and exhibits erratic or 

cyclic/oscillating non-convergent behavior. SSI without damping is unable to reduce the Euclidean norm 

below a value greater than the tolerance for an ESW. Moreover, near the weaker trivial singularity at the 

spinodal (thus for unstable points), where there are no convergence problems in PT stability, the same kind 

of non-convergent behavior is observed (examples are given for Problem 1) in VTN stability. 

 

 As suggested by the results for the test examples and according to the discussion above, the final 

recommendations for possibly using SSI in VTN phase stability testing are: 

i) Never use SSI alone; 

ii) Combined SSI-Newton method must not be used as presented by Bi et al. [13], being neither robust 

nor efficient, as clearly shown here. It may either converge to an LM from all IGs (LM can be the TS), 

or diverge exhibiting an oscillating behavior , or may fail to reduce the Euclidean norm below a 

certain value (possibly greater than an ESW); 

iii) If a domain of indefiniteness has to be crossed between the IG and the solution (or switching 

conditions), it is far better to use Newton with DC than SSI; the latter method may jump between 

valleys of the objective function (possibly with eventual convergence to the TS, even if the mixture is 

unstable) or exhibit various kinds of non-convergent behavior. As pointed out in Ref. [18], “it is better 

to perform a line search on the Newton direction given by a modified Cholesky factorization […], 

rather than on the SSI direction”. 
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iv) Even if there is no such jump between valleys, a late switch is inefficient without improving 

robustness (as in PT stability); as shown for problems 3,4 and 6. 

v) In a combined SSI-Newton method, SSI must be used with great caution and only in early iteration 

stages (with carefully chosen switching criteria, because SSI with damping may be very slow).  

vi)  If an SSI iteration is not decreasing the TPD function, either 

a) immediately switch (this may happen at the first iteration) to modified (Cholesky and LS1/LS2) 

Newton iterations, or 

b) continue with damping, either down to the predetermined (early) switching tolerance or until 

the damping factor becomes too small, then switch to Newton. 

In other words, use SSI only if it is susceptible to help Newton in an efficient and safe way. Newton method 

is clearly faster, except for Problems 5 and 7, but here the global minimum is found, unlike in Bi et al. [13] 

in which convergence is to a local minimum (as discussed, these are difficult problems from SM-B IG, but 

a fast convergence is obtained from all KWV IGs). The global minimum was missed by Bi et al. [13] for 5 

out of 8 test problems having non-trivial LM (for the remaining three, the LM is trivial).  

 

 Performing a PT stability testing at ( )0 0 0 0, ,P P T V= n as proposed by Castier [6] can be a reliable 

alternative, since highly robust PT stability testing routines (including robust SSI in early iteration stages) 

can be used [36,36]. A volume-based PT stability can also be used [19] (attractive for complex 

thermodynamic models, since the EoS is not solved for volume). The only limitations are when P0<0 and 

for pure components; in these cases the VTN approach must be used. 

 It should be noted that at SVN (entropy, volume and moles) specifications [4,10,11,42], the 

stability test can be similarly replaced by a VTN stability test. Moreover, PT stability analysis can be also 

used. The expression of the TPD function for SVN stability was given in Michelsen and Mollerup [14] and 

it is easy to show that the TPD function for SVN stability has the same stationary points and the same sign 

as the TPD function for VTN stability at the temperature ( )0 0 0 0, ,T T S V= n , calculated from the nonlinear 

equation ( )0 0 0 0, ,S S V T= n . The case of SVN specifications will be analyzed in detail in a forthcoming 

paper. 

 Finally, the calculation algorithms presented here are not dependent on the thermodynamic model 

(any pressure explicit EoS can be used), and can be applied to any number of components and phases 

(provided a robust initialization scheme is given, as discussed earlier). Application to more complex, non-

cubic EoS is currently being investigated. 

 

7. Conclusions 

 

 In phase stability testing at UVN specifications, the search of stationary points can be performed 

effectively in the VTN (or Td) space (that is, by solving a VTN stability problem), at a temperature 

calculated by solving a non-linear equation at specifications. Whatever the set of independent variables, the 

stationary points are the same in UVN and VTN stability and the TPD functions have opposite signs. 
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 This paper gives for the first time a detailed analysis of convergence behavior of SSI and combined 

SSI-Newton in VTN stability testing. The mathematical analysis of convergence properties of the 

successive substitution (SSI) method for VTN stability reveals its potential instability, unlike in PT 

stability, in which SSI is very robust. Even though a descent direction is guaranteed, SSI takes often a too 

large step length, leading to severe convergence problems. This problem can be theoretically overcome by 

using a damping factor; however, since damping tends to bring all the eigenvalues of the matrix S within 

the unit circle, a severe damping will bring all eigenvalues close to unity, leading to an unacceptable slow 

convergence rate. A severe damping may be also required in many cases to avoid constraint violations. It is 

shown that the SSI method should never be used alone, damped SSI can be used with extreme caution and 

the combined (undamped) SSI- (standard) Newton method is neither robust nor efficient as claimed 

previously and therefore must be avoided. According to these observations, a robust combined 

SSI/modified Newton method is suggested, using damped SSI only in early iteration stages and switching 

criteria chosen to avoid all possible shortcomings of using the SSI method. 

 Modified Newton iterations are used to minimize the TPD function with respect to component 

molar densities with a change of variables an optimal scaling. A modified Cholesky factorization 

guarantees a descent direction by applying a diagonal correction of the Hessian matrix to restore its positive 

definiteness and a decrease in the objective function is ensured by a two-stage line search procedure. 

 Several domains in the molar density-temperature plane were identified where SSI is either 

systematically not detecting a phase split, converging to the trivial solution from all initial guesses (at low 

molar densities, between the lower dew point and spinodal curves) or systematically diverges (at high molar 

densities/pressures and also near the singularities). It is likely that other pathological situations may exist. 

The SSI method may often exhibit chaotic or cyclic behavior, being unable to reduce the gradient norm and 

the TPD function below a certain value, far from the solution (in some cases instability is not detected, even 

though the global minimum is negative). In other cases, even if it progresses towards a negative TPD 

(indicating an unstable phase in early iteration stages), SSI jumps to another valley of the objective function 

and eventually lands on a local trivial minimum (indicating a stable phase), which is a strong attractor (at 

least one eigenvalue of the key matrix takes very large absolute values). In many cases, SSI diverges or 

converges to a local minimum, no matter how close the initial estimate is from the global minimum. 

 The convergence behavior of our methods for VTN stability is analyzed for a variety of mixtures 

and the numbers of iterations required to achieve convergence are compared with those reported in the 

literature. The proposed methods are highly robust and systematically faster than previous methods, for 

some test points up to one or even two orders of magnitude. Moreover, our calculation procedures are able 

to find the global minimum of the TPD function in all test cases, unlike previously proposed SSI/Newton 

methods, which either are strongly attracted by local minima or diverge. 
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Appendix Modified TPD functions of mole numbers in VTN and UVN stability 

 

 At specifications 0 0( , , )T V 0n , the modified TPD function for VTN stability in terms of mole 

numbers and volume (Nichita [19]) is 
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where ( ) 1 lnn nF S S= − +n  and 
1

nc

n t ii
S n n

=
= = . The notation ni is used, keeping in mind that ni are only 

formally mole numbers (the Yi‘s in Michelsen’s notation [2]). 

 At the stationary points 

  ( )*

0 0, (1 )V nD V,T RT S= −n  

 It was shown [19] that *

VD  has the same stationary points and same sign as the modified TPD for 

PT stability [2]. 

 In UVN stability testing, at specifications are 0 0( , , )U V 0n , a modified TPD function can be defined 

in the UVN space, similarly to the modified TPD function in the VTN space from Eq. (A1) 

 ( )* (1 ln )UV n n n n uvD U,V, R S S S S D= − − + +n      (A3) 

 The zero-gradient equations for this function are 
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forming a nonlinear system of nc+2 equations in nc+2 variables (U,V,n). 

 Introducing the stationarity conditions into TPD function, at stationary points  

 ( )* (1 )UV nD U,V, R S= − −n        (A5) 

 At the stationary points, 0T T=  from Eqs. (A4c) and the elements of the gradient vectors in VTN 

and UVN stability are related by  
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and the TPD functions by 
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 Thus, the modified TPD function in UVN stability, *

UVD , has the same stationary points and 

opposite signs as the modified TPD function in VTN stability, *

VD .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 27 

 

List of symbols 

 

b covolume in the EoS 

bi component covolume in the EoS 

B matrix in Eq. (14) 

D VTN TPD function in terms of molar densities 
*

VD  VTN modified TPD function in terms of mole numbers and volume 
*

UVD  UVN modified TPD function in terms of mole numbers, U and V  

Duv UVN TPD function in terms of mole fractions, u and v 

Dud UVN TPD function in terms of molar densities and u’ 

d mixture molar density 

di molar density of component i (trial phase) 

di0 molar density of component i (feed) 

fi fugacity of component i  

g gradient vector; minimization with respect to di 
*

g  gradient vector; minimization with respect to i 

gi elements of the gradient vector 

H Hessian matrix 

Hij elements of the Hessian matrix 
*

H  Hessian matrix; minimization with respect to i 

I Identity matrix 

J Jacobian matrix 

Ki equilibrium constants 

m damping factor 

nt mole number in trial phase 

nc number of components 

ni mole numbers of component i (trial phase) 

ni0 mole numbers of component i (feed) 

P pressure 

P0 pressure calculated at the specifications 

Pini pressure used for initialization 

R universal gas constant 

S matrix in Eq. (32) 

S entropy 

Sg gradient norm 

Sd increment norm 

T temperature 

U internal energy 

u molar internal energy 

u' internal energy density 

v eigenvector of matrix S 

V volume 

v molar volume 

xi mole fraction of component i in the trial phase 

zi feed composition 

 

 

Greek letters 

 

αi variables for stability testing 

ij Kronecker delta 

 tolerance for convergence or switching 

i fugacity coefficient of component i  

i eigenvalues  
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i chemical potential of component i 

 spectral radius 

ξi independent variables 

i density function 

 matrix containing density function partial derivatives 

 

 

Subscripts 

 

i,j component index 

c critical 

spec specification 

0 specification or calculated at specifications 

 

 

Superscripts 

 

T transposed 

(k) iteration level 

(0) at initial guess 
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List of abbreviations 

 

BIP binary interaction parameter 

DC diagonal correction in modified Cholesky factorization 

EoS equation of state 

ESW early switch from SSI to Newton 

GM global minimum 

IG initial guess 

KWV  initial guess based on K-Wilson and volume (from Refs. [17,18]) 

LM local minimum 

LS line search 

LS1 first stage in line search 

LS2 second stage in line search 

LSW late switch from SSI to Newton 

PT at pressure and temperature specifications 

SM simplex-based initialization (from Ref. [8]) 

SM-B initialization at the barycenter of the simplex 

SM-M0, SM-M1, SM-M2 simplex-based initializations for a binary mixture 

SSI successive substitution 

SSI-LS damped successive substitution (with LS2) 

SWI switch just before an increase in the TPD function 

SW+ switch at a predetermined number of SSI or when damped SSI is too slow 

TPD tangent plane distance 

TS trivial solution 

UVN at internal energy, volume and moles specifications 

VTN at volume, temperature and moles specifications 
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Table 1 Specifications for Problems 1 to 4 

 Problem 1 Problem 2 Problem 3 Problem 4 

methane 10 0.95 15.1 10 

H2S 90 99.05 84.9 90 

Uspec (J) -756500.8 -1511407.6 -331083.7 -636468.0 

Vspec (cm3) 52869.0 4268.1 80258.1 9926.71 

 

 

Table 2 Stability testing for Problems 1 and 2 

 Problem 1 Problem 2 

Minimum GM LM GM LM* 

dspec 1.89146757 

151.83 

4.6788671 

23.42962 

291.91 T0, bar 

P0, bar -59.745731 

Pini, bar 4.6788671 20.47137 (L) 17.91359 (V) 

P, bar 2366.58 6.00789 18.4099 -59.7457 

d1, Kmol/m3 0.000409 0.104128 0.146112 0.222581 

d2, Kmol/m3 34.537211 0.564389 0.736148 23.207047 

D, Kmol/m3 -187.098487 -0.105279 -3.220157 0 

Dud, Pa/K 0.155562E+07 875.335897 26771.1 0 

*TS 

** P0<0 

 

 

Table 3 Number of Newton iterations for Problems 1 to 4 

 

IG KWV SM-B SM-M0 SM-M1 SM-M2 

Problem Type L Type V     

1 8* 22(2) 5 8* 14(2) 55(2) 28(3) 10 

2 5 8** 7** 7 11** 8(1) 23(2)** 10** 

3 7** - 4 6** 10 10(1)** 20(3) 10 

4 12* - 10 - 15 17(1) 41(1) 16 

In parenthesis the number of DCs in modified Cholesky factorization 

* Non-trivial LM 

** LM (TS) 
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Table 4 Eigenvalues of the matrix S for Problems 1 to 4 at stationary points 

 

Minimum GM LM 

Eigenvalues 1 2 1 2 

Problem 1 -.200813E+03 0.699809E-04 0.582622E+00 0.554222E-02 

Problem 2 0.284438E+00 0.186529E-02 -.149646E+01 0.547606E-01 

Problem 3 -.219507E+01 0.412332E-01 0.380485E+00 0.212337E-02 

Problem 4 0.994768E+00 -.314939E-01 0.996872E+00 -.210246E-01 

 

 

 

Table 5 Stability testing for Problems 3 and 4 

 

 Problem 3 Problem 4 

Minimum GM LM* GM LM 

dspec 1.24598016 10.073831 

T0, bar 297.84 361.80 

P0, bar 24.9895 100.9671 

P, bar 26.5829 24.9895 100.969 100.968 

d1, Kmol/m3 0.22235505 0.1881430016 1.0113723017 1.0004576945 

d2, Kmol/m3 23.79267457 1.0578371418 10.056713757628 8.4439162029 

D, Kmol/m3 -0.064347307 0 -0.0000608968 -0.00001886 

Dud, Pa/K 535.0 0 0.5063 0.1568 

* TS 

 

 

Table 6 Specifications for Problems 5 to 7 

 Problem 5 Problem 6 Problem 7 

ethane 10.8 10.8 10.8 

propene 360.8 360.8 360.8 

propane 146.5 146.5 146.5 

i-butane 233 233 233 

n-butane 233 233 233 

n-pentane 15.9 15.9 15.9 

water - - 14 

Uspec (J) -16272506.4 24858.2 −17008802.6 

Vspec (cm3) 479845.0 289380.3 401916.6 
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Table 7 Stability testing for Problems 5 to 7 

 

 Problem 5 Problem 6 Problem 7 

Minimum GM LM GM LM* GM LM 

dspec 2.084006294 

122.97 

3.45566025 

394.54 

2.52291146 

130.29 T0, bar 

P0, bar -43.36 42.0859 -61.644 

Pini, bar 6.97E-6 (V) 2.06E-4(L) 42.0859 5.84E-9 (V) 5.29E-4(L) 

P, bar 1232.70 0.050955 42.1502 42.0859 .455478E+04 0.040445 

d1, Kmol/m3 0.042228302 3.29406E-4 0.0464188935 0.037321131 1.201452E-5 2.747016E-4 

d2, Kmol/m3 5.64837166 3.10102E-3 1.739389886 1.24680225 8.190184E-5 2.305148E-3 

d3, Kmol/m3 1.494444482 9.06613E-4 0.719166319 0.5062542 3.111924E-6 6.564014E-4 

d4, Kmol/m3 1.758018919 3.86032E-4 1.262447753 0.80516885 3.886428E-9 2.495586E-4 

d5, Kmol/m3 5.50429999 2.93420E-4 1.305656500 0.80516885 1.003635E-7 1.845151E-4 

d6, Kmol/m3 0.612758967 3.82852E-6 0.10109903 0.05494499 3.92873E-18 2.086042E-6 

d7, Kmol/m3 - - - - 50.4619958 7.975678E-5 

D, Kmol/m3 -124.806081 -4.24546459 -0.001960984 0 -1187.17729 -5.694211 

Dud, Pa/K 1037695.18 35298.75 16.3045 0 9870738.10 47344.30 

*TS 

** P0<0 

 

 

Table 8 Eigenvalues of the matrix S for Problems 5 to 7 

 

Eigenvalues Min. 1 2 3 4 5 6 7 

Problem 5 GM -511.588 0.436296E-01 0.417882E-02 -1.E-13 -4.E-15 -2.E-16 - 

 LM 0.014811 0.164471E-05 -.237139E-06 1.E-16 -2E-16 4.E-16 - 

Problem 6 GM 0.950781 0.270723E-02 -.186751E-02 1.E-16 -2E-16 2.E-16 - 

 LM 0.989781 0.179493E-02 -.607685E-03 -4.E-16 -2E-16 2.E-16 - 

Problem 7 GM -9325.45 0.10000E+01. 881633E-02 8.E-07 -7.E-16 8.E-16 4.E-16 

 LM 0.010066 0.284044E-05 -.155243E-05 4.E-16 7.E-16 1.E-15 1.E-16 
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Table 9 Number of Newton iterations for Problems 5 to 7 

 

IG KWV SM-B 

Problem Type L Type V  

5 8*/22M 10* 10*/20M 10* 12 

6 10** - 6 - 13 

7 10* 12* 10*/15M 10* 75 

* Non-trivial LM 

** LM (TS) 

M Modified KWV initialization 

 

 

 

Table 10 Number of iterations for problems 1 to 8 

 

Ref.  Ref. [13]  Ref. [8]  This work  

Method Newtona SSI-Newtona 

0.1sw =  

SSI-Newtona 
510sw

− =  

Newtonb Newtonc Newtonc Newtonc 

IG  SM-B  SM-B SM-B KWV (V) KWV (L) 

Problem  Number of iterations     

1 - - 27+2* - 14 8* 5 

2 Failure 10+3 17+2 - 11** 5 7** 

3 - 185+18 478+11 - 10 7** 4 

4 - 850+5 3855+3* - 15 12* 10 

5 - - 5+2* - 12 8* 10*/23M 

6 23 294+4 478+2 - 14 10** 6 

7 - - 5+2* 124 76 10*/15M 10*/21M 

8  - 40+2* 71 10   

 

* Non-trivial LM 

** LM (TS) 

a standard Newton, variables di 

b Modified Cholesky decomposition, variables di 

c Modified Cholesky decomposition, variables αi 

M Modified KWV IG 
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Fig. 1 Convergence behavior for Problem 1 starting from SM-B IG. a) Euclidean norm; b) TPD 

function 
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Fig. 2 Convergence behavior of SSI for Problem 1 starting from all four SM-B IG and near the global 

minimum 
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Fig. 3 Phase envelope for Problems 1 and 4 
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Fig. 4 Convergence behavior for Problem 1 at T0=151.83 K and d0=0.1 Kmol/m3 starting from SM-B 

IG. a) Euclidean norm; b) TPD function 
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Fig. 5 Convergence behavior for Problem 1 at T0= 300 K and d0=4 Kmol/m3 starting from SM-B IG. 

a) Euclidean norm; b) TPD function 

 

 

 

 

 

 



 42 

 

1.E-14

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

0 20 40 60 80 100

Iteration

E
u

c
li

d
e
a
n

 n
o

rm

SSI

SSI-LS2

SSI-Newton (SW+)

SSI-LS2-Newton (ESW)

 
(a) 

 

-10

-5

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

Iteration

T
P

D
 f

u
n

c
ti

o
n

SSI

SSI-LS2

SSI-Newton (SW+)

 
(b) 

 

Fig. 6 Convergence behavior for Problem 1 at T0=151.83 K and d0=33.1 Kmol/m3 starting from SM-B 

IG. a) Euclidean norm; b) TPD function 
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Fig. 7 Convergence behavior for Problem 1 at T0= 250 K and d0=28 Kmol/m3 starting from SM-B IG. 

a) Euclidean norm; b) TPD function 
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Fig. 8 Convergence behavior for Problem 1 at T0= 250 K and d0=30 Kmol/m3 starting from SM-B IG. 

a) Euclidean norm; b) TPD function 
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Fig. 9 Convergence behavior for Problem 1 at T0= 370 K and d0=20 Kmol/m3 starting from SM-B IG. 

a) Euclidean norm; b) TPD function 
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Fig. 10 Phase envelope for Problems 5 and 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 47 

 

1.E-15

1.E-13

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

0 2 4 6 8 10 12 14

Iteration

E
u

c
li

d
e
a
n

 n
o

rm

SSI

Newton

SSI-Newton LSW

SSI-Newton ESW

 
(a) 

 

-140

-120

-100

-80

-60

-40

-20

0

0 2 4 6 8 10 12

Iteration

T
P

D
 f

u
n

c
ti

o
n SSI

Newton

 
(b) 

 

Fig. 11 Convergence behavior of SSI and direct Newton method for Problem 5 starting from SM-B 

IG. a) Euclidean norm; b) TPD function 
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Fig. 12 Convergence behavior of direct Newton and SSI methods for Problem 7 starting from SM-B 

IG. a) Euclidean norm; b) TPD function 
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Fig. 13 Convergence behavior of direct Newton method for Problem 7 starting from KWV IG (type 

V). a) Euclidean norm; b) TPD function 

 

 


