
HAL Id: hal-03799428
https://hal.science/hal-03799428

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hydrological classification by clustering approach of
time-integrated samples at the outlet of the Rhône

River: application to ∆14C-POC
Nathan Bodereau, Adrien Delaval, Hugo Lepage, Frederique Eyrolle, Patrick

Raimbault, Yoann Copard

To cite this version:
Nathan Bodereau, Adrien Delaval, Hugo Lepage, Frederique Eyrolle, Patrick Raimbault, et al.. Hydro-
logical classification by clustering approach of time-integrated samples at the outlet of the Rhône River:
application to ∆14C-POC. Water Research, 2022, 220, pp.118652. �10.1016/j.watres.2022.118652�.
�hal-03799428�

https://hal.science/hal-03799428
https://hal.archives-ouvertes.fr


1 
 

Hydrological classification by clustering approach of time-integrated 1 

samples at the outlet of the Rhône River: application to Δ14C-POC 2 

Nathan Bodereau1*, Adrien Delaval1,2, Hugo Lepage1, Frederique Eyrolle1, Patrick Raimbault3, 3 

Yoann Copard4 4 

1 
Institute for Radioprotection and Nuclear Safety (IRSN), PSE-ENV/LRTA, PSE-ENV/LMRE, BP 3, 13 115, Saint-5 

Paul-lez-Durance, France 6 

2
Adict Solutions, Campus INP ENSAT, Avenue de l’Agrobiopole, BP 32 0607, 31 326 Castanet-Tolosan, France

 
 7 

3 Aix Marseille Université, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, 8 

13288, Marseille, France 9 

4
 Normandie Univ, UNIROUEN, UNICAEN, CNRS, M2C, France, 76000 Rouen, France 10 

* Corresponding author. 11 

E-mail address: bodereau.nathan@gmail.com 12 

 13 

Highlights 14 

 The classification of the Rhône River hydrology was obtained by fuzzy C-mean logic  15 

 A 5-Cluster configuration is efficient to characterize Rhône River hydrology 16 

 ∆
14

C-POC distribution among each cluster confirms the main assessments in literature 17 

 This approach allows to identify the contribution of each hydrology to samples 18 

 19 

 20 
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Abstract 21 

Within the framework of the Rhône Sediment Observatory, monthly time-integrated 22 

samples have been collected by Particle Traps in the last decade to monitor particulate 23 

contaminants in the Rhône River and its main tributaries. In this watershed with a contrasted 24 

hydrology, a clustering approach is used to classify the samples according to the main 25 

hydrological events. This approach has been applied to riverine particulate organic 26 

radiocarbon signatures (Δ14C-POC) that are strongly affected by the origin of the material 27 

and the occurrence of nuclear power plant releases. Suspended Particulate Matter (SPM) 28 

samples were collected near the outlet of the Rhône River and analysed for 14C along with 29 

particulate organic carbon (POC), chlorophyll a and tritium contents to confirm Δ14C-POC 30 

origins. Cluster Analysis, coupled to Principal Component Analysis, were performed based on 31 

monthly average water discharges of the Upper Rhône River and the five main tributaries. 32 

The classification obtained by fuzzy C-mean logic of the Rhône River hydrology into 5 clusters 33 

is similar to that already observed in the literature with Mediterranean/Cevenol flood, 34 

oceanic pluvial flood, nival flood, low-water level and baseflow clusters. The contribution of 35 

each cluster among the Δ14C-POC values demonstrate the complexity of hydrological 36 

classification of time-integrated samples. First, the samples with a unique and significantly 37 

dominant cluster are easily explained with negative Δ14C-POC values observed in the flood 38 

clusters due to input of 14C-depleted material from soil or rock weathering, and positive 39 

values observed in the low-water level and baseflow clusters due to anthropogenic input by 40 

nuclear industry. Second, samples that present a homogeneous mixture between several 41 

clusters demonstrate the occurrence of different hydrological events during the sampling 42 

periods. This tool appears as a solution to estimate the contribution of each hydrological 43 

event classification in time-integrated samples. 44 
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Keywords : Hydrological distribution, Cluster Analysis, Radiocarbon, Particulate Organic 45 

Carbon. 46 

1. Introduction 47 

Rivers are unquestionably links between the Earth system reservoirs as they connect 87 % of 48 

the Earthland surface to the oceans (Meybeck, 1982). They are also the receptacle of 49 

pollutants such as organic and inorganic micropollutants due to agricultural, industrial, 50 

domestical and mining activities (Meybeck, 2003) but also artificial radionuclides that are 51 

released by nuclear industries (Eyrolle et al., 2020).  52 

Suspended Particulate Matter (SPM) is one of the aquatic fractions and belongs to 53 

sedimentary systems with processes of particles burying and remobilisation within river 54 

systems entering in the long-term cycle (Leithold et al., 2016). Photosynthesis, microbial 55 

oxidation, floodplain sediment remobilisation, sediment introduction are so many processes 56 

that can affect pollutant composition across the river (Meybeck et al., 2003; Walling et al., 57 

2003). Thus, monitoring riverine SPM dynamic is of a great challenge in the perspective of  58 

health risk assessment, ecological restauration or river management (Walling et al., 2003). 59 

The development of network monitoring of SPM and pollutant fluxes has been performed 60 

over these last decades using SPM discrete sampling (Horowitz et al., 2001) but their 61 

frequencies of acquisition are still be constrained to event with a fixed periodicity, such as 62 

flood, and variations of SPM concentration (CSPM) that can occur between samples are often 63 

omitted (Misset et al., 2019) . 64 

The deployment of Particle Traps (PT) has been described as a serious alternative from direct 65 

sample as they are time-integrative, low cost and easily handled (Phillips et al., 2000; Schulze 66 

et al., 2007). However, they can cover periods that might integrate several hydrological 67 
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events and affect our knowledge on contaminant dynamic (Poulier et al., 2019). Thus, 68 

constraining hydrosedimentary behaviours of river systems using time-integrated sample is 69 

challenging. Multivariate analysis and clustering to characterize catchment seasonal 70 

hydrology could be linked with time-integrated sample. The Principal Component Analysis 71 

(PCA) coupled to Clustering Analysis (CA) has been widely used in Earth and Environmental 72 

sciences (e.g., Delaval et al., 2021, Raux et al., 2011). It is also an usual method for data 73 

mining when it comes to identify groups and classify individuals . However, many algorithms 74 

exist and present different results and convergence speeds (Jain et al., 1999). Fuzzy c-mean 75 

algorithms are usually considered as reliable algorithms in environmental sciences (Delaval 76 

et al., 2021, Kim et al., 2011). Their success is due to their simple geometric criteria and their 77 

robustness without any prior information on the cluster structure such as possible overlap or 78 

sphericity (Kamel and Selim, 1994). In addition, the fuzzy approach provides cluster 79 

membership degrees (probability for an observation to belong to a cluster) instead of sharp 80 

cluster boundaries. As a result, the ambiguity of the data can be preserved and these 81 

probabilities can be used later for post treatments or deeper interpretations (Kim et al., 82 

2011). 83 

The Rhône River is one of the major sources of freshwater and SPM to the Mediterranean 84 

Sea (Milliman and Farnsworth, 2011). It is also a strongly anthropized catchment where 85 

inorganic and organic pollutants are monitored for several decades  (e.g., Delile et al., 2020; 86 

Eyrolle et al., 2018; Launay et al., 2019; Ollivier et al., 2011; Poulier et al., 2019; Radakovitch 87 

et al., 2008). Within the Rhône Sediment Observatory (OSR) framework, SPM are collected 88 

every month on the Rhône River and its main tributaries using PT (Lepage et al., 2022). While 89 

the results demonstrate a strong link between the contaminant concentrations and the 90 

hydroclimatic heterogeneities of this catchment including different tributary regimes (e.g., 91 
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Delile et al., 2020; Poulier et al., 2019), the occurrence of different events in a same time-92 

integrated sample may lead to a bias in interpretation.  93 

In this study, we propose to classify time-integrated samples according to hydrological 94 

events using a clustering approach and to investigate the distribution of the clusters among 95 

the concentrations of ∆14C (Carbon 14 reported to 1950 standard) in Particulate Organic 96 

Carbon (POC). Here, the challenge is that while the hydrology of the Rhône River was already 97 

classified based on hourly or daily water discharge values by previous studies (e.g., Mourier 98 

et al., 2014; Ollivier et al., 2011; Poulier et al., 2019; Radakovitch et al., 2008; Zebracki et al., 99 

2015), time-integrated samples, that can cover periods from two weeks to one month, might 100 

integrate several hydrological events (Delile et al., 2020; Poulier et al., 2019). The hydrology 101 

of the Rhône River main tributaries during time-integrated sampling (164 samples) has been 102 

classified with a fuzzy-C mean algorithm. Carbon-14 (14C), expressed as ∆14C, in riverine POC, 103 

is a radioisotope occurring naturally in the upper parts of the atmosphere and from 104 

anthropogenic sources such as atmospheric nuclear weapon tests (1945-1990) or releases of 105 

nuclear industries (Eyrolle et al., 2018). The 14C-POC is selected here because its dynamic in 106 

the Rhône River is well documented:  14C-labelled POC by nuclear industry releases during 107 

low-water level is opposite to depleting 14C-POC by introduction of 14C-dead Carbon, during 108 

floods, coming from rock or soil weathering (Copard et al., 2018 ; Eyrolle et al., 2018; in 109 

review). Geochemical indicator distributions have been then discussed such as POC content 110 

in SPM (%POC) and Chlorophyll a content in POC (%Chl.a) to study the distribution of the 111 

clusters among the ∆14C-POC. To identify potential artificial 14C releases, tritium 112 

concentrations collected in water masses were also investigated. 113 
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2. Material and methods 114 

2.1. Study area 115 

The Rhône River basin covers a 98 500 km² area (Figure 1), with a river stream  length of 816 116 

km. The watershed boundaries are delimited with the presence of the Alps , Jura, Cevennes 117 

and Vosges mountains lidding to a string topographic gradient and hydroclimatic 118 

heterogeneities (Olivier et al., 2009). It encompasses tributaries with contrasted hydrologies 119 

:  120 

i) oceanic pluvial regime observed at the North of the watershed in winter (Saône and Ain 121 

rivers); 122 

 123 
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 124 

Figure 1 – Map of the Rhône watershed with the delimitations of main tributary basins discussed in this study. 125 

The locations of SORA and Jons stations, the tributary stations and the nuclear industries are also added. 126 
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 127 

ii) flash Mediterranean rainfalls, coming from Mediterranean Sea, and generally observed in 128 

autumn, that occur in the Southeastern part of the watershed (Durance, Drôme and Ouvèze 129 

rivers); 130 

 iii) flash Cevenol rainfalls that conduct to the same sharp flow variation than Mediterranean 131 

floods but occur early in fall season and are more located around the Cevennes mountains 132 

(Ardèche, Cèze and Gardon rivers); 133 

iv) alpine regimes linked to the snow melt and generally occurring in Alps tributaries (Arve, 134 

Fier, Isère and Durance rivers) during spring; 135 

 v) generalized floods that encompass all flood events (Delile et al., 2020, Pont et al., 2002, 136 

Sadaoui et al., 2016).  137 

In addition, fourteen nuclear reactors and various nuclear industries are distributed along 138 

the Rhône River making it as one of the most nuclearized river in the world (Eyrolle et al., 139 

2020). 140 

2.2. Sampling methodology 141 

Samples were collected at the SORA monitoring station that is located at the outlet of the 142 

Rhône River, 47 km upstream from the mouth, and has been designed to monitor river 143 

inputs into the Mediterranean Sea (Lepage et al., 2022). It is located on the “Grand Rhône” 144 

branches where 90% of the water and sediment fluxes of the Rhône River are transiting, 145 

while the remaining 10% transit through the “Petit Rhône” (Pont et al., 2002). Water intake 146 

is performed on a floatable structure at 7 m from the bank and 0.5 m under the surface 147 
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regardless the water discharge and continuously supplies  the sampling devices (Lepage et 148 

al., 2022). 149 

The SPM are collected over a two-week to one-month period in PT, designed with the same 150 

characteristics as described by Schulze et al. (2007), deep-frozen (-18°C), freeze-dried, and 151 

finally homogenized by grinding in an agate mortar. SPM samples are stored in the dark and 152 

at ambient temperature before analysis (Lepage et al., 2022). A total of 164 samples were 153 

collected at SORA from 2007 to 2020 and ∆14C-POC was measured among 54 of them. 154 

POC and Chlorophyll a are separately measured in SPM filtered in daily composite water 155 

samples. Sampling is achieved using a cooled automatic water sampler that fills a da ily bottle 156 

with 150 mL every 90 minutes to constitute a composite sample each day (Eyrolle et al., 157 

2020). The sampling frequency is reduced to every 30 minutes to constitute a composite 158 

sample every 4 hours when water discharge is greater than 3000 m3 s-1. Samples are 159 

poisoned with HgCl2 and kept at 5°C until they are filtered on a 0.7 Whatman pre-160 

conditioned glass fiber filters GF/F (dried at 500°C for 4 hours). The samples are then frozen, 161 

respectively, until laboratory analysis (Lepage et al., 2022). For tritium analysis, a few 162 

millimeters of water is collected per 80 minutes to obtain a monthly composite sample. 163 

Water is then filtered through 0.22 µm GF/F before analysis (Eyrolle et al., 2020). 164 

 165 

2.3. Principal Component Analysis (PCA) and Cluster Analysis (CA) 166 

2.3.1. Input data 167 

With the perspective to trigger all hydrologic regimes occurring on the Rhône according to 168 

the literature, the water discharges (Q) of the five main tributaries (Saône, Isère, Ardèche, 169 

Durance and Gardon rivers) as well as the measures conducted at the Jons monitoring 170 
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station, considered as the reference station to evaluate water discharge from the Upper 171 

Rhône River, were used to define the clusters (Figure 1). For those stations, daily averaged 172 

water discharge data are continuously measured (Thollet et al., 2021) at the exception of the 173 

Upper Rhône station (Jons) where Q is estimated from a 1D hydrodynamic model with water 174 

discharges of upstream main tributaries as input data (Launay et al., 2019). 175 

Mean water discharge values (Qmean) for each tributary and Jons monitoring stations were 176 

estimated from the start to the end of each 164 PT samples and submitted in PCA. We 177 

assumed that this is enough to characterized tributary hydrograph shapes for each period of 178 

acquisition (Hannah et al., 2000, Ouyang et al., 2010).  179 

In order to better interpret the results of the PCA and the clustering, hydrological data (Q 180 

and CSPM) at the SORA station was also used so as the CSPM of the tributary stations if 181 

available. At SORA, daily averaged water discharge data are continuously measured (Thollet 182 

et al., 2021) while the SPM concentration (CSPM) at SORA station is measured by time-183 

integrating weighing of daily automatic samples (AFNOR, 2005). At tributaries, averaged 184 

daily CSPM is estimated from turbidity and CSPM rating curves with 10-minute frequency of 185 

acquisition and monthly automatic water samples (Lepage et al., 2022). A mean value (CSPM-186 

mean) was calculated for each PT sample. 187 

2.3.2. PCA and CA algorithms 188 

The PCA has been performed using R programming language including the R packages 189 

“FactoMineR” for PCA (Husson et al., 2010), “e1071” (Meyer et al., 2021) and “fclust” for 190 

fuzzy c-mean algorithms (Ferraro et al., 2019). The goal of PCA is to describe a data set using 191 

a smaller number of uncorrelated variables, while retaining as much information (variance) 192 

as possible. The reduction is achieved by transforming the data into a new set of continuous 193 
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variables named the principal components. The reduction of dimensionality provides a 194 

framework to visualize the Rhône hydrology. The essential of the information being on the 195 

first components (Husson et al., 2010), PCA is usually used as a pre-processing tool before 196 

clustering analysis (Delaval et al., 2021).   197 

Then, clustering algorithms such as c-mean algorithms (crisp or fuzzy) classify individuals 198 

according to their variable similarities and allows to identify scenarios and trends in river 199 

hydrology and hydrochemistry. This is done by randomly defining i centroids in the same 200 

coordinate systems as the individuals. Each individual x (total of k) is assigned to the closest 201 

centroid center Ci. The barycenter of each subgroup is then calculated and becomes the new 202 

centroid. This procedure converges when the centroids are no longer moving. In addition, 203 

the fuzzy alternative introduces two new parameters. The first one is the membership 204 

coefficient. This membership represents how closely the kth data object (xk) is located from 205 

the ith Cluster center. Membership score indicates the degree (in %) to which a sample 206 

belongs to each cluster. Each sample is assigned to the cluster with the highest membership 207 

among the others. 208 

The second parameter m is the fuzzifier. It is greater than 1 and usually dependent on the 209 

dataset structure because it represents the degree of overlap of the clusters (Klawonn and 210 

Höppner, 2003). When m is close to one, the solution of the fuzzy c-means algorithm is 211 

similar to the one of c-means. Elements are simply assigned to only the nearest cluster and 212 

membership to other clusters is nearly existent. When m is large, fuzziness is also large and 213 

clusters are blurred which can be a more accurate description of the system. More details 214 

about c-mean algorithms are provided in Bezdek et al., (1988).  215 
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The best combination of {C, m} parameters is not determined by the algorithm. One 216 

approach is to run different simulations with different {C,m} pairs and to check the efficiency 217 

of clustering with a quality criteria (Ramze Rezaee et al., 1998). River hydrology related to 218 

clustering studies have a number of clusters falling in the interval [2,8] (Delaval et al., 2021; 219 

Javed et al., 2021; Ouyang et al., 2010). Our number of ∆14C-POC observations being limited 220 

(n=54), we are expecting 8 clusters at most (Chaimontree et al., 2010) and we will set the 221 

test interval for the number of clusters to [2,8]. 222 

The fuzzifier m can be in theory any real number between 1 and ∞. m is usually set to 2 by 223 

default but can be any real number between 1 and ∞ usually decreasing with dataset size 224 

(Klawonn and Höppner, 2003). In our tests, we will take 1 as the lower limit for m. The upper 225 

limit is m=3 according to the empirical threshold equation based on the length and 226 

dimensions of the dataset proposed by Schwämmle and Jensen (2010). As a result, we will 227 

perform clustering on the interval [2,8] for C, the number of clusters and on the interval ]1,3] 228 

for m the fuzzifier.  229 

2.4. Analyses 230 

2.4.1. Carbon-14 measurement 231 

The 14C measurement in SPM are performed using a 3 MV NEC PELLOTRON Accelerator Mass 232 

Spectrometry (Artemis AMS facility, Dumoulin et al., 2017). Briefly, SPM samples are firstly 233 

decarbonated with 0.5 M HCl, placed in Pyrex sealed tubes and calcined (850°C for 5 hours). 234 

CO2 is collected into a glass line under vacuum (< 10-5 mbar) and cryogenically trapped via 235 

liquid nitrogen. The sample CO2 is reduced with hydrogen and iron powder as a catalyser 236 

following the protocol of Voegel et al., (1984) and pressed into an aluminium cathode (1 mm 237 

hole diameter) to form a graphite target.  238 
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In the AMS, the target is submitted to high bombing with Caesium sputter ion sources and 239 

sequentially sent, through a 90° magnet, to an accelerator tube. Here, Carbon isotopes are 240 

stripped in an argon gas and distinguished through a 45° analyser according to their weight. 241 

14C ions are counted in an ionization chambers (Cottereau et al., 2007).   242 

After AMS counting, the 14C/12C ratio R is normalized (Rn) to a δ13C of –25‰ in order to take 243 

into account carbon isotopic fractionation (Stuiver and Polach, 1977) . A 1950 standard Rs 244 

(i.e., oxalic acid II, a crop of sugar beet) is also incorporated in the sample batch and 245 

normalized as Rsn. Following Stuiver and Polach (1977) formulation, Δ14C is privileged in 246 

order to take into account radiodecay (Equation 1) with y, the year of measurement and the 247 

Godwin’s mean life (8267) estimated from soil and water samples (Godwin et al., 1962). 248 

 249 

  
    (

  

   
   (

      
    

)
  )         Equation 1 250 

Carbon, after the 1950 standard, has a ∆14C up to 0 ‰ and could integrate the contribution 251 

of anthropogenic sources such as the effects of thermonuclear weapon tests (1945-1990) or 252 

releases of nuclear industries. Values reaching -1000‰ are linked to material old of up 253 

50 000 years BP (Trumbore et al., 2016).  254 

2.4.2. Particulate nutrient and tritium analyses  255 

The POC concentration measurements were carried out at the Mediterranean Institute of 256 

Oceanography (M.I.O.) and were performed on daily decarbonated SPM by using high 257 

combustion procedure (950°C) on a Carbon Nitrogen (CN) Integra mass spectrometer 258 

(serCon Ltd, Crewe, UK) as described in Raimbault et al. (2008). Chlorophyll a measurement 259 

is conducted through fluorimetry methodology after its extraction with methanol according 260 
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to Raimbault et al. (2004). Tritium analyses (Bq l-1) were carried out at the LMRE/IRSN by 261 

liquid scintillation counting (AFNOR, 2015). 262 

3. Results  263 

3.1. Data description 264 

The distributions of environmental data treated by CA are available in Dataset S1. The Qmean  265 

and CSPM-mean histories are respectively presented in Figures 2.a. and 2.b. and ∆14C-POC 266 

values in Figure 2.c.267 

268 
Figure 2 - Distribution of a.) Qmean (n = 164), b.) CSPM-mean (n = 163) and c.) ∆

14
C-POC values (n = 54) over the 269 

2007-2020 period. 270 

 271 

 272 

 273 
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 274 

During the whole 2007-2020 period, for all 164 samples, Qmean, at Arles varied between 558 275 

and 3 668 m3 s-1 (mean= 1 565 m3 s-1
, s.d. = 687 m3 s-1) while CSPM-mean varied between 2.9 mg 276 

l-1 and 879.7 mg l-1 (mean= 68.3 mg l-1, s.d. = 117.4 mg l-1). ∆14C-POC signatures are ranged 277 

from -742 to 699 ‰ (mean = -84.5 ‰, s.d. = 346 ‰). The signatures are unequally 278 

distributed over the period (Figure 2.c.) because ∆14C-POC analyses in SPM have been 279 

continuously performed since 2014 despite some exceptional measurements performed 280 

around 2009 and 2012 (Eyrolle et al., 2018).  281 

The average POC content in SPM (%POC) is estimated between 1.03% and 10.37% (mean= 282 

3.95 %, s.d. = 1.73 %). The average chlorophyll a content in POC (%Chl.a) is varying between 283 

0.01% and 2.15 % (mean = 0.34 %, s.d. = 0.42 %), while tritium concentrations in water 284 

between 0.4 and 20.7 Bq l-1 (mean = 6.1 Bq l-1). 285 

3.2. Principal Component Analysis  286 

The PCA transformed the variables (mean Q for the five tributaries and Jons) into six vectors 287 

(Figures 3a and b).  288 

 289 
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290 
Figure 3 – Principal component analyses 1 and 2 of the dataset. The PCA were conducted on the mean of the 291 

water discharge of the five main tributaries of the Rhône River (Saône, Isère, Ardèche, Gardon and Durance 292 

rivers) and the station of Jons that monitors the Upper Rhône River. Clusters are highlighted by colours. 293 

 294 

 295 

The F1 axis explains 43.2 % of the variance of the dataset and all tributary vectors are 296 

oriented toward the right side of the PCA. The F2 axis, explaining 31.4% of the variance, 297 

distinguishes, from the top to the bottom, southern tributaries (Ardèche, Gardon and 298 

Durance rivers) and northern ones (Saône, Isère and Upper Rhône rivers) (Figure 3.a.). 299 

Through the F1 × F2 axis configuration (PCA1), the observations are concentrated around the 300 

0 axis on the left side of F2 while they are scattered on the right side. Through the F2 × F3 301 

axis (14.2% of the variance) configuration (PCA2), the Isère and Durance vectors are located 302 

on the top side of the PCA whereas other vectors are located on the bottom side. As 303 

observed for PCA1, Ardèche and Gardon vectors are grouped. The F4 axis explains 6.6 % of 304 

the variability and separates Durance and Saône rivers from other tributaries (Suplementary 305 

information, Figure S1). Through F3 × F4 axis configuration (PCA3), samples are centred and 306 

staggered across the F4 axis. 307 
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 308 

3.3. Cluster number assessment 309 

The fuzzy clustering was performed with the first four components of the PCA in order to 310 

cumulate an explained variance of up to 95 % (Figure S2). The performances were estimated 311 

through Xie and Beni index (XB) (to minimize) according to different {C,m} simulations (Table 312 

S1). The five-cluster configuration showed the lowest score (m = 13, XB = 0.296) and will be 313 

retained for the remainder of this work.  314 

3.4. Hydrodynamic distribution for each cluster 315 

Respectively, 12.1 %, 20.1 %, 11.6 %, 31.2 % and 25.0 % of Qmean are distributed among 316 

clusters 1, 2, 3, 4 and 5. The Qmean and CSPM-mean distributions at Arles, Jons and tributaries 317 

are respectively available in Tables S2 and S3. In both PCA1 and PCA2, Cluster 1 includes 318 

Ardèche and Gardon vectors (Figures 3a and 3b). For clusters 2 and 3, the results are 319 

contrasted. In PCA1, Cluster 2 integrates the three northern stations while in PCA2 the Isère 320 

vector is excluded. For Cluster 3, only the Isère vector is included in PCA2 while the Saône 321 

vector is included in PCA1. Finally, in both configurations, the Durance vector is located 322 

between clusters 1 and 3. 323 

Clusters 1, 2 and 3 are characterized by a maximum Qmean above the daily flood threshold at 324 

Arles (3000 m3 s-1) with high standard deviations (up to 400 m3 s-1). For clusters 1 and 3, 325 

similar results were observed for the CSPM-mean with average concentrations close to 200 mg l-326 

1 at Arles and high values in the Ardèche (mean CSPM-mean = 27 mg l-1), Durance (mean CSPM-327 

mean = 661 mg l-1) and Gardon (mean CSPM-mean = 58 mg l-1) rivers for Cluster 1 and Isère (mean 328 

CSPM-mean = 333 mg l-1) and Durance (mean CSPM-mean = 498 mg l-1) rivers for Cluster 3. For 329 
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Cluster 2, while the CSPM-mean observed at Arles (mean CSPM-mean = 77 mg l-1) are lower than 330 

clusters 1 and 3 (mean CSPM-mean > 150 mg l-1).  331 

Located on the left side of the PCA1, Cluster 4 presents lowest values of Qmean with a mean 332 

at Arles of 849 m3.s-1. Cluster 4 is also characterized by the lowest CSPM-mean at Arles and for 333 

all tributaries. Cluster 5 is centred between F1 and F2 with a predominance of the Isère and 334 

Durance rivers (Figure 3b) and also of the Saône River but their discharges remain lower 335 

than those observed in clusters 2 and 3. Cluster 5 presents moderate CSPM-mean at Arles 336 

(mean= 33 mg l-1) with low variability and moderate increases of the Durance and Isère 337 

rivers CSPM-mean (77 and 54 mg l-1 respectively). 338 

Percentages of occurrence for calendar months are presented in Figure 4. The samples for 339 

Cluster 1 are generally centred in from October to December (maximum of 47%), February 340 

(25%) and March (23%). Cluster 2 samples are mainly centred from December to April 341 

(maximum of 67%). Cluster 3 is mainly observed from April to June (up to 46%). Cluster 4 342 

samples are generally observed from July to November (up to 85%). Finally, Cluster 5 mainly 343 

occurs from March to August with a peak in July (58%). 344 
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Figure 4 – Inter-annual occurrences of each cluster among the 164 samples. Flood delimitations were estimated from Delile 345 

et a l ., 2020. 346 

 347 

3.5. ∆14C-POC distribution among the clusters 348 

Distribution of ∆14C-POC among the clusters are presented in Figure 5 where each value was 349 

associated to the cluster with the highest contribution (Figure 6). While ∆14C-POC values 350 

cover all hydrological events, the number of ∆14C-POC data is unequally distributed among 351 

clusters (7, 7, 8, 12 and 20 respectively).  352 

 353 
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 354 

Figure 5 – ∆
14

C-POC (n=54) distribution among the 5 clusters over the 2007-2020 period. Each value was associated to the 355 

cluster with the highest membership score. Dotted horizontal line represents the year 1950 for which the va lue i s  0 ‰ (cf. 356 

equation 1).  357 

 358 

 359 

Cluster 1, Cluster 2 and Cluster 3 include the lowest values with a median of -223, -367 and -360 

487‰. Cluster 2 includes the largest distribution of ∆14C-POC signatures from - 613 to 655 ‰ 361 

while clusters 1 and 3 are concentrated between -614 and 142 ‰ and -742 and -40‰. Most 362 

of the values of the Cluster 4 are above 0‰ with a median of 174 ‰, excepted for three 363 

negative values (-420, -354 and -185 ‰). The Cluster 5 is equally centred around 0‰ with a 364 

median of -24 ‰.  365 

The dominant or attributed cluster in each sample is characterized by its membership degree 366 

ranging from 25.8% to 84.6% (Figure 6). A few samples show a homogeneous cluster 367 

membership score distribution highlighting that they could belong to another cluster than 368 

the attributed one. For example, the sample with the highest ∆14C-POC in Cluster 3 (-40‰) 369 

presents membership degrees ranging from 13.3 to 26.7 %. Respectively 29%, 57%, 25%, 370 
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75% and 35% of the samples have an appurtenance degree to their attributed cluster higher 371 

than 50% in Cluster 1 to 5. 372 

 373 

 374 

Figure 6 – Distribution of cluster memberships for ∆
14

C-POC values (n = 54) among the classification. Each 375 

membership score is expressed in %.  376 
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 377 

 378 

 379 

3.6. Geochemistry distribution 380 

The ∆14C-POC relationships with CSPM-mean, average %POC, %Chl.a and tritium concentrations, 381 

among the 5 clusters, are presented in Figure 7 . Overall, ∆14C-POC shows positive 382 

relationships with %POC and a negative relationship with CSPM-mean. High ∆14C-POC are 383 

correlated with high %Chl.a (up to 0.6 %) and high tritium concentrations (up to 5 Bq l-1). 384 

Cluster 1, 2 and 3 gather low %POC while clusters 4 and 5 present higher and more variable 385 

records. Highest %POC, %Chl.a. and tritium records are observed for Cluster 4 and Cluster 5 386 

and some exceptions in Cluster 2. 387 

 388 

Figure 7 – ∆
14

C-POC relationships with a.) CSPM-mean, b.) average %POC, c.) average %Chl.a. and d.) tritium 389 

concentrations according to the cluster. 390 
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 392 

 393 

 394 

4. Discussion 395 

4.1. Characterisation of the clusters  396 

4.1.1. PCA interpretation 397 

The PCA1 made with time-integrated samples is similar to the one given by Sadaoui et al., 398 

(2016) with daily water discharge (Figure 3a). The F1 axis contains the information of water 399 

discharge variation for all tributaries while F2 axis separates the northern tributaries from 400 

the southern tributaries that have contrasted hydrologies in accordance with Pont et al., 401 

(2002). In PCA 2, F3 axis explains the temporal variability (spring vs autumn) and opposes 402 

alpine tributary hydrology to other hydrologies (Figure 3b).  403 

4.1.2. Cluster hydrodynamic characterisation 404 

Despite the use of integrated samples (and associated hydrological data) in this study that 405 

may aggregate several hydrological events, the five clusters defined are similar to the 406 

hydrological classification of the Rhône River made from daily water discharge (Pont et al., 407 

2002, Sadaoui et al., 2016).  408 

Cluster 1 is linked to southern tributary vectors (Figure 3a) and gathers southern flash-flood 409 

events (Pont et al., 2012, Eyrolle et al., 2012, Delile et al., 2020). No distinction between 410 

Cevenol and Mediterranean floods are proposed by the algorithm. The high standard 411 

deviations of average Qmean and CSPM-mean highlight sharp variabilities. In the literature, 412 

southern events contribute the most on large export of SPM at the Rhône River scale. Eyrolle 413 
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et al., (2012) or Copard et al., (2018) demonstrated that, the Durance River could contribute 414 

to sediment load from < 1% to 80% during Mediterranean flood events. However, numerous 415 

studies have also estimated sediment budgets using geochemical methods and agree on the 416 

exceptional but non-negligible contribution of the Cevenol floods, that could occasionally 417 

reach more than 40% (Ollivier et al., 2011; Radakovitch et al., 2008; Zebracki et al., 2015).  418 

Cluster 2 gathers oceanic regime with Qmean distribution at Arles occurring during winter and 419 

the activation of the Saône and Upper Rhône rivers. The contrast between average CSPM-mean 420 

and Qmean is explained by the main roles of these two tributaries as water suppliers. At the 421 

interannual scale, their contribution on water fluxes reaches more than 60% while their 422 

contribution in term of SPM (11 and 6 % respectively) are lower (Delile et al., 2020; Poulier 423 

et al., 2019; Sadaoui et al., 2016).  424 

Cluster 3 observations occur during the end of spring season (Figure 4) and gather nival 425 

flood regime with net predominance of alpine rivers (Isère and Durance rivers) (Figure 3b). 426 

Their contribution can exceed 80 % in water fluxes and over 100% in SPM fluxes (Delile et al., 427 

2020, Poulier et al., 2019).  428 

Cluster 4 observations gather low-water level, during summer (Figure 4), with lowest Qmean 429 

and CSPM-mean. During such period, the production of autochthonous organic matter is 430 

increased as observed with the increase of %POC and %Chl.a  (Figure 4).  431 

Cluster 5, located at the center of the PCA1 (Figure 3.a.), gathers baseflow regime with 432 

medium Qmean and CSPM-mean values. It occurs over spring and summer seasons (Figure 4) and 433 

the slight increases of Qmean and CSPM-mean in the Durance and Isère rivers indicate nival 434 

episodes that might happen during these periods. As for Cluster 4, high values of %POC and 435 

%Chl.a indicate a production of autochthonous POC.  436 
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4.2. Classification of ∆14C-POC 437 

The ∆14C-POC depletion observed for clusters 1 and 3 confirms the main knowledge 438 

presented in the literature about 14C dynamic in the Rhône (Copard et al., 2018, Eyrolle et 439 

al., 2018; Eyrolle et al., in review). Indeed, the increase of CSPM-mean and the decrease of 440 

%POC (Figure 7) confirm the organic matter dilution with particulate mineral fractions by the 441 

weathering of carbonate rocks (Higueras et al., 2014). Then, rocks such as i) Black Marls, 442 

composed bare Mesozoic Badlands located among the French alps arc (Graz et al., 2011) or 443 

ii) Coal mines observed in slag heaps of Cevennes or mining operation sites in Briançonnais 444 

area of Alps, containing high contents of organic matter old of up 50 000 years BP. Because 445 

they are characterized by low vegetation density and violent hydroclimatic conditions, they 446 

could be considered as main sediment hotspots and could release consequent amount of 447 

organic matter (Eyrolle et al., in review). However, their contribution in sediment budget at 448 

the Rhône scale still poorly documented, excepted for the Durance River (Copard et al., 449 

2018). Another source of such 14C-depleted material might be the remobilisation of aging 450 

sediment POC trapped in flood plain across the main network (e.g., Leithold et al., 2016).  451 

The case of Cluster 2 is different as the oceanic floods (Saône and Upper Rhône rivers) are 452 

characterized by a low level of CSPM-mean. The range of ∆14C-POC values and their disparity 453 

around 0 (Figure 5) can be explained by the fact that the SPM sampled for the measurement 454 

of ∆14C-POC do not specifically come from these two tributaries. Since the samples are 455 

integrated over a period of about one month, they are very sensitive to floods that generate 456 

a lot of material or to anthropogenic inputs (e.g., dam flushing). 457 

Cluster 4 and Cluster 5 present more enriched ∆14C-POC (Figure 5), displaying a privileged 458 

autochthonous origin, related to high %Chl.a, for positive signatures (after 1950) showing 459 
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aquatic plants development preferentially higher when water flow and turbidity are low 460 

(Figure 7) (Higueras et al., 2014). High tritium concentrations, combined to high ∆14C-POC 461 

values in clusters 4 and 5 might be related to the releases from the nuclear facilities (Figure 462 

7). At the outlet of the Rhône River, the possibility of nuclear release increasing ∆14C-POC is 463 

significant when %Chl.a is high suggesting a contamination of POC when primary 464 

productivity is important. Several studies have highlighted that 14C is released as dissolved 465 

inorganic forms (DIC) because of oxidation processes applied in effluents before releases 466 

(e.g., Kang et al., 2019) and it could integrate POC through photosynthesis. However 467 

additional investigations might be conducted as the sampling methods were not the same 468 

for these two parameters and could lead to bias in the interpretation. 469 

4.3. Relevance of Cluster analyses for classification of ∆14C-POC signatures.  470 

Figure 6 displays the complexity of hydrological classification of time-integrated sampling as 471 

a few samples are characterized by a mixture of clusters  including several hydrological 472 

events and ∆14C-POC signatures including different origins. Moreover, for the outliers (Figure 473 

5), the relationship between the cluster classification and the ∆14C-POC values is complex to 474 

explain and requires looking at the hydrograph during the sampling periods. For example, 475 

southern quick flood events have been registered in samples of low-water level related 476 

clusters (4 and 5) with depleted values of ∆14C-POC. For Cluster 1, the positive value of ∆14C-477 

POC is observed in a sample with a southern flash flood occurring at the beginning of the 478 

sampling period but followed by a low-water level period favourable of ∆14C-artificial POC. 479 

Cluster 1 samples also have consequent appurtenances to clusters 2 and 3. The sum of the 480 

membership degrees for the flood-related clusters (1, 2 and 3) is always higher than 58% and 481 

highlights that i) northern floods could also simultaneously occur than southern floods in 482 

autumn and ii) some southern floods could be observed during spring season as the same 483 
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time than nival flood events (Figure 4). The complex relationship of Cluster 2 with ∆14C-POC 484 

values is due to the low CSPM load of the Saône and Upper Rhône river floods and the 485 

consequent sensitivity to other events such as the Durance river floods or industrial 486 

discharges. The main solution to reduce the disparity of the values would have been to us e 487 

the flux of SPM instead of the water discharge as the input data to determine the clusters. 488 

Therefore, this would improve the classification of ∆14C-POC values measured on SPM. 489 

Unfortunately, such data was not available from all the tributaries and for the entire period 490 

of study (starting since 2011), while clustering using water discharge was already commonly 491 

used (Delaval et al., 2021). Finally, samples in the Cluster 5 seem to be a mix between the 492 

Cluster 4 (low-water level cluster) and the flood-related clusters (1, 2 and 3). For this cluster, 493 

centred in the PCA (Figure 3), the absence of relationship with the ∆14C-POC values is directly 494 

related to the complexity to categorize samples collected during baseflow.  495 

5. Conclusion 496 

This study presents a first classification of time-integrated samples by clustering approach 497 

according to the Rhône hydrology. Principal Component Analysis (PCA) followed by fuzzy-C 498 

mean Cluster Analysis have been performed using time average of Q among the five major 499 

water tributaries and the Upper Rhône River monitored at Jons. We used ∆14C-POC data 500 

collected in Particle Traps (PT) over a two-week to one-month sampling period as a 501 

candidate to validate the classification. The classification exhibited 5 groups of hydrology 502 

similar to that described in the literature: southern floods with Mediterranean and Cevenol 503 

hydrologies confounded (Cluster 1), northern oceanic pluvial floods (Cluster 2), nival floods 504 

(Cluster 3), but also baseflows (Cluster 5) and low-water levels (Cluster 4). Overall, ∆14C-POC 505 

distribution in time-integrated sample confirms the clustering classification according to 506 
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flood-related, baseflow and low-water level clusters. High ∆14C-POC signatures, correlated to 507 

high tritium concentrations, are observed in clusters 4 and 5, incorporating nuclear releases, 508 

and are opposed against depleted signatures occurring during flood events observed in 509 

clusters 1 and 3 because of the ∆14C-depleted material mobilisation from tributaries (e.g., 510 

black marls).  The ∆14C-POC outliers observed at each cluster show the sensitivity of PT 511 

samples to short events remobilising high sedimentary material or nuclear releases during a 512 

long sampling period especially for clusters 2 and 4. Furthermore, the overlaps of different 513 

events making difficult the Cluster Analysis to attribute the origins of ∆14C-POC especially for 514 

flood clusters. Indeed, homogenous distribution of membership scores at some samples in 515 

clusters 1 to 3 shows a mixture of contrasted flood events over the sampling period. Because 516 

Cluster 5 is a mix of flood and low-water level events, some ∆14C-POC values are incorrectly 517 

attributed here. If this method of classification with Qmean showed pertinent results for ∆14C-518 

POC, applying SPM fluxes would improve the CA abilities to classify ∆14C-POC according to 519 

the Rhône River hydrology. For this purpose, other signatures are expected for the coming 520 

years.  521 
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