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Abstract: This work proposes a new secure chaos-based encryption/decryption system, operating in
cipher block chaining (CBC) mode, and analyze its performance. The cryptosystem includes a robust
pseudorandom number generator of chaotic sequences (PRNG-CS). A strong chaos-based S-box is
proposed to perform a circular substitution operation (confusion process). This PRNG-CS consists
of four discrete 1-D chaotic maps, weakly coupled by a predefined coupling matrix M, to avoid,
on the one hand, the divide-and-conquer attack and, on the other hand, to improve the generated
sequence’s randomness and lengths. The noun is also used in the construction of the S-box. Moreover,
a 2-D modified cat map and a horizontal addition diffusion (HAD) preceded by a vertical addition
diffusion (VAD) are introduced to perform the diffusion process. The security analysis and numerous
simulation results of the main components (PRNG-CS and S-box) as well as the whole cryptosystem
reveal that the proposed chaos-based cryptosystem holds up against various types of statistical and
cryptographic attacks.

Keywords: chaos-based encryption/decryption system; PRNG-CS; S-box; modified 2-D cat map;
performance; security analysis

1. Introduction

Nowadays, the necessity to protect data has become a primary challenge. The se-
curity of communication of sensitive data is not only limited to military and diplomatic
information and national defense issues, but also concerns the private lives of individuals
and companies. With this regard, cryptography schemes have been developed. Indeed,
cryptographic techniques leads to well-ensured messages and data confidentiality. Chaos
was integrated into cryptography for the first time by Matthews in the 1990s [1]. Among
the existing state-of-the-art approaches, chaos-based cryptosystems have proved their
efficiency in data security [2–4] due, on the one hand, to the powerful proprieties of chaotic
sequences such as deterministic, unpredictable, random-like behavior, and high sensitivity
to initial conditions and control parameters (secret key) [5–7] and, on the other hand, to
their efficient properties of confusion and diffusion performed by chaotic maps [8–12].

Symmetric chaos-based encryption/decryption systems are classified under two cat-
egories: block ciphers and stream ciphers. The former is the main symmetric key cryp-
tosystem, as their design is related to Shannon’s theory of information security based on
confusion and diffusion operations [8,13]. Their security properties were well-studied, and
these ciphers encrypt the plaintext on a block of bits: 128, 256, 512, 1024, etc. [14,15].

Compared to traditional symmetric cryptography, chaos-based encryption/decryption
schemes are more flexible (generic design, variable block size, and secret key can be easily
enlarged), easier to implement, and have intrinsic security related to the properties of
chaotic sequences [14,16]. Moreover, some of them use a substitution layer based on key-
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dependent S-boxes and not on fixed S-boxes as used in the Advanced Encryption Standard
(AES) algorithm [17].

A key element of all chaos-based cryptosystems is the chaotic generator, which pro-
vides the dynamic keys (encryption keys) for the confusion and diffusion layer. The security,
as well as the efficiency of the system, largely depend on the chaotic generator used.

However, most chaos-based cryptosystems reported in the literature refer to simple
chaotic maps to supply the confusion and diffusion layer [18,19]. Such cryptosystems can
be destroyed by side-channel attacks [20,21].

A fast chaos-based image encryption system with a dynamic state variables selection
mechanism was proposed by Chen et al. [22] and it achieved a high confusion and diffusion
process. Similar to the suggested cryptosystem by Fridrich [9] and Zhang et al. [23], three
prototypes of a chaos-based cryptosystem were put up by Farajallah et al. [24]. The modified
2-D cat map was used to create the confusion process and 32-bit and 8-bit logistic maps
were used as the diffusion layer for the two first versions, and a modified finite skew tent
map (FSTM) in the third version.

A secure cryptosystem based on chaotic components was proposed by Qiao et al. [25].
In this cryptosystem, the AES S-box was used as a confusion layer. [17]. A global diffusion
operating on the entire image was established using a horizontal addition diffusion (HAD),
afterward, a vertical addition diffusion (VAD), introduced by Omrani et al. [26], then a
permutation operation based on the modified 2-D cat map to reinforce the diffusion effect.

Wang et al. [27] published a block cipher cryptosystem using dynamic S-boxes based
on a tent map. Their system operated on blocks using different generated S-boxes and used
32 iterations of substitution and left cyclic shift. A similar cryptosystem was proposed by
Zhang et al. [28] based on a circular S-box as a confusion process and a keystream buffer
as a diffusion layer. The system operates on the entire plain image. Another block cipher
based on the chaotic logistic map was presented by Alawida et al. [29]. To enhance the
performance of the logistic map, a new chaotification approach based on a multiplicative
inverse function was applied. The diffusion and confusion process required data sequences,
which were created by perturbing the chaotic variables with the secret key. The confusion
process was controlled by the chaotic points themselves, whereas the diffusion process was
controlled by an ergodic chaotic map.

Alshammari et al. [30] developed a new lightweight block cipher to protect the secu-
rity of data acquired by Internet of things (IoT) sensor. It consisted of a customized AES
algorithm with a chaos-based S-box and a chaotic map. Despite having good cryptographic
characteristics and a high amount of randomness, this was related primarily to the AES
underlying structure and not to the modified S-box. Additionally, AES was not well recog-
nized for its lightweight implementation and could not be appropriate for IoT devices with
constrained resource in terms of computing capabilities.

In this paper, we propose an efficient encryption/decryption system based on a
secure pseudorandom number generator of chaotic sequences (PRNG-CS) and a strong
key-dependent S-box. The proposed chaos-based cryptosystem design takes into account
the weaknesses and strengths of the systems mentioned above. The proposed PRNG-CS
is able to prevent the divide-and-conquer and the SCA attacks. This PRNG-CS is used to
build the key-dependent S-box. It also provides the encryption/decryption keys necessary
for the substitution and permutation operation [31–34].

The remainder of this paper is organized as follows: In Section 2, we present the
proposed chaos-based cryptosystem architecture with a deep insight of the PRNG-CS,
the S-box with the circular substitution process, and the diffusion process, then we give
the pseudocode of the encryption/decryption algorithms. In Section 3, we present the
experiments results and security analysis of the proposed cryptosystem and its computing
performance. Finally, Section 4 summarizes the whole paper.
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2. Proposed Chaos-Based Cryptosystem

The architecture of the proposed chaos-based cryptosystem is shown in Figure 1, for
the encryption process and in Figure 2, for the decryption process. This structure achieves
high confusion-diffusion effects. On the encryption side, the confusion is achieved by
a circular substitution layer based on a proposed strong S-box, which is the non-linear
element of the cryptosystem as in the Advanced Encryption Standard (AES) algorithm.
The diffusion process consists of three steps: a permutation layer based on the modified
2-D-Cat map, a horizontal addition diffusion (HAD), and a vertical addition diffusion
(VAD). The confusion and diffusion layers use the proposed PRNG-CS. On the decryption
side, apart from the PRNG-CS, reverse diffusion and reverse substitution are achieved by
reverse processes of those used in encryption, as indicated in Figure 2.

Figure 1. Diagram of the encryption process.

Figure 2. Diagram of the decryption process.

The block cipher operation can be repeated r times, if necessary, to obtain the final
secure encrypted image.

Each component of the proposed cryptosystem is described in depth in the follow-
ing sections.

2.1. Description of the Proposed Pseudorandom Number Generator of Chaotic
Sequences (PRNG-CS)

The proposed PRNG-CS (see Figure 3), which is a fundamental element of any chaos-
based cryptosystem, uses an initial vector (IV) and a secret key (K) as inputs and outputs
the dynamical keys (encryption/decryption keys) Kc for the confusing process and Kd
for the diffusion process. The systems’ IV supplies the initial vectors of the four chaotic
maps IVP, IVS, IVL, and IVT each N = 32 bits in size, and the secret key K gives all



Appl. Sci. 2022, 12, 9952 4 of 26

the initial conditions and parameters of the chaotic maps but also the initial value of the
linear-feedback shift register (LFSR) and the parameters of the coupling matrix M and
transient phase Tr, as summarized in Table 1.

Figure 3. The architecture of the proposed pseudorandom number generator of chaotic sequences.

Table 1. Initial conditions and parameters that form the secret key.

Symbol Definition

XP0, XS0, XL0, and XT0 Initial conditions of the four chaotic maps: PWLCM, skew tent,
logistic, and 3-D Chebyshev in [1,2N − 1].

Pp PWLCM map control parameter in [1,2N−1 − 1].
Ps Skew tent map control parameter in [1,2N − 1].
εij Coupling matrix M parameters in [1,2k] with k ≤ 5.

Q0 The initial value of the used LFSR is defined by:
Q(n) =x32 + x22 + x2 + x + 1.

Tr The transient phase of 10 bits.

The four chaotic maps’ initial conditions, XP(0), XS(0), XL(0), and XT(0) are pro-
vided by: 

XP(0) = IVP + XP0
XS(0) = IVS + XS0
XL(0) = IVL + XL0
XT(0) = IVT + XT0

(1)

The output X(n) is calculated by:

X(n) = XPC(n)⊕ XSC(n)⊕ XLC(n)⊕ XTIC(n) (2)

The coupling system is defined as follows:
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XPC(n)
XSC(n)
XLC(n)

XTIC(n)

 = M ×


XP(n)
XS(n)
XL(n)

XTI(n)

 (3)

where

M =


M11 ε12 ε13 ε14
ε21 M22 ε23 ε24
ε31 ε32 M33 ε34
ε41 ε42 ε43 M44

 (4)

with M11 = (2N− ε12− ε13− ε14), M22 = (2N− ε21− ε23− ε24), M33 = (2N− ε31− ε32−
ε34), and M44 = (2N − ε41 − ε42 − ε43).

XP(n), XS(n), XL(n), and XT(n) are denoted as the maps’ output values at instant
n of the PWLCM, skew tent, logistic, and 3-D Chebyshev maps, respectively, and defined
as follows:

The first sample is given by:

XP(1) = PWLCM
{

mod
(

XP(0),2N
)

, Pp

}
(5)

XS(1) = SkewT
{

mod
(

XS(0),2N
)

, Ps

}
(6)

XL(1) = Logistic
{

mod
(

XL(0),2N
)}

(7)

XT(1) = 3D Ch
{

mod
(

XT(0),2N
)}

(8)

Then, for 2 ≤ n ≤ Ns, the samples are calculated by (Ns: the number of the
desired samples):

XP(n) = PWLCM
{

mod
(

XPC(n− 1), 2N
)

, Pp

}
(9)

XS(n) = SkewT
{

mod
(

XSC(n− 1), 2N
)

, Ps

}
(10)

XL(n) = Logistic
{

mod
(

XLC(n− 1), 2N
)}

(11)
XT(n) = 3D Ch

{
mod

(
XTIC(n− 1), 2N)}

XTI(n) = XT(n)⊕Q(n)
(12)

The discrete equations of PWLCM, skew tent, logistic, and 3-D Chebyshev maps are
reported in the literature [35–38].

The size of the secret key of the proposed PRNG-SC is:

|K|=|XP0|+ |XS0|+ |XL0|+ |XT0|+ |Q0|+
∣∣Pp
∣∣+ |Ps|+ |Tr|+ (9×

∣∣εij
∣∣) = 278 bits (13)

where |XP0|=|XS0|=|XL0|=|XT0|=|Q0|=|Ps|= 32 bits,
∣∣Pp
∣∣= 31 bits, |Tr|= 10 bits, and∣∣εij

∣∣= 5 bits.
Therefore, the keyspace contains 2278 different values, which is large enough to make

brute-force attacks infeasible.

2.2. Circular Substitution Process Based on the S-Box and Their Inverse Processes

In the following, we first describe the construction process of the S-box, then we
give the equation of the circular substitution process based on this S-box. Recall that the
S-box is generally the only component of a cryptosystem that gives rise to a nonlinear
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mapping between inputs and outputs. Its main role is to make the cryptosystem immune
against differential and linear cryptanalysis, so the security of the cryptosystem is strongly
increased.

2.2.1. S-Box Construction

Mathematically, an n× n S-box is a nonlinear mapping S : {0, 1}n → {0, 1}n, where
{0, 1}n represents the vector spaces of elements from GF (2). Since the key-dependent
S-boxes do not offer any specific properties to the attackers, then, they are more secure
than fixed S-boxes. Therefore, many methods have been proposed to design and create
key-dependent S-boxes in conventional cryptography, such as SEAL [39], which used a
Secure Hash Algorithm (SHA) and especially in chaos-based cryptography [40–46]. All of
these later methods are based on iterating discrete chaotic maps to generate a 1-D table of
size 256, containing unique chaotic values belonging to 0 and 255. The proposed S-box is
based on our PRNG-CS and uses the approach of Çavuşoğlu et al. [42].

The block diagram of the 8× 8 S-box design algorithm is given in Figure 4.

Yes

Yes

No

No

𝑉 = 𝑋 𝑛  𝑚𝑜𝑑 256 
𝑡 = 0 
𝑛 = 1 

𝑉 ∈ 𝑆[ ] 

𝑆 𝑡 = 𝑉 

𝑡 = 𝑡 + 1 

𝑡 ≤ 255 

𝑆 𝑡  is generated 

𝑡 = 0, 1, … ,255 

S-box

𝑆 𝑖, 𝑗 = 𝑟𝑒𝑠ℎ𝑎𝑝𝑒 𝑆 𝑡  

 𝑖 = 0, … ,15  

𝑗 = 0, . . ,15 

Generate 

a new V

PRNG-CS
IV

K

𝑛 = 𝑛 + 1 

Figure 4. Block diagram of the proposed chaos-based 8× 8 S-box construction.

The design steps of the S-box generation algorithm are as follows:

1. Specify a one-dimensional empty array called 1-D S-box S[ ].
2. The eight-bit V-value is obtained from the PRNG-CS output sequence X(n).
3. Check for the existence of the last obtained V-value in the content of the 1-D S-box

S[ ].
4. If this value exists, it is rejected. Otherwise, it is added to the S-box 1-D S[ ].
5. Afterward, new 8-bit values are generated and the whole process is repeated until

all 256 values are completed in the form of a sequence S[t] = {S[0], . . . , S[255]},
where each value ∈ [0, 255] is unique to others in it, so the constructed 8× 8 S-box is
obviously bijective (by construction).
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The number n of needed samples to construct the S-box is the size of the dynamic key
Kc: |Kc| = n× 32-bit.

In Table 2, we give an example of an S-box obtained by our proposed algorithm,
presented in its usual form, a 16×16 matrix of byte values in hexadecimal presentation.

Table 2. An example of an S-box is obtained by the proposed algorithm.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 2E 3E 5D 03 7C B7 AD 9B E0 62 67 50 95 BC 24 83
1 A6 CB DD F5 BE 39 9A C3 2C 64 EA EC 05 3B 26 2A
2 F8 B4 D0 C5 30 FD E6 69 70 74 7A 77 F7 1A E5 DF
3 15 7F 8B 32 51 F1 C9 93 40 5C 48 8E 2F 65 E2 CC
4 FB D8 BD 04 C7 0B E1 06 90 B6 A1 EF 14 2B D5 82
5 4B D1 B8 59 92 E3 CD B9 38 1F 71 73 EE F9 46 45
6 C0 A8 00 6E 9C 6A 9F A9 78 6F 87 5E D9 BA 47 42
7 68 DA F0 53 58 31 D3 36 34 20 33 8D D4 8C 4C 3D
8 1D 4E 61 E9 5A 5F 4D 6B AA C4 91 3F 4A 1E 02 0F
9 09 72 88 CA F2 85 99 9D FF CF B2 2D 52 23 E4 3C
A C8 EB AF 81 1C FE 9E B5 7B 55 ED 07 41 89 94 7E
B 12 11 D7 49 AB 4F 21 DE 0C D6 17 BF 56 6D F3 01
C 1B A5 3A 8A 27 E7 8F 0E A3 75 BB 84 76 CE 25 B1
D FA DB 18 B0 A0 C1 44 54 A7 28 43 13 22 A2 35 FC
E C6 C2 66 63 AC A4 7D F6 96 29 10 86 16 D2 37 6C
F 79 08 97 E8 DC 0A 19 0D B3 98 80 AE F4 57 5B 60

2.2.2. Circular Substitution Equation Based on the Constructed S-Box

Once the S-box is constructed, then it is used to perform the substitution operation.
Unlike the circular substitution used by Zhang et al. [28], which was performed in ECB
mode on the entire plain image, we achieved here the circular substitution in CBC mode
on blocks of size 1024 pixels each. The advantages of proceeding in CBC mode are, on the
one hand, because it is a secure mode (ECB mode is not secure), and on the other hand, the
encryption/decryption processes are carried out on blocks that can be stored and computed
on IoT devices which are constrained resource in terms of computing capabilities, and also
energy and memory capacities. In addition, in ECB mode, the decryption process requires
receiving the entire ciphered image before decrypting it.

To start the substitution process, the input plain image is split into bl blocks pl , each of
size |pl | = 1024 pixels (32 × 32 bytes). Notice that the elements of the S-box are considered
to be circular (the last element followed the first element) with a head pointer h initialized
to a constant (or a random) value in the range of 0 to 255. Each pixel pl(k) of a given block
l is substituted by an element of the S-box, sl(k), according to the pixel value pl(k), the
previous substituted pixel ql−1(k), and the pointer h (see Equations (14)–(16)). After a pixel
is substituted, the value of the pointer h is adapted to a new value using the second row of
Equation (14), where mh ∈ [0, 255] is a random value.

sl(k) = S[yl(k) + h] mod 256

h = sl(k)⊕mh

(14)

where
yl(k) = pl(k) + ql−1(k) (15)

ql−1(k) =


ivb i f l = 0

cl−1(k) i f l > 0
(16)

where cl−1(k) is the previous ciphered pixel obtained after the horizontal and vertical
addition diffusion of the block spl−1, which is the permuted of the substituted block sl−1,
k = 1, 2, . . . , |pl | l = 1, 2, . . . , bl
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bl = (image size/block size) = (R× C× P/|pl |) (R: number of rows, C: number
of columns, and P: number of planes (P = 1 for a grayscale image and P = 3 for an
RGB image).

From Equations (14)–(16), we can observe that all the same pixel values of the plain
image are substituted by different values, and then the security is strengthened against cryp-
tographic attacks. In addition, there is an intrinsic diffusion effect in each substituted block.

2.2.3. Inverse Substitution Process

The reverse substitution operation is carried out by first, the construction of the
inverse S-box, IS, which is derived from the S-box S(t) by a simple operation satisfying the
following equation:

IS[S(t)] = t (17)

used during the inverse substitution process, then, performing the inverse substitution
itself using the following formula to recover each plain pixel pl(k):

pl(k) = (IS[sl(k)] + 256− h) mod 256

h = sl(k)⊕mh

(18)

2.3. Diffusion Process and Its Inverse

A permutation layer based on a modified 2-D cat map followed by a horizontal
addition diffusion (HAD) and a vertical addition diffusion (VAD) is used to achieve the
diffusion process of the proposed cryptosystem (VAD).

2.3.1. Permutation Layer Based on the Modified 2-D Cat Map and Its Reverse

To permute a substituted block sl(k), utilizing the improved 2-D cat map, we transform
it to a matrix form sl(i, j) such that [24]:

sl(i, j) = sl(k), k = (i− 1)×M + j; i = 1, · · ·M; j = 1, · · ·M (19)

The equation of the modified 2-D cat map [47] and its optimized implementation [24]
are given below: in

jn

 = Mod

 1 ud

vd (1 + udvd)

 i

j

+

 rid + rjd

rjd

,

 M

M

 (20)


in = Mod((i + ud × j + Z1), M)

jn = Mod((Z3 + Z2 × j), M)
(21)

with Z1 = rid + rjd, Z2 = ud × vd + 1, and Z3 = vd × i + rjd.
The values of Z1 and Z2 are calculated once per round and the value of Z3 is calculated

M times per round (with M =
√
|pl | = 32 = 2q − 1).

The 2-D cat map is bijective since each permuted element’s (in, jn) position is unique.
Despite it being reversible, the modulo operation on the cat map prevents it from being
an invertible function. Thus, the same following relation can be used to perform the
permutation and the reverse permutation:

spl(in, jn) = sl(i, j), i = 1, · · ·M, j = 1, · · ·M (22)

The dynamic key Kd is formed by four elements Kd =
{

ud, vd, rid, rjd

}
, each ∈

[1, M− 1] and it is fed by the PRNG-CS. The size Kd is |Kd| = 4× q = 20-bit.
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2.3.2. Horizontal and Vertical Addition Diffusion HAD and VAD and Their Inverses

The operations of horizontal and vertical addition diffusion [26] on a given permuted
block spl(i, j) are described by the following mathematical model, and shown in Figure 5:

sphl(i, j) = HAD[spl(i, j)] =


spl(i, j) + spl(i, j− 1) mod 256 f or 1 ≤ i ≤ M and 1 < j ≤ M

spl(i, j) + spl(i− 1, M) mod 256 f or 1 < i ≤ M and j = 1

spl(i, j) + spl(M, M)mod 256 f or i = j = 1

(23)

cl(i, j) = VAD[sphl(i, j)] =


sphl(i, j) + sphl(i− 1, j) mod 256 f or 1 < i ≤ M and 1 ≤ j ≤ M

sphl(i, j) + sphl(M, j− 1) mod 256 f or i = 1 and 1 < j ≤ M

sphl(i, j) + sphl(M, M)mod 256 f or i = j = 1

(24)

+ + + +

+ + + +

+ + + +

+ + + +

+
+

+

+

+ + + +

+ + + +

+ + + +

+ + + ++
+

+

+

HAD VAD

Figure 5. Horizontal and vertical addition diffusion.

The inverse relations of the vertical and horizontal addition diffusion are given by:

sphl(i, j) = InvVAD[cl(i, j)] =


cl(i, j)− cl(i− 1, j) mod 256 f or 1 < i ≤ M and 1 ≤ j ≤ M

cl(i, j)− cl(M, j− 1) mod 256 f or i = 1 and 1 < j ≤ M

cl(i, j)− cl(M, M) mod 256 f or i = j = 1

(25)

spl(i, j) = InvHAD[sphl(i, j)] =


sphl(i, j)− sphl(i, j− 1) mod 256 f or 1 ≤ i ≤ M and 1 < j ≤ M

sphl(i, j)− sphl(i− 1, M) mod 256 f or 1 < i ≤ M and j = 1 and j = 1

sphl(i, j)− sphl(M, M)mod 256 f or i = j = 1

(26)

Finally, we summarize in Algorithms 1 and 2, the full operation of encryption and
decryption process of the proposed chaos-based cryptosystem, respectively.
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Algorithm 1 Encryption process.
Input : IV = Initial Vector of PRNG− CS ;

K = Secret key of the PRNG− CS;
ivb = Initialization vector used in the first block;
bl = Number of blocks;
pl = Plaintext block;
PRNG− CS(IV, K) = (Kc, Kd).

Output : The block under test is encrypted.
1 begin
2 Generate the needed dynamic keys |Kc| to construct the S-box and |Kd| to

perform the permutation;
Produce the initial vector ivb with a prng to encrypt the first block and
produce h, mh values (with a prng);
Construct the S-box using the four steps of Figure 4;
for m = 1 to r do

3 for l = 1 to bl do
4 Substitution process

for k = 1 to |pl | do
5 Calculate yl(k) by Equations (15) and (16);

Perform the substitution process using Equation (14) to obtain
sl(k);

6 end
7 Permutation process for the diffusion

M =
√
|pl |;

for i = 1 to M do
8 for j = 1 to M do
9 Calculate k = (i− 1)×M + j;

Perform the permutation of pixels: spl(in, jn) = sl(i, j);

10 end
11 end
12 HAD diffusion

for i = 1 to M do
13 for j = 1 to M do
14 Calculate horizontal diffusion using Equation (23);

15 end
16 end
17 VAD diffusion

for i = 1 to M do
18 for j = 1 to M do
19 Calculate vertical diffusion using Equation (24);

20 end
21 end
22 end
23 end
24 end
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Algorithm 2 Decryption process.
Input : IV = Initial Vector of PRNG− CS;

K = Secret key of the PRNG− CS;
ivb = Initialization vector used in the first block;
bl = Number of blocks;
pl = Plaintext block;
PRNG− CS(IV, K) = (Kc, Kd).

Output : The block under test is decrypted.
1 begin
2 Generate the needed dynamic keys |Kc| to construct the S-box and |Kd| to

perform the permutation;
Produce the initial vector ivb with a prng to encrypt the first block and
produce h, mh values (with a prng);
Construct the S-box using the four steps of Figure 4;
for m = r to 1 do

3 for l = 1 to bl do
4 Inverse VAD diffusion

for i = M to 1 do
5 for j = M to 1 do
6 Calculate inverse vertical diffusion using Equation (25);

7 end
8 end
9 Inverse HAD diffusion

for i = M to 1 do
10 for j = M to 1 do
11 Calculate inverse horizontal diffusion using Equation (26);

12 end
13 end
14 Reverse Permutation process for the diffusion

M =
√
|pl |;

for i = 1 to M do
15 for j = 1 to M do
16 Calculate k = (i− 1)×M + j;

Perform cl(i, j) = cl(k);
Calculate [in, jn] using Equation (21);
Perform the permutation of pixels: cl(in, jn) = idl(i, j);

17 end
18 end
19 Inverse Substitution process

for k = 1 to |pl | do
20 Calculate yl(k) by Equation (17);

Perform the substitution process using relation (18) to obtain pl(k);

21 end
22 end
23 end
24 end

3. Experiments Results and Security Analysis

Hereafter, we evaluate the proposed chaos-based cryptosystem’s performance. First,
we estimate the number r of rounds required to have a secure system, then we assess the
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performance of the proposed chaotic generator, histogram chi-square, NIST tests on the
generated sequences, and finally, we examine the security of the cryptosystem up against
the usual cryptographic attacks.

All the simulations were implemented using MATLAB (R2016b) on a PC with a
2.5 GHz processor Intel Core i5-7300HQ CPU, 16 GB RAM, under Windows 10 Professional,
and a 64-bit operating system.

3.1. Estimation of the Number of Rounds Required

In this section, we provide the number r of rounds that was used in the chaos-based
cryptosystem implementation. For this, we determined the average Hamming distance
(HD) between two ciphered images C1, using 100 secret keys, and C2 using the same secret
keys, each with a different LSB-bit. This test was applied to 10 different plain images. The
HD(C1, C2) was defined by the following equation:

HD(C1, C2) =
1

Nb

Nb

∑
i=1

(C1(i)⊕ C2(i)) (27)

where Nb was the number of bits in an ciphered image. In Table 3, a list of the Hamming
distance outcomes for r = 1, 2, and 3 is provided.

Table 3. HD versus the round times in the encryption process.

Image Size
HD (%)

r = 1 r = 2 r = 3

Airplane 512 × 512 × 3 50.0010 49.9974 49.9998
Black 256 × 256 × 1 50.0027 50.0050 49.9977
Bridge 512 × 512 × 1 50.0039 49.9962 50.0021
Cameraman 256 × 256 × 1 49.9936 50.0018 50.0000
Flowers 256 × 256 × 3 49.9993 50.0034 49.9955
Goldhill 512 × 512 × 3 49.9999 49.9988 49.9996
Kiel 512 × 512 × 1 50.0010 49.9989 50.0036
Lena 512 × 512 × 3 50.0001 49.9997 49.9972
Sailboat 512 × 512 × 3 49.9961 50.0050 50.0000
White 256 × 256 × 1 50.0107 49.9948 50.0009

It is noteworthy from Table 3 that for r ≥ 1, the HDs for the various plain images
encrypted by the proposed encryption algorithm were close to the optimal value of 50%.
Therefore, for all subsequent tests, we used r = 1.

This result was also confirmed by the plaintext sensitivity test carried out in Section 3.3.3.

3.2. Performance Analysis of the Proposed PRNG-CS

We give below the performance obtained by the proposed chaotic generator.

3.2.1. Histogram and Chi-Square Test

A histogram describes the distribution of numerical data in the form of a graph. It
forms an estimation of the probability distribution of a random or pseudorandom variable.

The distribution uniformity of the generated sequences was examined. A uniform dis-
tribution over the whole phase space must be provided by the proposed PRNG-CS. Figure 6
shows an example of a histogram of a produced sequence, formed by 3,125,100 samples, in
which the first 100 samples were not used (the transient regime).

Visually, we observe that the generated sequence is nearly uniformly distributed.
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Figure 6. An example of a histogram of a generated sequence X(n).

Then, to assert the uniformity of this sequence, we applied the chi-square test. The
experimental chi-square χ2 value was given by:

χ2
exp =

Nc−1

∑
i=0

(Oi − Ei)
2

Ei
(28)

where Nc = 1000, Oi, and Ei = Ns/Nc are the number of classes, the number of calculated
samples in the ith class Ei, and the anticipated number of samples of a uniform distribution.
Table 4 shows the experimental and theoretical values for the chi-square values obtained.
The theoretical value of the chi-square was greater than the obtained experimental one,
which proved that the sequence generated by the proposed PRNG-CS was uniform.

Table 4. Chi-square results on the tested histograms.

Chi-Square Test PRNG-CS

χ2
ex 967.700

χ2
th (1000, 0.05) 1073.642

Note that this test was repeated on one hundred various sequences, each was generated
using a different secret key. All the sequences passed the chi-square test.

3.2.2. NIST

The NIST Test Suite [48] is a statistical package consisting of 15 tests that were de-
veloped to test the randomness of binary sequences produced by PRNGs. Some tests are
decomposable into a variety of subtests. To determine the result of each test, a p-value is
computed. A p-value ≥ 0.01 means that the sequence is considered to be random with
a confidence of 99%. A p-value ≤ 0.01 means that the sequence is nonrandom with a
confidence of 99%.

To carry out the NIST test, we produced 100 different sequences of 3,125,100 32-bit
samples each, using 100 random secret keys. Only 3,125,000 samples per sequence (i.e.,
108 bits) were used (the first 100 samples for each sequence, corresponding to the transient
regime, were not useful for the various robustness tests).

We give in Table 5 the p-values obtained for the 15 tests by the proposed PRNG-SC.
All p-values were distinctly larger than the critical value 0.01, which proved the high
degree of randomness of the generated sequences. Therefore, from the statistical results
obtained previously, we could confirm that the proposed PRNG-CS was robust against
statistical attacks.
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Table 5. P-values and proportion results of NIST tests.

Test p-Value Proportion (%)

Frequency test 0.494 98.000
Block-frequency test 0.514 99.000
Cumulative sums test 0.504 98.000
Runs test 0.494 99.000
Longest-run test 0.262 97.000
Rank test 0.868 99.000
FFT test 0.384 99.000
Nonperiodic templates 0.482 99.061
Overlapping templates 0.596 98.000
Universal 0.946 99.000
Approximate entropy 0.419 100.000
Random excursions 0.439 98.214
Random excursion variant 0.488 98.651
Serial test 0.415 100.000
Linear complexity 0.817 97.000

3.3. Security Analysis of the Proposed Chaos-Based Cryptosystem

In this section, we first give the performance of the proposed S-box, then we evaluate
the security of the proposed chaotic encryption system regarding statistical attacks and a
cryptanalytic analysis. Eventually, we estimate the computing performance.

3.3.1. Performance Analysis of the Proposed Key-Dependent S-Box

A strong S-box should have some important properties, based on an information theory
analysis. The main properties, besides the bijectivity, are nonlinearity, strict avalanche
criterion (SAC), output bits independence criterion (BIC), equiprobable input/output
XOR distribution, differential approximation probability (DP), and linear approximation
probability (LP). To demonstrate the performance of the proposed S-box, we quantified
these properties and compared the results obtained with those obtained from several
S-boxes in the literature.

From Table 6, we can observe that the constructed S-box met all the requirements of a
robust S-box and the performance obtained were close to those obtained by [42–44,49,50].

Table 6. Performance comparison of different S-boxes.

S-Box
Nonlinearity SAC

BIC-SAC BIC Nonlinearity DP LP
Min Avg Max Min Avg Max

Proposed S-box 102 104 108 0.4375 0.4948 0.5625 0.4991 103.4286 10 0.1094
Çavuşoğlu et al. [42] 104 106 110 0.4218 0.5039 0.5937 0.5058 103.40 10 0.1406
Lambić et al. [43] 106 106.75 108 - 0.5034 - 0.5014 103.78 10 0.1328
Ahmed et al. [44] 106 107.5 108 - 0.4943 - 0.4982 104.35 10 0.1250
Lai et al. [49] 104 105 110 0.3906 0.5014 0.5937 0.5028 102.75 10 0.1250
Al Solami et al. [50] 106 108.5 110 - 0.5017 - 0.5026 104 10 0.1094

You can see from Table 2 that the constructed S-box had all the different output values
of the interval [0, 255], so it satisfied the requirement of bijectivity.

By comparing the properties of our S-box with other S-boxes, we can claim that the
proposed chaos-based S-box was better than others in some measures. Therefore, the
proposed S-box was suitable for use in the proposed encryption scheme.

3.3.2. Statistical Analysis

To prove the robustness of the proposed chaos-based cryptosystem against statistical
attacks, we performed the following experiments on various plain images: histogram,
chi-square test, correlation, and entropy analysis.
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Histograms of encrypted images

The ciphered image must have a uniform distribution and this is a basic condition
for any cryptosystem to be strong against statistical attacks. We encrypted 10 color and
gray plain images with varying features and sizes and then we deducted the histograms of
the plain images and corresponding ciphered images. The obtained results are given in
Figures 7–16, and on each figure, we show: (a) the plain image, (b) the histogram of the plain
image, (c) the corresponding ciphered image, and (d) the histogram of the ciphered image.

(a)

0 100 200 300
0

2000

4000

6000

8000

10000

12000

(b) (c)

0 100 200 300
0

200

400

600

800

1000

1200

(d)

Figure 7. Histograms: (a) Airplane image, (b) histogram of plain Airplane, (c) encrypted Airplane,
and (d) histogram of encrypted Airplane.
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Figure 8. Histograms: (a) Black image, (b) histogram of plain Black, (c) encrypted Black, and
(d) histogram of encrypted Black.
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Figure 9. Histograms: (a) Bridge image, (b) histogram of plain Bridge, (c) encrypted Bridge, and
(d) histogram of encrypted Bridge.
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Figure 10. Histograms: (a) Cameraman image, (b) histogram of plain Cameraman, (c) encrypted
Cameraman, and (d) histogram of encrypted Cameraman.
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Figure 11. Histograms: (a) Flowers image, (b) histogram of plain Flowers, (c) encrypted Flowers, and
(d) histogram of encrypted Flowers.
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Figure 12. Histograms: (a) Goldhill image, (b) histogram of plain Goldhill, (c) encrypted Goldhill,
and (d) histogram of encrypted Goldhill.
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Figure 13. Histograms: (a) Kiel image, (b) histogram of plain Kiel, (c) encrypted Kiel, and (d) his-
togram of encrypted Kiel.
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Figure 14. Histograms: (a) Lena image, (b) histogram of plain Lena, (c) encrypted Lena, and
(d) histogram of encrypted Lena.
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Figure 15. Histograms: (a) Sailboat image, (b) histogram of plain Sailboat, (c) encrypted Sailboat, and
(d) histogram of encrypted Sailboat.
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Figure 16. Histograms: (a) White image, (b) histogram of plain White, (c) encrypted White, and
(d) histogram of encrypted White.

Note that visually the histograms of the encrypted images appeared to have a uniform
distribution and were very different from those of the single images. Therefore, no visual
information could be detected from the encrypted images by the proposed chaos-based
cryptosystem.

To check the uniformity of the histogram, we applied the chi-square test (using
Equation (28)) to statistically confirm it. However, here, Nc was the number of values
(256), Oi were the detected occurrence frequencies of each color value ∈ [0, 255] in the
histogram of the encrypted image, and Ei was the anticipated occurrence frequency of
the uniform distribution, provided by Ei = (L× C× P)/Nc. The distribution of the tested
histogram was uniform if it met the following condition: χ2

exp < χ2
th(Nc − 1, α) = 293.2478

(for Nc = 256 and α = 0.05) [12].
In Table 7, we reported the experimental values of the chi-square test for the 10

ciphered images. The values of the experimental chi-square obtained confirmed the unifor-
mity of the histograms of the tested encrypted images.

Table 7. Chi-square test.

Image Size Chi-Square Test

Airplane 512 × 512 × 3 256.7715
Black 256 × 256 × 1 234.0391
Bridge 512 × 512 × 1 256.6113
Cameraman 256 × 256 × 1 275.5625
Flowers 256 × 256 × 3 236.6458
Goldhill 512 × 512 × 3 239.6576
Kiel 512 × 512 × 1 243.4629
Lena 512 × 512 × 3 249.1270
Sailboat 512 × 512 × 3 242.1380
White 256 × 256 × 1 273.6641
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Correlation Analysis

Another key property of a secure cryptosystem is that the correlation of the encrypted
image should be close to zero and very different from the correlation of the plain image,
which is generally close to one. To measure this property, N = 8000 pairs of two adjacent
pixels in the horizontal (HC), vertical (VC), and diagonal (DC) directions from the original
and the ciphered images were randomly selected. Then, the correlation coefficients were
calculated using the following equation:

ρxy =
cov(x, y)√

D(x)
√

D(y)
(29)

with:

cov(x, y) =
1
N

N

∑
i=1

([xi − E(x)][yi − E(y)]) (30)

E(x) =
1
N

N

∑
i=1

xi (31)

D(x) =
1
N

N

∑
i=1

(xi − E(x))2 (32)

Furthermore, x and y were the gray-level values of two adjacent pixels in the image.
In Table 8, we give the mean correlation coefficient value based on 10 images ciphered

by 100 different secret keys. From this table, the correlation coefficients in all directions of
the plain images were close to one, indicating that the pixels were highly correlated, while
those of encrypted images were near to zero, which proved that there was no correlation
between the plain and ciphered images.

Table 8. The correlation coefficient of 8000 pairs of two adjacent pixels of the plain and
ciphered images.

Image Size
Plain Image Encrypted Image

HC VC DC HC VC DC

Airplane 512 × 512 × 3 R 0.97191 0.96051 0.93848 0.00006 −0.00153 0.00024
G 0.95150 0.96915 0.92863 −0.00154 −0.00041 −0.00098
B 0.96226 0.94538 0.92419 −0.00033 −0.00056 −0.00004

Black 256 × 256 × 1 - - - −0.00167 −0.00044 −0.00074
Bridge 512 × 512 × 1 0.93981 0.92720 0.89716 −0.00130 0.00172 0.00084
Cameraman 256 × 256 × 1 0.92013 0.95496 0.89590 0.00110 0.00193 0.00028
Flowers 256 × 256 × 3 R 0.95049 0.96800 0.93340 0.00197 −0.00128 0.00153

G 0.91532 0.94200 0.88863 −0.00082 −0.00019 0.00071
B 0.92085 0.94834 0.89510 −0.00092 0.00009 0.00182

Goldhill 512 × 512 × 3 R 0.97767 0.97649 0.95975 0.00039 0.00052 −0.00058
G 0.98180 0.98496 0.96998 −0.00047 0.00028 0.00148
B 0.98453 0.98641 0.97339 −0.00140 0.00084 −0.00024

Kiel 512 × 512 × 1 0.90591 0.82571 0.78020 0.00168 −0.00127 −0.00044
Lena 512 × 512 × 3 R 0.97529 0.98540 0.96464 0.00055 −0.00041 0.00001

G 0.96666 0.98011 0.95321 −0.00162 0.00049 −0.00023
B 0.93357 0.95552 0.91819 0.00077 −0.00006 0.00042

Sailboat 512 × 512 × 3 R 0.95595 0.95302 0.94030 −0.00041 0.00070 −0.00001
G 0.97088 0.96404 0.95027 −0.00096 0.00038 −0.00015
B 0.97054 0.96872 0.95208 −0.00164 0.00048 −0.00018

White 256 × 256 × 1 - - - −0.00165 0.00025 0.00036

These results can be observed visually in Figure 17, in which we show the correlation
of adjacent pixels of the Goldhill (512 × 512 × 3) and encrypted Goldhill images in the
three directions: horizontal, vertical, and diagonal, respectively.
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Figure 17. Distribution of adjacent pixels in the plain and encrypted images of Goldhill in the three
directions: horizontal, vertical, and diagonal, respectively.

Entropy Analysis

The random behavior of the encrypted image can also be evaluated using the entropy
information defined by:

H(C) =
Nc−1

∑
i=0

P(ci)× log2
1

P(ci)
(33)

where H(C) is the entropy of the encrypted image C, P(ci) is the occurrence value of each
level (i = 0, 1, 2, ..., 255). In the condition of equal probability levels (P(ci) = 2−8), the
entropy is maximum, H(C) = 8.

We show in Table 9 the entropy test results of the original and encrypted images. It is
clear that the results for the encrypted images were close to the optimal value. Based on
these results, the proposed chaos-based cryptosystem had a high degree level of resilience.

Table 9. Entropy test results.

Image Size Plain Encrypted

Airplane 512 × 512 × 3 6.6639 7.9997
Black 256 × 256 × 1 0.0000 7.9974
Bridge 512 × 512 × 1 5.7056 7.9992
Cameraman 256 × 256 × 1 6.9046 7.9977
Flowers 256 × 256 × 3 7.5434 7.9991
Goldhill 512 × 512 × 3 7.6220 7.9997
Kiel 512 × 512 × 1 6.9589 7.9994
Lena 512 × 512 × 3 5.6822 7.9998
Sailboat 512 × 512 × 3 7.7632 7.9998
White 256 × 256 × 1 0.0000 7.9968
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Based on all of these results of the histogram, chi-square, correlation, and information
entropy analysis, the proposed chaos-based cryptosystem was secure against statistical
attacks.

3.3.3. Cryptanalytic Analysis

In the following part, we perform some habitual cryptanalytic analyses such as the
key sensitivity and the plaintext sensitivity test.

Key Sensitivity

A secure encryption/decryption system should be very sensitive to the secret key, i.e.,
even a one-bit change in the secret key should produce a completely different encrypted
image. The testing scenario of the key sensitivity was as follows: first, a plain-image I was
encrypted using a secret key K1 to obtain C1, then the same plain-image I was encrypted
using a secret key K2 different from K1 by just a one bit LSB to obtain C2. Three parameters,
namely the number of pixels change rate (NPCR), the unified average changing intensity
(UACI) [51], and the Hamming distance (see Equation (27)) were used to evaluate the key
sensitivity and were defined as follows:

NPCR =
1

R× C× P

R

∑
i=1

C

∑
j=1

P

∑
p=1

D(i, j, p)× 100% (34)

D(i, j, p) =


0 i f C1(i, j, p) = C2(i, j, p)

1 i f C1(i, j, p) 6= C2(i, j, p)
(35)

UACI =
1

R× C× P× 255

R

∑
i=1

C

∑
j=1

P

∑
p=1
|C1 − C2| × 100% (36)

In the above relation, i, j, and p were, respectively, the row, column, and plane indexes
of the image. R, C, and P were its length, width, and plane sizes.

This test was repeated over 100 different secret keys.
Table 10 presents the average results obtained for the NPCR, UACI, and HD.

Table 10. Average NPCR, UACI, and HD key sensitivity tests.

Image Size
Key Sensitivity Test

NPCR (%) UACI (%) HD (%)

Airplane 512 × 512 × 3 99.6065 33.4666 50.0052
Black 256 × 256 × 1 99.6099 33.4323 50.0094
Bridge 512 × 512 × 1 99.6098 33.5052 50.0019
Cameraman 256 × 256 × 1 99.5992 33.4234 49.9844
Flowers 256 × 256 × 3 99.6040 33.4772 49.9941
Goldhill 512 × 512 × 3 99.6069 33.4464 49.9942
Kiel 512 × 512 × 1 99.6042 33.4650 49.9976
Lena 512 × 512 × 3 99.6088 33.4664 49.9907
Sailboat 512 × 512 × 3 99.6077 33.4680 50.0090
White 256 × 256 × 1 99.6231 33.5524 50.0000

The resulting values obtained were near the optimal values of NPCR, UACI, and HD
which were 99.6094%, 33.4635%, and 50%, respectively. Therefore, the proposed scheme
was very sensitive to small changes in the secret key.

Plaintext sensitivity test

To resist known and chosen plaintext attacks, which are related to the differential
attack, the cryptosystem must be sensitive to a single bit change in the plaintext. The plain-
text sensitivity attack test case is almost identical to the key sensitivity attack. Indeed, after
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having encrypted a plain image, we chose 21-pixel positions [26] and we changed, in turn,
their LSB bit, then we encrypted them and calculate the 21 HDs.

In Figure 18, we show for each position the HDs of the 10 test images (red dots) as
well as their average values (green line). As we can see, for each position, the average HD
was close to the optimal value of 50 %. Furthermore, the maximum value of the HD was
equal to 50.1602 % and the minimum value was equal to 49.8039 % which was close to the
optimal value.
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Figure 18. Plaintext sensitivity test evaluated by the Hamming distance.

Moreover, in Table 11, we give the average NPCR, UACI, and HD on 21 positions for
each image. According to these results, the average values of the obtained NPCR, UACI,
and HD were almost equal to their optimal value. These values proved that the proposed
chaos-based cryptosystem was highly sensitive to small changes in the plaintext.

Table 11. NPCR, UACI, and HD of the plaintext sensitivity test.

Image Size
Plaintext Sensitivity

NPCR (%) UACI (%) HD (%)

Airplane 512 × 512 × 3 99.6102 33.4659 49.9972
Black 256 × 256 × 1 99.6067 33.4840 50.0143
Bridge 512 × 512 × 1 99.6114 33.4960 50.0060
Cameraman 256 × 256 × 1 99.6068 33.4616 49.9907
Flowers 256 × 256 × 3 99.6016 33.4563 49.9954
Goldhill 512 × 512 × 3 99.6081 33.4460 50.0003
Kiel 512 × 512 × 1 99.6075 33.4658 49.9974
Lena 512 × 512 × 3 99.6092 33.4669 50.0028
Sailboat 512 × 512 × 3 99.6058 33.4837 50.0062
White 256 × 256 × 1 99.6008 33.5139 49.9981

3.3.4. Robustness against Noise and Occlusion

Encrypted images transmitted may be affected by channel noise and data loss. In this
paragraph, we study the resistance capacity of the proposed cryptosystem against noise
and occlusion. We utilized salt and pepper noise and an occlusion attack [25].
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We added salt and pepper noise with different intensities (0.01, 0.02, 0.05, and 0.1) to
the encrypted Cameraman image (see Figure 10c), as shown in Figure 19a–d, respectively,
and then we decrypted them. The recovered images are shown in Figure 19e–h, respectively.
It can be seen that under limited noise, the decrypted images were always identified. Thus,
our proposed decryption system had good robustness against noise attacks.

Figure 19. Robustness against salt and pepper noise.

Another kind of attack is occlusion. To assess the robustness of the cryptosystem
against such an attack, first, we occluded the Cameraman encrypted image (see Figure 10c)
with different data loss sizes and positions: 1/16, 1/8, 1/4, and 1/2, as shown in Figure 20a–d,
respectively, then, we decrypted and shown them in Figure 20e–h. We can observe that all
the recovered images were recognized but their qualities decreased with the increase of
the occlusion size. Therefore, the proposed cryptosystem had a high level of robustness
against occlusion attacks.

Figure 20. Robustness against occlusion attack.
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3.3.5. The Speed Performance of the Proposed Chaos-Based Cryptosystem

Computing performance is an important issue for practical applications and largely
depends on the programming languages used. The Matlab language is not a good candidate
to achieve high computing performance compared to C language, VHDL description
language, etc. However, with Matlab, we can design and realize cryptosystems faster than
the other languages mentioned.

We evaluated the computational performance: average encryption time, average
encryption throughput (ET), and average number of needed cycles per bytes (NCpB) of the
proposed cryptosystem and we compared its performance (NCpB) with other cryptosystems
designed in the Matlab language.

The ET and NCpB are given by the following equation:

ET =
Image Size (Bytes)

Average Encryption Time (second)
(37)

NCpB =
CPU Speed (Hertz)

ET (Bytes/s)
(38)

In Table 12, we give the computing performance obtained by the proposed encryption
system using 100 different secret keys, for four plain images.

Table 12. The proposed encryption system’s computing performance.

Image Size Encryption Time
(Milliseconds) ET (Mbps) NCpB

(Cycles/Byte)

Cameraman 256 × 256 × 1 39.3 1.589 1501
Flowers 256 × 256 × 3 119.2 1.5726 1516
Kiel 512 × 512 × 1 163.9 1.5249 1564
Lena 512 × 512 × 3 602.3 1.2451 1915

In Table 13, we compare the NCpB of our algorithm for the Lena image of size 512 ×
512 × 1 with the NCpBs of other chaos-based encryption algorithms.

Table 13. Comparison of NCpBs from different encryption schemes.

Cryptosystem NCpB

Proposed 1568
Qiao et al. [25] 77,386
Luo et al. [52] 95,368
Huang et al. [53] 15,642

As Table 13 shows, the proposed encryption system had higher computational perfor-
mance efficiency than the others.

4. Conclusions

This paper proposed a new secure chaos-based cryptosystem system for a block cipher
in CBC mode and evaluated its performance. The proposed cryptosystem achieved high
confusion diffusion effects thanks to a robust pseudorandom number generator of chaotic
sequences, a strong circular substitution based on the proposed S-box, and a solid diffusion
layer. The proposed PRNG-CS was formed by four discrete 1-D chaotic maps weakly
coupled by a predefined coupling matrix M, to avoid the divide-and-conquer attack, and to
increase the randomness of the sequences produced as well as their lengths. The diffusion
layer was performed by a 2-D modified cat map and a horizontal addition diffusion (HAD)
followed by a vertical addition diffusion (VAD). The experimental results and the security
analysis demonstrated that the proposed cryptosystem could successfully resist various
attacks known in the literature, such as statistical attacks, brute force attacks, noise attacks,
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and occlusion attacks, and therefore could be used to secure sensitive data. In a future
study, we plan to address the hardware implementation of the system.
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