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Abstract

In this paper, we revisit the regret of undiscounted reinforcement learning in MDPs
with a birth and death structure. Specifically, we consider a controlled queue with
impatient jobs and the main objective is to optimize a trade-off between energy
consumption and user-perceived performance. Within this setting, the diameter D
of the MDP is Ω(SS), where S is the number of states. Therefore, the existing
lower and upper bounds on the regret at time T , of order O(

√
DSAT ) for MDPs

with S states and A actions, may suggest that reinforcement learning is inefficient
here. In our main result however, we exploit the structure of our MDPs to show that
the regret of a slightly-tweaked version of the classical learning algorithm UCRL2
is in fact upper bounded by Õ(

√
E2AT ) where E2 is related to the weighted

second moment of the stationary measure of a reference policy. Importantly, E2 is
bounded independently of S. Thus, our bound is asymptotically independent of
the number of states and of the diameter. This result is based on a careful study of
the number of visits performed by the learning algorithm to the states of the MDP,
which is highly non-uniform.

1 Introduction

In the context of undiscounted reinforcement learning in Markov decision processes (MDPs), it has
been shown in the seminal work [11] that the total regret of any learning algorithm with respect to an
optimal policy is lower bounded by Ω(

√
DSAT ), where S is the number of states, A the number

of actions, T the time horizon and D the diameter of the MDP. Roughly speaking, the diameter is
the mean time to move from any state s to any other state s′ within an appropriate policy. In the
literature, several efforts have been dedicated to approach this lower bound. As a result, learning
algorithms have been developed with a total regret of Õ(DS

√
AT ) in [11], Õ(D

√
SAT ) in [3] and

even Õ(
√
DSAT ) according to [21, 25]. These results may give a sense of optimality since the

lower bound is attained up to some universal constant. However, lower bounds are based on the
minimax approach, which relies on the worst possible MDP with given D, A and S. This means
that when a reinforcement learning algorithm is used on a given MDP, one can expect a much better
performance.
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One way to alleviate the minimax lower bound is to consider structured reinforcement learning, or
equivalently MDPs with some specific structure. The exploitation of such structure may yield more
efficient learning algorithms or tighter regret analyses of existing learning algorithms. In this context,
a first example is to consider factored MDPs [6, 9], i.e., MDPs where the state space can be factored
into a number of components; in this case, roughly speaking, S = Kn where n is the number of
“factors” and K is the number of states in each factor. The regret of learning algorithms in factored
MDPs has been analyzed in [20, 17, 24, 14] and it is found that the S term of existing upper bounds
can be replaced by nK. A similar approach is used in [8] to learn the optimal policy in stochastic
bandits with a regret that is logarithmic in the number of states. There is also a line of research works
that exploit the parametric nature of MDPs. Inspired by parametric bandits, a d-linear additive model
was introduced in [12], where it is shown that an optimistic modification of Least-Squares Value
Iteration, see [15], achieves a regret over a finite horizon H of Õ(

√
d3H3T ) where d is the ambient

dimension of the feature space (the number of unknown parameters). In this case, the regret does not
depend on the number of states and actions and the diameter is replaced by the horizon. A discussion
about the inapplicability of this approach to our case is postponed to Section 4.2.

Learning in Queueing Systems. The control of queueing systems is undoubtedly one of the main
application areas of MDPs; see, e.g., [16, Chapters 1–3] and [13]. Within the rich literature of
structured reinforcement learning however, few papers are dedicated to reinforcement learning in
queueing systems, see [22, Section 5], and this motivates us to examine the total regret in this context.
Typical control problems on queues have the following distinguishing characteristics:

1. No discount. Discounting costs or rewards is common practice in the reinforcement learning
literature, especially in Q-learning algorithms [19]. However, in queues one is typically interested
in optimizing with respect to the average cost.

2. Large diameter. Queueing systems are usually investigated under a drift condition that makes the
system stable, i.e., positive recurrent. This condition implies that some states are hard to reach.
In fact, for many queueing control problems, the diameter D is exponential in the size of the
state space. Even in the simple case of an M/M/1 queue with a finite buffer, or equivalently a
birth–death process with a finite state space and constant birth and death rates, the diameter is
exponential in the size of the state space.

3. Structured transition matrices. Queueing models describe how jobs join and leave queues, and
this yields bounded state transitions. As a result, MDPs on queues have sparse and structured
transition matrices.

The regret bounds discussed above and item 2 may suggest that the total regret of existing learning
algorithm, when applied to queueing systems, is large. However, they often work well in practice and
this bring us to consider the following question: When the underlying MDP has the structure of a
queueing system, do the diameter D or the number of states S actually play a role in the regret?

Our Contribution. In this paper, we examine the previous question with respect to the class of
control problems presented in [1]. Specifically, an infinite sequence of jobs joins a service system
over time to receive some processing according to the first-come first-served scheduling rule; the
system can buffer at most S − 1 jobs and in fact it corresponds to an M/M/1/S-1 queue. In addition,
each job comes with a deadline constraint, and if a job is not completed before its deadline, then
it becomes obsolete and is removed from the system. The controller chooses the server processing
speed and the objective is to design a speed policy for the server that minimizes its average energy
consumption plus an obsolescence cost per deadline miss. Although this may look quite specific, this
problem captures the typical characteristics of a controlled queue: i) the transition matrix has the
structure of a birth and death process with jump probabilities that are affine functions of the state and
ii) the reward is linear in the state and convex in the action. For any MDP in this class, defined in full
details in Section 3, we show that the diameter is D = Ω(SS−2); see Appendix B.3. Thus, without
exploiting the particular structure of this MDP, the existing lower and upper bounds do not justify the
reason why standard learning algorithms work efficiently here.

We provide a slight variation of the learning algorithm UCRL2, introduced in [11], and show in
our main result that the resulting regret is upper bounded by Õ(

√
E2AT ) where E2 is a term that

depends on the stationary measure of a reference policy defined in Section 3.1. Importantly, E2 does
not depend on S. Thus, efficient reinforcement learning can be achieved independently of the number
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of states by exploiting the stationary structure of the MDP. Let us provide some intuition about our
result. First, one may think that any learning algorithm should visit each state a sufficient number
of times, which justifies why the diameter of an MDP appears in existing regret analyses. However,
this point of view does not take into account the fact that the value of an MDP is the scalar product
of the reward and the stationary measure of the optimal policy. If this stationary measure is “highly
non-uniform”, then some states are rarely visited under the optimal policy and barely contribute to
the value. In this case, we claim that the learner may not need to visit the rare states that often to get
a good estimation of the value, and thus it may not need to pay for the diameter.

2 Reinforcement Learning Framework

We consider a unichain Markov Decision Process (MDP) M = (S,A, P, r) in discrete time where S
is the finite state space, A the finite action space, P the transition probabilities and r the expected
reward function [16]. Let also S := |S| and A := |A| where | · | is the set cardinality operator. The
model-based reinforcement learning problem consists in finding a learning algorithm, or learner,
that chooses actions to maximize a cumulative reward over a finite time horizon T . At each time
step t ∈ N, the system is in state st ∈ S and the learner chooses an action at ∈ A. When executing at,
the learner receives a random reward rt(st, at) with mean r(st, at) and the system moves, at time
step t+1, to state s′ with probability P (s′|st, at). The learning algorithm does not know the MDPM
except for the sets S and A.

For simplicity, in the following we consider weakly communicating MDPs. Since we will be interested
in the long-run average cost, this will let us remove the dependence on the initial state for several
quantities of interest.

2.1 Undiscounted Regret

Given an MDP M , let Π := {π : S → A} denote the set of stationary and deterministic policies and
let

ρ(M,π) := lim
T→∞

1

T

T∑
t=1

E[r(st, π(st))] (1)

denote the average reward induced by policy π. Since M has finite state and action spaces, we
notice that i) The limit in (1) always exists, ii) It does not depend on the initial state s0 when M
is unichain [16] and iii) The restriction to stationary and deterministic policies is not a loss of
optimality [16, Theorem 8.4.5].

Let also ρ∗ := ρ∗(M) := maxπ∈Π ρ(M,π) be the optimal average reward.

Definition 2.1 (Regret). The regret at time T of the learning algorithm L is

Reg(M,L, T ) := Tρ∗(M)−
T∑
t=1

rt. (2)

The regret 2 is a natural benchmark for evaluating the performance of a learning algorithm. In [11],
a universal lower bound on Reg(M,L, T ) has been developed in terms of the diameter of the
underlying MDP.

Definition 2.2 (Diameter of an MDP). Let π : S → A be a stationary policy of M with initial state
s. Let T (s′|M,π, s) := min{t ≥ 0 : st = s′|s0 = s} be the random variable for the first time step
in which s′ is reached from s under π. Then, we say that the diameter of M is

D(M) := max
s6=s′

min
π:S→A

E [T (s′|M,π, s)] .

It should be clear that the diameter of an MDP can be large if there exist states that are hard to reach.
Within the set of structured MDPs considered in this paper, this will be the case and we will show that
D = Ω(SS−2). The following result shows that all learning algorithms have a regret that eventually
increase with

√
D.
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Theorem 2.3 (Universal lower bound [11]). For any learning algorithm L, any natural numbers
S,A ≥ 10, D ≥ 20 logA S, and T ≥ DSA, there is an MDP M with S states, A actions, and
diameter D such that for any initial state s ∈ S,

E[Reg(M,L, T )] ≥ 0.015
√
DSAT. (3)

In view of this result, the diameter of an MDP and its state space appear to be critical parameters for
evaluating the performance of a learning algorithm.

2.2 The UCRL2 Algorithm

We now focus on UCRL2, a classical reinforcement learning algorithm introduced in [11] that is a
variant of UCRL [2]. While more efficient algorithms have been proposed for the general case (see
for example [3, 21]), we will show that UCRL2 already achieves a very low regret, namely Õ(

√
AT ),

independent of S so using more refined algorithms can only bring marginal gains.

UCRL2 is based on episodes. For each episode k, let tk denote its start time. For each state s and
action a, let νk(s, a) denote the number of visits of (s, a) during episode k and let Nt(s, a) :=
#{τ < t : sτ = s, aτ = a} denote the number of visits of (s, a) until timestep t. LetMk be the
confidence set of MDPs with transition probabilities p̃ and rewards r̃ that are “close” to the empirical
MDP at episode k, p̂k and r̂k, i.e., p̃ and r̃ satisfy

∀(s, a), |r̃(s, a)− r̂k(s, a)| ≤ rmax

√
7 log (2SAtk/δ)

2 max {1, Ntk(s, a)}
(4)

∀(s, a), ‖p̃(·|s, a)− p̂k(·|s, a)‖1 ≤

√
14S log (2Atk/δ)

max{1, Ntk(s, a)}
(5)

With these quantities, a pseudocode for UCRL2 is given in Algorithm 1. We notice that UCRL2
relies on Extended Value Iteration (EVI), that is a variant of the celebrated Value Iteration (VI)
algorithm [16]; for further details about EVI, we point the reader to [11, Section 3.1]. Let us comment
on how UCRL2 works. There are three main steps. First, at the start of each episode, UCRL2

Algorithm 1: The UCRL2 algorithm.
Input: A confidence parameter δ ∈ (0, 1), S and A.
Output: .

1 Set t := 1 and observe s1

2 for episodes k = 1, 2, . . . do
3 Compute the estimates r̂(s, a) and p̂k(s′|s, a) as in (7).
4 Use “Extended Value Iteration” to find a policy π̃k and an optimistic MDP M̃k ∈Mk such

that
ρ(M̃k, π̃k) ≥ max

M ′∈Mk,π
ρ(M ′, π)− 1√

tk
(6)

5 while νk(st, π̃k(st)) < max{1, Ntk(st, π̃k(st))} do
6 Choose action at = π̃k(st), obtain reward rt and observe st+1;
7 νk(st, at) := νk(st, at) + 1;
8 t := t+ 1;
9 end

10 end

computes the empirical estimates

r̂k(s, a) :=

∑tk−1
t=1 rt1{st=s,at=a}

max {1, Ntk(s, a)}
, p̂k(s′|s, a) :=

∑tk−1
t=1 1{st=s,at=a,st+1=s′}

max {1, Ntk(s, a)}
(7)

of the reward and probability transitions, respectively, where 1E is the indicator function of E. Then,
it applies Extended Value Iteration (EVI) to find a policy π̃k and an optimistic MDP M̃k ∈Mk such
that (6) holds true. Finally, it executes policy π̃k until it finds a state-action pair (s, a) whose count
within episode k is greater than the corresponding state-action count prior to episode k.
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3 Controlled Birth and Death Processes for Energy Minimization

Now, we focus on a specific class of MDPs that has been introduced in [1], which provides a rather
general example of a controlled birth and death process with convex costs on the actions and linear
rates. We will denote by M the set of MDPs with the structure described below. The MDPs
inM have been proposed to represent a Dynamic Voltage and Frequency Scaling (DVFS) processor
executing jobs with soft obsolescence deadlines. Here, jobs arrive according to a Poisson process
with rate λ ∈ [0, λmax] in a buffer of size S − 1. If the buffer is full and a job arrives, then the job is
rejected. Each job has a deadline and a size, i.e., amount of work, which are exponentially distributed
random variables with rates µ ∈ [0, µmax] and one, respectively. Job deadlines and sizes are all
independent random variables. If a job misses its deadline, which is a real time constraint activated at
the moment of its arrival, it is removed from the queue without being served and a cost C is paid. The
processor serves jobs under any work-conserving scheduling discipline, e.g., first-come first-served,
with a processing speed that belongs to the finite set {0, . . . , Amax}. The objective is to design a
speed policy that minimizes the sum of the long term power dissipation and the cost induced by jobs
missing their deadlines. When the processor works at speed a ∈ {0, . . . , Amax}, it processes a units
of work per second while its power dissipation is w(a).

After uniformization, it is shown in [1] that this control problem can be modeled as an MDP in
discrete time with a “birth-and-death” transition matrix of size S. Specifically, we have an MDP
M = (S,A, P, r) where S = {0, . . . , S − 1}, with s ∈ S representing the number of jobs in the
system, and A = {0, . . . , Amax}, with a ∈ A representing the processor speed. Then, the transition
probabilities under policy π are given by

Pi,j(π) =


1
U λi if i < S − 1 and j = i+ 1
1
U (π(i) + iµ) if i > 0 and j = i− 1

Pii if j = i

0 otherwise,

where U := λmax +(S−1)µmax +Amax is a uniformization constant, Pii = 1
U (U −λi−µi−π(i))

and λi := λ
(

1− i
S−1

)
is the decaying arrival rate. We have replaced the constant arrival rate λ by

a decaying arrival rate λi because we want to learn an optimal policy that does not exploit the buffer
size S − 1; see [1] for further details. For conciseness, Figure 1 displays the transition diagram of the
Markov chain induced by policy π.

0 • • • i− 1 i i+ 1

1
U (iµ+ π(i))

λi
U

Pii

• • • S − 1

Figure 1: Transition diagram of the Markov chain induced by policy π of an MDP inM.

Finally, the reward is a combination of C, the constant cost due to a departing job missing its deadline
and w(a), an arbitrary convex function of a, giving the energy cost for using speed a. The immediate
cost c(s, a) in state s under action a is a random variable whose value is w(a) + C with probability
iµ/U (missed deadline) and w(a) otherwise. To keep in line with the use of rewards instead of costs,
we introduce a bound on the cost, rmax := C + w(Amax) so that the reward in state s under action a
is a positive and bounded random variable given by

r(s, a) := rmax − c(s, a). (8)

As in Section 2.1, ρ∗(M) is the optimal average cost and ρ(M,π) is the average cost induced by
policy π, where π belongs to the set of deterministic and stationary policies Π. Since the underlying
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Markov chain induced by any policy is ergodic, we observe that

ρ(M,π) =

S−1∑
s=0

E[r(s, π(s))]mπ
s , (9)

where mπ is the stationary measure under policy π. In [1], it has been shown that the optimal policy
is unique and will be denoted by π∗.

3.1 Properties ofM

In the following, we will use the “reference” (or bounding) policy π0(s) = 0 for all s ∈ S , which thus
assigns speed 0 to all states. This policy provides a stochastic bound on all policies in the following
sense. Let sπt be the state under policy π and let ≤st denote the stochastic order [18]; given two
random variables X and Y on R+, we recall that X ≤st Y if P(X ≥ s) ≤ P(Y ≥ s) for all s.

Lemma 3.1. Consider an MDP in M. For all t and policy π ∈ Π, sπt ≤st sπ
0

t , provided that
sπ0 ≤st sπ

0

0 .

Proof. (sketch) The proof follows by a simple coupling argument between the two policies. Roughly
speaking, each time the Markov chain under π decreases from s to s− 1 because of the speed π(s),
it stays in state s under policy π0.

Therefore, P(sπt ≥ s) ≤ P(sπ
0

t ≥ s) for all s and t, which also implies that the respective stationary
measures are comparable, i.e.,

∑S−1
i=s m

π
i ≤

∑S−1
i=s m

π0

i .

Let us now consider H(s), the bias at state s of the optimal policy π∗, defined by

H(s) := Eπ∗
[ ∞∑
t=1

(
r
(
sπ
∗

t , π∗(sπ
∗

t )
)
− ρ∗(M)

)
| sπ

∗

0 = s

]
, ∀0 ≤ s ≤ S − 1, (10)

Let also ∂H(s) := H(s)−H(s− 1) be the local variation of the bias.

The following result was shown in [1, Lemma 3.8].
Lemma 3.2. The local variation of the bias, ∂H(s), is negative, decreasing in s, and bounded:
−∂H(s) ≤ ∆(s) with 0 < ∆(s) ≤ C for all 1 ≤ s ≤ S − 1.

Both mπ0

and ∆ will play a major role in our analysis of the regret.

3.2 Applying UCRL2 inM

We assume that the bounds λmax and µmax are fixed so that rmax is known to the learner. This is a
classical assumption, often replaced by assuming that rewards live in [0, 1].

In the remainder, we will apply UCRL2 over an MDP inM with a change in the confidence bounds
to take into account the support of P . The confidence bounds in (4) (resp. (5)) are replaced by

rmax

√
2 log(Atk/δ)

max{1,Ntk (s,a)} (resp.
√

8 log(2Atk/δ)
max{1,Ntk (s,a)} ). We also impose that the confidence setMk only

contains matrices with the same support as P . Removing S in the confidence bounds does help to
reduce the regret. However, by using existing analysis, this only removes a factor

√
S in the regret

bound (for example, see [4]).

Finally, note that UCRL2 does not benefit from the parametric nature of the MDPs inM, which is
essentially defined by three parameters (λ, µ and C) and the real convex function w(·).

4 Regret of UCRL2 onM

Our objective is to develop an upper bound on the regret of the learning algorithm UCRL2 when
applied to MDPs in our classM. The driving idea is to construct a bound that exploits the structure
of the stationary measure of all policies, as they all make some states hard to reach, and to control the
number of visits to these states to get a new type of bound.
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4.1 Main Result

The following theorem gives an upper bound on the regret that does not depend on the classical
parameters such as the size of the state space nor on global quantities such as the diameter of the
MDP nor the span of the bias of some policy. Instead, the regret bound below mainly depends on
the weighted second moment of the stationary measure of the reference policy π0, which is bounded
independently of the size of the state space.

We consider the policy πmax such that πmax(s) = Amax for all s and mmax its stationary measure.

Let us also recall that mπ0

is the stationary measure of the Markov chain under policy π0(s) = 0
for all s and that ∆ : S → R+ is a function bounding the local variations of the optimal bias. Let
E2 := F Emπ0

[
(∆ + rmax)2 · f

]
with f : s 7→ max{1,s(s−1)}

(∆(s)+rmax)2 and F :=
∑
s∈S f(s)−1. Here, E2

is closely related to the second moment of the measure mπ0

weighted by the bias variations and the
maximal reward.

Theorem 4.1. Let M ∈M. Define Qmax :=
(

10D
mmax(S−1)

)2

log

((
10D

mmax(S−1)

)4
)

.

E [Reg(M,UCRL2, T )] ≤ 19
√
E2AT log (2AT )

+ 97rmaxD
2SAmax{Qmax, T

1/4} log2(2AT ). (11)

Here, E2 ≤ 12r2
max

(
1 + λ2

µ2

)
, so that the regret satisfies

E [Reg(M,UCRL2, T )] = O

(
rmax

√
AT

(
1 +

λ2

µ2

)
log (AT )

)
.

Before giving a sketch of the proof, let us comment on the bound (11). Although the first term is of
order

√
T with a multiplicative constant independent of S - as desired - the second term, of order

T 1/4, contains very large terms. Its interest however, lies in the novel approach used in the proof that
uses the stationary behavior of the algorithm.

4.2 Comparison with Other Bounds

Let us compare our upper bound with the ones existing in the literature, as we claim that ours is of a
different nature.

First, let us compare with the bound given in [11], which states that with probability 1 − δ,

Reg(M,T ) ≤ 34DS
√
AT log

(
T
δ

)
for any T > 1. For any M ∈ M, the diameter grows as

SS (see Appendix B.3), thus this bound is very loose here. More recent works have improved this
bound by replacing the term D by the local diameter of the MDP [5]. In Appendix B.3, we show
that the local diameter grows again as SS for any M ∈ M, and thus these results do not yield
significant improvements. Other papers show that the diameter can be replaced by the span of the
bias, see [7, 25]. This has a big impact because the span of the bias, for any M ∈M, is linear in S
(instead of SS for the diameter); see Appendix B.3. However, this is still not as good as the bound
given in Theorem 4.1, which is independent of S.

Now, let us compare with existing bounds for parametric MDPs, as mentioned in the introduction.
The d-linear additive model, d < S, introduced in [12] assumes that P (·|s, a) = 〈φ(s, a), θ(·)〉,
where φ(s, a) is a known feature mapping and θ is an unknown measure on Rd. This form of P (·|s, a)
implies that the transition kernel is of rank d. Unfortunately, this property does not hold true in
birth and death processes. In fact, the kernel of any M ∈M has almost full rank under all policies.
The linear mixture model introduced in [26] assumes instead that P (s′|s, a) = 〈φ(s′|s, a), θ〉,
θ ∈ Rd. This is more adapted to our case, which can be (almost) seen as a linear mixture model
of dimension d = 3. The bound on the discounted regret of the algorithm proposed in [26] is
Reg(M,T ) ≤ d

√
T/(1 − γ)2 where γ is a discount factor. In contrast to our work, this regret

analysis holds for discounted problems, where we remark that both the diameter and the span are
irrelevant. On the other hand, both are replaced by a term of the form (1 − γ)−2, which implies
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that the previous bound grows to infinity as γ ↑ 1. More recently, a regret bound of O(d
√
DT ) has

been proven in [23] in the undiscounted case, that is the case considered in our work. However, the
algorithm presented in that reference highly depends on the diameter and is unsuitable for MDPs
with a birth and death structure.

Finally, our bound depends on the second moment of the stationary measure of a reference policy,
i.e., E2, which can be bounded independently of the state space size. This is structurally different
from the ones existing in the literature. We believe that this structure holds as well in a class of
MDPs much larger thanM. In particular, if m is the stationary measure of some bounding/reference
policy, and if the critical quantity Em [∆ · f ] is small for a well chosen function f , then the regret of a
learning algorithm navigating the MDP should also be small. A deeper analysis is left as future work.

4.3 Sketch of the Proof

Our proof for Theorem 4.1 is technical and is provided in the supplementary material. In this section,
we present the main ideas and its general structure. It initially relies on the regret analysis of UCRL2
developed in [11], and the differences are highlighted below. First, we consider the mean rewards
and split the regret into episodes to separately treat the cases where the true MDP is in the confidence
set of optimistic MDPsMk or not. Thus, let Rk :=

∑
s,a νk(s, a)(ρ∗ − r(s, a)) denote the regret in

episode k. This split can be written:

E [Reg(M,T )] ≤ E [Rin] + E [Rout] + rmax

√
T log T ,

where Rin :=
∑
k Rk1M∈Mk

and Rout :=
∑
k Rk1M/∈Mk

.

To control Rout, we use, as in [11], the stopping criterion and the confidence bounds. This gives
E [Rout] ≤ rmaxS, so that the regret due to episodes where the confidence regions fail will be
negligible next to the main terms. Then, when the true MDP belongs to the confidence region, we use
the properties of Extended Value Iteration (EVI) to decompose Rin into∑
k,s,a

νk(s, a)(r̃k − r(s, a))︸ ︷︷ ︸
Rrewards

+
∑
k

vk

(
P̃k − I

)
h̃k︸ ︷︷ ︸

Rbias

+
∑
k

vk

(
P̃k − I

)
dk + 2rmax

∑
k,s,a

νk(s, a)√
tk︸ ︷︷ ︸

REVI

,

where vk is the vector of the state-action counts νk’s, P̃k and h̃k are respectively the transition matrix
and the bias in M̃k under policy π̃k, and dk is the profile difference between the last step of EVI and
the bias (see Appendix A.3).

We now show how to handle Rrewards, REVI, Rbias. First, we deal with the terms that do not involve
the bias. Using the confidence bound on the rewards (see Appendix A.3.1:

Rrewards ≤ rmax2
√

2 log(2AT )
∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

. (12)

Now, let us consider REVI. Since dk becomes arbitrarily small after enough iterations of EVI (see
Appendix A.1), for T ≥ e8

2AT , we get

REVI ≤ rmax2
√

2 log(2AT )
∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

. (13)

The analysis of Rbias is different from the one in [11]: While in [11] the bias is directly bounded by
the diameter, we can use the variations of the bias to control the regret more precisely. Using Pk, i.e.,
the transitions in the true MDP under π̃k, Rbias is further decomposed into:∑

k

vk

(
P̃k −Pk

)
h∗︸ ︷︷ ︸

Rtrans

+
∑
k

vk

(
P̃k −Pk

)(
h̃k − h∗

)
︸ ︷︷ ︸

Rdiff

+
∑
k

vk (Pk − I) h̃k︸ ︷︷ ︸
Rep

.

The term Rep can be treated in a similar manner as in [11] by bounding the bias terms with the
diameter to apply an Azuma-Hoeffding inequality (see Appendix A.3.5). Here, we obtain

E [Rep] ≤ SAD rmax log2

(
8T

SA

)
.
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Next, we show in A.3.2 that Rdiff does not contribute to the main term of the regret. This is one
of the hard point in our proof. First, linear algebra techniques are used to bound ||h̃k − h∗||∞ by
D(2rmaxD||P̃k −P∗||∞ + ||r̃k − r∗||∞). Each norm is then bounded using Hoeffding inequality.
This introduces the special quantity Ntk(xk, πk(xk)) that yields to the worst confidence bound in
episode k. Then, an adaptation of McDiarmid’s inequality to Markov chains is used to show that
Ntk(xk, πk(xk)) ≥ (tk+1 − tk)mmax(S − 1)/2 with high probability, where mmax(S − 1) is the
stationary measure of state S−1 under the uniform policy πmax(s) = Amax. This eventually implies
that

E [Rdiff ] ≤ 96rmaxD
2SAmax{Qmax, T

1/4} log2(2AT ),

where Qmax :=
(

10D
mmax(S−1)

)2

log

((
10D

mmax(S−1)

)4
)

.

Then, to deal with the main term Rtrans, we exploit the optimal bias. The unit vector being in the
kernel of P̃k −Pk, we can rewrite:

Rtrans =
∑
k

∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · (h∗(s′)− h∗(s))

and, thus, using the confidence bound and the bounded variations of the bias,

Rtrans ≤ 4
√

2 log (2AT )
∑
k

∑
s,a

∆(s)νk(s, a)√
max{1, Ntk(s, a)}

.

We can now aggregate Rtrans, Rrewards and REVI to compute the main term of the regret (see
Appendix A.3.4). Here, the key ingredient is to bound∑

k,s,a

(∆(s) + rmax)νk(s, a)√
max{1, Ntk(s, a)}

independently of S. This is the second main difference with [11]. Instead of exploring the MDP
uniformly, we know that the algorithm will mostly visit the first states of the MDP, regardless of the
chosen policy. As shown in [11], for a fixed state s:

E

[∑
a

∑
k

νk(s, a)√
max{1, Nk(s, a)}

]
≤ 3
√
E [NT (s)]A.

Now, instead of summing over the states, we can use properties of stochastic ordering to compare the
mean number of visits of a state with the probability measure mπ0

; here, we strongly rely on the birth
and death structure of the MDPs inM. For any non-negative non-decreasing function f : S → R+,
we obtain

E

∑
s≥0

f(s)Nt(s)

 ≤ t∑
s≥0

f(s)mπ0

(s). (14)

Let us choose f : s 7→ max{1,s(s−1)}
(∆(s)+rmax)2 and let F :=

∑
s f(s)−1 ≤ 3(C + rmax)2. Let also

E2 := FEmπ0

[
(∆ + rmax)2 · f

]
. Then,

E

[∑
k

∑
s,a

(∆(s) + rmax)νk(s, a)√
max{1, Ntk(s, a)}

]
≤ 3
√
E2AT.

In Appendix A.3.4, we further show that E2 ≤ 3(C + rmax)2
(

1 + λ2

µ2

)
. Therefore, for the three

main terms, we obtain

E [Rtrans +Rrewards +REVI] ≤ 19
√
E2AT log (2AT ) (15)

and we conclude our proof by combining all of these terms.

9



5 Conclusions

For learning in a class of birth and death processes, we have shown that exploiting the stationary
measure in the analysis of classical learning algorithms yields a K

√
T regret, where K only depends

on the stationary measure of the system under a well chosen policy. Thus, the dependence on the
size of the state space as well as on the diameter of the MDP or its span disappears. We believe that
this type of results can be generalized to other cases such as optimal routing, admission control and
allocation problems in queuing systems, as the stationary distribution under all policies is uneven
between the states.
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The appendix is organized as follows: We first provide some insights on extended value iterations
useful in our construction of the regret.Then, the detailed proof of theorem 4.1 is given with bounds
on the five terms in our decomposition of the regret. A final appendix provides technical lemmas
about MDPs inM.

A Proof of Theorem 4.1

A.1 Extended value iteration

For each episode k, we use the extended value iteration algorithm described in [11] to compute
π̃k and M̃ ∈ Mk, an optimistic policy and MDP. The values we iteratively get are defined in the
following way:

u
(k)
0 (s) = 0

u
(k)
i+1(s) = max

a∈A

{
r̃(s, a) + max

p(·)∈P(s,a)

{∑
s∈S

p(s′)u
(k)
i (s′)

}}
, (16)

where r̃ is the maximal reward from (4) and P(s, a) is the set of probabilities from (5).

Now, from [11, Theorem 7], we obtain the following lemma on the iterations of extended value
iteration.
Lemma A.1. For episode k, denote by i the last step of extended value iteration, stopped when:

max
s
{u(k)

i+1(s)− u(k)
i (s)} −min

s
{u(k)

i+1(s)− u(k)
i (s)} < rmax√

tk
. (17)

The optimistic MDP M̃k and the optimistic policy π̃k that we choose are so that the gain is 1√
tk
−

close to the optimal gain:

ρ̃k := min
s
ρ(M̃k, π̃k, s) ≥ max

M ′∈Mk,π,s′
ρ(M ′, π, s′)− rmax√

tk
. (18)

Moreover from [16, Theorem 8.5.6]:∣∣∣u(k)
i+1(s)− u(k)

i (s)− ρ̃k
∣∣∣ ≤ rmax√

tk
, (19)

and when the optimal policy yields an irreducible and aperiodic Markov chain, we have that ρ̃k =
ρ(M̃k, π̃k, s) for any s, so that we can define the bias:

h̃k(s0) = Es0

[ ∞∑
t=0

(r̃(st, at)− ρ̃k)

]
. (20)

By choosing iteration i large enough, from [16, Equation 8.2.5], we can also ensure that:∣∣∣u(k)
i (s)− (i− 1)ρ̃k − h̃k(s)

∣∣∣ < rmax

2
√
tk
, (21)

so that we can define the following difference

dk(s) :=
∣∣∣u(k)
i (s)−min

s
u

(k)
i (s)−

(
h̃k(s)−min

s
h̃k(s)

)∣∣∣ < rmax√
tk
. (22)

A.2 Regret when M is out of the confidence bound

Let us compute E[Reg], the expected regret. We will mainly follow the approach in [11, Section 4],
with a few tweaks. We start by splitting the regret into a sum over episodes and states.

We remind that r(s, a) is the overall mean reward and NT (s, a) the total count of visits. We also
define Rk(s) :=

∑
a νk(s, a)(ρ∗ − r(s, a)) the regret at episode k induced by state s, with νk(s, a)

the number of visit of (s, a) during episode k.

12



Let Rin :=
∑
s

∑m
k=1Rk(s)1M∈Mk

and Rout :=
∑
s

∑m
k=1Rk(s)1M/∈Mk

. We therefore have the
split, for T ≥ 2, as log T ≥ 1

4 :

E [Reg] ≤ E [Rin] + E [Rout] + rmax

√
T log (T ). (23)

Now, let νk(s) =
∑
a νk(s, a) and denote byM(t) the set of MDPsMk such that tk ≤ t < tk+1.

For the terms out of the confidence sets, we have:

Rout ≤
∑
s

m∑
k=1

νk(s)1M/∈Mk

≤
∑
s

m∑
k=1

Ntk(s)1M/∈Mk
using the stopping criterion

=

T∑
t=1

∑
s

m∑
k=1

1tk=tNt(s)1M/∈M(t) ≤
T∑
t=1

∑
s

Nt(s)1M/∈M(t)

=

T∑
t=1

1M/∈M(t)

∑
s

Nt(s) ≤
T∑
t=1

t1M/∈M(t).

Taking the expectations:

E [Rout] ≤ rmax

T∑
t=1

tP {M /∈M(t)}

≤ rmax

T∑
t=1

tS

2t3
≤ rmax

T∑
t=1

S

2t2
by Lemma B.1

≤ rmaxS. (24)

Thus, we have dealt with the cases where the MDP M did not belong to any confidence set, for some
episodes. We now need to deal with the rest.

A.3 Regret terms when M is in the confidence bound

We now assume that M ∈Mk and deal with the terms in the confidence bound, so that we can omit
the repetitions of the indicator functions. For each episode k, let Rin,k :=

∑
sRk.

We defined π̃k the optimistic policy computed at episode k, now define P̃k := (p̃k(s′|s, π̃k(s))) the
transition matrix of that policy on the optimistic MDP M̃k. Define also vk := (νk(s, π̃k) the row
vector of visit counts during episode k. Following the same steps as in [11], we get the inequality on
the regret of episode k, assuming M ∈Mk, using Lemma A.1:

Rin,k =
∑
s,a

νk(s, a)(ρ∗ − r(s, a))

≤
∑
s,a

νk(s, a)(ρ̃k − r(s, a)) + rmax

∑
s,a

νk(s, a)√
tk

=
∑
s,a

νk(s, a)(ρ̃k − r̃k(s, a)) +
∑
s,a

νk(s, a)(r̃k − r(s, a)) + rmax

∑
s,a

νk(s, a)√
tk

.

Then with (19) and using the definition of the iterated values from EVI, we have for a given state s
and as := π̃k(s):∣∣∣∣∣(ρ̃k − r̃k(s, as))−

(∑
s′

p̃k(s′|s, as)u(k)
i (s′)− u(k)

i (s)

)∣∣∣∣∣ ≤ rmax√
tk
,

so that:

Rin,k ≤ vk

(
P̃k − I

)
ui +

∑
s,a

νk(s, a)(r̃k − r(s, a)) + 2rmax

∑
s,a

νk(s, a)√
tk

.
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Remember that for any state s: |dk(s)| ≤ rmax√
tk
, where h̃k is the bias of the average optimal policy

for the optimist MDP, and:

dk(s) :=
(
u

(k)
i (s)−min

x
u

(k)
i (x)

)
−
(
h̃k(s)−min

x
h̃k(x)

)
.

Notice that the unit vector is in the kernel of
(
P̃k − I

)
. Therefore, in the first term, we can replace

ui by any translation of it. We get:

vk

(
P̃k − I

)
ui = vk

(
P̃k − I

)
h̃k + vk

(
P̃k − I

)
dk.

so that:

Rin ≤
∑
k

∑
s,a

νk(s, a)(r̃k − r(s, a))︸ ︷︷ ︸
Rrewards

+
∑
k

vk

(
P̃k − I

)
h̃k︸ ︷︷ ︸

Rbias

+
∑
k

vk

(
P̃k − I

)
dk + 2rmax

∑
k

∑
s,a

νk(s, a)√
tk︸ ︷︷ ︸

REVI

.

Then, using the assumption on empirical rewards (4), as M ∈Mk, and noticing that Ntk ≤ tk:

Rrewards ≤ rmax2
√

2 log(2AT )
∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

. (25)

For the term vk

(
P̃k − I

)
dk, which does not appear in the analysis of [11], we obtain

vk

(
P̃k − I

)
dk ≤

∑
s

νk (s, π̃k(s)) · ‖p̃k (·|s, π̃k(s))− 1s‖1 · sup
s′
|dk(s′)|

≤ 2rmax

∑
s

νk (s, π̃k(s))√
tk

≤ 2rmax

∑
s,a

νk (s, a)√
tk

≤ 2rmax

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

,

where in the last inequality we used that max{1, Ntk(s, a)} ≤ tk ≤ T . Thus, for T ≥ e2

2AT the
regret term coming from the consequences and approximations of EVI satisfies

REVI ≤ rmax2
√

2 log(2AT )
∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}

. (26)

Now, by defining Pk the transition matrix of the optimistic policy π̃k in the true MDP M , we have
the following decomposition of the middle term:∑

k

vk

(
P̃k −Pk

)
h∗︸ ︷︷ ︸

Rtrans

+
∑
k

vk

(
P̃k −Pk

)(
h̃k − h∗

)
︸ ︷︷ ︸

Rdiff

+
∑
k

vk (Pk − I) h̃k︸ ︷︷ ︸
Rep

Overall:

Rin ≤
∑
k

vk

(
P̃k −Pk

)
h∗︸ ︷︷ ︸

Rtrans

+
∑
k

vk

(
P̃k −Pk

)(
h̃k − h∗

)
︸ ︷︷ ︸

Rdiff

+
∑
k

vk (Pk − I) h̃k︸ ︷︷ ︸
Rep

+ rmax2
√

2 log(2AT )
∑
k

∑
s,a

νk(s, a)√
max {1, Ntk(s, a)}︸ ︷︷ ︸

REVI+Rrewards

.
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A.3.1 Bound on Rtrans

Let us deal with the first term Rtrans. To bound this term, we will use our knowledge of the optimal
bias h∗ and the control of the difference of the transition matrices, and for the second term we will
control the difference of the biases.

Notice that for a fixed state 1 ≤ s ≤ N − 1:∑
s′

p (s′|s, π̃k(s))h∗(s′) =
∑
s′

p (s′|s, π̃k(s)) (h∗(s′)− h∗(s)) + h∗(s).

The same is true for p̃k, and knowing the MDP is a birth and death process:

Rtrans =
∑
k

∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · h∗(s′)

=
∑
k

∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · (h∗(s′)− h∗(s))

≤
∑
k

∑
s

νk (s, π̃k(s)) · ‖p̃k (·|s, π̃k(s))− p (·|s, π̃k(s))‖1 sup
s
∂h∗(s)

≤ 4
√

2 log (2AT )
∑
k

∑
s,a

∆(s)νk(s, a)√
max{1, Ntk(s, a)}

,

where in the last inequality, we used the knowledge on the bounded variations of the optimal bias
from Lemma 3.2, and that the optimistic MDP has transitions close to the true transitions.

A.3.2 Bound on Rdiff

We now deal with the term involving the difference of bias, Rdiff . For each episode k with policy πk,
denote by xk the state such that the confidence bounds are at their worst and denote by ak := πk(xk)
the corresponding action used at this state, so that Ntk(xk, ak) is minimal. We therefore have that√

log(2Atk)
max{1,Ntk (xk,ak)} is maximal for episode k. The true MDP being within the confidence bounds,

with a triangle inequality:

‖Pk − P ∗‖∞ ≤ 4

√
2 log (2Atk)

max{1, Ntk(xk, ak)}
,

and

‖rk − r∗‖∞ ≤ 2rmax

√
2 log (2Atk)

max{1, Ntk(xk, ak)}
.

Then using Lemma C.4, and noticing that to bound the biases h̃k, h∗ and the quantity ‖
∑T
t=1 P̃

t
kr̃k‖

is bounded by the same diameter D, using the same argument as in [11] (Equation (11)), and noticing
that D ≥ 1:

‖h̃k − h∗‖∞ ≤ 12ThitrmaxD

√
2 log (2Atk)

max{1, Ntk(xk, ak)}
. (27)

Hence,

Rdiff ≤
∑
s

∑
s′

νk (s, π̃k(s)) · (p̃k (s′|s, π̃k(s))− p (s′|s, π̃k(s))) · (h̃k(s′)− h∗(s′))

≤
∑
s

νk (s, π̃k(s)) · ‖p̃k (·|s, π̃k(s))− p (·|s, π̃k(s))‖1 ‖h̃k − h∗‖∞

≤ 48D2rmax log (2AT ) Σ,

where in the last inequality we have used (27) and that by definition of D

Thit := inf
s′∈S

sup
s∈S

Es τπ∗s′ ≤ ES−1 τ
π0

0 ≤ D,
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and we called

Σ :=
∑
s,a

∑
k

tk+1−1∑
t=tk

1{st,at=s,a}√
max{1, Ntk(s, a)}

√
max{1, Ntk(xk, ak}

.

By the choice of xk, Ntk(xk, ak) ≤ Ntk(s, a) for any state-action pair (s, a), so that we can rewrite,
with Ik := tk+1 − tk the length of episode k:

Σ ≤
∑
s,a

∑
k

tk+1−1∑
t=tk

1{st,at=s,a}

max{1, Ntk(s, a)}
=
∑
k

Ik
max{1, Ntk(xk, ak)}

.

Now define Qmax :=
(

10D
mmax(S−1)

)2

log

((
10D

mmax(S−1)

)4
)

, and I(T ) := max
{
Qmax, T

1/4
}

. We

split the sum depending on whether the episodes are shorter than I(T ) or not, and call K≤I the
number of such episodes. This yields:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik
max{1, Ntk(xk, ak)}

.

Using the stopping criterion for episodes:

Σ ≤ K≤II(T ) +
∑

k,Ik>I(T )

Ik
max{1, νk(xk, ak)}

.

Now denote by E the event:

E =

{
∀k s.t Ik > I(T ),

1

max{1, ν(xk, ak)}
≤ 2

mmax(S − 1)Ik

}
.

By splitting the sum, using the above event, we get:

Σ ≤ K≤II(T ) + 1E
∑

k,Ik>I(T )

2

mmax(S − 1)
+ 1Ē

∑
k,Ik>I(T )

Ik

≤ K≤II(T ) + 1E (KT −K≤I)
2

mmax(S − 1)
+ 1ĒT.

We use Corollary C.6 to get P
(
Ē
)
≤ 1

4T , so that when taking the expectation:

E [Σ] ≤ E [K≤I ] I(T ) + E [(KT −K≤I)]
2

mmax(S − 1)
+

1

4

Now using Lemma B.3, SA ≥ 4, I(T ) ≥ 2
mmax(S−1) and that 1

log 2 + 1
4 ≤ 2:

E [Σ] ≤ E [KT ] I(T ) +
1

4
≤ 2SA log(2AT )I(T ).

We therefore have that:

E [Rdiff ] ≤ 96rmaxSAD
2I(T ) log2 (2AT ) . (28)

A.3.3 Bound on the main terms: Exploiting the stochastic ordering

In Section 4.3 we have shown that:

Rtrans ≤ 4
√

2 log (2AT )
∑
s,a

∆(s)νk(s, a)√
max{1, Ntk(s, a)}

. (29)

To control this term as well as REVI (26) and Rrewards (25), we need to control the terms in the sum
in a way that does not make the parameters D or S appear, as this will be one of the main contributing
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terms. To do so, we need to sum over the episodes and take the expectation, so that with Lemma B.4,
we get:

E

[∑
s,a

∑
k

νk(s, a)√
max{1, Nk(s, a)}

]
≤ 3E

[∑
s,a

√
NT (s, a)

]
≤ 3

∑
s

√
E [NT (s)]A by Jensen’s inequality.

We will use the following lemma to carry on the computations:

Lemma A.2. Let mπ0

be the stationary measure of the Markov chain under policy π0, such that for
every state s: π0(s) = 0. Let f : S → R+ be a non-negative non-decreasing function on the state
space. Then for any state s ∈ S,

E

∑
s′≥s

f(s′)Nt(s
′)

 ≤ t∑
s′≥s

f(s′)mπ0

(s′) (30)

Proof. Let s ∈ S. For any state s′, define Nmπ
0
,π0

t (s′) the number of visits when the starting state
follows the initial distribution mπ0

, and the MDP always executes the policy π0 at every timestep
instead of the policy determined by the algorithm UCRL2. Notice already that for any state s′:

E
[
Nmπ

0
,π0

t (s′)

]
= tmπ0

(s′)

On the other hand, for x ∈ S, we have the stochastic ordering:∑
s′≥x

Nt(s
′) ≤st

∑
s′≥x

Nmπ
0
,π0

t (s′),

so that for any non-negative non-decreasing function f , with the convention f(−1) = 0:(f(x)− f(x− 1))
∑
s′≥xNt(s

′) ≤st (f(x)− f(x− 1))
∑
s′≥xN

mπ
0
,π0

t (s′)

f(s− 1)
∑
s′≥sNt(s

′) ≤st f(s− 1)
∑
s′≥sN

mπ
0
,π0

t (s′),
(31)

and then summing the equation above for s ≤ x ≤ S − 1 and switching the sums yields:

∑
s′≥s

Nt(s
′)

s′∑
x=s

[f(x)− f(x− 1)] ≤st
∑
s′≥s

Nmπ
0
,π0

t (s′)

s′∑
x=s

[f(x)− f(x− 1)],

which simplifies to:∑
s′≥s

Nt(s
′)[f(s′)− f(s− 1)] ≤st

∑
s′≥s

Nmπ
0
,π0

t (s′)[f(s′)− f(s− 1)].

Now summing with the second equation in (31), we get the following equation:∑
s′≥s

Nt(s
′)f(s′) ≤st

∑
s′≥s

Nmπ
0
,π0

t (s′)f(s′).

Taking the expectation in this last inequality finishes the proof.

Now, we can conclude our bound on Rtrans. Since

E

[∑
s,a

∑
k

(∆(s) + rmax)
νk(s, a)√

max{1, Nk(s, a)}

]
≤ 3
√
A
∑
s≥0

(∆(s) + rmax)
√

E [NT (s)], (32)
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let f be a non-negative non-decreasing function over the state space, such that F :=
∑
s≥0 f(s)−1

exists. Then by concavity:

∑
s≥0

(∆(s) + rmax)
√

E [NT (s)] = F
∑
s≥0

1

Ff(s)

√
f(s)2(∆(s) + rmax)2E [NT (s)]

≤ F

√√√√∑
s≥0

f(s)2(∆(s) + rmax)2E [NT (s)]

Ff(s)
by concavity

=

√
F
∑
s≥0

f(s)(∆(s) + rmax)2E [NT (s)]

≤
√
TF

∑
s≥0

f(s)(∆(s) + rmax)2mπ0(s) using Lemma A.2,

so that overall, (32) becomes:

E

[∑
s,a

∑
k

(∆(s) + rmax)νk(s, a)√
max{1, Nk(s, a)}

]
≤ 3
√
ATF

√∑
s≥0

f(s)(∆(s) + rmax)2mπ0(s). (33)

This is the term mainly contributing to the regret.

A.3.4 Bound on the main terms: Introducing E2

Now, using Lemma B.5 which gives the stationary distribution ofm0, we can compute the expectation
under m0 of a well-chosen function f :

Lemma A.3. Let us choose the increasing function f : s 7→ max{1,s(s−1)}
(∆(s)+rmax)2 . Then F ≤ 3(C+rmax)2

and
∑
s≥0(∆(s) + rmax)2f(s)mπ0

(s) = Emπ0

[
(∆ + rmax)2 · f

]
≤
(

1 + λ2

µ2

)
, so that:

E2 := FEmπ0

[
(∆ + rmax)2 · f

]
≤ 3(C + rmax)2

(
1 +

λ2

µ2

)
.

Proof. For F , we obtain:

F ≤ (C+rmax)2

(
2 +

S−1∑
s=2

1

s(s− 1)

)
= (C+rmax)2

(
2 +

S−1∑
s=2

(
1

s− 1
− 1

s

))
≤ 3(C+rmax)2

Using the following computations:
S−1∑
s=2

s(s− 1)

(
S − 1

s

)(
λ

(S − 1)µ

)s
= (S − 2)(S − 1)

S∑
s=2

(
S − 3

s− 2

)(
λ

(S − 1)µ

)s

= (S − 2)(S − 1)

(
λ

(S − 1)µ

)2 S−3∑
s=0

(
S − 3

s

)(
λ

(S − 1)µ

)s
= (S − 2)(S − 1)

(
λ

(S − 1)µ

)2(
1 +

λ

(S − 1)µ

)S−3

≤
(
λ

µ

)2(
1 +

λ

(S − 1)µ

)S−3

,

and using that 1 + λ
µ ≤

(
1 + λ

(S−1)µ

)S−1

, we get:(
1 +

λ

(S − 1)µ

)S−1

Emπ0

[
(∆ + rmax)2 · f

]
≤
(

1 +
λ2

µ2

)(
1 +

λ

(S − 1)µ

)S−1

,
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so that finally

Emπ0

[
(∆ + rmax)2 · f

]
≤
(

1 +
λ2

µ2

)
,

which concludes the proof.

Finally (33) becomes:

E

[∑
s,a

∑
k

(∆(s) + rmax)νk(s, a)√
max{1, Nk(s, a)}

]
≤ 3
√
E2AT, (34)

and thus:
E [Rtrans +Rrewards +REVI] ≤ 12

√
2E2AT log (2AT ). (35)

In particular:

E [Rtrans +Rrewards +REVI] ≤ 30(C + rmax)

√(
1 +

λ2

µ2

)
AT log (2AT ). (36)

A.3.5 Bound on Rep

It remains to deal with the following regret term:

Rep =
∑
k

vk (Pk − I) h̃k.

We will follow the core of the proof from [11]. Define Xt := (p(·|st, at)− est) h̃k(t)1M∈Mk(t)
,

where k(t) is the episode containing step t and ei the vector with i-th coordinate 1 and 0 for the other
coordinates.

vk (Pk − I) h̃k =

tk+1−1∑
t=tk

Xt + h̃k(stk+1
)− h̃k(stk)

≤
tk+1−1∑
t=tk

Xt +Drmax.

By summing over the episodes we get:

Rep ≤
T∑
t=1

Xt +KTDrmax.

Notice that E [Xt|s1, a1, . . . , st, at] = 0, so that when taking the expectations, only the term in the
number of episodes remains.

On the other side, using Lemma B.3, we get when taking the expectation:

E [Rep] ≤ SA log2

(
8T

SA

)
·Drmax.

Assuming SA ≥ 4, and using log(2) ≥ 1
2 :

E [Rep] ≤ 2rmaxSAD log(2AT ). (37)

We can now gather the expected regret terms when the true MDP is within the confidence bounds.
Using (28), (35) and (37):

E [Rin] ≤ 96rmaxSAD
2I(T ) log2 (2AT ) + 12

√
2E2AT log (2AT ) + 2rmaxSAD log(2AT ),
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which gives with (23) and (24), assuming that T ≥ S2:

E [Reg] ≤ 97rmaxSAD
2I(T ) log2 (2AT ) + 12

√
2E2AT log (2AT ).

which finally gives:

E [Reg] ≤ 97rmaxSAD
2I(T ) log2 (2AT ) + 19

√
E2AT log (2AT ).

B Technical Lemmas

B.1 Probability of the confidence bounds

This first lemma is from [11, Lemma 17] and adapted to our confidence bounds.

Lemma B.1. For t > 1, the probability that the MDP M is not within the sate of plausible MDPs
Mt is bounded by:

P {M /∈M(t)} < S

2t3
.

Proof. Fix a state action pair (s, a), and n the number of visits of this pair before time t. Recall that
p̂ and r̂ are the empirical transition probabilities and rewards from the n observations. Knowing that
from each pair, there are at most 3 transitions, a Weissman’s inequality gives for any εp > 0:

P {‖p̂(·|s, a)− p(·|s, a)‖1 ≥ εp} ≤ 6 exp

(
−
nε2

p

2

)
.

So that for the choice of εp =
√

2
n log (16At4) ≤

√
8
n log (2At), we get:

P

{
‖p̂(·|s, a)− p(·|s, a)‖1 ≥

√
8

n
log (2At)

}
≤ 3

8At4
.

We can do similar computations for the confidence on rewards, with a Hoeffding inequality:

P {|r̂(s, a)− r(s, a)| ≥ εr} ≤ 2 exp

(
−2nε2

r

r2
max

)
,

and choosing εr = rmax

√
1

2n log (16At4) ≤ rmax

√
2
n log (2At), so that:

P

{
|r̂(s, a)− r(s, a)| ≥ rmax

√
2

n
log (2At)

}
≤ 1

8At4
.

Now with a union bound for all values of n ∈ {0, 1, · · · , t− 1}, we get:

P

{
‖p̂(·)− p(·)‖1 ≥

√
8 log (2At)

max{1, Nt(s, a)}

}
≤ 3

8At3
,

and

P

{
|r̂(s, a)− r(s, a)| ≥ rmax

√
2 log (2At)

max{1, Nt(s, a)}

}
≤ 1

8At3
,

and finally, when summing over all state-action pairs, P {M /∈M(t)} < S
2t3 .
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B.2 Number of visits for an MDP inM

This lemma is needed in the proof of Lemma C.5.
Lemma B.2 (Azuma-Hoeffding inequality). Let X1, X2, . . . be a martingale difference sequence
with |Xi| ≤ RD for all i and some R > 0. Then for all ε > 0 and n ∈ N:

P

{
n∑
i=1

Xi ≥ ε

}
≤ exp

(
− ε2

2nDR

)
.

The two following lemmas are proved in [11, Appendix C.2 and Appendix C.3] respectively. Bound-
ing the number of episodes is notably useful to obtain equation (28).
Lemma B.3. Denote by Kt the number of episodes up to time t, and let t > SA. It is bounded by:

Kt ≤ SA log2

(
8t

SA

)
.

The following lemma is used to simplify regret terms, notably (29).
Lemma B.4. For any fixed state action pair (s, a) and time T , we have:

T∑
t=1

1{st,at=s,a}√
max{1, Nt(s, a)}

≤ 3
√
NT+1(s, a),

B.3 Diameter and Span of MDPs inM

For completeness, and to support the discussion in Section 4.2, the section details the behavior of the
diameter and the span of MDPs inM, as functions of S.

Under policy π0, it is possible to get en explicit expression for the stationary distribution of the states.

Lemma B.5. Under the stationary policy π0, the stationary measure mπ0

(s) of the MDP is given
by:

mπ0

(s) =

(
S−1
s

) (
λ

(S−1)µ

)s
(

1 + λ
(S−1)µ

)(S−1)
.

This lemma is shown in the proof of [1, Lemma 3.3].

First, it should be clear that under any policy π, the diameter of the MDP under π is extremely large
because the probability to move from state s to state s+ 1 is smaller and smaller as s grows. Actually,
this is also true for the local diameter, more precisely the expected time to go from s to s+ 1 grows
extremely fast with s.

This discussion is formalized in the following result.
Lemma B.6. For any M ∈ M and any policy π, the diameter Dπ as well as the local diameter
Dπ(s− 1, s) grow as SS−2.

Proof. Under policy π, the following sequence of inequalities follows from the stochastic comparison
with π0 and monotonicity under π0.

Dπ ≥ τπ(0, S) ≥ τπ
0

(0, S) ≥ τπ
0

(S − 2, S − 1),

where τπ(x, y) is the expected time to go from x to y under policy π.

Now, starting from S− 2, the Markov chain moves to S− 1 with probability p := λ/(U(S− 1)) and
the time to reach S − 1 is equal to 1 or moves to S − 2 or S − 3 with probability 1− p. Therefore,
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τπ
0

(S − 2, S − 1) is bounded by 1− p times the return time to S − 1, bounded in turn by the inverse
of the stationary measure of state S − 2 in the chain truncated at S − 2. Using Lemma B.5,

τπ
0

(S − 2, S − 1) ≥ (1− p)
(

(S − 2)µ

λ

)(S−2)(
1 +

λ

(S − 2)µ

)(S−2)

(38)

= exp

(
λ

µ
− 2

)(µ
λ

)S−2

SS−2(1 + o(1/S)). (39)

As for the maximal local diameter, maxsD
π(s− 1, s) ≥ maxs τ

π0

(s− 1, s) ≥ τπ0

(S − 2, S − 1)
and the same argument as before applies.

Let us now consider the bias of the optimal policy in M . Using Lemma 3.2, the bias h∗(s) is
decreasing and concave in s, with bounded increments. Therefore, its span, defined as span (h∗) :=
maxs h

∗(s)−mins h
∗(s), satisfies

(h∗(0)− h∗(1))S ≤ span (h∗) ≤ (h∗(S − 2)− h∗(S − 1))S ≤ C(S − 1).

This implies that the span of the bias behaves as a linear function of S for all M .

C Generic lemmas on ergodic MDPs

C.1 From bias variations to probability transition variations

The three first lemmas of this subsection are used in the proof of Lemma C.4. This lemma is needed
to obtain equation (27).
Lemma C.1. For a MDP with rewards r ∈ [0, rmax] and transition matrix P , denote by Js(π, T ) :=

E
[∑T

t=0 r(st, π(st))
]

the expected cumulative rewards until time T starting from state s, under

policy π. Let Dπ be the diameter under policy π. The following inequality holds: span (J(π, T )) ≤
rmaxDπ .

Proof. Let s, s′ ∈ S. Call τs→s′ the random time needed to reach state s′ from state s under policy
π. Then:

Js(π, T ) = E

[
T∑
t=0

r(st)

]

= E

[
τs→s′−1∑
t=0

r(st)

]
+ E

 T∑
t=τs→s′

r(st)


≤ rmaxE [τs→s′ ] + Js′(π, T )

≤ rmaxDπ + Js′(π, T ),

which proves the lemma.

Lemma C.2. Consider two ergodic MDPs M and M ′. For i ∈ 1, 2, let ri ∈ [0, rmax] and Pi be the
rewards and transition matrix of MDP Mi under policy πi, where both MDPs have the same state
and action spaces. Denote by gi the average reward obtained under policy πi in the MDP Mi. Then
the difference of the gains is upper bounded.

|g − g′| ≤ ‖r − r′‖∞ + rmaxDπ‖P − P ′‖∞.

Proof. Define for any state s the following correction term b(s) := rmaxDπ‖p(·|s)− p′(·|s)‖. Let
us show by induction that for T ≥ 0,

T−1∑
t=0

P tr ≤
T−1∑
t=0

P ′t(r + b).

22



This is true for T = 0. Assume that the inequality is true for some T ≥ 0, then
T∑
t=0

P tr −
T∑
t=0

P ′t(r + b) = −b+ P

T−1∑
t=0

P tr − P ′
T−1∑
t=0

P ′t(r + b)

= −b+ P ′

(
T−1∑
t=0

P tr −
T−1∑
t=0

P ′t(r + b)

)
+ (P − P ′)

T∑
t=0

P tr

≤ −b+ (P − P ′)
T∑
t=0

P tr by induction hypothesis

Notice that, for any state s:(
(P − P ′)

T∑
t=0

P tr

)
(s) ≤ ‖p(·|s)− p′(·|s)‖ · span (J(T ))

≤ rmaxDπ‖p(·|s)− p′(·|s)‖ by Lemma C.1
= b(s)

In the same manner we show that:
T∑
t=0

P tr ≥
T∑
t=0

P ′t(r − b).

Hence, as P ′ has non-negative coefficients, denoting by e the unit vector:∥∥∥∥∥
T∑
t=0

P tr −
T∑
t=0

P ′tr

∥∥∥∥∥
∞

≤ ‖b‖∞

∥∥∥∥∥
T∑
t=0

P ′t · e

∥∥∥∥∥
∞

= ‖b‖∞(T + 1).

We can also show that:∥∥∥∥∥
T∑
t=0

P ′tr −
T∑
t=0

P ′tr′

∥∥∥∥∥
∞

=

∥∥∥∥∥
T∑
t=0

P ′t(r − r′)

∥∥∥∥∥
∞

≤ ‖r − r′‖∞(T + 1)

And therefore with a multiplication by 1
T+1 and by taking the Cesáro limit in∥∥∥∑T

t=0 P
tr −

∑T
t=0 P

′tr′
∥∥∥
∞

, and with a triangle inequality:

|g − g′| ≤ ‖r − r′‖∞ + ‖b‖∞,
where ‖b‖∞ = rmaxDπ‖P − P ′‖∞.

Lemma C.3. Let P be the stochastic matrix of an ergodic Markov chain with state space 1, . . . , S.
The matrix A := I − P has a block decomposition

A =

(
AS b
c d

)
;

then AS , of size (S − 1) × (S − 1) is invertible and ‖A−1
S ‖∞ = supi∈S Ei τS , where Ei τS is the

expected time to reach state S from state i.

Remark that this lemma is true for any state in S.

Proof. (Ei τS)i is the unique vector solution to the system:{
v(S) = 0

∀i 6= S, v(i) = 1 +
∑
j∈S P (i, j)v(j)

We can rewrite this system of equations as: Ãv = e− eS , where Ã is the matrix

Ã :=

(
AS b
0 1

)
,

23



e the unit vector and eS the vector with value 1 for the last state and 0 otherwise. Then Ã and AS are
invertible and we write:

Ã−1 =

(
A−1
S −A−1

S b
0 1

)
.

Thus, by computing Ã−1(e− eS), for i 6= S, (Ei τS)i = A−1
S e. By definition of the infinite norm

and using that AS is an M-matrix and that its inverse has non-negative components, ‖A−1
S ‖∞ =

supi∈S Ei τS .

In the following lemma, we use the same notations as in Lemma C.2 with a common state space
{1, . . . S}.
Lemma C.4. Let the biases h, h′ be the biases of the two MDPs verify their respective Bellman
equations with the renormalization choice h(S) = h′(S) = 0. Let sups∈S Es τπs′ be the worst
expected hitting time to reach the state s′ with policy π, and call Thit := infs′∈S sups∈S Es τs′ . We
have the following control of the difference:

‖h− h′‖∞ ≤ 2Thit(D
′rmax‖P − P ′‖∞ + ‖r − r′‖∞)

Notice that although the biases are unique up to a constant additive term, the renormalization choice
does not matter as the unit vector is in the kernel of (P − P ′).

Proof. The computations in this proof follow the same idea as in the proof of [10, Theorem 4.2].
The biases verify the following Bellman equations r − ge = (I − P )h, and also the arbitrary
renormalization equations, thanks to the previous remark: h(S) = 0. Using the same notations as in
the proof of Lemma C.3, we can write the system of equations Ãh = r̃− g̃, with r̃ and g̃ respectively
equal to r and g everywhere but on the last state, where their value is replaced by 0.

We therefore have that h = Ã−1(r̃ − g̃), and with identical computations, h′ = Ã′
−1

(r̃′ − g̃′). By
denoting dX := X −X ′ for any vector or matrix X , we get:

dh = −Ã−1(dr̃ − dg̃ + dÃh′).

The previously defined block decompositions are:

Ã−1 =

(
A−1
S −A−1

S b
0 1

)
and dÃ =

(
AS −A′S b− b′

0 0

)
.

For s < S, dh(s) = −eTs A−1
S (dASh

′ + dr̃ − dg̃) and dh(S) = 0. Now by taking the norm and
using C.1:

‖dh‖∞ ≤ ‖A−1
S ‖∞(rmaxD

′‖dAS‖∞ + ‖dr̃‖+ |dg̃|).
Notice that ‖dAS‖∞ ≤ ‖dP‖∞, ‖dr̃‖ ≤ ‖dr‖ and ‖dg̃‖ = |dg|. Using Lemma C.2 and Lemma C.3,
and taking the infimum for the choice of the state of renormalization implies the claimed inequality
for the biases.

C.2 A McDiarmid’s inequality

Lemma C.5. Recall that mmax is the stationary measure of the Markov chain under policy πmax,
such that for every state s: πmax(s) = Amax.

Let k be an episode, and assume that the length of this episode Ik is at least I(T ) = 1 +

max
{
Qmax, T

1/4
}

, with Qmax :=
(

10D
mmax(S−1)

)2

log

((
10D

mmax(S−1)

)4
)

. Then, with probability at

least 1− 1
4T :

νk(xk, ak) ≥ mmax(S − 1)Ik − 5D
√
Ik log Ik.

We will now prove Lemma C.5:
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Proof. Let k be an episode such that Ik ≥ I(T ), and first consider it is of fixed length I . Denote
by r̊ the vector of reward equal to 1 if the current state is xk and 0 otherwise. Denote by g̊πk the
gain associated to the policy πk for the transitions p and rewards r̊, and similarly define h̊πk the
bias, translated so that h̊πk(S − 1) = 0. Notice in that case, that if we denote by mk the stationary
distribution under policy πk, that mmax(S − 1) ≤ mk(s) for any state s, assuming that S ≥ λ

µ + 1.
Then:

νk(xk, ak) =

tk+1−1∑
u=tk

r̊(su)

=

tk+1−1∑
u=tk

g̊πk + h̊πk(su)−
〈
p (·|su, πk(su)) , h̊πk

〉
using a Bellman’s equation

=

tk+1−1∑
u=tk

g̊πk + h̊πk(su)− h̊πk(su+1) + h̊πk(su+1)−
〈
p (·|su, πk(su)) , h̊πk

〉
.

By Azuma-Hoeffding inequality B.2, following the same proof as in section 4.3.2 of [11], notice that
Xu = h̊πk(su+1)−

〈
p (·|su, πk(su)) , h̊πk

〉
form a martingale difference sequence with |Xu| ≤ D:

P

{
tk+1−1∑
u=tk

Xu ≥ D
√

10I log I

}
≤ 1

I5
.

Using that
∣∣∣̊hπk(stk)− h̊πk(stk+1

)
∣∣∣ ≤ D, with probability at least 1− 1

I2 :

νk(xk, ak) ≥
tk+1−1∑
u=tk

g̊πk − 5D
√
I log I.

On the other hand:
tk+1−1∑
u=tk

g̊πk = νk(sk, ak)mk(ak),

so that, using that mk(ak) ≥ mmax(S − 1), with probability at least 1− 1
I5 :

νk(xk, ak) ≥ mmax(S − 1)I − 5D
√
I log I.

We now use a union bound over the possible values of the episode lengths Ik, between I(T ) + 1 and
T :

P
{
νk(xk, ak) < mmax(S − 1)Ik − 5D

√
Ik log Ik

}
≤

T∑
I=I(T )+1

1

I5
≤

T∑
I=T 1/4+1

1

I5

≤ 1

4T
,

so that we now have that with probability at least 1− 1
4T :

νk(xk, ak) ≥ mmax(S − 1)Ik − 5D
√
Ik log Ik.

We can show a corollary of Lemma C.5 that we will use for the regret computations:
Corollary C.6. For an episode k such that its length Ik is greater than I(T ),with probability at least
1− 1

4T :

νk(xk, ak) ≥ mmax(S − 1)

2
Ik.
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Proof. With Lemma C.5, it is enough to show that 5D
√
Ik log Ik ≤ mmax(S−1)

2 Ik, i.e. that√
Ik

log Ik
≥ 10D

mmax(S−1) =: B. By monotonicity, as Ik ≥ Qmax = B2 logB4 we can show in-

stead that B2 logB4 ≥ B2 log
(
B2 logB4

)
.

This last inequality is true, using that log x ≥ log(2 log x) for x > 1. This proves the corollary.

26


	Introduction
	Reinforcement Learning Framework
	Undiscounted Regret
	The Ucrl2 Algorithm

	Controlled Birth and Death Processes for Energy Minimization
	Properties of M
	Applying Ucrl2 in M

	Regret of Ucrl2 on M
	Main Result
	Comparison with Other Bounds
	Sketch of the Proof

	Conclusions
	Proof of Theorem 4.1
	Extended value iteration
	Regret when M is out of the confidence bound
	Regret terms when M is in the confidence bound
	Bound on Rtrans
	Bound on Rdiff
	Bound on the main terms: Exploiting the stochastic ordering
	Bound on the main terms: Introducing E2
	Bound on Rep


	Technical Lemmas
	Probability of the confidence bounds
	Number of visits for an MDP in M
	Diameter and Span of MDPs in M

	Generic lemmas on ergodic MDPs
	From bias variations to probability transition variations
	A McDiarmid's inequality


