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Robust synchronization via maximal monotone couplings

Félix A. Miranda-Villatoro

Univ. Grenoble-Alpes, INRIA, LJK, CNRS, 38000 Grenoble, France

Abstract

We explore the use of set-valued coupling laws for the design of robust synchronized behaviors in networks of dynamical
systems. Under an incremental dissipativity context, it is shown that coupling systems via maximal monotone mappings leads
to synchronization that is robust against both, matched disturbances and changes in the topology of the network. Additionally,
it is shown that perfect synchronization of heterogeneous networks with persistent matched disturbances is attained with finite
coupling strength but infinite incremental gain of the coupling maps. The real-life implementation of the proposed controllers
is studied under the context of practical synchronization via Yosida regularizations. Simulations illustrate the effectiveness of
the proposed methods.

Key words: Maximal monotone maps; incremental passivity; synchronization; nonsmooth dynamical systems; Yosida
regularization.

1 Introduction

The study of interacting dynamical systems reaching a common uniform behavior has received numerous attention
from the control community in recent years. The problem has been broadly addressed under several scenarios and
under different conditions, see e.g., [1], [14], [31], [32], [36], [38], [41] and references therein. Robust synchronization in
the presence of disturbances in the individual agents, as well as, in the network connections occupies a special place of
interest due to its broad application in several fields. Among the studies dealing with robust synchronization one finds
[15], [28], [29], [42]. For instance, in [29] the authors studied practical synchronization of perturbed agents coupled
via linear diffusion. It is shown there that the ultimate bound of the synchronization error is inversely proportional
to the coupling gain, relying on high-gain couplings as a way of enhancing precision. Nonsmooth coupling laws were
analyzed in [13], [15], where sufficient conditions for practical synchronization were provided. Though it is left open
if there is any advantage on using nonsmooth coupling schemes, since Assumption 3 in [15] also holds in the case of
smooth coupling maps. On the other hand, perturbations in the network topology are regarded in [28], [42] under
the context of switching networks. In [42], the assumption of simultaneous triangularization of all the associated
Laplacian matrices plays a fundamental role, whereas [28] shows uniform synchronization in a time varying network
topology without any triangularization assumption by means of a Common Quadratic Lyapunov Function (CQLF).
Both studies handled the case of linear coupling.

The main aim of this paper is to investigate the advantages of set-valued coupling, as well as, issues concerning its
implementation. The second goal is to show the important role of monotonicity as unifying framework for robust
(linear and nonlinear) synchronization strategies such as, linear diffusion, set-valued sliding-mode control, and funnel
control, to mention a few.

To this end, we first analyze the robust synchronization of systems against matched persistent disturbances and later
against changes in the network topology. In both cases, each agent is described by a Lur’e-type system, whereas
the coupling strategy is characterized by a static set-valued map. First, theoretical results are presented regarding
perfect synchronization in presence of matched disturbances. It is confirmed that, even in the nonlinear case, perfect
synchronization requires infinite (incremental) gain of the involved coupling maps but not infinite coupling gain, as
is the case with linear coupling schemes, [29]. The design strategies here allow for a multilayer design. Indeed, the
coupling maps are not constrained to be the same everywhere, only maximal monotonicity is required.
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Even though some nonsmooth (discontinuous) synchronization strategies have been recently proposed in [15], [13],
there are still open issues concerning their implementation. For instance, there are many applications where dis-
continuous controllers are impermissible, due to the fact that they conduct to the presence of chattering [39]. For
such reason, a more realistic approach leading to practical synchronization is presented in Section 5 by means of
regularizing the ideal set-valued coupling controller. More specifically, we explore the use of the so-called Yosida reg-
ularization. Such practical viewpoint allows us to confirm that, in order to improve the precision, there is a threshold
beyond which an increase in the incremental gain of the nonlinear coupling will diminish the synchronization error
whilst maintaining the strength of the coupling finite. This is the intrinsic mechanism behind some weak coupling
strategies such as [23].

This paper is organized as follows. Preliminaries are covered in Section 2, whereas Section 3 presents the problem
to deal with and related results on well-posedness of dynamical systems with set-valued feedback laws. Section
4 deals with the perfect asymptotic synchronization of perturbed systems via the design of set-valued maximal
monotone coupling laws, and the effects of regularization are analyzed in Section 5. Afterwards, Section 6 deals with
perturbations in the networks connections, whereas Section 7 shows another related family of maximal monotone
couplings leading to perturbed Moreau’s sweeping processes. Finally, conclusions take place at the end of the paper.

Notation

Let 〈·, ·〉 denote the Euclidean inner product in Rl and ‖ · ‖ the corresponding Euclidean norm. The set Blr(p) :=
{q ∈ Rl|‖q − p‖ ≤ r} denotes the closed ball with radius r and center p in Rl. When the dimension of the space
is clear from the context we will denote the closed ball simply as Br(p). The interior of a set S ⊂ Rl is denoted
as intS, whereas the relative interior is denoted as rintS. The neighborhood of radius r of a set S is the set
Nr(S) := {s ∈ Rl|dist(s,S) < r}, where dist(s,S) denotes the conventional distance function from a point s to a
closed convex set S. The matrix Il denotes the identity matrix in Rl×l. For a matrix A ∈ Rl×l, λmin(A) and λmax(A)

denote the minimum and maximum eigenvalue of A, respectively, whereas ‖A‖ =
√
λmax(A>A) denotes the spectral

norm of A. The generalized condition number of a matrix A ∈ Rl×r is the number κ(A) = ‖A‖ · ‖A†‖, where A†

denotes the Moore-Penrose generalized inverse of A.

A set-valued map 1 M : Rl ⇒ Rl maps points from Rl to subsets of Rl. The set dom(M) := {η ∈ Rl|M(η) 6= ∅} ⊆ Rl
denotes the domain of M; the set gph(M) := {(η, ϑ) ∈ Rl × Rl|ϑ ∈ M(η)} denotes the graph of M; and the set
rge M := {ϑ ∈ Rl|∃η ∈ Rl such that ϑ ∈ M(η)} denotes the range of M. The inverse of M is the set-valued map
M−1 with gph(M−1) := {(ϑ, η) ∈ Rl × Rl|ϑ ∈M(η)}.

2 Preliminaries

2.1 Elements from graph theory

In this section we recall standard tools from graph theory used for modeling networks of interacting systems. The
interconnection structure of a network of N agents is modeled by a graph G(V, E), where V = {v1, . . . , vN} is the
set of vertices, vi ∈ V represents the i-th agent, E ⊂ V × V is the set of edges. If {vi, vj} ∈ E , then the vertices
vi and vj are adjacent. In addition, each edge {vi, vj} ∈ E is incident with the vertices vi and vj . When the set of
vertices and edges is clear from the context we will denote the graph simply as G. Note that, in the set notation used,
{vi, vj} = {vj , vi}, that is, the graph under consideration is undirected. Let vi, vj ∈ V, a path of length m from vi to
vj is a sequence of m+1 vertices {νk}mk=0 ⊆ V such that ν0 = vi, νm = vj , and {νk, νk+1} ∈ E for k ∈ {0, . . . ,m−1}.
The graph G(V, E) is connected if for any pair of distinct vertices (vi, vj) ∈ V × V there exists a path from vi to
vj . In what follows we set N = |V| and E = |E|, the number of vertices and edges in the network, respectively. A
subgraph G′(V ′, E ′) of G(V, E), denoted as G′ ⊆ G, is any graph such that V ′ ⊆ V and E ′ ⊆ E . A subgraph of G is
called spanning subgraph if V ′ = V.

For each edge εk = {vi, vj} ∈ E a sign to each end of εk is assigned. Such sign assignation will provide an orientation
to the graph G(V, E). Along all the manuscript, it is assumed that an orientation has been chosen and it is fixed.

1 i.e., a non-necessarily single-valued map.
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Thus, the oriented incidence matrix Θ ∈ RN×E is given as, see e.g., [18],

[Θ]i,k =


+1, if vi is the positive end of εk;

−1, if vi is the negative end of εk;

0, otherwise.

If the graph G has N vertices and c connected components, then any associated incidence matrix has rank N − c.

2.2 Maximal monotone maps

A set-valued map M : Rl ⇒ Rl, is monotone if for any two pairs (η1, ϑ1), (η2, ϑ2) ∈ gph(M),

〈η1 − η2, ϑ1 − ϑ2〉 ≥ 0 .

In addition, M is β-strongly monotone if there exists β > 0 such that

〈η1 − η2, ϑ1 − ϑ2〉 ≥ β‖η1 − η2‖2 .

Furthermore, M is called maximal monotone if it is monotone and its graph is not strictly contained in the graph of
any other monotone map. For instance, the maps ϕ(η) = Mη, where M is a square matrix with a positive definite
symmetric part; ϕ(η) = |η|rsgn(η), where r > 0; ϕ(η) = tanh(η); ϕ(η) = η

a−|η| , for |η| < a, where a > 0; and

ϕ(η) = 1− e−η; are single-valued, monotone, and continuous, therefore also maximal monotone [5]. Other maximal
monotone maps comprise the subdifferentials, ∂f , of convex, proper, lower semicontinuous functions [35],

∂f(η) = {ϑ ∈ X|〈ϑ, ζ − η〉 ≤ f(ζ)− f(η), for all ζ ∈ Rl}.

Special cases include the subdifferentials to the absolute value and indicator functions in Figure 1, leading corre-
spondingly, to the set-valued signum map 2 Sgn : R→ [−1, 1], such that Sgn(0) = [−1, 1] and Sgn(η) = {η/|η|} for
η 6= 0, and the normal cone to a closed and convex set S ⊂ Rl at the point η ∈ S (also known as hard-thresholding
map), given as

NS(η) := {ϑ ∈ X|〈ϑ, ζ − η〉 ≤ 0, for all ζ ∈ S} .

η

ϑ ∈ Sgn(η)

η

ϑ ∈ N[−s,s](η)

−s
s

Fig. 1. Set-valued signum and normal cone maps in R.

For a maximal monotone operator M : dom(M) ⇒ Rl, the so-called Yosida approximation of index ε > 0, YεM :
Rl → Rl, is the single-valued, Lipschitz continuous function,

ϑ 7→ 1

ε
(ϑ− JεM(ϑ)) , (1)

where JεM : Rl → Rl is the so-called resolvant of εM, that is,

JεM := (I + εM)−1 , (2)

2 Note that, although discontinuous functions can be monotone, they are not maximal.
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which is single-valued and firmly non-expansive [5]. It follows from (1) that for any ε > 0, and any ϑ ∈ Rl

ϑ = JεM(ϑ) + εYεM(ϑ) . (3)

Moreover, it follows directly from (2) and the definition of YεM that for any ε > 0 and any ϑ ∈ Rl,

YεM(ϑ) ∈M (JεM(ϑ)) . (4)

3 Problem formulation and well-posedness of Lur’e networks with monotone coupling

We consider an ensemble of N dynamical systems, where the k-th agent (denoted as vk ∈ V), is a perturbed
Lur’e-type dynamical system given by

vk :


ẋk(t) = Axk(t)−B1ϕ(yk(t))

+B2 (uk(t) + ξ(t, x(t))) ,

yk(t) = C1xk(t) ,

wk(t) = C2xk(t) .

(5)

where xk(t) ∈ Rn is the state of the k-th agent; yk(t) ∈ Rm is an (internal) variable used only by the k-th
agent; uk(t), wk(t) ∈ Rp are, respectively, the input and output used to exchange information with other agents; and
ξk : R×Rn → Rm is an unknown function accounting for unmodeled dynamic effects, as well as, external disturbances
affecting the system. The map ϕ : Rm → Rm is assumed Lipschitz continuous, satisfying extra conditions stated
below. Finally, the matrices A,Bi, and Ci, i ∈ {1, 2}, are constant and of the appropriate dimensions.

In this work the following standing assumptions are considered.

Assumption 1 Each function ξk : R × Rn → Rm is Lipschitz continuous in the second argument and the map
t 7→ ξk(t, x(t)) is measurable and uniformly bounded in L∞[R+;Rm], for all k ∈ {1, . . . , N}.

Assumption 2 The map ϕ : Rm → Rm is such that for any two η, η̃ ∈ Rm, the following incremental sector
condition holds:

(∆ϕ−K1∆η)
>

(∆ϕ−K2∆η) ≤ 0,

Equivalently, [
∆η

∆ϕ

]> [
K>1 K2 +K>2 K1 (K1 +K2)>

K1 +K2 2Im

][
∆η

∆ϕ

]
≤ 0 (6)

where ∆η = η − η̃, ∆ϕ = ϕ(η)− ϕ(η̃), K1,K2 ∈ Rm×m are diagonal matrices such that 0 ≺ K2 −K1.

Functions ϕ satisfying the incremental sector condition (6) include “N”-shape functions, incrementally passive maps,
functions with lack of monotonicity, etc. Thus, the family of Lur’e systems into consideration include, FitzHugh-
Nagumo systems, Chua’s circuits, Negative resistance oscillators, etc. and is general enough to show bistable, oscil-
latory or chaotic behavior for instance.

As is usual in the study of systems with output feedback, as is the case of dissipative systems, we impose a detectability
assumption as in [34].

Assumption 3 The incremental dynamics is asymptotically zero-state detectable. That is, for any two systems va,
vb such that the output mismatch wa(t) − wb(t) → 0, whereas the inputs ũr(t) = ur(t) + ξr(t), r ∈ {a, b} satisfy
ũa(t)→ 0, ũb(t)→ 0 implies xa(t)− xb(t)→ 0.

The overall dynamics of the collection of agents is written in compact form as
ẋ(t) = (IN ⊗A)x(t)− (IN ⊗B1)Φ(y(t))

+ (IN ⊗B2)(u(t) + ξ(t, x(t))) ,

y(t) = (IN ⊗ C1)x(t) ,

w(t) = (IN ⊗ C2)x(t) ,

(7)
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where x(t) ∈ RNn, y(t) ∈ RNm, u(t), w(t), ξ(t, x(t)) ∈ RNp are the collective variables with components x(t) =
[x1(t)>, . . . , xN (t)>]>, (resp. y(t) = [y1(t)>, . . . , yN (t)>]>, u(t) = [u1(t)>, . . . , uN (t)>]>, w(t) = [w1(t), . . . , wN (t)]>,
ξ(t, x) = [ξ1(t, x)>, . . . , ξN (t, x)>]>.) and the aggregated map Φ : RNm → RNm is such that y 7→ [ϕ(y1)>, . . . , ϕ(yN )>]ᵀ.
In what follows, a double subindex as xk,i, denotes the i-th component of the state of the k-th system, whereas a sin-
gle index as xk, denotes the complete state of the k-th system. A similar notation holds for the signals u(t), w(t), y(t)
and ξ(t). It is worth to remark that in (7), the coupling law u(t) is the one that encodes the interactions between
systems.

Let G(V, E) be a connected graph indicating the neighbors to which eah agent is able of exchanging information and
let Θ ∈ RN×E be an oriented incidence matrix of G. Then Θ has rank N − 1 and null (Θ>) = rge (1N ). Intuitively,
asymptotic synchronization is achieved when there is a coupling law u(t) such that

dist (x(t); rge (1N ⊗ In))→ 0 as t→∞ ,

that is, the mismatch xi(t)− xj(t)→ 0 as t→∞, for all i, j ∈ {1, . . . , N}. The following definition formalizes such
intuition.

Definition 4 Let S = rge (1N ⊗ In) be the synchronization manifold. The network (7) achieves

i) asymptotic synchronization if
(a) for any 0 < ε there exists 0 < δ = δ(ε) such that dist(x0,S) < δ implies dist(x(t),S) < ε, for all t ≥ t0;
(b) there exists s > 0 such that for any x0 ∈ Bs(0), dist(x(t),S)→ 0 as t→∞.

ii) practical asymptotic synchronization if there exist a vector of parameters p ∈ Rnp and a continuous positive
function r : Rnp → R+ such that
(a) for any 0 < ε there exists 0 < δ = δ(ε, p) such that dist(x0,Nr(p)(S)) < δ implies that dist(x(t),Nr(p)(S)) <

ε for all t ≥ t0;
(b) there exists s > 0 such that for any x0 ∈ Bs(0), dist(x(t);Nr(p)(S))→ 0 as t→∞;
(c) r(p)→ 0 as ‖p‖ → ∞.

The property is global if it holds for all x0 ∈ RNn and semi-global if there exists a vector of parameters q ∈ Rnq and
a continuous positive functions s : Rnq → R+ such that it holds for all x0 ∈ Bs(q)(0) and s(q)→∞ as ‖q‖ → ∞.

Equivalently, the network (7) achieves global (semi-global, practical) asymptotic synchronization if and only if the
zero solution associated to the dynamics of the spatial increments ∆x := (Θ>⊗In)x ∈ REn is globally (semi-globally,
practically) asymptotically stable.

Problem formulation Let G(V, E) be a given undirected and connected graph fixing the network structure. Our
target consists in designing a coupling law u(t) that only uses the information of neighbors indicated by the graph
G(V, E), such that the network (7) achieves robust synchronization in the presence of matched disturbances and/or
switching topology.

It is well known that under the presence of persistence disturbances, such as ξ in (7), only practical synchronization
is possible via linear couplings. Moreover, the coupling gain is the parameter controlling the size of the ultimate
bound, so that dist(x;S) → 0 as γ, the coupling gain, increases up to infinity, see e.g. [29]. In order to achieve
robust synchronization with bounded gains, we focus on coupling laws characterized by strongly monotone maps.
Specifically, we consider the coupling law,

u(t) ∈ −(ΘaWΘ>a ⊗ Ip)w(t)− γ(Θb ⊗ Ip)M
(
(Θ>b ⊗ Ip)w(t)

)
, (8)

where γ > 0; W ∈ REa×Ea is a diagonal matrix with min([W ]i,i) = β > 0; M : dom(M) ⊆ REbp ⇒ REbp is
such that M = m1 × · · · ×mEb , and mj : dom(mj) ⊆ Rp ⇒ Rp is maximal monotone, for j ∈ {1, . . . , Eb}. The
matrices Θa ∈ RN×Ea and Θb ∈ RN×Eb are, non-necessarily equal, oriented incidence matrices, both with rank N−1
associated, respectively, to the spanning subgraphs Ga(V, Ea) ⊆ G and Gb(V, Eb) ⊆ G. That is, the coupling law (8)
induces a multi-edge structure between vertices, (sometimes known as multi-layer or multiplex network, see e.g., [8],
[19]), where the sub-network Ga is driven by linear diffusion, whereas Gb is driven by the set-valued coupling law.
Even though we are considering only two layers, the developments that follow easily extend to the case of several
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layers. It is noteworthy that M = I, the identity map, is maximal β-strongly monotone with β = 1, and in that case
the coupling strategy (8) reduces to the classical linear diffusion coupling. An additional constraint regarding M is
stated below in Section 4. The well-posedness of the interconnected system (7)-(8) is a consequence of the following
theorem.

Theorem 5 Consider the following differential inclusion,

ẋ(t) ∈ h(t, x(t))− F(x(t)) (9)

where h : R+ × Rl → Rl is a Lipschitz continuous function in its second argument and such that the map t 7→
h(t, x) ∈ L∞[R+;Rl], F : dom(F) ⊆ Rl ⇒ Rl is a maximal monotone map such that int (dom(F)) 6= ∅. Then, for
any initial condition x(t0) = x0 ∈ dom(F), there exists a unique absolutely continuous function χ(t, x0) satisfying
(9) for almost all times t ≥ t0.

For a proof of Theorem 5 the reader is addressed to [9, Proposition 3.13] and [2, Theorem 2.1], see also, [3, Remark
4.1 and Theorem 4.8], and [4, Proposition 2.1] for similar results. The following corollary is an adaptation of Theorem
2 in [10] and state sufficient conditions guaranteeing the existance and uniqueness of solutions for the entire network
of agents with maximal monotone coupling laws.

Corollary 6 Assume that there exists a matrix P = P> � 0 such that PB2 = C>2 and rge (Θ>b ⊗ C2P
−1/2) ∩

rint (dom(M)) 6= ∅. Then, for any initial condition x(t0) = x0 satisfying (Θ>b ⊗ C2)x0 ∈ dom(M) there exists a
unique absolutely continuous function χ(t, x0) satisfying (7)-(8) for almost all times t ≥ t0.

PROOF. Consider the change of coordinates z = (IN ⊗ P 1/2)x, then (7)-(8) becomes:

ż ∈ h(t, z)− (Θb ⊗ P 1/2B2)M
(

(Θ>b ⊗ C2P
−1/2)z

)
where

h(t, z) = (IN ⊗ P 1/2AP−1/2)z − (IN ⊗ P 1/2B1)Φ
(

(IN ⊗ C1P
−1/2)z

)
+ (IN ⊗ P 1/2B2)ξ

(
t, (IN ⊗ P−1/2)z

)
−
(

ΘaWΘ>a ⊗ P 1/2B2C2P
−1/2

)
z

satisfies the conditions stated in Theorem 5. Now, it follows from the hypothesis in P and [35, Theorem 12.43]
that F = (Θb ⊗ P 1/2B2) ◦M ◦ (Θ>b ⊗ C2P

−1/2) is also maximal monotone, and the conclusion follows as a direct
consequence of Theorem 5.

It is noteworthy that Corollary 6 allows coupling consisting of unbounded set-valued maps, as for instance, the
normal cone in Figure 1, and in such cases, the resulting differential inclusion is not of Filippov type, see e.g.,
[17]. Thus, the maximal monotone framework allows us to consider more general couplings than, for instance, those
studied in conventional sliding mode control.

4 Perfect synchronization via set-valued maximal monotone couplings

In this section it is shown that the coupling strategy (8) achieves asymptotic synchronization with a finite coupling
γ in the presence of matched disturbances. To that end, we consider the following assumption on the set-valued map
M in (8).

Assumption 7 There exists ρM > 0 such that the maximal monotone map M in (8) satisfies

BρM(0) ⊂ int M(0) . (10)
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Note that (10) implies that M(0) is neither empty nor a singleton. In particular, linear coupling maps are excluded
in the layer Gb.

The following theorem states that maximal monotone set-valued maps can achieve perfect asymptotic synchronization
with finite coupling gain γ.

Theorem 8 Let Assumptions 1-2 and 7 hold. Let the initial condition x(t0) = x0 be such that (Θ>b ⊗ C2)x0 ∈
dom(M), and let 0 < ξ be such that ‖ξk(t, x(t))‖ ≤ ξ for all k ∈ {1, . . . N} and for almost all t ≥ t0. If

i) there exist µ > 0 and a matrix P = P> � 0 satisfying the conditions of Corollary 6, together with[
Q̃1 + µP PB1 − C>1 (K1 +K2)>

B>1 P − (K1 +K2)C1 −2Im

]
≺ 0 , (11)

where Q̃1 = A>P +PA− 2βλaC
>
2 C2−C>1 (K>1 K2 +K>2 K1)C1 and λa is the second smallest eigenvalue of the

Laplacian La = ΘaΘ>a ; and
ii) the gain γ > 0 is such that

γ >
ξ‖Hb‖
ρM

, (12)

where Hb ∈ REb×Ec is a full row-rank matrix such that Θc = ΘbHb, see Lemma 17.i) in the appendix.

Then, the perturbed network (7) with coupling law (8) achieves global asymptotic synchronization.

PROOF.

Let us consider the Lyapunov function candidate,

V (x) =
1

2N
x>(ΘcΘ

>
c ⊗ P )x , (13)

where P = P> � 0 satisfies all assumptions of the theorem and Θc ∈ RN×Ec , Ec = N(N−1)
2 , is an oriented incidence

matrix associated to the complete graph KN . Note that V (x) = 0 if and only if x lies inside the synchronization
manifold S = rge (1N ⊗In). Computing the time derivative of V along the trajectories of (7) with coupling (8) yields

d

dt
V (x) ≤ 1

2N
x>(ΘcΘ

>
c ⊗A>P + PA)x− 1

N
x>(ΘcΘ

>
c ⊗ PB1)Φ(y) +

1

N
‖(Θ>c ⊗ Ip)w‖‖(Θ>c ⊗ Ip)ξ‖

− w>(ΘaWΘ>a ⊗ Ip)w − γw>(Θb ⊗ Ip)ϑb (14)

where, ϑb ∈ M
(
(Θ>b ⊗ Ip)w

)
and we have used Lemma 17 to obtain the last two terms. Now, recalling that

mini([W ]i,i) = β, it follows that,

w>(ΘaWΘ>a ⊗ Ip)w ≥ βw>(Θ>a Θa ⊗ Ip)w

=
β

N2
w̃>(ΘaΘ>a ⊗ Ip)w̃

where w̃ = (ΘcΘ
>
c ⊗ Ip)w by the use of Lemma 17. Note that w̃ ⊥ rge (1N ⊗ Ip). Indeed, for any r ∈ Rp

w̃>(1N ⊗ Ip)r = w>(ΘcΘ
>
c 1N ⊗ Ip)r = 0 .

Hence, setting λa as the connectivity of the subgraph Ga, it follows from the Courant-Fisher minimax theorem [20,
Theorem 4.2.6] that,

w>(ΘaWΘ>a ⊗ Ip)w ≥
β

N2
λaw̃

>w̃ =
βλa
N

x>
(
ΘcΘ

>
c ⊗ C>2 C2

)
x . (15)
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Making use of (15) together with Lemma 18.i), (see Appendix), back into (14) leads us to,

d

dt
V (x) ≤ 1

2N
x>
(
ΘcΘ

>
c ⊗Q1

)
x− 1

N
x>(ΘcΘ

>
c ⊗ PB1)Φ(y)− γρM‖(Θ>b ⊗ Ip)w‖

+
1

N
‖(Θ>c ⊗ Ip)w‖‖(Θ>c ⊗ Ip)ξ‖ , (16)

where Q1 := (A>P + PA− 2βλaC
>
2 C2). It follows from simple calculations that

‖(Θ>c ⊗ Ip)ξ‖ ≤ N ξ (17)

‖(Θ>c ⊗ Ip)w‖ ≤ ‖Hb‖‖(Θ>b ⊗ Ip)w‖ (18)

Hence, substitution of (17)-(18) into (16) and rearranging terms leads us to

d

dt
V (x) ≤ 1

2N
x>
(
ΘcΘ

>
c ⊗Q1

)
x− 1

N
x>(ΘcΘ

>
c ⊗ PB1)Φ(y)

−
(
γρM − ξ‖Hb‖

)
‖(Θ>b ⊗ Ip)w‖ (19)

Now we turn to the incremental sector condition (6). Noticing that each row of Θ>c has exactly two non-zero entries
given by +1 and −1, it follows from (6) that

0 ≤ − 1

2N

[
∆n
c x

∆m
c Φ

]> [
IEc ⊗D1 IEc ⊗D>2
IEc ⊗D2 2IEcm

][
∆n
c x

∆m
c Φ

]
. (20)

where ∆n
c x = (Θ>c ⊗ In)x, ∆m

c Φ = −(Θ>c ⊗ Im)Φ(y), D1 = C>1 (K>1 K2 +K>2 K1)C1, and D2 = (K1 +K2)C1. Hence,
the addition of (19) and (20) leads us to,

d

dt
V (x) ≤ 1

2N

[
∆n
c x

∆m
c Φ

]> [
IEc ⊗ Q̃1 IEc ⊗ Q̃2

IEc ⊗ Q̃>2 −2IEcm

][
∆n
c x

∆m
c Φ

]
−
(
γρM − ξ‖Hb‖

)
‖(Θ>b ⊗ Ip)w‖ (21)

where Q̃1 is as in (11) and Q̃2 = PB1 − D>2 . It thus follows from (11) and (12) that d
dtV (x) ≤ −µV (x). Finally,

recalling that V (x) = 0 if and only if x ∈ rge (1N⊗In), global asymptotic synchronization (with a rate of convergence
of at least µ) follows.

Note that both, the matrix W and the gain γ are bounded, as opposed to linear designs, where perfect synchronization
can only be attained with infinite gains [29], [43]. By contrast, set-valued maps can achieve perfect asymptotic
synchronization with finite coupling strength. However, Assumption 7 implies that the coupling map has infinite
incremental gain. In the following subsection we study how the implementable controller has an intrinsic limitation
in precision that comes from the regularization and not from the magnitude of the coupling gains.

Remark 9 It follows from the proof of Theorem 8 that, in order to mitigate the affections caused by matched
disturbances, it is sufficient for the set-valued coupling induced by M to act on a connected network. For instance,
Gb can be a generating tree of the graph G or any simple chain of vertices. This observation allows us to deliver
control strategies requiring less cost of energy and implementation, as opposed to those that act on the entire network
induced by G, see Example 12 below.

The conditions in Theorem 8 can be relaxed to get a semi-global version as stated in the following corollary.

Corollary 10 Let Assumptions 1-3 and 7 hold. Moreover, let the initial condition x(t0) = x0 ∈ RNn be such that
(Θ>b ⊗ C2)x0 ∈ dom(M) and for some c > 0,

x0 ∈ int Ωc := {x ∈ RNn|V (x) ≤ c} . (22)
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If

i) there exist matrices R = R>, such that λmax(R) > 0, and P = P> � 0 satisfying the conditions of Corollary 6
together with [

Q̃1 − C>2 RC2 PB1 − C>1 (K1 +K2)>

B>1 P − (K1 −K2)C1 −2Im

]
� 0 , (23)

where Q̃1 is the same as in Theorem 8; and
ii) the gain γ > 0 is such that

γ >
‖Hb‖
ρM

(
ξ +

√
cλmax(R)‖C2‖κ(Hb)

2N
√
λmin(P )

)
(24)

Then the perturbed network (7) with monotone coupling (8) achieves semi-global asymptotic synchronization.

PROOF. Taking the same Lyapunov function candidate as in the proof of Theorem 8 we arrive at (21). Hence, it
follows from (23) that

d

dt
V (x) ≤ 1

2N
x>(ΘcΘ

>
c ⊗ C>2 RC2)x−

(
γρM − ξ‖Hb‖

)
‖(Θ>b ⊗ Ip)w‖

≤ λmax(R)‖Hb‖2
2N

‖(Θ>b ⊗ Ip)w‖2 −
(
γρM − ξ‖Hb‖

)
‖(Θ>b ⊗ Ip)w‖ (25)

By assumption x0 ∈ int Ωc. Hence, there exists t1 > t0 such that for all t ∈ [t0, t1], x(t) ∈ Ωc. Thus, for t ∈ [t0, t1]
one has that

‖(Θ>b ⊗ Ip)w‖2 = x>
(
ΘbΘ

>
b ⊗ C>2 C2

)
x

≤ λmax(C>2 C2)x>
(
ΘcΘ

>
c ⊗ P

)
x

λmin(HbH>b )λmin(P )

≤ ‖C2‖2‖H†b‖2c
λmin(P )

(26)

Notice that λmin(HbH
>
b ) 6= 0, as Hb has full row-rank, see Lemma 17.i). Consequently, for t ∈ [t0, t1], the derivative

of V satisfies

d

dt
V (x) ≤ −

(
γρM − ξ‖Hb‖ −

√
c‖Hb‖λmax(R)‖C2‖κ(Hb)

2N
√
λmin(P )

)
‖(Θ>b ⊗ Ip)w‖ (27)

It follows from (24) that for t ∈ [t0, t1], V is a non-increasing function and therefore x(t1) ∈ int Ωc. Following
an induction argument, we conclude that for all t ≥ t0, x(t) ∈ Ωc, that is, Ωc is a positively invariant set of the
closed-loop (7)-(8). Finally, it follows from (27) that (Θ>b ⊗ Ip)w → 0 and the zero-state detectability assumption
guarantees that (Θ>b ⊗ Ip)x → 0. That is, dist(x(t);S) → 0 whenever x(t) ∈ Bs(c)(0) ⊂ Ωc, where s(c) = c

Nλmin(P ) ,

and semi-global asymptotic synchronization follows.

Corollary 10 allows for designs when the subgraph Ga does not provide sufficient energy dissipation to achieve global
synchronization. In such a case, the set-valued subnetwork induced by Gb is used to compensate the lack of dissipation
by achieving a trade-off between the size of the region of attraction, estimated by Ωc, and the size of the gain γ.
Note that the bound on the gain γ in (24) depends on the number of agents N and the condition number of the
matrix Hb. The latter can be interpreted as a measure of how far is Gb from the complete graph KN . Thus, smaller
values of γ can be obtained by increasing either the number of vertices or the number of edges in Gb.

It is also worth to remark that if λmax(R) ≤ 0 in (23) then (25) together with the zero-state detectability assumption
imply that the network (7) with coupling law (8) achieves global asymptotic synchronization.
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5 Practical synchronization via regularization of ideal set-valued couplings

For achieving perfect regulation, as stated in Theorem 8 or Corollary 10, it is necessary to know the exact values
(selection) of the control u in the set M(0) that will counteract the affection caused by the matched disturbances.
Even though such scenario is unreal, the usefulness of Theorem 8 amounts to guide us in the design of regularized
controllers achieving approximate selections. For differential inclusions with maximal monotone maps, there are two
main approaches for regularization, that is, a) implicit discretization schemes and b) use of Lipschitz continuous
approximate selections. Here we focus on the second approach.

Our choice over Lispchitz continuous approximate selections is motivated by the mechanisms envisaged for imple-
menting the coupling signals. Namely, implicit discretization is commonly applied for a “chattering free” digital
implementation of set-valued maximal monotone maps in regulatory control tasks, see e.g., [21], [27], [40]. An alter-
native way to implement set-valued maps consists in using analog circuitry. For instance, let us consider the analog
circuit in Figure 2 where each diode satisfies an ideal complementarity relation as,

0 ≤ IDk ⊥ V ∗ − VDk ≥ 0 , (28)

where the notation 0 ≤ a ⊥ b ≥ 0 stands for the following three conditions: i) a ≥ 0, ii) b ≥ 0 and iii) ab = 0, IDk , VDk
denote the current through and the voltage across the k-th diode, respectively, and V ∗ denotes the activation voltage
of the diode. In real-life circuits, each diode will have parasitic resistance effects even when in conduction mode.

vi vj

ui

D1

γ
R

IR

γ

D2

uj
+

−
wi

+

−
wj

Fig. 2. Analog circuit implementation of an approximate selection to the set-valued coupling law ui = −uj ∈ γSgn(wj −wi).

Such resistances are considered as lumped in the resistor R. It follows from Kirchhoff’s laws that the voltage-current
relation of the coupling circuit satisfies,

−ui = uj = ID1 − γ = γ − ID2 (29a)

wi − wj = ϑ+RIR (29b)

ϑ = VD1 − VD2 (29c)

0 ≤ ID1
⊥ V ∗ − VD1

≥ 0 (29d)

0 ≤ ID2
⊥ V ∗ − VD2

≥ 0 (29e)

It follows from (29d)-(29e) and (29a) that, regardless of the value of Va and Vb, (ui, uj) ∈ [−γ, γ]× [−γ, γ]. Moreover,
we have the following three cases,

i) uj = −γ. It follows from (29a) that ID2
> 0 and (29e) implies that V ∗−VD2

= 0. Hence, (29c) and (29d) imply
that ϑ ∈ (−∞, 0].

ii) uj = γ. It follows from (29a) that ID1
> 0 and (29d) implies that V ∗ − VD1

= 0. Hence, (29c) and (29e) imply
that ϑ ∈ [0,+∞).

iii) −γ < uj < γ. It follows from (29a) that ID1 > 0 and ID2 > 0. Hence the complementarity conditions (29d)-(29e)
imply that V ∗ − VD1 = V ∗ − VD2 = 0 and it follows from (29c) that ϑ = 0.

It is not difficult to see that the three cases above characterize the relation ϑ ∈ N[−γ,γ](uj). Equivalently, uj ∈
γSgn(ϑ). Hence, it follows from (29b), the fact that IR = uj , and (2) that

ϑ = JRγSgn (wi − wj) (30)
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Finally, the substitution of (30) back into (29b) leads us to,

−ui = uj =
1

R
(wi − wj − JRγSgn (wi − wj))

= γYRγSgn(wi − wj)

where YεM is the Yosida approximation of M of index ε > 0 given by (1). Therefore, the coupling circuit in Figure 2
implements a Lipschitz continuous approximate selection of the set-valued map Sgn. Note that in the limiting case
where R = 0, the relations ϑ = wi−wj and −ui = uj ∈ γSgn(wi−wj) hold, leading to an ideal set-valued coupling.

In what follows we study how synchronization is affected by considering couplings given by Yosida approximations.

Corollary 11 Let all the assumptions of Theorem 8 hold and consider the regularized coupling

u = −(ΘaWΘ>a ⊗ Ip)w − γ(Θb ⊗ Ip)YεM
(
(Θ>b ⊗ Ip)w

)
. (31)

Then the asymptotic behavior of the network (7) with coupling (31) is practically synchronized. Moreover, an esti-
mation of the ultimate bound is given by the set

Ωε =

{
x ∈ RNn|V (x) ≤ εξ‖Hb‖

µ

}
, (32)

where µ, ξ, and Hb are the same as in Theorem 8.

PROOF. Taking the Lyapunov function candidate (13), simple computations, similar to those made in the proof
of Theorem 8, lead us to

d

dt
V (x) ≤ − µ

2N
x>
(
ΘcΘ

>
c ⊗ P

)
x− γw>(Θb ⊗ Ip)YεM

(
(Θ>b ⊗ Ip)w

)
+ ξ‖Hb‖‖(Θ>b ⊗ Ip)w‖ (33)

where µ and Hb are the same as in the proof of Theorem 8. Now, the substitution of (3) into (33) yields,

d

dt
V (x) ≤ −µV (x) + ξ‖Hb‖‖(Θ>b ⊗ Ip)w‖ − γJεM

(
(Θ>b ⊗ Ip)w

)> YεM ((Θ>b ⊗ Ip)w)
− εγ‖YεM

(
(Θ>b ⊗ Ip)w

)
‖2 (34)

It follows from (4) and Lemma 18.i) that

d

dt
V (x) ≤ −µV (x)− γρM‖JεM

(
(Θ>b ⊗ Ip)w

)
‖ − εγ‖YεM((Θ>b ⊗ Ip)w)‖2 + ξ‖Hb‖‖(Θ>b ⊗ Ip)w‖ (35)

Using, once again, (3) together with the triangle inequality in the second term of (35), leads us to

d

dt
V (x) ≤ −µV (x)−

(
γρM − ξ‖Hb‖

)
‖(Θ>b ⊗ Ip)w‖ − εγ

(
‖YεM

(
(Θ>b ⊗ Ip)w

)
‖ − ρM

)
‖YεM((Θ>b ⊗ Ip)w)‖ (36)

It follows from Lemma 18.ii) and (12) that the right-hand side of (36) is strictly negative whenever ‖(Θ>b ⊗ Ip)w‖ /∈
εBρM(0). Now assume that (Θ>b ⊗ Ip)w ∈ εBρM(0) but x /∈ Ωε. In such case it follows again from Lemma 18.ii) that

‖YεM
(
(Θ>b ⊗ Ip)w

)
‖ =
‖(Θ>b ⊗ Ip)w‖

ε
.
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and (36) becomes,

d

dt
V (x) ≤ −µV (x)− (γρM − ξ‖Hb‖)‖(Θ>b ⊗ Ip)w‖ − εγ

(‖(Θ>b ⊗ Ip)w‖
ε

− ρM
) ‖(Θ>b ⊗ Ip)w‖

ε

≤ −µ
(
V (x)− εξ‖Hb‖

µ

)
− γ

ε
‖(Θ>b ⊗ Ip)w‖2 (37)

It follows from (36) and (37) that, whenever x /∈ Ωε, V (x) is strictly decreasing. Therefore, dist(x; Ωε) → 0 as
t → ∞. Finally, noting that Ωε ⊂ Nr( 1

ε )(S), where Nr( 1
ε )(S) is a neighborhood of the synchronization manifold S,

with r( 1
ε ) =

√
εξ‖Hb‖
µλmin(P ) so that r( 1

ε )→ 0 as 1
ε →∞, then global practical synchronization follows.

From the proof of Corollary 11 it becomes clear that in order to have high precision in the presence of matched
disturbances, it is better to look for a Yosida approximation with small index ε, (equivalently, a Yosida approximation
with high incremental gain 1/ε), rather than increasing the gain γ.

Example 12 As an illustration, let us consider an heterogeneous group of N = 32 FitzHugh-Nagumo oscillators
with agent dynamics (5) and parameters given by,

A =

[
0 −2

1
δ

0.1
δ

]
, B1 = B2 =

[
1

0

]
, C1 =

[
1 0
]
, (38)

where δ = 0.05, the matrix C2 is defined below, and each agent vk is closed with a distinct nonlinear feedback ϕk :
R→ R, ϕk(η) = η3−αkη, where each constant αk is selected in a random way from the interval [2.5, 10]. In addition,

each agent is affected by external disturbances of the form ξk = 2 cos(βkt) sin(xk,1) + 2 sin(kxk,1) cos(
√
kxk,2), where

each constant βk is selected randomly from the interval [15, 20]. Note that extra disturbances will appear due to the
heterogeneity between agents. Indeed, it follows from simple computations that for any {i, j} ∈ Ec

ϕi(yi)− ϕj(yj) =
ϕi(yi)− ϕi(yj)

2
+
ϕj(yi)− ϕj(yj)

2
+
ϕi(yi)− ϕj(yi) + ϕi(yj)− ϕj(yj)

2

= ϕi,j(yi)− ϕi,j(yj) +
(αj − αi)(yi + yj)

2
, (39)

where ϕi,j =
ϕi+ϕj

2 . Moreover, for any {i, j} ∈ Ec, the map ϕi,j satisfies (6) on any compact set for appropriate
values of K1 and K2. Namely, setting ∆ϕi,j = ϕi,j(yi)−ϕi,j(yj) and ∆i,jy = yi−yj, then for any two yi, yj ∈ Bs(0),
s > 0, direct calculations lead us to

(∆ϕi,j −K1∆i,jy)(∆ϕi,j −K2∆i,jy) =

(
y3
i − y3

j −
(
αi + αj

2
+K1

)
∆i,jy

)(
y3
i − y3

j

(
αi + αj

2
+K2

)
∆i,jy

)
=

(
p(yi, yj)−

αi + αj
2

−K1

)(
p(yi, yj)−

αi + αj
2

−K2

)
(∆i,jy)2 (40)

where p(yi, yj) = y2
i + yiyj + y2

j . Since 0 ≤ p(yi, yj) ≤ 3s2 for all yi, yj ∈ Bs(0), it follows that ϕi,j satisfies (6) in
Bs(0) whenever,

K1 ≤ min
{i,j}∈Ec

{
−αi + αj

2

}
(41)

max
{i,j}∈Ec

{
3s2 − αi + αj

2

}
≤ K2 . (42)

Taking the same Lyapunov function candidate and following the same steps as in the proof of Theorem 8, mutatis
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mutandis, it follows that if P satisfies (11) we arrive at,

d

dt
V (x) ≤ −µV (x)− γw>(Θ>b ⊗ Ip)YεM

(
(Θ>b ⊗ Ip)w

)
+ ‖Hb‖

(
ξ +

ξ̃(y)
√
Ec

N

)
‖(Θb ⊗ Ip)w‖ (43)

where ξ̃(y) = max{i,j}∈Ec |(αj − αi)(yi + yj)/2|. Therefore, if γ satisfies

γ ≥ ‖Hb‖
(

ξ

ρM
+
ξ̃(y)
√
Ec

N

)
, (44)

then semi-global practical synchronization follows.

The same conclusion (with different ultimate bound and region of attraction) is obtained if we consider instead the
assumptions of Corollary 10. In that case, γ must satisfy,

γ ≥ ‖Hb‖
(

ξ

ρM
+

√
cλmax(R)‖C2‖κ(Hb)

2ρMN
√
λmin(P )

+
ξ̃(y)
√
Ec

N

)
(45)

where c > 0 is such that (22) holds.
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v1
↓

v2
↓· · ·

Fig. 3. Network structure induced by the coupling law (31). The black lines portray the network induced by Θa, where linear
diffusion acts, whereas the red lines portray the network induced by Θb, where the nonlinear regularized coupling acts.

We now proceed to describe the structure of the network G(V, E) together with the layers Ga and Gb of (31). The
information available to each agent is described by a so-called small-world network of type Newman-Watts-Strogatz,
where each vertex is connected to its k = 8 nearest neighboors and with probability of extra connections of p = 0.45,
see [30] for details. The coupling configuration (31) is outlined in Figure 3, where Ga is the same as G and the
subnetwork Gb constitutes the ring of vertices from agent v1 up to agent vN . Thus, the nonlinear coupling acts only
on a subnetwork of G.

Concerning the other parameters of the coupling law (31), we set W = IEa the identity matrix, so that β = 1, and
M = Sgn × · · · × Sgn the componentwise signum set-valued map, so that ρM < 1. An explicit expression for the
Yosida approximation of M of index ε is

YεM(η) = Proj
(η
ε

; [−1, 1]Eb
)
,

where Proj(•;S) : REb → S, denotes the classical projection map onto the closed, convex set S. Also, it follows from
the network configuration that, λa = 4.36, ‖Hb‖ = 28.85, and κ(Hb) = 28.85.

We now look for the output matrix C2 such that (11) holds. For the case C2 = C1, with the set of parameters
indicated above, the LMI (11) is unfeasible, whereas the relaxed LMI (23) has a solution with a minimal value of
R = 736.14 and λmin(P ) = 0.1, leading to a large value of the gain γ according to (45). Thus, in order to reduce
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the aforementioned conservativeness, we consider C2 in (11) as another variable. After standard operations (a loop
transformation changing the incremental sector of ϕ to the incremental sector [0,K2−K1], together with a congruence
transformation in (11)), we arrive at the following LMI[

Q1,1 B1 − P−1C>1 K̃
>

B>1 − K̃C1P
−1 −2Im

]
� 0

where Q1,1 = P−1(A+B1K1C1)>+(A+B1K1C1)P−1−βλaB2B
>
2 +µP−1 and K̃ = K2−K1. By setting C2 = B>2 P

we recover the output matrix. In this case, with the parameters aforementioned, we obtain that C2 = [8.53, −0.21]

with µ = 0.1. Therefore, setting γ > 28.85(ξ + 0.98ξ̃(y)) guarantees the semiglobal practical synchronization of the
perturbed network.

0 5
−3

0

3

x
k
,1
(t
)

0 5
−10

0

10

t [s]

x
k
,2
(t
)

Fig. 4. Time evolution of states xk,i(t), i ∈ {1, 2}, of N = 32 distinct FitzHugh-Nagumo systems with monotone coupling (31)
and W = IEa , γ = 50, M = Sgn and ε = 10−1. The black line represents the average behavior x(t).

Figure 4 shows the time trajectories of the state variables with the regularized controller (31) with ε = 10−1. The time
evolution of the coupling signals is shown in the uppert part of Figure 5 for two different regularizations (ε = 10−1

and ε = 10−3). It is noteworthy that the regularized part of the coupling signals compensate for the disturbance term
ξ as verifed in the lower part of Figure 5. Finally, the sum of squares error signal,

esos(t) =

N∑
k=1

‖xk(t)− x(t)‖2 , (46)

where, x(t) denotes the averaged behavior, that is, x(t) = 1
N

∑N
k=1 xk(t), is displayed in Figure 6 for four different

regularizations, verifying the claimed practical synchronization of the network.

0 5

−10

0

10

u
k
(t
)

ε = 10−1

0 5

−10

0
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ε = 10−3

0 5
−1

0

1

t [s]

ϑ
ε
(t
)
+

ξ(
t)

0 5
−1

0

1

t [s]

Fig. 5. Upper part: Time trajectories of coupling signals (31). Lower part: Time evolution of the difference ϑε(t) + ξ(t), where
ϑε(t) = −(Θb ⊗ Ip)Yε

M

(
(Θ>b ⊗ Ip)w(t)

)
, showing the compensation achieved by the regularized coupling acting on Gb.

All simulations were performed with Python 3.0 using the Scipy function solve ivp with the solver BDF and rtol =
10−9. The code is available via the link [26].
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Fig. 6. Sum of squares error (46) of the network of N = 32 FitzHugh-Nagumo systems of Example 12 at four different
regularizations: a) ε = 100 – dashed gray line; b) ε = 10−1 – dashed black line; c) ε = 10−2 – continuous black line; and d)
ε = 10−3 – continuous gray line. In all cases W = IEa and γ = 50.

6 Synchronization under changes in network’s topology

From the proof of Theorem 8 it is clear that the Lyapunov function V (x) = x>(ΘcΘ
>
c ⊗ P )x acts indeed as a

Common Quadratic Lyapunov Function (CQLF), [25], for the family of networks with N vertices and connected
graphs. Thereby, the previous developments easily extend to the case of networks in which the graph topology
changes with time.

Let GN ⊂ N be the set of indices enumerating all possible graphs with N vertices and let ã : R+ → GN , b̃ : R+ → GN ,
be right-continuous piecewise constant signals indexing the spanning subgraphs of G(V, E) at time t. That is, there
is a sequence {t∗k}k∈N such that for all t ∈ [t∗k, t

∗
k+1), Gã(t) and Gb̃(t) are constant. Let us consider the matrix

Θ̃b̃(t) := [Θb̃(t), 0] ∈ RN×Ec , and consider the following coupling law

u(t) ∈ −(Θã(t)Wã(t)Θ
>
ã(t) ⊗ Ip)w(t)− γ(Θ̃b̃(t) ⊗ Ip)M

(
(Θ̃>

b̃(t)
⊗ Ip)w(t)

)
, (47)

where Wã(t) ∈ REã(t)×Eã(t) is such that βmin := mint,i([Wã(t)]i,i) > 0 and M : REc ⇒ REc is maximal monotone.

Corollary 13 Let Assumptions 1-2 and 7 hold and let Gã(t) and Gb̃(t) be connected graphs for almost all times t ≥ t0.

If,

i) there exist µ > 0 and a constant matrix P = P> � 0, satisfying the conditions of Corollary 6 uniformly in t,

together with (11) with βλa substituted by βminλ̃a, where λ̃a is the minimum connectivity of the finite family of
all possible connected subgraphs {Gaj}j∈GN ; and

ii) the gain γ > 0 is such that

γ >
ξH̃

ρM
, (48)

where H̃ = maxt ‖H̃b̃(t)‖ and H̃b̃(t) is such that Θc = Θ̃b̃(t)H̃b̃(t) for almost all t ≥ t0.

Then the nonlinear network (7) with coupling (47) achieves global asymptotically synchronization.

PROOF. The proof is omitted since it is very similar to that of Theorem 8. Indeed, as the set GN contains a finite
number of elements and the subgraphs Gã(t) and Gb̃(t) are connected for almost all t, it follows that λ̃a > 0 for almost

all t ≥ t0. Now, using the CQLF candidate (13), together with Lemma 17, and following the same steps as in the
proof of Theorem 8, we arrive at the analogue of (15), that is,

w>
(

Θã(t)Wã(t)Θ
>
ã(t) ⊗ Ip

)
w ≥ βminλ̃a

N
x>
(
ΘcΘ

>
c ⊗ C>2 C2

)
x . (49)

Finally, mimicking the rest of the proof of Theorem 8 leads us to the claimed synchronization.

Similar results, dealing with local synchronization for the case of slowly varying connections, have been reported
in [44] under the framework of the Master Stability Function (MSF), see e.g., [33]. It is worth to remark that the
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MSF formalism requires an explicit knowledge of the synchronized trajectory, which is inaccessible when consid-
ering unknown disturbances ξ(t, x) as is the case treated in this work. By contrast, Corollary 13 provides a global
approach for connected networks with time-varying coupling and extends the results presented in [6] to the case of
heterogeneous networks with non-smooth coupling.

7 Beyond Filippov systems

In this section we consider set-valued maps not satisfying Assumption 7. For instance, let us consider the following
modification of the coupling law (8),

u(t) ∈ −(ΘaWΘ>a ⊗ Ip)w − (Θb ⊗ Ip)NS(t)((Θ
>
b ⊗ Ip)w) , (50)

where NS(t) is the normal cone to the closed, convex, and time-dependent set S(t) ⊂ REbp. Hence, at each time t,
NS(t) is maximal monotone.

Assumption 14 There exists an absolutely continuous function ν : [0,+∞) → R such that for any η ∈ REp and
any t1, t2 ∈ [0,+∞)

|dist(η, S(t1))− dist(η, S(t2))| ≤ |ν(t1)− ν(t2)| , (51)

Under Assumption 14 Theorem 5 can be modified to consider time-dependent maximal monotone operators, see [11,
Theorem 23]. Thus, the existence and uniqueness of absolutely continuous solutions of the closed-loop (7), (50) is still
guaranteed, whenever the initial condition satisfies (Θ>b ⊗ C2)x(t0) ∈ S(t0). Such dynamical system is also known
as a perturbed Moreau’s sweeping process in the literature of contact dynamics [16], [37]. Our interest in Moreau’s
sweeping processes comes from the fact that well-posedness of the closed-loop, (7) with coupling (50), automatically
implies that (Θ>b ⊗ Ip)w(t) belongs to the set S(t) for almost all times t > 0. Thereby, controlling the time evolution
of S(t), leads to the control of the spatial mismatch (Θ>b ⊗ Ip)w(t). For instance, if S(t) = [−s(t), s(t)]Ebp is such
that 0 < s(t) → 0 as t ↑ +∞ and G is connected, then w(t) → Null(Θ>b ⊗ Ip) = span{1N ⊗ Ip}, and asymptotic
synchronization follows by Assumption 3. It is worth to remark that, with the coupling law (50), the closed-loop
system lies outside Filippov’s framework, as NS(t) is not a bounded set-valued map, (see Figure 1), a necessary
condition for building Filippov’s solutions, see e.g., [17].

As in the case of the sign set-valued coupling, it is also possible to design electrical networks implementing a
regularized version of the normal cone map in (50). Indeed, an analysis similar to the one done in Section 5, shows
that the circuit on Figure 7 implements,

−ui = uj = Yε
M−1
t

(wi − wj) ,

where M−1
t = N[−s(t),s(t)], s(t) = s∗(t) + V ∗, V ∗ is the activation voltage of the diodes, and ε = R.

vi vj

ui R/2

D1

−+

s∗(t)

− +s∗(t)D2
R/2 uj

+

−
wi

+

−
wj

Fig. 7. Electrical network implementing a regularization of the set-valued map −ui = uj ∈ N[−s(t),s(t)](wi − wj), where
s(t) = s(t)∗ + V ∗.

Corollary 15 Let S(t) = [−s(t), s(t)]Ebp be the hypercube in REbp with side length 2s(t) and centered at the origin,
where s : R+ → R+ is a strictly decreasing function such that 0 < s(t) for all t ∈ [0,+∞) and Assumption 14 holds.
In addition let the initial condition x(t0) = x0 be such that (Θ> ⊗ C2)x0 ∈ S(t0). If condition i) of Corollary 10
holds, then the ensemble of systems (5) with regularized coupling law,

u(t) = −(ΘaWΘ>a ⊗ Ip)w − (Θb ⊗ Im)Yε
M−1
t

(
(Θ>b ⊗ Ip)w

)
, (52)
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where M−1
t = NS(t), achieves global practical synchronization whenever ε > 0 satisfies

1

ε
− λmax(R)‖Hb‖2

2N
− ξ‖Hb‖

δ
> 0 (53)

where the matrices R and Hb are as specified in Corollary 10 and δ > 0 is such that

‖(Θb ⊗ Ip)w(t)‖ > δ .

PROOF. Consider once again the Lyapunov function (13). Simple computations leads us to the following inequality,
cf. (25),

d

dt
V (x) ≤ λmax(R)‖Hb‖2

2N
‖(Θ>b ⊗ Ip)w‖2 − w>(Θb ⊗ Ip)YεMt

(
(Θ>b ⊗ Ip)w

)
+ ξ‖Hb‖‖(Θ>b ⊗ Ip)w‖ . (54)

The use of (3) and Lemma 19 in the Appendix leads us to

d

dt
V (x) ≤ −

(
1

ε
− λmax(R)‖Hb‖2

2N

)
‖(Θ>b ⊗ Ip)w‖2 +

s(t)

ε
w>(Θb ⊗ Ip)Y

s(t)
ε

M

(
(Θ>b ⊗ Ip)w

ε

)
+ ξ‖Hb‖‖(Θ>b ⊗ Ip)w‖ , (55)

where M = Sgn× · · · × Sgn. It follows from (4) that ‖Y
s(t)
ε

M

(
(Θ>b ⊗Ip)w

ε

)
‖ ≤ √Ebp. Hence, for any δ > 0 such that

‖(Θ>b ⊗ Ip)w‖ ≥ δ, it follows from (55) that

d

dt
V (x) ≤ −

(
1

ε
− λmax(R)‖Hb‖2

2N
− s(t)

√
Ebp

δε
− ξ‖Hb‖

δ

)
‖(Θ>b ⊗ Ip)w‖2 . (56)

Since s(t) ↓ 0 as t ↑ ∞, it follows from (53) that there exists a finite time τ∗ > 0 from which the right-hand side of
(56) becomes negative thereafter. Finally, the conclusion follows from Assumption 3 on the incremental asymptotic
zero-state detectability of the network. This concludes the proof.

Generalized Moreau’s sweeping processes have a non-empty intersection with the so-called funnel control studied in
[7], [22], [24]. In that context, the set S(t) specifies the funnel where the error (Θ>b ⊗ C2)x(t) will lie. Such control
method is also related to the dead-zone control studied in [12]. Indeed funnel control can be interpreted as a version
of the control proposed in [12] with open-loop adaptation.

Example 16 Consider an ensemble of N = 16 Chua’s circuits, where the k-th agent has parameters

A =


−αk αk 0

1 −1 1

0 −β 0

 , B1 = B2


1

0

0

 , C1 = C2

[
1 0 0

]

where k ∈ {1, . . . , N}, αk ∈ [8.0, 9.5], β = 15.0, and ϕk : R → R is such that η 7→ αk(ckη + tanh(dkη)), where
ck ∈ [1.5, 2.5], dk ∈ [0.5, 0.9]. All parameters are assumed constant, but αk, ck and dk are selected in a random
fashion within the indicated intervals. In addition, there is an external disturbance, ξk, affecting each agent via
ξk = sin(δk,1πt) sin(δk,2t) cos(δk,3t) + cos(δk,4t) sin(δk,5πt), where δk,i ∈ [1, 20], i ∈ {1, . . . , 5}, k ∈ {1, . . . , N}. As
before, each δk,i is fixed and selected randomly.

As in Example 12, the differences between agents will produce extra disturbances to be considered. Indeed, one has
that

ϕi(yi)− ϕj(yj) = ϕi,j(yi)− ϕi,j(yj) + ξ̃i,j (57)
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where ϕi,j =
ϕi+ϕj

2 satisfies (6) for all i, j ∈ {1, . . . , N}, with K1 = mini,j{ α̃i,j2 }, K2 = maxi,j{ d̃i,j+α̃i,j2 }, α̃i,j =

αici + αjcj, d̃i,j = αidi + αjdj and

ξ̃i,j =
(αici − αjcj)(yi + yj) + φi,j(yi)− φi,j(yj)

2
,

where φi,j(η) = αi tanh(diη)−αj tanh(djη). Regarding the network structure, this time we set Θa = 0 and Θb = Θb̃(t),

that is the network contains only one layer and it changes as time progress. At time t = 0, we start with an initial
small-world graph configuration of the same type as before with connectivity of 4 neighbors and probability of extra
connections equal 0.25, see, e.g., [30]. After every two seconds, the graph topology changes as follows, pb̃(t) ∈ [0, 8]

edges are removed in a random way, and qb̃(t) ∈ [0, 8] edges are added also in a random manner such that the resulting

graphs are always connected.

0 20 40 60 80
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0

15

x
k
,1

0 20 40 60 80

−5

0

5

x
k
,2

0 20 40 60 80

−30

0

30

t[s]

x
k
,3

Fig. 8. Time trajectories of N = 16 heterogeneous Chua’s circuits with coupling law (52) with M−1
t = NS(t),

S(t) = [−50e−
t2

50 , 50e−
t2

50 ]
E
b̃(t) , and ε = 0.01. The black line represents the average behavior x(t) to which all trajectories

converge.

Thereby, following similar steps to those shown in Example 12 we can conclude on the semi-global practical syn-
chronization of the network. Indeed, with the above data each agent satisfies the LMI (23) (uniformly in αk), with
λa = 0, P = Diag[1.0, 8.75, 0.58] and R = 91.89.

We use the coupling law (52) with the set S(t) = [−50e
−t2
50 , 50e

−t2
50 ]Eb̃(t) , where Eb̃(t) is the number of edges in Gb̃(t).

An explicit formula for the regularized controller is

Yε
M−1
t

(ϑ) =
ϑ− Proj(ϑ;S(t))

ε
, (58)

Thus, as time increases, the set S(t) shrinks towards the origin and (Θ>b ⊗ Ip)w(t) approaches a neighborhood of the
origin. It is also clear from (58) that the coupling action is zero whenever (Θ>b ⊗ Ip)w(t) ∈ intS(t). This behavior
is verified in Figures 16-16. Note that the control action remains bounded during the whole time of execution. As
before, all simulations were performed with Python 3.0 using the Scipy function solve ivp with the solver BDF and
rtol = 10−9. The code is available via the link [26].
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Fig. 9. Time evolution of the coupling law (52) with M−1
t = NS(t), S(t) = [−50e

−t2
50 , 50e

−t2
50 ]

E
b̃(t) , and ε = 0.01. From t = 0

up to t ≈ 8 s, the coupling action is identically zero, indicating that (Θb̃(t) ⊗ Ip)w ∈ intS(t) during such time interval. Also

note that all coupling signals remain bounded.
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Fig. 10. Time trajectories for the sum of squares error signal esos(t) =
∑N

k=1 ‖xk(t)− x(t)‖2 for the family of N = 16 Chua’s

circuits with time-varying network connections and coupling law (52) with M−1
t = N[−s(t),s(t)]. The plot shows three different

regularizations, a) ε = 10−1 – dashed gray line; b) ε = 10−2 – dashed black line; and c) ε = 10−3 – continuous black line.

It is noteworthy that, due to the variability in the parameters, each perturbed agent in Example 16 has a different
behavior. Indeed, most agents are not even in a chaotic regime due to the effects of each ξk. Thus, the average

x(t) =
∑N
k=1 xk(t) is not an individual solution for each agent. Nonetheless, the coupled system reaches practical

synchronization towards a chaotic regime.

8 Conclusions and further research

The problem of robust synchronization against matched perturbations in the agents and uncertainty in network
connections was dealt in this paper. It is shown that set-valued maximal monotone maps achieve perfect regulation
in the presence of the aforementioned disturbances, but the selection of the coupling strategy depends on the
disturbance itself and therefore perfect regulation is impossible to achieve in practice. Based on such knowledge, the
regularization of the coupling law is explored via Yosida approximations. It is shown that practical synchronization is
attained and precision improves as the index of the Yosida approximant approaches zero. Further research considers
the digital implementation of the set-valued coupling via the time-discretization of the closed-loop system. In such
regard, implicit discretization schemes have proved a superior performance and show a considerable reduction of the
chattering effect, even when tested in physical systems, see e.g., [21], [40].
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The structure and dynamics of multilayer networks. Physics Reports, 544:1–122, 2014.
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A Appendix

Lemma 17 Let Θ ∈ RN×E be an oriented incidence matrix associated to a graph G(V, E) and let Θc ∈ RN×Ec ,
where Ec = N(N−1)

2 , be an incidence matrix associated to the complete graph KN .

i) If Θ has rank N − 1, then there exists a full row-rank matrix H ∈ RE×Ec such that Θc = ΘH.
ii) ΘcΘ

>
c Θ = NΘ.

PROOF. i) Without loss of generality consider the case where the first E columns of Θc coincide with those of
Θ. Since Θ has rank N − 1, then for any edge {vi, vj} ∈ Ec there is a path in G joining vi and vj . Therefore, the

remaining columns of Θc are a linear combination of columns of Θ. That is Θc = Θ[IE , T ] for some T ∈ RE×(Ec−E).
Setting H = [IE , T ], clearly H has full row-rank and the claim follows.

ii) Let Lc be the Laplacian matrix of the complete graph KN , i.e., Lc = ΘcΘ
>
c and let rj , sj ∈ {1, . . . , N} be such

that [Θ]rj ,j = 1 and [Θ]sj ,j = −1. Then, the j-th column of LcΘ satisfies

[LcΘ]•,j = [Lc]•,rj − [Lc]•,sj = N [Θ]•,j ,

and the conclusion follows.

Lemma 18 Let M be a maximal monotone map satisfying Assumption 7. Then,

i) For any (η, ϑ) ∈ gph(M), η>ϑ ≥ ρM‖η‖.
ii) For any ε > 0, ‖YεM(ϑ)‖ < ρM, if and only if, ϑ ∈ int (εBρM(0)).

PROOF. i) Let (η, ϑ) ∈ gph(M). It follows from the assumption on M(0) that (0, ϑ̂) ∈ gph(M), for all ϑ̂ ∈ BρM(0).
Hence, monotonicity of M implies that,

〈η, ϑ− ϑ̂〉 ≥ 0 for all ϑ̂ ∈ BρM(0).

Therefore, 〈η, ϑ〉 ≥ supϑ̂∈BρM (0)〈η, ϑ̂〉 = ρM‖η‖, and the implication follows.

ii) Let ϑ ∈ int (εBρM(0)). It follows from (2) that JεM(ϑ) = 0. Hence, (3) implies that

‖YεM(ϑ)‖ =
‖ϑ− JεM(ϑ)‖

ε
=
‖ϑ‖
ε

< ρM .

For the converse, let ϑ /∈ int (εBρM(0)). In particular, ϑ 6= 0, ερM
ϑ
‖ϑ‖ ∈ εBρM(0) ⊂ εM(0), and JεM

(
ερM

ϑ
‖ϑ‖

)
= 0.
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Thus, the nonexpansiveness property of the resolvant implies that

‖JεM(ϑ)‖ =

∥∥∥∥JεM(ϑ)− JεM
(
ερM

ϑ

‖ϑ‖

)∥∥∥∥
≤
∥∥∥∥ϑ− ερM ϑ

‖ϑ‖

∥∥∥∥ = ‖ϑ‖ − ερM . (A.1)

Therefore,

‖YεM(ϑ)‖ =
1

ε
‖ϑ− JεM(ϑ)‖ ≥ 1

ε
(‖ϑ‖ − ‖JεM(ϑ)‖)

≥ 1

ε
(‖ϑ‖ − ‖ϑ‖+ ερM) = ρM

where we have made use of (A.1) in the last inequality, and the conclusion follows.

Lemma 19 Let S(t) = [−s(t), s(t)]l ⊂ Rl be such that s(t) > 0 for all t ≥ t0. That is, S(t) is the hypercube in Rl,
with side length 2s(t) and centered at the origin. Let M−1

t := NS(t). Then for any ϑ ∈ Rl, ε > 0 and t ≥ t0,

Yε
M−1
t

(ϑ) = J s(t)
ε M

(
ϑ

ε

)
, (A.2)

JεM−1
t

(ϑ) = s(t)Y
s(t)
ε

M

(
ϑ

ε

)
, (A.3)

where M : Rl ⇒ Rl is the componentwise signum set-valued map, that is M(η) = Sgn(η1)× · · · × Sgn(ηl).

PROOF. The proof follows as a consequence of [35, Lemma 12.14]. Indeed, noting that Mt = s(t)M, it follows
from (1) that
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(A.4)

and the identity (A.2) follows. Finally, the identity (A.3) follows as a consequence of (A.2) and (3).
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