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The plastic deformation and the failure behavior of a third generation magnesium AZ31 sheet is studied under quasi-static tensile, compressive, and mixed mode loading conditions at room temperature. While the deformation anisotropy is found to be less pronounced compared to previously investigated rolled sheets of this alloy, a strong dependence of the failure strain on the sheets orientation is experienced. This failure anisotropy is further studied and quantified using mixed-mode tests realized using a modified Arcan fixture. The irreversible deformation is modeled in the framework of finite elements using two coupled anisotropic plastic potentials. The model parameters are calibrated using the global force-elongation record of the tested samples. For the prediction of failure, an uncoupled damage model based on transformation of strain rates is developed and applied. It is shown that this model is able to predict the observed edge failure of notched specimens with good accuracy. The model predictions for the smooth tensile tests are analyzed in detail by full-field FE analyses to understand the interaction between strain localization and predicted damage evolution.

Introduction

Magnesium as a light metal can be used for the production of structural components in transportation industry. Despite the high strength-to-weight ratio, the application of rolled sheets and extruded profiles is still restricted. The limitation for its application is caused to a certain degree by its anisotropy, the tension-compression asymmetry (the so-called strength differential effect, SD effect) [START_REF] Hosford | Twinning and directional slip as a cause for a strength differential effect[END_REF][START_REF] Hosford | The mechanics of crystals and textured polycrystals[END_REF] as well as its limited formability at room temperature [START_REF] Hosford | The mechanics of crystals and textured polycrystals[END_REF][START_REF] Bohlen | The texture and anisotropy of magnesiumzincrare earth alloy sheets[END_REF]. While the micromechanisms of deformation are well described [START_REF] Agnew | Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31[END_REF][START_REF] Agnew | Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[END_REF][START_REF] Jiang | Microtexture evolution via deformation twinning and slip during compression of magnesium alloy AZ31[END_REF][START_REF] Kelley | The deformation characteristics of textured magnesium[END_REF][START_REF] Jiang | Twinning and texture development in two mg alloys subjected to loading along three different strain paths[END_REF][START_REF] Yi | Mechanical anisotropy and deep drawing behaviour of AZ31 and ZE10 magnesium alloy sheets[END_REF] and modeled [START_REF] Agnew | Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y[END_REF][START_REF] Graff | Forming of magnesium -crystal plasticity and plastic potentials[END_REF][START_REF] Hama | Crystal plasticity finite-element simulation of work-hardening behavior in a magnesium alloy sheet under biaxial tension[END_REF]Wang et al., 2010a,b), robust and efficient prediction tools for forming operations, the structural response to service loads and the lifetime of the component on the macro scale are less mature. It became obvious that the observed tension-compression asymmetry demands for asymmetric yield functions to describe plastic deformation. Formulation of the yield function including the third stress invariant naturally account for this asymmetry, but are not necessarily convex. Hence, constraints need to be imposed on the model parameters to ensure convexity (Mekonen et al., 2012a;[START_REF] Zhang | Thermomechanical modeling of distortional hardening fully coupled with ductile damage under non-proportional loading paths[END_REF]. Formulations using standard yield functions applied to linear transformations of the stress deviator lead to convex yield functions [START_REF] Cazacu | Orthotropic yield criterion for hexagonal closed packed metals[END_REF][START_REF] Plunkett | Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metals[END_REF]. For addressing the evolution of anisotropy/SD effect, either the coefficients describing anisotropy can be defined as evolving functions of an equivalent strain [START_REF] Yoon | Constitutive modeling of AZ31 sheet alloy with application to axial crushing[END_REF][START_REF] Steglich | Modelling direction-dependent hardening in magnesium sheet forming simulations[END_REF]Mekonen et al., 2012b;[START_REF] Ghaffari Tari | Mechanical response of AZ31b magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature[END_REF][START_REF] Abedini | Application of an evolving non-associative anisotropic-asymmetric plasticity model for a rare-earth magnesium alloy[END_REF], or a two-surface model [START_REF] Kim | A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets[END_REF][START_REF] Steglich | Mechanism-based modelling of plastic deformation in magnesium alloys[END_REF] can be used.

The mechanisms leading to failure are less clear than in other structural metals. While the failure strains evidenced in uniaxial testing allow addressing several commercial magnesium alloys as being ductile, the typical void growth mechanism observed in structural steels [START_REF] Mcclintock | A criterion for ductile fracture by the growth of holes[END_REF][START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF]) is less pronounced. [START_REF] Nemcko | On the damage and fracture of commercially pure magnesium using x-ray microtomography[END_REF] report rapid void growth due to failure of twin and grain boundaries adjacent to pre-existing voids for pure magnesium. As a result, the voids in their investigations show flat irregular characteristics. In the AZ31 alloy investigated by [START_REF] Ray | The effect of microstructure on damage and fracture in az31b and zek100 magnesium alloys[END_REF], damage is manifested in the form of ductile dimples and twin-related microcracks. Final fracture is due to the linkage of these twin-induced micro-cracks and is quasi-brittle in nature. A similar mechanism of quasi-brittle failure initiated by contraction twins has further been reported for AZ31 material by [START_REF] Kondori | Fracture strains, damage mechanisms and anisotropy in a magnesium alloy across a range of stress triaxialities[END_REF]. Once mixed-mode loading is concerned, [START_REF] Vaishakh | Mixed-mode (i and ii) fracture behavior of a basal-textured magnesium alloy[END_REF] report a combination of dimple fracture (with smaller dimple size) and twin-induced slit-like brittle cracks governing the fracture process in AZ31 plates.

Models addressing failure in magnesium alloys by stress triaxiality-dependent void growth were developed by coupling anisotropic plasticity and damage, e. g. [START_REF] Benzerga | Plastic potentials for anisotropic porous solids[END_REF] or [START_REF] Stewart | Analytical yield criterion for an anisotropic material containing spherical voids and exhibiting tensioncompression asymmetry[END_REF]. Their successful application is reported for bulk material and axisymmetric loading, where a considerable high stress triaxiality develops. In the deformation of sheets or blanks, however, damage models have to be enriched by a second parameter beside the stress triaxiality characterizing the shear stress state, the Lode angle. Extensions of the aforementioned models were proposed that incorporate damage growth under low triaxiality straining for shear-dominated states [START_REF] Bai | A new model of metal plasticity and fracture with pressure and lode dependence[END_REF][START_REF] Mohr | Micromechanically-motivated phenomenological hosfordcoulomb model for predicting ductile fracture initiation at low stress triaxialities[END_REF][START_REF] Nahshon | Modification of the gurson model for shear failure[END_REF][START_REF] Zhang | Ductile fracture prediction using enhanced cdm model with lode angle-dependency for titanium alloy ti-6al-4v at room temperature[END_REF]. Furthermore, the Continuum Damage Mechanics (CDM) approach was used by coupling plasticity and damage evolution through the principle of energy equivalence [START_REF] Zhang | Failure prediction of magnesium alloys based on improved cdm model[END_REF]. This modeling strategy includes the physics of strain localization and necking. While using a single damage parameter, the temperature-dependence of failure could be successfully matched, but the failure anisotropy was not considered.

For industrial applications, the use of shell elements is inevitable due to their computational efficiency and robustness. In such a framework plane stress conditions are considered, hence stress triaxiality and Lode angle depend on each other. This precludes the use of the twoparameter approaches. Common models applied in sheet metal forming to predict the forming limits are based on through-thickness necking of the materials [START_REF] Hill | On discontinuous plastic states, with special reference to localized necking in thin sheets[END_REF][START_REF] Marciniak | Limit strains in the processes of stretch-forming sheet metal[END_REF]. However, for some modern metals, such as advanced high-strength steel (AHSS) and magnesium alloys, fracture occurs without preceding necking. For this particular purpose, uncoupled damage approaches appear suited, since frequently crack propagation instantaneously follows crack initiation, and crack arresting mechanisms are absent. Uncoupled damage models can be used to indicate a critical loading stage, useful for metal forming and structural assessment. These models are computationally more efficient than coupled damage models, since they do not require internal variables. They use critical damage parameters derived from the elasto-plastic behavior of the material determined by a hybrid approach involving mechanical testing and numerical analyses. Focusing on magnesium sheets in the following, successful predictions are reported by [START_REF] Jia | Ductile fracture prediction for metal sheets using all-strain-based anisotropic emmc model[END_REF] for AZ31, by [START_REF] Lee | Fracture prediction based on a two-surface plasticity law for the anisotropic magnesium alloys az31 and ze10[END_REF] for AZ31 and ZE10, and by [START_REF] Li | Forming limit analysis of mg-2zn-1.2al-0.2ca-0.2re alloy sheet using ductile fracture models[END_REF] for ZA21, all applying variants of the MMC model proposed by [START_REF] Bai | A new model of metal plasticity and fracture with pressure and lode dependence[END_REF].

The hybrid experimental-numerical approach pursued here aims on describing the directiondependent irreversible deformation as well as the failure behavior. Since Lou et al. (2017) disclosed the challenge related to the measurement of the failure strain, here local strains additional to the global counterparts are considered. Beside the commonly used (smooth) tensile and notched samples, Arcan-type samples developing shear stress states are incorporated in the parameter optimization strategy. Failure points are analyzed and predicted in terms of initiation location and local mechanical state by means of a proposed uncoupled failure model. It is shown that despite its phenomenological character, the proposed model predicts the dominant deformation and failure at monotonous loading of the magnesium sheets investigated.

Material

The alloy considered in the following is a commercial magnesium alloy promoted as 'Eform' [START_REF] Yi | Microstructure and mechanical properties of ca containing azx310 alloy sheets produced via twin roll casting technology[END_REF] produced by POSCO of South Korea via twin roll casting. The alloy is referred hereinafter as AZ31, which is a more common name based on its chemical composition (Mg + 3%Al + 1%Zn). The as-received sheet has a thickness of 1.2 mm. The microstructure is fully recrystallized and the average grain size is 11 µm. The sheet exhibits an initial crystallographic texture, which is typically characterized by the preferential alignment of (0002) basal pole along the thickness direction of the sheet. A weak tilt of the basal pole towards the rolling direction is observed. Details of the microstructure ant the texture of these materials are provided in [START_REF] Steglich | Mechanical testing of thin sheet magnesium alloys in biaxial tension and uniaxial compression[END_REF].

Mechanical tests

In the following, tests are described which were performed to characterize the mechanical behavior of the material under various types of quasi-static monotonous in-plane loading conditions, with focus on irreversible (plastic) deformation and failure. All test specimens were cut from the as-received sheet (of one batch) finished by electrical discharge machining. Whenever possible, the local displacement field was recorded from the samples surface by the digital image correlation (DIC) system Aramis (GOM). This in principle allows tracking the strain states over the loading history, and extracting a local failure strain for each sample. In addition, a global displacement quantity was defined for each configuration, which later will be used to calibrate the computational plasticity model using an iterative approach. Unless otherwise stated, tests were conducted along different directions in the sheets plane, namely along the rolling direction (L), along the transverse direction (T), and along 45 • to the rolling direction. The thickness direction will referred to as S.

Tensile Tests

The standard tensile tests described in the following were already considered by [START_REF] Jeong | Modelling-assisted description of anisotropic edge failure in magnesium sheet alloy under mixed-mode loading[END_REF] and [START_REF] Nagendra | Experimental and numerical bendability analysis of a 3rd generation magnesium alloy[END_REF]. The cross-head speed was set to 2 mm/min, which corresponds to an initial strain rate of 5 × 10 -4 s -1 . Load signals and the digital images were acquired with a frequency of 20 Hz. From the DIC data, the longitudinal and width strain were extracted. From this, the r-values for various loading directions

r i = - ε w i (ε l i + ε w i )
,

(1) {eq:lankford were calculated, with ε l i and ε w i denoting the inelastic strains along the loading direction and along the width direction, respectively. Assuming plastic incompressibility -(ε l i + ε w i ) is equal to the inelastic strain along the thickness direction.

In-Plane Compression Tests

The compressive behavior was investigated using stacked and glued square sheets in a servohydraulic testing device subjected to compression via flat, mirror-polished punches [START_REF] Tozawa | Plastic deformation behavior under the conditions of combined stress[END_REF][START_REF] Ghaffari Tari | Mechanical response of AZ31b magnesium alloy: Experimental characterization and material modeling considering proportional loading at room temperature[END_REF][START_REF] Steglich | Mechanism-based modelling of plastic deformation in magnesium alloys[END_REF]. Five sheets were glued, and cubic samples of dimension 5 mm 3 were machined. Four samples were tested along the L-and T-direction, respectively. Friction between punches and sample was minimized by applying thin Teflon foil. The travel of the rigid punches was measured by two independent extensometers. Their respective readings were averaged to calculate the imposed strain. The cross head speed of 0.5 mm/min leads to a similar strain rate than experienced during the tensile tests. The inplane compression tests ended with the occurrence of an instability due to delamination of the stacked sheets at compressive strains of 0.13 (T) and 0.15 (L).

Through-Thickness Compression Tests

Assuming that plastic yielding is independent from the hydrostatic pressure, throughthickness compression (TTC) of a sheet is equivalent to a balanced biaxial tension stress state. Due to the simplicity of the test, biaxial stress states were investigated by through-thickness compression tests. Circular samples "coins" of 10 mm diameter were machined and compressed in the thickness direction under force control up to a predefined level. The force was released, and the diameter of the sample was measured along and perpendicular to the L-direction. From the average of both diameters, a (plastic) thickness strain can be computed, while the compression force determines the stress leading to this deformation stage. This procedure is then repeated several times with stepwise increasing loads. From the sequence of discrete true stressplastic strain values, a biaxial flow curve can be constructed [START_REF] Barlat | Plane stress yield function for aluminum alloy sheets-part 1: theory[END_REF]. A friction compensation was applied the the experimental data according to the procedure described in [START_REF] Christiansen | Friction compensation in the upsetting of cylindrical test specimens[END_REF]. 

Modified Arcan Tests

In order to include shear (mode II) stress states in the deformation and failure assessment, a modified Arcan fixture is used with notched samples under various combinations of tensile and shear stresses. This was realized by mounting a notched sample to the universal testing machine under angles of 0 • , 15 • , 30 • , and 45 • to the loading direction [START_REF] Steglich | Mixed-mode deformation and failure of a magnesium sheet quantified using a modified arcan fixture[END_REF]. For each test, the deformation field evolution on the sheet's surface was monitored by a digital image correlation (DIC) system. In a post-processing step, a characteristic displacement for each configuration was computed, which is based on the relative motion of two sensor points on the symmetry line with a distance of 40 mm [START_REF] Steglich | Mixed-mode deformation and failure of a magnesium sheet quantified using a modified arcan fixture[END_REF], cf. Fig. 1 e. This quantity completely describes the kinematics of the test section in a global sense, and it is not affected by the rigid body rotation of the fixture. It is used together with the respective applied load in the following.

Notched Bar Tests

To support the tests of the Arcan tests under 0 • and to trigger a higher stress triaxiality, flat U-notched samples with a notch radius of 6 mm (NB6) and 2 mm (NB2) were produced and tested. The geometry of the samples is given in Fig. 2. The tests were performed under displacement control using a servo hydraulic testing machine with a constant cross head speed of 0.5 mm/min, which leads to an initial strain rate in the notch region of approx. 10 -3 s -1 . Force and cross head travel were recorded. The notch opening displacement (NOD) was measured by a laser extensometer in order to provide information on the deformation close to the process zone and to exclude the machine's stiffness from the records. Note that for the two configurations, two different initial length were used: l 0 = 10 mm for NB2 samples, l 0 = 20 mm in the case of NB6 samples. The tests are presented later together with the respective simulation results.

Fractography

The failure behaviour of this particular alloy has already described and discussed in previous work, e. g. [START_REF] Steglich | Mixed-mode deformation and failure of a magnesium sheet quantified using a modified arcan fixture[END_REF][START_REF] Jeong | Modelling-assisted description of anisotropic edge failure in magnesium sheet alloy under mixed-mode loading[END_REF]. These investigations come to the conclusion, that failure initiates preferably at the free edge of the samples, independent from the configuration (tensile, Arcan) considered. The fracture surfaces inspected evidence very small dimples, which might were initiated at (Mg, Al) 2 Ca-inclusions, but did not significantly grow. Here, the failure mechanism is further illustrated by views on cross-sections of NB2 samples. A tested samples were ground and polished close to the notch root in the LS-plane in order to qualitatively determine the amount of cavities and cracks. Fig. 3 a shows the overview on a larger scale, with the slanted fracture surface on the right. In Fig. 3 b-d arrows indicate small voids and elongated crack-like cavities. Their density is small compared to other what is usually experienced in ductile structural metals [START_REF] Mcclintock | A criterion for ductile fracture by the growth of holes[END_REF][START_REF] Benzerga | Anisotropic ductile fracture Part I: experiments[END_REF][START_REF] Steglich | Anisotropic deformation and damage in aluminium 2198 t8 sheets[END_REF]. Hence, it can be assumed that the void growth mechanism plays a rather subordinate role in failure. A phenomenological two-yield surface (2YS) model [START_REF] Steglich | Mechanism-based modelling of plastic deformation in magnesium alloys[END_REF]) is adopted here to numerically describe the elasto-plastic behavior of the material. This model principally captures the tension-compression asymmetry and describes the evolution of the strength differential effect. A symmetric (for glide mechanisms) and an asymmetric yield surface (for twinning mechanisms) are combined by two interacting plastic potentials. The second surface is taken as asymmetric in order to represent the polarity of twinning. The model was already successfully applied to magnesium sheets [START_REF] Steglich | Mechanism-based modelling of plastic deformation in magnesium alloys[END_REF] and also to bulk material [START_REF] Kondori | Evolution of the 3d plastic anisotropy of hcp metals: Experiments and modeling[END_REF]. The model is detailed in the appendix. Normality rule is assumed to calculate the inelastic strain increment for each deformation mechanism independently, hence one plastic multiplier is used for both mechanisms. A visco-plastic regularization is used to determine the contributions of each mechanisms as explained in Appendix A.3.

Finite Element Modelling of Plasticity and Failure

Constitutive Model and Failure Model

In order to predict the stage of failure, a simple approach based on linear transformations of the plastic strain rate referred in the orthotropic material axes is chosen for modeling of directionality of ductile fracture. A possible stress dependence is not accounted for. This seems appropriate because crack initiation takes always place at the free surface where the stress triaxiality is 1/3 so that a triaxiality-driven void growth mechanism cannot be substantiated. On the other hand, the initiation of fracture is highly dependent on the material orientation. Hence, the direction of loading with respect to the material orientation has to be accounted for. As failure always occurs in an unstable manner, an uncoupled approach is advocated here, in which the evolution of damage is solely dependent on the strain state. The failure model is therefore only able to predict crack initiation.

The integral form of uncoupled fracture criteria can be written as follows [START_REF] Defaisse | Ductile fracture of an ultra-high strength steel under low to moderate stress triaxiality[END_REF]:

D = εpl 0 W (stress state) dε pl = D c , (2) 
with εpl as an equivalent plastic strain. W is a suitable weighting function which is often expressed as a function of the stress triaxiality η (see the seminal work by [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF][START_REF] Marini | Experimental study of cavity growth in ductile rupture[END_REF]) and the Lode angle θ L [START_REF] Bao | On fracture locus in the equivalent strain and stress triaxiality space[END_REF]Papasidero et al., 2015). D c is understood as the critical value of the (scalar) damage variable at which local failure occurs. The model proposed here follows an idea of [START_REF] Luo | Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading -part ii: Ductile fracture[END_REF], but omits the weighting function of the stress state. The failure criterion can then be written in an incremental form:

D = t 0 f ( εpl ) dt = D c .
(3) {eq:defD}

In order to address the anisotropy in failure strain, the strain rate components in the material frame need to be mapped to an equivalent strain rate. This is done by a linear transformation (Voigt notation), εd pl = L : εpl (4) {eq:damagefu

where the linear transformation fourth order tensor, L, is expressed as:

L =         1 3 (L TT + L SS ) -1 3 L SS -1 3 L TT 0 0 0 -1 3 L SS 1 3 (L LL + L SS ) -1 3 L LL 0 0 0 -1 3 L TT -1 3 L LL 1 3 (L LL + L TT ) 0 0 0 0 0 0 L LT 0 0 0 0 0 0 L TS 0 0 0 0 0 0 L SL        
(5) {eq:L} which introduces six adjustable parameters L LL , L TT , L SS , L LT , L TS , L SL . Considering that out of plane shear components are close to zero and can be neglected here, coefficients L TS , L SL can be set to unity. Hence, four parameters have to be determined in the following.

L is such that εd pl is deviatoric, independent of the choice of the parameters. This transformation is different from what is suggested in Lou and Yoon (2017), which uses nine coefficients in case of 3D loadings and reduced to seven seven parameters under plane stress conditions. In terms of the number of parameters it is equivalent to the criterion proposed in [START_REF] Luo | Experiments and modeling of anisotropic aluminum extrusions under multi-axial loading -part ii: Ductile fracture[END_REF] and [START_REF] Jia | Ductile fracture prediction for metal sheets using all-strain-based anisotropic emmc model[END_REF], but it avoids using a nonconjugated anisotropic equivalent plastic strain function. Instead, for the function f ( εpl ) in Eq. 3, the principal strain rates, εd I ≥ εd II ≥ εd III , are used for the definition of the damage indicator D (Jeong and Steglich, 2020):

D = t 0 εd I + + εd II + + εd III + dt ,
(6) {eq:Heavisid with • + being the positive part function. As εd pl is deviatoric, its smallest eigenvalue is negative so that εd III + can be omitted in the above equation. By integrating Eq. 6 over the loading history, the damage indicator D can be computed as a field quantity. Once D reaches a critical value D c at some material point, failure is assumed to happen. In this case, the position of crack initiation and the respective load stage are predicted. The choice of D c is somehow arbitrary, and is directly related to the components of L. Here, D c = 1 is used as a target function, and L XY are calibrated accordingly.

Numerical Techniques

All simulations were performed using the finite element (FE) software package Z-Set [START_REF] Besson | Object-oriented programming applied to the finite element method part ii. application to material behaviors[END_REF]. Except for the compression tests (in-plane and through-thickness), the mechanical tests were modeled using 3D meshes. Symmetry conditions were not exploited. At least three fully integrated linear hexahedral elements along the thickness direction are used. The Bmethod is used to avoid spurious pressure fluctuations within elements [START_REF] Elguedj | B and F projection methods for nearly incompressible linear and non-linear elasticity and plasticity using higher-order NURBS[END_REF]. In all cases, quasi-static analyses under displacement control are performed. In case of in-plane and through-thickness tension or compression tests, one single element was chosen to represent the respective test. The data acquired from the tests were therefore limited to those prior the occurrence of an instability.

Standard boundary conditions were used. Tensile specimens and notched bars were loadded by prescribing all displacement components at the top and bottom of the meshes to represent clamping (see red lines in fig. 2). Arcan specimens were loaded prescribing all displacement components along the though-thickness line representing the center of the loading pin (see red dots in fig. 1).) The loading system (white area in fig. 1) is modeled as an elastic material (Young's modulus: 200 GPa, Poisson's ratio: 0.3). Bonding between this part and the specimen (red area) is assumed to be perfect so that meshing of the gripping system is not required.

Convergence of the results with respect to the quantities of interest was checked for all specimens. This includes the load-displacement curves (for which convergence is easily achieved) and the maximum value of the damage indicator (which requires a finer mesh size). Fracture initiation is described using a damage indicator so that there is no coupling between plastic hardening and damage growth as in coupled models [START_REF] Besson | Continuum models of ductile fracture: a review[END_REF]. Consequently there is no spurious mesh size dependence so that convergence can be achieved.

Model Parameter Identification Strategy

Methodology

The proposed modeling approach involves three classes of parameters, which are identified in three respective steps:

1. Parameters describing the strain hardening in tension and in compression. Since during in-plane compression twinning is taking place, both have to be considered as being different from each ofther, 2. Parameters describing the plastic anisotropy, ie. the dependency on the loading type and direction with respect to the material axes, 3. Parameters for the prediction of failure.

The calibration of the parameters in each class demands for an iterative procedure. In the following "macroscopic" quantities like measured forces and displacements are selected to construct a target function. Simplex and SQP minimization algorithms are used together with finite element simulations of the mechanical tests. A set of initial model parameters is chosen and simulations of the mechanical tests described in section 3 are performed with these parameters. The difference between the simulations and the measurements is evaluated and a new set of parameters is calculated. This repeated process ends when the difference between simulation result and mechanical test is sufficiently small. The difference between an experimental curve Y n e (X) and a simulated curve Y n s (X) is defined by (with n indexing each individual test):

δ n = 1 2 (X n 2 -X n 1 ) X n 2 X n 1 (Y n e (x) -Y n s (x)) 2 dx . ( 7 
)
The global error is then computed as:

∆ = n ω n δ n , ( 8 
)
where ω n are weighting factors, which are used here to balance the information of stress-strain and strain-strain signals.

Determination of Hardening and Anisotropy Parameters

The tensile test along the L-orientation was first selected to calibrate the hardening function, because it revealed the highest ductility. Assuming a double exponential function enriched with a linear component as the basis,

R g (p g ) = R 0g + H g p g + Q 1g (1 -exp [-b 1g p g ]) + Q 2g (1 -exp [-b 2g p g ]) ,
(9) {eq:hard_gli with p g being the plastic accumulated strain resulting from glide mechanisms active during tensile loading. The stress state is uniaxial before necking occurs, hence the coefficients modulating the shape of the yield surface can be set to unity at this stage. Note that the drop of the engineering stress at higher strains in the simulation results from strain localization and necking, which was simulated on the basis of the plasticity model without assuming plastic anisotropy, strain softening or damage. Young's modulus E and Poisson's ratio ν were taken as 43 GPa and 0.3 [START_REF] Watanabe | Elastic and damping properties from room temperature to 673 k in an az31 magnesium alloy[END_REF], respectively, and verified using the tensile tests.

Neither were the elasitc cnstants determined by the tests conducted in this work, nor were they calibrated by the procedure described in the following. The coefficients R 0g , H 1g , Q 1g , Q 2g , b 1g , b 2g were determined by the described iterative process. They were then considered as fixed in the following identification steps. They are gathered in Table 2. In a second step, tensile tests along the L-, T-, and D-orientations, through-thickness compression (TTC) and in-plane compression tests along the L-and Torientations are considered. While for the two latter, only the force-displacement record is exploited, for the tensile test additionally the width reduction (and so the r-value, Eq. 1 as a kinematic quantity is considered).

The r-values for the three loading directions are given in Tab. 1. The aim is here to identify parameters defining the shape of the symmetric yield surface for glide together with the hardening in compression, which is influenced by the twinning mechanism. To achieve this goal, the hardening function of the glide mechanism, Eq. 9, has to be expanded by a linear coupling term depending on the twinning strain, p t . In the same spirit, the hardening of the twinning mechanism also depends on the glide strain, p g : Table 1: r-values for the three loading directions. The r-values are computed for plastic strain between 0.03 and 0.16. The first hardening function, Equation 10, reflects the common convex shape of strain hardening in case of the glide mechanism. The linear term, H g p g , turned out to be necessary to delay necking of the tensile sample in the simulations. The sigmoidal shape of hardening in case of the twinning mechanism is covered by Equation 11. The terms H gt p t and H tg p g allow for an interaction of twinning and glide. The parameters obtained after the second identification step were then used as starting values for the third and last optimization step, which considers all tests described above: tensile tests along all three sheet orientations, through-thickness and in-plane compression tests as well as the Arcan-tests along L-and T-orientations in the configurations 0 • , 15 • , 30 • , and 45 • . Normalized loads versus normalized deformations up to the point of necking were taken as an input. In the case of Arcan samples, additionally the purely kinematic response in terms of ∆u y = f (∆u x ) ,

R g (p g , p t ) = R 0g + H g p g +Q 1g (1 -exp [-b 1g p g ]) + Q 2g (1 -exp [-b 2g p g ] + H gt p t (10) {hard_glide2 (coupling) R t (p g , p t ) = R 0t +Q 1t (exp [b 1t p t ] -1) + H tg p g . ( 
with ∆u x and ∆u y being the displacement components measured between the sensor points on the Arcan samples in global coordinates was considered (see Fig. 1).

Figure 4 summarizes the outcome of the parameter fitting procedure for tensile (Fig. 4 a and b) and in-plane compression and through-thickness compression tests (Fig. 4 c). A reasonably good fit could be obtained in these cases, which includes the orientation-dependent width reduction of the tensile samples. The fit for the Arcan tests in terms of force-displacement is excellent (Fig. 5) The ∆u x -∆u y curves for Arcan tests were also perfectly matched (not shown here for the sake of brevity). All model parameters are reported in Table 2. Dislocation glide: hardening 

R 0g [MPa] H g [MPa] Q 1g [MPa] Q 2g [MPa] b 1g b 2g H gt [

Validation on the basis of notched Bar Tests

In order to check the performance of the plasticity model together with its parameters and to validate the input given from the various Arcan tests, the plasticity model is applied to the notched bar tests described in section 3.5. Since these tests are not included in the parameter optimization strategy, they can be taken as an independent signal for the assessment of the tasks accomplished so far. Figure 6 compares the measured and simulated behavior in terms of force and notch opening displacement, NOD. One representative test/curve was selected for each configuration, as the scatter among the repeated tests was found to be sufficiently small. The simulations retrieve the trend in terms of force level for the three orientations, L, T, and 45 • (D) resulting from the tensile test fit: The L-orientation is the strongest orientation, followed by T-orientation and D-orientation. This trend fits to the experiments of the NB2, however, not to the NB6. In the latter, the T-orientation appears to be stronger than the other ones. However, the difference in terms of force level is small. As simulations do not include the description of damage growth, the experimental sharp load drop cannot be modeled. 

Local and global Failure Strains

Commonly, the ductility of a metal is quantified by providing the strain at failure experienced during a tensile test. Since this quantity is measured via extensometers over a well-defined gauge length, it represents a global quantity. With modern field techniques like e.g. DIC, however, the strain field can be recorded on the surface of the sample during the test and a value at the (assumed) failure position can be extracted from the last picture prior to failure. This procedure is more flexible, as it allows to study the dependency of the failure strain on the sample geometry, hence the stress triaxiality. Further, diffuse and localized necking can be analyzed, which precedes cracking and is practically relevant in sheet forming processes.

In the following, the failure points of tensile tests are analyses by the two methods described above. Global strains were taken on the basis of displacements of the parallel section of the samples, local (principal) strains were reported on the position where they reached maximum before failure. The exact position of failure remains unknown, since rupture happened instantaneously. Figure 7 a depicts both values for the samples tested along the L-, D-and Tdirections. Note that the global strain is taken as an engineering (linear) strain, while the local strains are given as Hencky (logarithmic) strains. Independently of the measure considered, a strong anisotropy of failure strains between the different orientations becomes visible: Samples tested along the L-and D-directions are more ductile than those tested along the T-direction. This trend is further present in the Arcan samples, see Fig. 7 b. In case of the configurations 0 • , 15 • , 30 • , and 45 • , the T-orientations show a lower local failure strain than the counterparts of the L-orientation. In contrast to this, the Arcan configurations 45 • and 60 • appear to show very similar ductilities for both orientations. This may however be misleading as this last configuration evidenced local buckling of the sheet before failure.

Another factor becomes significant by this assessment: the scatter of the failure strains is higher once local quantities are considered. The global measures lead to less scatter since they integrate over the gage length. From an engineering perspective it appears to be reasonable to consider the global strains as an input for a failure prediction tool. It is in the following taken as a criterion for failure. The evolving local quantities can be verified on the basis of the global criterion applied to a FE-simulation.

Failure Parameter Calibration

The failure states of the Arcan samples in the configurations 0 • -45 • and the notched bar samples NB6 are taken as input for the calibration of the linear transformation tensor L. With the obtained parameters, the failure of NB2 and tensile samples will be predicted as a validation.

Fig. 8 summaries the results of the fitting procedure, evaluated in terms of measured and predicted notch opening displacements at failure of the respective samples. The error bars obtained from three to four repeated tests for each configuration are included. The values for the components of L are: L LL = 1.80, L TT = -0.19, L SS = 7.38, and L LT = 3.32.

Failure of the Arcan samples could be predicted with good accuracy, see Fig. 8 a. The difference between L-and T-orientation is consistently captured. Similarly, the increase of failure displacement for the tilted samples is met. 
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Results and Discussion

8.1. Plane Stress Representation of the Yield Surface Fig. 9 visualizes the concept of interacting yield surfaces used here. The hatched region in the center represents the domain in which elastic deformation takes place. Its border is defined by two convex yield surfaces, Eq. A.3 for glide and Eq. A.10 for twinning. The respective graphical representations are cropped at the kissing points, hence vertices are visible in fig. 9. Considering a (uniaxial) tensile load of 220 MPa, the yield surface for glide is isotropically expanding following Eq. 10 (indicated in blue). The parameters of the plasticity model are chosen such that for this loading case no plastic strain is accumulated due to twinning, p t = 0.

The situation is different once a compressive load of -320 MPa is considered (indicated in amber). In this case the assymmetric yield surface for twinning is active first and expands according to Eq. 11. With increasing deformation, the activity of the glide mechanism increases gradually and finally becomes dominant. This allows modelling the typical sigmoidal shape of the stress-strain curves in compression, cf. Fig. 4 c.

Assessment of Failure Points

Like for notched samples, also in the case of the Arcan samples failure appears without significant necking. Cracks with a length of several millimeters appear instantaneously. With increasing inclination angle of the Arcan sample, the position of the initiated crack shifts away from the symmetry plane, leading to an anti-symmetric pattern as depicted in Fig. 10. On the lower part of the samples, the damage indicator D computed at the failure load of the different Arcan configurations 0 • -60 • is superimposed. The position of crack initiation is well captured by the model. The (macroscopic) failure displacement is met as well, see Fig. 8 a. This indicates that the maximum principal strain is well suited for an assessment of failure in the alloy under investigation. It is worth to mention that at the position of maximum damage indicator and its neighborhood, only the glide mechanism contributes to plastic deformation. Hence, the strain due to twinning is zero. This implies that the total strain rate in Eq. 4 could be replaced by the strain rate due to glide, εg , cf. Eq. A.1, without altering the results -as previously suggested in [START_REF] Lee | Fracture prediction based on a two-surface plasticity law for the anisotropic magnesium alloys az31 and ze10[END_REF].

The failure model in principle can be applied to compressive stresses. Assuming isotropic flow, identical failure strains will be predicted in tension and compression. However, it has to be noted that the in-plane compression tests were not included in the calibration procedure, since they showed structural failure (delamination of sheets) rather than failure under uniaxial compression. Hence, the model is validated only for tensile states.

With focus on Figs. 8 a and 8 b, it is obvious that the prediction for failure in the case of NB2 samples is less accurate compared to the other (notched) samples, NB6 and Arcan. The reason for this may be sought in the increased stress triaxiality present in NB2 compared to the smoother notched samples. A respective weight may be included in Eq. 3 to improve the prediction, as commonly suggested for ductile metals. An investigation to assess the stress triaxiality has been pursued for the Arcan samples using simulations based on the visco-plastic self consistent (VPSC) scheme by [START_REF] Jeong | Modelling-assisted description of anisotropic edge failure in magnesium sheet alloy under mixed-mode loading[END_REF]. Pursuing this approach will however lead to a detrimental effect here: the current estimate of failure is too low, and including the (elevated) stress triaxiality would rather amplify than reduce this trend. Further, it will have no effect here, since fracture is computed to occur at the notch root, where no differences in triaxiality levels between NB2 and NB6/Arcan samples occur.

Localization in Tensile Tests

The higher ductility of the material evidenced in the tensile test compared to Arcan samples has already been evidenced and quantified by [START_REF] Jeong | Modelling-assisted description of anisotropic edge failure in magnesium sheet alloy under mixed-mode loading[END_REF] based on local strains measured by DIC. With the help of full-field FE-simulations, the reasons for this effect can be further investigated.

As noticed above the tensile tests were not used to fit the damage parameters. FE simulations of the entire specimens were carried out to estimate damage. The evolution of the maximum value of damage is plotted as a function of strain in Fig. 11 a (thick lines). An acceleration of damage growth is obtained for a strain of about 0.16 which corresponds to the onset of necking. Failure then rapidly occurs. The computed damage map at predicted failure for L-loading is shown in Fig. 11 b. Localization of plastic strain is such that the macroscopic failure strain hardly depends on the loading direction. Damage evolution in absence of necking (simulation using a single element so that there is no necking) is also shown in Fig. 11 a (thin lines). As expected, simulated strains coincide with strains computed on the full structure up to necking but strongly deviate after necking. Failure anisotropy as predicted by the model is the important with T being the less ductile direction and D the most ductile. It can therefore be concluded that failure in tensile specimens is essentially controlled by the onset of necking and the subsequent formation of localized bands in which plasticity and damage develop as shown in Figure 11 b. Perfectly capturing localization is therefore essential for the prediction of failure. The present model tends to underestimated the failure strain in tension for L and D loading (the experimental fracture strain range is recalled in Figure 11 a by vertical bars) as well as the failure anisotropy which is observed in that case.

Conclusion

A phenomenological 3D plasticity model based on two coupled yield functions corresponding to dislocation glide and twinning, respectively, has been applied. It has been shown that this model captures the evolving tension-compression asymmetry of the commercial magnesium alloy considered. The model is based on convex yield functions, hence no further constraint has to be applied to the model parameters to ensure convexity over the loading history. It has been furthermore shown that this model is a powerful tool to predict plastic yielding under different configurations, including shear stresses with good accuracy. For this, isotropic hardening was used. The distortional character of hardening as accentuated by [START_REF] Zhang | Thermomechanical modeling of distortional hardening fully coupled with ductile damage under non-proportional loading paths[END_REF]; [START_REF] Shi | On the thermodynamically consistent modeling of distortional hardening: A novel generalized framework[END_REF] and others appears less pronounced here and might be disregarded for the current alloy. It was shown that the plasticity model is able to include different stress states including mixedmode loading. Since Arcan-type samples with varying rotation angles are considered, the model with its calibrated parameters is expected to bear more significance for real-world problems than functions being fitted on tensile data only.

For the samples investigated here, the material is more ductile in the L-orientation than in T-orientation. This is also reported by [START_REF] Somekawa | Effect of texture on fracture toughness in extruded az31 magnesium alloy[END_REF], who state that the fracture toughness is sensitive to the crystallographic texture. The authors used an AZ31 samples with basal poles spread towards a direction perpendicular to the extrusion axis, for which a higher plane-strain toughness was observed. The result of [START_REF] Somekawa | Effect of texture on fracture toughness in extruded az31 magnesium alloy[END_REF] is in agreement with the current results in that more ductile behavior is observed to a material direction of basal pole spread, which here is the rolling direction, L. The trend is generally evidenced for all samples investigated, but it is less pronounced in the case of notched bars than for smooth tensile samples. A detailed assessment of global and local failure strains, the latter extracted from DIC measurements, revealed a significantly higher scatter for the local quantity.

Motivated by the lack of damage evolution in the material, a simplified uncoupled damage model based on linear transforms of the strain rate was proposed and successfully applied. A dependency on the stress state was neglected in the model, since experiments showed that failure appears at the notch root. The damage model is not restricted to 2D cases and can be efficiently applied to any type of forming operation, provided that void growth is not the dominant damage mechanism. For calibration and validation of the model, global strains were used. The orientation-dependent ductility is well described by the current predictive model. The reason for a less accurate prediction of failure in the case of smooth tensile samples in the L-and D-orientation was found to lie in the predicted strong strain localization behavior of this sample type in these orientations. On the micromechanical level, tensile deformation in the sheet plane is accommodated by < a > and < c + a > slip. Less common [10 11] compression twins may also contribute to deformation, since they can be activated under c-axis compression. [START_REF] Singh | Microstructure evolution and deformation behaviors of e-form and az31 mg alloys during ex-situ mini-v-bending tests[END_REF] report in their comparative investigation a more intense development of compression twins in E-form than in a common AZ31 material. Hence, it can be assumed that the occurrence of this additional deformation mechanism contributes to the higher ductility in the L-and D-orientation.

Appendix A.1. Model for dislocation glide

The model for dislocation glide incorporates the description of anisotropy. The yield surface is defined as: φ g = σ g -R g (p g , p t ) (A.3) {eq:Phig} σ g is an anisotropic stress measure expressed as a function of the Cauchy stress tensor σ. In the following, the stress measure proposed in [START_REF] Bron | A yield function for anisotropic materials: Application to aluminium alloys[END_REF]) is used to represent the experimental data. This model is an extension of previous models based on the use of linear transformations of the stress tensor [START_REF] Barlat | A six-component yield function for anisotropic materials[END_REF][START_REF] Karafilis | A general anisotropic yield criterion using bounds and a transformation weighting tensor[END_REF][START_REF] Barlat | Linear transfomation-based anisotropic yield functions[END_REF]. It uses two linear transformations defined using the fourth order tensors L gi (Voigt notation, the descriptive index "g" stands for "glide"; i = 1, 2): where σ 1 g1 , σ 2 g1 and σ 3 g1 are the eigenvalues of σ g1 . The second scalar stress is defined as:

L gi =          1 3 (l TT gi + l SS gi ) -1 3 l SS
σ g2 = 3 a g2 2 a g2 + 2 |σ 1 g2 | a g2 + |σ 2 g2 | a g2 + |σ 3 g2 | a g2
1/a g2 (A.7) {eq:EqBg2}

where σ 1 g2 , σ 2 g2 and σ 3 g2 are the eigenvalues of σ g2 . a g1 and a g2 are another adjustable parameters describing the shape the yield surface. The stress measure used to defined the yield surface (eq. A.3) is finally expressed as:

σ g = 1 2 σ a g1 + 1 2 σ a g2 1 a (A.8)
where a is a model parameter.

Note: The original model [START_REF] Bron | A yield function for anisotropic materials: Application to aluminium alloys[END_REF]) expressed σ g as α 1 σ a g1 + α 2 σ a g2 )

1 a with α 1 + α 2 = 1 (α 1 = 0 and α 2 = 0) thus introducing another parameter. However for µ > 0 the product µσ g1 can be obtained multiplying L gk by µ. With L gk = µL gk , σ gk = L gk : σ and σ gk

Figure 1 :

 1 Figure 1: Configurations 0 • -45 • of the Arcan samples considered in the FE-analyses (a -d); detail of the Arcan center section (e)

Figure 2 :

 2 Figure 2: Notched samples machined from the sheets and the respective 3D FE-discretizations. Dimensions given in mm.

Figure 3 :

 3 Figure 3: Sections of the LS-plane beneath the crack surface of a notched sample; a: overview, b -d: details showing nucleated cracks (white arrows)
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Figure 4 :

 4 Figure 4: Plasticity model results evaluated for the elementary tests. a: tensile tests stress response; b: tensile tests width reduction (dashed line indicates isotropic material response); c: stress response for in-plane and through-thickness compression (TTC) tests

Figure 6 :

 6 Figure 6: Tests of the notched bars with r=2 mm (a) and r=6 mm (b) with the respective FE-simulations

  Fig. 8 b testifies that for the L-and Torientation of the sharp notch (NB2) samples failure is predicted slightly too early.

Figure 7 :

 7 Figure 7: Global and local failure strains obtained from the tensile test (a) in comparison to the local strains at failure recorded from the Arcan and NB6 tests (b).

Figure 8 :

 8 Figure 8: Result of the failure predictions for Arcan samples (a) and Notched Bars (b) in comparison to experiments

Figure 9 :

 9 Figure 9: Initial yield surfaces (dashed lines) and evolution of the envelope after applying compression of 320 MPa and after tension of 220 MPa along the L-direction. The directions of plastic flow at one point of the initial yield surfaces are indicated by arrows. The resulting flow direction lies in the cone defined by the two normals of the two surfaces.

  Computed damage field at predicted failure. White arrows indicate the orientation of the cracks initiated in the experiment.

Figure 11 :

 11 Figure 11: (a) Damage evolution as a function of the macroscopic strain. Thick lines correspond to the finite element simulation of the entire specimen. Thin lines correspond to simulation on one element. Vertical colored bars indicate the experimental range for the fracture strains. (b) Damage map (L loading) at predicted failure for the simulation of the entire specimen.

  4) {eq:Lg} which introduces twelve adjustable parameters l TT gi . . . l ST gi . The tensors L g1 and L g2 are used to describe the anisotropic distorsion of the yield surface along the axes of orthotropy. Two modified deviatoric tensors, σ gi , are then defined as:σ gi = L gi : σ (A.5) {eq:betag}These modified tensors are used to define two scalar stresses. The first one, σ g1 is expressed as:

Table 2 :

 2 Calibrated model parameters for plasticity. Parameters marked with * were not adjusted but fixed.
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Appendix A. Elasto-plastic behavior

Deformation is governed by two major deformation mechanisms: (i) deformation by dislocation glide (ii) deformation by {1012} twinning. The model described below accounts for both mechanisms while considering the material at a macroscopic scale [START_REF] Steglich | Mechanism-based modelling of plastic deformation in magnesium alloys[END_REF]. It shares similarities with the model proposed by [START_REF] Kim | A temperature-dependent elasto-plastic constitutive model for magnesium alloy AZ31 sheets[END_REF].

The inelastic deformation tensor, ε i , is expressed as the summation of a deformation caused by dislocation glide, ε g , and a deformation caused by twinning, ε t ,

The total (finite) strain tensor is given by ε = ε e + ε i where ε e is the elastic strain tensor which is related to the stress tensor using Hooke's law. The treatment of the finite strains is based on the use of a reference frame which allows keeping a standard additive strain rate decomposition [START_REF] Sidoroff | Some issues about anisotropic elastic-plastic models at finite strain[END_REF]. A co-rotational reference frame attached to the material is defined by the rotation tensor Q c . Its evolution law is given by:

Ω is the skew-symmetric part of the velocity gradient. The rotated stress and strain rate tensors (σ and ε) are obtained by transport of the Cauchy stress (Σ) and the deformation rate (D) tensors into the co-rotational reference frame as:

The corresponding objective stress rate is the Jauman rate. The model was implemented into the Finite Element code ZeBuLoN [START_REF] Besson | Object-oriented programming applied to the finite element method part ii. application to material behaviors[END_REF], using a θ-method solved by an implicit Newton scheme for the local integration. obtained following eq. A.6 or eq. A.7 using σ gk one has σ gk = µσ gk . This implies that coefficient α 1 plays no role as a change in α 1 can be "compensated" by correcting all coefficients of the L gk tensors so as to keep σ g constant. For this reason α 1 > 0 and α 2 > 0 can be arbitrarily fixed.

Plastic flow associated to dislocation glide is then obtained assuming normality as: εg = ṗg ∂φ g ∂σ = ṗg n g . (A.9) {eq:depsg}

where n g is the normal to the glide yield surface. Noting that σ g is an homogeneous function of degree 1 of σ, one has: σ g ṗg = εg : σ g . The cumulated plastic strain is defined as p g = ṗg dt.

Isotropic hardening is described by the R g function in equation A.3. It is allowed to depend on both the cumulated plastic strain due to glide (p g ) and the cumulated plastic strain due to twinning (p t , see below) so that interactions between twinning and glide can be represented.

Appendix A.2. Model for twinning

The model for twinning is constructed in a similar way than to the model for glide. However, it is important to introduce a strength differential effect representing the polar character of twinning. The model proposed by Cazacu, Plunkett and Barlat model (Cazacu et al., 2006) is used in the following. Equations A.3,A.4 and A.5 are respectively replaced by the following equations:

where J is the fourth order tensor relating any second order tensor to its deviator.

where s 1 t , s 2 t and s 3 t are the eigenvalues of s t . a t controls the shape of the yield surface, L t the anisotropy and k the strength differential effect (-1 < k < 1). The yield stress in tension is larger that the yield stress in compression provided that k > 0 and the coefficients of L t are positive. Plastic flow associated to twinning is then obtained assuming normality as: εt = ṗt ∂φ t ∂σ = ṗt n t .

(A.14) {eq:depsg} where n t is the normal to the twinning yield surface.

Appendix A.3. Multi-surface model Combining both contributions to the overall plastic strain leads to a so-called multisurface model. Dealing with rate independent plasticity necessitates the use of complex specific algorithms (see e.g. [START_REF] Adhikary | A robust return-map algorithm for general multisurface plasticity[END_REF]). To circumvent the problem a visco-plastic regularization was used instead in this work following e.g. [START_REF] Wulfinghoff | Equivalent plastic strain gradient enhancementof single crystal plasticity: theory and numerics[END_REF]. In that case the plastic multipliers ṗg and ṗt are expressed as:

where x is the positive part of x. n = 5 was chosen and η was selected so that the effect of viscosity is negligible for the experimentally applied strain rates. As ṗg ≥ 0 and ṗt ≥ 0 the resulting flow direction lies between n g and n t as depicted in fig. 9.