
HAL Id: hal-03799284
https://hal.science/hal-03799284

Submitted on 9 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Joint Majorization-Minimization for Nonnegative
Matrix Factorization with the β-divergence

Arthur Marmin, José Henrique de M Goulart, Cédric Févotte

To cite this version:
Arthur Marmin, José Henrique de M Goulart, Cédric Févotte. Joint Majorization-Minimization for
Nonnegative Matrix Factorization with the β-divergence. Signal Processing, inPress, 209, pp.109048.
�10.1016/j.sigpro.2023.109048�. �hal-03799284�

https://hal.science/hal-03799284
https://hal.archives-ouvertes.fr

ar
X

iv
:2

10
6.

15
21

4v
4

 [
cs

.L
G

]
 1

7
A

pr
 2

02
3

Joint Majorization-Minimization for Nonnegative

Matrix Factorization with the β-divergence

Arthur Marmina,∗, José Henrique de Morais Goulartc, Cédric Févotteb

aAix Marseille Université, CNRS, I2M, UMR 7373

Marseille, France
bIRIT, Université de Toulouse, CNRS,

Toulouse, France
cIRIT, Université de Toulouse, Toulouse INP,

Toulouse, France

Abstract

This article proposes new multiplicative updates for nonnegative matrix fac-

torization (NMF) with the β-divergence objective function. Our new updates

are derived from a joint majorization-minimization (MM) scheme, in which an

auxiliary function (a tight upper bound of the objective function) is built for

the two factors jointly and minimized at each iteration. This is in contrast with

the classic approach in which a majorizer is derived for each factor separately.

Like that classic approach, our joint MM algorithm also results in multiplica-

tive updates that are simple to implement. They however yield a significant

drop of computation time (for equally good solutions), in particular for some

β-divergences of important applicative interest, such as the quadratic loss and

the Kullback-Leibler or Itakura-Saito divergences. We report experimental re-

sults using diverse datasets: face images, an audio spectrogram, hyperspectral

data and song play counts. Depending on the value of β and on the dataset,

our joint MM approach can yield CPU time reductions from about 13% to 86%

This work is supported by the European Research Council (ERC FACTORY-CoG-
6681839), the French Agence Nationale de la Recherche (ANITI, ANR-19-P3IA-0004) and
the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for
Research Excellence and Technological Enterprise (CREATE) programme.

∗Corresponding author
Email addresses: arthur.marmin@univ-amu.fr (Arthur Marmin),

henrique.goulart@irit.fr (José Henrique de Morais Goulart), cedric.fevotte@irit.fr
(Cédric Févotte)

Preprint submitted to Elsevier April 18, 2023

http://arxiv.org/abs/2106.15214v4

in comparison to the classic alternating scheme.

Keywords: Nonnegative matrix multiplication (NMF), beta-divergence, joint

optimization, majorization-minimization method (MM)

1. Introduction

Nonnegative matrix factorization (NMF) aims at factorizing a matrix with

nonnegative entries into the product of two nonnegative matrices. It has found

many applications in various domains which include feature extraction in image

processing and text mining [1], audio source separation [2], blind unmixing in

hyperspectral imaging [3, 4], and user recommendation [5]. See [6, 7, 8] for

overview papers and books about NMF.

Each application gives different interpretations to the factor matrices but the

first factor is often considered as a dictionary of recurring patterns while the

second one describes how the data samples are expanded onto the dictionary

(activation matrix). The nonnegativity constraint only allows additive com-

bination of the dictionary elements, yielding meaningful additive and sparse

representations of the data.

Computing an NMF generally consists in minimizing a well-chosen objective

function under nonnegativity constraints. A popular choice of objective function

is the β-divergence, which is a continuous family of measures of fit parameterized

by a single parameter β that encompasses the Kullback-Leibler (KL) or Itakura-

Saito (IS) divergences as well as the common squared Euclidean distance [9].

In the latter cases, the β-divergence is a log-likelihood in disguise for Poisson,

multiplicative Gamma and additive Gaussian noise models, respectively.

The classic approach to NMF, and to NMF with the β-divergence in par-

ticular, consists in optimizing the two factors alternately, i.e., using two-block

coordinate descent. Each of the two factors is then updated using Majorization-

Minimization (MM), as described in [10, 11, 12, 13, 14]: given one of the factors,

a tight upper bound of the objective function is constructed and minimized with

respect to (w.r.t) the other factor. This results in multiplicative updates that

2

are simple to implement (with no hyperparameter to tune), have linear com-

plexity per iteration, and that automatically preserve nonnegativity given posi-

tive initializations. By construction, MM ensures monotonicity of the objective

function (non-increasing values), see [15, 16] for tutorials about MM.

Thanks to its simplicity, the block-descent approach is dominant in matrix

factorization and dictionary learning (using sometimes other block partitions

such as columns or rows [6, 8]) and very few works have addressed joint (“all-

at-once”) optimization of the factors, though the latter approach may be more

efficient. A notable exception in dictionary learning (real-valued factors, sparse

activations, quadratic loss) is [17]. In this work, the author employs an ele-

gant non-convex proximal splitting strategy and shows that the joint approach

is significantly faster than alternating methods without altering the quality of

the obtained solution. In a similar spirit to [17], [18] leverages the theoret-

ical framework of [19] to address matrix factorization (including NMF) with

non-alternating updates. Their work relies on the generalization of Lipschitz-

continuity of the gradient (which does not hold jointly for both factors) to

adaptive smoothness [19]. Yet, their results only apply to the quadratic loss

and Newton-like acceleration is crucial to obtain competitive results. Using

tools from dynamical systems, the authors in [20] have derived a novel form of

multiplicative updates which can run concurrently for each factor matrix at a

given iteration. They have the additional benefit of ensuring the convergence

to a local minimum instead of a mere critical point. However, their results are

again limited to the quadratic loss. This also applies to [21] where a Levenberg-

Marquardt joint optimization method is described for NMF with the quadratic

loss. In [22], the authors propose a joint second-order Newton-like algorithm for

nonnegative canonical tensor decomposition with the β-divergence, which takes

NMF as a special case. Their approach relies on approximations of the Hessian

matrix, sometimes based on heuristics, and fails to provide an algorithm that

universally works for every value of β.

Inspired by these works, we propose a joint MM approach to β-NMF and

compare it to the classic block MM strategy. Our joint MM relies on a tight

3

majorization of the objective function with respect to all its variables instead

of using blocks of fixed variables. Iterative minimization of this joint upper

bound results in new multiplicative updates that are simple but potentially more

efficient variants of the classical multiplicative updates. This is particularly true

when considering the quadratic loss and the KL or IS divergences for which

further simplifications occur. We show in these cases that our update rules

decrease the computation cost per iteration. It turns out that our joint upper

bound coincides with the one derived in [23]. The latter is however employed

for a different purpose, namely the convergence analysis of classic block MM for

NMF, and not to design a new algorithm like we do (more details will be given

in Section 3.3).

Our methodological results are supported by extensive simulations using

datasets with different sizes arising from various applications in which NMF

had a significant impact (face images, audio spectrogram, hyperspectral images,

song play-counts). In most scenarii, the proposed joint MM approach leads to

a reduction of the computing time ranging from 13% to 86% without incurring

any loss in the precision of the approximation.

The article is organized as follows: Section 2 states the NMF optimiza-

tion problem and summarizes the classic block MM approach. Section 3 first

presents our proposed joint MM method for NMF and derives the new multi-

plicative updates. It then compares the joint and the block MM methods in

term of computational complexity, and discusses the benefit of the joint ap-

proach. Comparative numerical simulations are presented in Section 4 and

validate the efficiency of our approach. Finally, Section 5 draws conclusions.

Notation. R+ is the set of nonnegative real numbers, and J1, NK is the set of

integers from 1 to N . Bold upper case letters denote matrices, bold lower case

letters denote vectors, and lower case letters denote scalars. The notation [M]ij

and mij both stand for the element of M located at the ith row and the jth

column. For a matrix M, the notation M ≥ 0 denotes entry-wise nonnegativity.

4

2. Preliminaries

2.1. Nonnegative matrix factorization

We aim at factorizing a F ×N nonnegative matrix V into the product WH

of two nonnegative factor matrices of sizes F ×K and K×N , respectively. The

rank value K is often chosen such that FK+KN ≪ FN , leading to a low-rank

approximation of V. Given a desired value for the rank K, the factor matrices

are obtained by solving the following optimization problem

min
W,H≥0

Dβ(V |WH) , (1)

where Dβ is a separable objective function defined by

Dβ(V |WH) =

F∑

f=1

N∑

n=1

dβ(vfn | [WH]fn) . (2)

Our measure of fit dβ is the β-divergence [9] given by

dβ(x | y) =





x log x
y
− x+ y if β = 1

x
y
− log x

y
− 1 if β = 0

xβ

β(β−1) +
yβ

β
− xyβ−1

β−1 otherwise.

(3)

The value of β is chosen according to the application context and the noise

assumptions on V [13]. The IS divergence, KL divergence and quadratic loss

are obtained for β = 0, 1, 2, respectively.

2.2. Classic multiplicative updates

The classic method to solve Problem (1) consists in a two-block coordinate

descent approach where each block is handled with MM. Namely, it alternately

minimizes (W,H) 7→ Dβ(V|WH) in W and in H using MM. The MM method

is a two-step iterative optimization scheme [15, 16]. At each iteration, the first

step consists in building a local auxiliary function G that is minimized in the

second step. The auxiliary function has to be a tight majorizer of the original

5

objective function φ : E 7→ R at the current iterate x̃, where E is the domain of

G and φ. More precisely, it has to satisfy the following two properties:

(∀x ∈ E) G(x | x̃) ≥ φ(x)

G(x̃ | x̃) = φ(x̃) .

These properties ensure that any iterate x that decreases the value of G also

decreases the value of φ. Indeed, for a given x̃, if we find x such that G(x|x̃) ≤

G(x̃|x̃), then the tight majorization properties induce the following descent

lemma

φ(x) ≤ G(x | x̃) ≤ G(x̃ | x̃) = φ(x̃) . (4)

Note that even if G is not minimized but only decreased in value, the descent

property still holds.

The previous MM scheme can be applied alternately to the minimization of

the two functions W 7→ Dβ(V|WH) and H 7→ Dβ(V|WH). These two func-

tions are the sum of concave, convex, and constant terms. A convex auxiliary

function can then be easily derived by using Jensen’s inequality for the convex

term and the tangent inequality for the concave term, see [13] and the next

section. This yields the following multiplicative updates

W ←− W.




(
(WH)

.(β−2)
.V
)
H⊤

(
(WH)

.(β−1)
)
H⊤




.γ(β)

H ←− H.



W⊤

(
(WH).(β−2).V

)

W⊤
(
(WH)

.(β−1)
)




.γ(β)

,

(5)

where . and / are the entry-wise multiplication and division, respectively, and

γ(β) is a scalar defined as

γ(β) =





1
2−β

if β ∈]−∞, 1[

1 if β ∈ [1, 2]

1
β−1 if β ∈]2,+∞[

. (6)

Note that by construction, the matrices W and H resulting from the update (5)

contain only positive coefficients if the input matrices V, W, and H are all

6

positive. The nonnegativity of the iterates is thus preserved by the multiplicative

structure of the updates given positive initializations.

Note that strict MM dictates that the individual updates of W and H given

in (5) shall be applied several times to fully minimize the partial functions

W 7→ Dβ(V|WH) and H 7→ Dβ(V|WH). This leads to Algorithm 1, that we

refer to as Block MM (BMM). Note that in common NMF practice, only one

sub-iteration is used (LW = LH = 1), which still results in a descent algorithm

thanks to the descent lemma (4).

3. Joint Majorization-Minimization

In contrast with the classic alternating scheme presented in Section 2.2, we

develop in this section a joint MM (JMM) approach for solving Problem (1).

3.1. Construction of the auxiliary function

In order to apply the MM scheme, we start by looking for a suitable auxiliary

function G : RF×K
+ ×RK×N

+ → R+ for the function (W,H) 7→ Dβ(V|WH). We

observe in (2) that Dβ is a sum of FN β-divergences between scalars. Our ap-

proach is to construct an auxiliary function for each summand. Following [13],

the β-divergence dβ , taken as a function of its second argument, can be decom-

posed into the sum of a convex term
⌣

dβ , a concave term
⌢

dβ , and a constant

term d̄β . The definitions of these three terms for the different values of β are

given in Table 1.

Next, we majorize the convex and concave terms of dβ separately. The

methodology follows [13], except that none of the two factors W or H is treated

7

Table 1: Decomposition of dβ for the different values of β.

β
⌣

dβ(vfn | [WH]fn)
⌢

dβ(vfn | [WH]fn) d̄β(vfn)

]−∞, 1[\{0}
−vfn

β−1 [WH]
β−1
fn

[WH]β
fn

β

v
β

fn

β(β−1)

0
vfn

[WH]
fn

log [WH]fn −(log vfn + 1)

[1, 2] dβ(vfn | [WH]fn) 0 0

]2,+∞[
[WH]β

fn

β

−vfn

β−1 [WH]
β−1
fn

v
β

fn

β(β−1)

as a fixed variable. The convex term
⌣

dβ is majorized using Jensen’s inequality

⌣

dβ(vfn | [WH]fn) =
⌣

dβ

(
vfn

∣∣∣∣∣
K∑

k=1

wfkhkn

)

=
⌣

dβ

(
vfn

∣∣∣∣∣
K∑

k=1

λ̃fnk

wfkhkn

λ̃fnk

)

≤
K∑

k=1

λ̃fnk

⌣

dβ

(
vfn

∣∣∣∣∣
wfkhkn

λ̃fnk

)
(7)

def
=

⌣

Gfn(W,H | W̃, H̃) ,

where the coefficient λ̃fnk is defined as λ̃fnk =
w̃fkh̃kn

ṽfn
and we denote Ṽ = W̃H̃

with coefficients ṽfn. The concave term
⌢

dβ is majorized using the tangent

inequality

⌢

dβ(vfn | [WH]fn)

≤
⌢

dβ(vfn | ṽfn) +
⌢

d′β(vfn | ṽfn)
(
[WH]fn − ṽfn

)

def
=

⌢

Gfn(W,H|W̃, H̃) .

Finally the overall auxiliary function G is given by

G =

F∑

f=1

N∑

n=1

[⌣
Gfn +

⌢

Gfn + d̄β
]
. (8)

8

By construction, it satisfies the tight majorization properties

G(W,H | W̃, H̃) ≥ Dβ(V | W̃H̃)

G(W̃, H̃ | W̃, H̃) = Dβ(V | W̃H̃) ,

which ensure the descent property in (4). The expression of G coincides with

the joint auxiliary function derived in [23, Table 2 in Section 4 and Appendix

A] for a different purpose (see Section 3.3.4).

We stress out that the auxiliary function G is a tight joint majorization

of Dβ. This is in contrast with the BMM approach of Section 2.2 where two

separate auxiliary functions GW and GH are built for W 7→ Dβ(V|WH) and

H 7→ Dβ(V|WH), respectively. A central difference in our JMM approach is the

definition of the coefficients {λ̃fnk} which depend on both current iterates W̃

and H̃ and do not lead to a simplification of the term wfkhkn/λ̃fnk in (7). This

is in contrast with BMM, where, say, W would be treated as a fixed variable

and the term wfkhkn/λ̃fnk simplifies to ṽfnhkn/h̃kn, allowing for closed-form

minimization of G. Furthermore, the auxiliary function G is not jointly convex,

due to the bilinear terms wfkhkn. It is however bi-convex, i.e., convex w.r.t W

(resp., H) given H (resp., W).

3.2. Minimization step

The auxiliary function G does not appear to have a closed-form minimizer

in W and H. Neither is it convex, which makes it difficult to minimize globally.

While minimizing G jointly in W and H is hard, we can still perform an alter-

nating minimization on the matrices W and H which results in the following

updates

W ←− W̃.




V

(W̃H̃)
.(2−β) [χ1,β(H, H̃)]

⊤

(W̃H̃)
.(β−1)

[χ2,β(H, H̃)]
⊤




.γ(β)

H ←− H̃.




[χ1,β(W,W̃)]
⊤

V

(W̃H̃)
.(2−β)

[χ2,β(W,W̃)]
⊤
(W̃H̃)

.(β−1)




.γ(β)

,

(9)

9

where γ(β) is defined as in (6) and

χ1,β(H, H̃) =





H̃
.(2−β)

H.(1−β) if β ≤ 2

H if β > 2 ,

χ2,β(H, H̃) =




H if β < 1

H
.β

H̃
.(β−1) if β ≥ 1 .

The updates (9) are obtained by cancelling the partial gradients of G. Since

G is not convex, the alternating minimization may only lead to a critical point

instead of a global minimum. Nevertheless, in order to decrease the loss function

Dβ, it is enough to decrease G thanks to the descent lemma (4). This is easily

achieved by initializing the updates (9) with (W̃, H̃), leading to Algorithm 2.

Note that, despite yielding a multiplicative update, the JMM updates given

in (9) are conceptually different from the BMM ones: the JMM updates aim at

minimizingG given W̃, H̃ while the BMM updates aim at minimizingDβ(V|WH)

w.r.t H given W, or w.r.t W given H. Further comments and discussion are

given in the next section.

3.3. Discussion

3.3.1. Special cases

For the values of notorious importance 0, 1 and 2 of β, the multiplicative

updates (9) can be written in a simpler form as some of the exponents cancel

out and make the corresponding terms vanish. Similar simplified updates are

also available for the classic update rules (5). These simplified formulae are

shown in Table 2 for the factor matrix H, where the matrix 1 represents the

matrix of dimension F ×N whose all entries equal 1.

3.3.2. Computational advantages of JMM

The new update rules (9) have a similar structure to the classic multiplica-

tive updates (5) with a notable difference regarding the matrices W̃ and H̃.

These matrices, named W̃i and H̃i in Algorithm 2, remain constant in the sub-

iterations and allow for some computational savings w.r.t BMM when updating

10

Table 2: Simplified updates of H for β = 0, 1, 2.

β BMM JMM

0 H ← H.

(
W

⊤ V

(WH).2

W⊤ 1
WH

). 12

H ← H̃.

((
W̃

.2

W

)
⊤

V

(W̃H̃).2

W⊤ 1
W̃H̃

). 12

1 H ← H.
(

W
⊤ V

WH

W⊤1

)
H ← H̃.

(
W̃

⊤ V

W̃H̃

W⊤1

)

2 H ← H.
(

W
⊤
V

W⊤WH

)
H ← H̃.

(
W

⊤
V(

W.2

W̃

)
⊤

W̃H̃

)

Wl and Hl. For instance, the computation of Ṽi = W̃iH̃i is performed only

once per outer iteration in step 5 of Algorithm 2 whereas in Algorithm 1 the

product WH has to be computed at each update of Wl (product WlȞi at

step 6) and at each update of Wl (product W̌i+1Hl at step 11). Our proposed

update hence saves here a matrix product per sub-iteration. Similar computa-

tional savings can be obtained by storing for example, the entry-wise ratio of V

and Ṽ in the update of JMM for β = 1.

Table 3 summarizes the computational savings (and extra divisions) of JMM

w.r.t BMM for the different values of β at each iteration, i.e., for one update of

W̃i/W̌i and one update of H̃i/Ȟi. For a fair comparison, we pick LW and LH

equal to L. The part multiplied by L in the expressions in Table 3 corresponds

to the computational savings obtained at each sub-iteration for Wl and Hl

while the remaining part corresponds to the extra cost of computing matrices

that are constant through the L sub-iterations. We especially emphasize the

values 0, 1, and 2 of β, which enjoy even larger computational savings thanks

to the simplifications shown in Table 2. Since these three cases are the most

common in practice, the update (9) brings a very welcome speedup compared

with (5). It turns out that the largest saving is in the case where β is equal

to 0 or 1, i.e., the IS and the KL divergences. For other general values of β,

11

Table 3: Computational savings and extra divisions brought by JMM compared to BMM. The

table reports the difference between the number of operations required by JMM and BMM

per iteration of the outer loop, using LW = LH = L. Benefits of JMM are highlighted in bold

font.

Multiplications Divisions Additions

β = 0 (2L− 1)FNK + 2LFN 2(L − 1)FN − L(FK + KN) (2L − 1)FN(K − 1)

β = 1 (4L− 3)FNK (2L − 1)FN (4L− 3)FNK − (L − 1)(FN + FK + KN)

β = 2 (2L− 1)FNK −L(FK +KN) (2L − 1)FN(K − 1)

β ∈]1, 2[(2L− 1)FNK − L(FK + KN) −L(2FN − FK −KN) (2L − 1)FN(K − 1)

β > 2 (2L− 1)(FNK + FN) −L(FK +KN) (2L − 1)FN(K − 1)

β < 1 (2L− 1)FNK −LK(FK +KN)− FN (2L − 1)FN(K − 1)

the JMM updates incur extra divisions in (9), especially for β in]1, 2[, which

mitigate the computational savings.

3.3.3. Failure of heuristic updates

A common heuristic in BMM consists in setting γ(β) to 1 in the update (5),

even for values of β outside [1, 2]. Indeed, it has been empirically observed that

this leads to an equally good factorization while decreasing the number of iter-

ations to reach convergence. For values of β in [0, 1], the authors in [13] have

proved that this heuristic corresponds to a Majorization-Equalization scheme

which produces larger steps than the MM method. Nevertheless, deriving the-

oretical support for this heuristic for other values of β is still an open problem.

Setting γ(β) = 1 for all β did not lead to similar findings for JMM. While

we did observe that the objective function decreases at every iteration under

the heuristic, worse solutions were obtained (i.e., corresponding to higher values

of the objective function in general). This might be due to the non-convexity

of the JMM auxiliary function G, in which case the Majorization-Equalization

principle makes less sense.

12

3.3.4. Convergence of the iterates of JMM

In standard NMF practice, BMM is used with LW = LH = 1 sub-iterations.

The convergence of the iterates of BMM in this setting can be proven for slightly

modified NMF problems that essentially ensure the coercivity of the objective

function on its domain (loosely speaking, f(θ) → ∞ whenever ‖θ‖ → ∞).

In [24] this is ensured by augmenting the objective function with an ℓ1 reg-

ularization term on W and H. Then the convergence of the iterates can be

invoked using the Block Successive Upper-bound Minimization (BSUM) frame-

work of [25]. In [23], coercivity is ensured by replacing the nonnegativity con-

straint with a strict positivity constraint W,H ≥ ε. Then the convergence of

the iterates can be invoked using Zangwill’s convergence theorem by astutely

reformulating BMM (with LW = LH = 1) as follows: ∀l ≥ 1,

Wl+1 = argmin
W≥ε

G(W,Hl |Wl,Hl) (10)

Hl+1 = argmin
H≥ε

G(Wl+1,H |Wl+1,Hl). (11)

This is how the joint auxiliary function G given by (8) is introduced in [23],

namely as a convenient way to derive BMM from a unique function of four

variables, rather than using separate auxiliary functions (of two variables) for

each sub-problem. The fundamental difference between BMM and our novel

JMM approach is that the second occurrence of Wl+1 in (11) is left unchanged

in JMM (i.e., it remains Wl). This seemingly trivial change has significant

computational implications in practice (and can only be justified by the joint

MM framework that we introduced).

The proofs of convergence in [24, 23] heavily rely on the block-structure of

BMM and the strict convexity of the auxiliary functions (10) w.r.t. W and (11)

w.r.t. H. Single-block MM algorithm also requires being able to find a global

minimizer of the auxiliary function [26]. Without this requirement, it is not

possible to determine in general whether the limit points of the sequence of

iterates are critical points of the initial objective function. Unfortunately, the

auxiliary function G, which lies at the heart of JMM, is not jointly convex w.r.t.

13

its first two variables. With L sufficiently large, the alternating minimization

steps 7 and 8 in Algorithm 2 only guarantee that we find a critical point of G

at every iteration, which is not necessarily a global minimum. Hence, proving

the convergence of the iterates of our JMM method (or more generally of MM

algorithms with non-convex auxiliary functions) is a difficult problem that is

left for future work. Remember however that the convergence of the objective

function is guaranteed by design (for any value of L).

4. Experimental Results

We provide in this section extensive numerical comparisons of BMM and

JMM using various datasets (face images, audio spectrograms, song play-counts,

hyperspectral images) with diverse dimensions.

4.1. Set-up

Our implementation for JMM follows Algorithm 2 while the one for BMM

follows Algorithm 1. Some additional practical considerations are detailed be-

low.

4.1.1. Influence of the number of sub-iterations

Algorithm 2 dictates that we updateW andH several times in the inner loop

to fully minimize (W,H) 7→ G(W,H|W̃, H̃) (without updating or recomputing

the tilde matrices). Nevertheless, this does not turn out particularly advanta-

geous in practice. Indeed, in all our simulations, we observe that only the first

iteration of (9) results in a significant decrease of G and that the additional

sub-iterations yield only negligible improvement. This is illustrated in Figure 1

which displays the objective function values obtained with JMM and BMM (as

a function of the outer iterations) for different numbers of sub-iterations L, LW ,

and LH , using the Olivetti face dataset (see Section 4.2) and β = 1. Figure 1

shows that the plots for JMM with L = 1 and L = 10 sub-iterations are nearly

overlapping.

14

10 0 10 1 10 2 10 3 10 4

Iteration

10 0

10 1

10 2

10 3

10 4

N
or

m
al

iz
ed

 c
ri

te
ri

on

BMM (L
W

=L
H

=1)

BMM (L
W

=L
H

=10)

JMM (L=1)
JMM (L=10)

750 800 850 900
1.9

2

2.1

Figure 1: Impact of the number of sub-iterations in the minimization step of Algorithm 2.

The box is a zoom-in on iterations 750 to 881. In the latter, BMM (LW = LH = 10) and

JMM (L = 10) are overlapping.

As such, like in traditional NMF practice, in the following we only use one

sub-iteration of W and H in our implementations of JMM and BMM. This

means we set L = 1 in Algorithm 2 and LW = LH = 1 in Algorithm 1. By

doing so, the BMM and JMM updates of W coincide and only the update

of H changes (with still a significant gain in performance). Note that we have

observed empirically that inverting the order of the updates in (9) does not have

any impact on the number of iterations before convergence nor on the quality

of the obtained solutions.

4.1.2. Initialization and stopping criterion

The initializations (Winit,Hinit) for BMM and JMM are drawn randomly

according to a half-normal distribution. Our stopping criterion for both algo-

rithms is based on the relative decrease in the objective function Dβ. More

precisely, the algorithms are stopped when

Dβ(V | W̄H̄)−Dβ(V |WH)

Dβ(V |WH)
≤ ǫ ,

15

where ǫ is a tolerance set to 10−5, W and H are the current outer-loop iterates

while W̄ and H̄ are the previous ones (either W̌ and Ȟ for BMM or W̃ and H̃

for JMM). Furthermore, in order to remove the scaling ambiguity inherent to

NMF, we normalize W and H at the end of each outer-loop iteration for both

BMM and JMM. The normalization consists in dividing each column of W by

its ℓ2 norm and scaling the rows of H accordingly.

4.1.3. Handling zero values and numerical stability

The β-divergence Dβ(x|y) may not be defined when either x or y takes

zero values. This is for instance the case when β is set to 0 or 1 due to the

quotient and the logarithm that appear. As such, we recommend minimizing

Dβ(V + κ1|WH + κ1) with a small constant κ instead of Dβ(V|WH) for

numerical stability. This first simply amounts to replacing V by V+ κ1 in the

previous derivations. Then, by treating κ as a (K + 1)th constant component

like in [27], we may simply replace the product W̃H̃ (resp. WH) by W̃H̃+ κ1

(resp. WH+ κ1) in (9) (resp. (5)).

4.1.4. Simulation environment

All the simulations have been conducted in Matlab 2020a running on an Intel

i7-8650U CPU with a clock cycle of 1.90GHz shipped with 16GB of memory.1

In each of the following experimental scenarii, we compare the factorization

obtained by JMM and BMM from 25 different initializations (Winit,Hinit).

4.1.5. Performance evaluation

We compare BMM and JMM both in terms of computational efficiency (CPU

time) and quality of the returned solutions. To assess the latter, we use the value

of the normalized objective function
Dβ(V|ŴĤ)

FN
at the solution (Ŵ, Ĥ) returned

by the NMF algorithms. We also consider the KKT residuals [13] to measure

the distance to the first order optimality conditions and attest whether the

1Matlab code is available at https://arthurmarmin.github.io/research.html.

16

https://arthurmarmin.github.io/research.html

algorithms reached a critical point of the criterion Dβ . The KKT residuals are

expressed by

res(W) =

∥∥∥min{W, [(WH).(β−2).(WH−V)]H⊤}
∥∥∥
1

FK

res(H) =

∥∥∥min{H,W⊤[(WH)
.(β−2)

.(WH−V)]}
∥∥∥
1

KN
.

4.2. Factorization of face images

In the context of image processing, NMF can be used to learn part-based

features from a collection of images [1]. The columns of the matrixV correspond

to the vectorization of the different images. Besides, the factor W represents

the dictionary of image features, and the matrix H contains the activation

encodings.

We compare the BMM and JMM methods on a face images dataset, the

Olivetti dataset from AT&T Laboratories Cambridge [28], which contains 400

greyscale images of faces with dimensions 64 × 64. The corresponding matrix

V thereby has dimensions 4096× 400. We set K to 10. We consider the values

0, 1, and 2 for the parameter β, which correspond respectively to IS divergence,

KL divergence, and squared Euclidean distance (the latter two being the most

common in image processing).

Figure 2 shows the computation times for β = 2 and β = 1, as well as the

values of the normalized objective function produced by both BMM and JMM,

for the 25 runs. The same random initialization is used by both methods. Note

that we use a logarithmic scale for the CPU time and that the y-axis for the

objective function does not start at zero. We observe that JMM is always

faster than BMM while yielding solutions with a similar quality in terms of the

objective Dβ . The corresponding average CPU time as well as the resulting

acceleration ratios are given in Table 4. We notice that the computational

saving is higher when using the IS divergence, which confirms our analysis from

Section 3.3.2. Remark that we measure here the global CPU time and not

the time per iteration: since the auxiliary function is different for BMM and

17

JMM, the trajectory in the parameter space is also different and thus the two

algorithms do not require the same number of iterations before convergence.

Nevertheless, we observe that the number of iterations for both algorithms has

a similar order of magnitude. Since the iterations of JMM are cheaper, its global

CPU time is lower. This remark also holds for higher dimensional dataset such

as the one in Section 4.4.

Note that while MM algorithms are prevalent for β-NMF in general, many

other algorithms have been designed for the specific case β = 2 (quadratic

loss) [8]. In that case, some algorithms are notoriously more efficient than

BMM, see, e.g., [8, Chapter 8.2]. Though JMM improves on BMM, it may not

compete with these other algorithms. Still, JMM, like BMM, is free of hyper-

parameters and very easy to use, and remains a very convenient option for the

general practitioner.

Finally, we computed the KKT residuals for Ŵ and Ĥ returned by JMM and

BMM, for all runs and considered values of β. We observed that they range from

1.10−5 to 1.10−1, indicating that both methods converge to a critical point of

Dβ. As a matter of fact, an additional significant observation is that in all cases

here, both JMM and BMM return the same solution (Ŵ, Ĥ) up to permutation

of their columns and up to some round-off errors. Nevertheless, the trajectory

of the iterates may differ.

4.3. Factorization of a spectrogram

We now consider NMF of audio magnitude spectrograms. In this context

the factor W contains elementary audio spectra with temporal activations given

by H [2].

We generate the spectrogram of an excerpt from the original recording of

the song “Four on Six” by Wes Montgomery. The signal is 50-seconds long with

a sampling rate of 44.1kHz. The spectrogram is computed with a Hamming

window of length 2048 (46ms) and an overlap of 50%. This results in a data

matrix V of dimensions 1025× 2152.

In this section, we set β = 0, which is a common value in audio signal

18

5 10 15 20 25

30

40
50
60

C
PU

 ti
m

e
(i

n
s)

5 10 15 20 25
Test ID

1.82

1.83

1.84

N
or

m
al

iz
ed

 c
ri

te
ri

on

BMM
JMM

(a) Using KL divergence (β = 1).

5 10 15 20 25

30

40

50
60
70

C
PU

 ti
m

e
(i

n
s)

5 10 15 20 25
Test ID

201

202

203

N
or

m
al

iz
ed

 c
rit

er
io

n

BMM
JMM

(b) Using quadratic loss (β = 2).

Figure 2: Comparative performance using the Olivetti dataset (K = 10).

processing [29], and set K to 10. The results obtained with BMM and JMM are

shown on Figure 3. The average computation time for BMM is 291s while the

one for JMM is 41s, which yields an average acceleration of 86%. We observe a

very substantial benefit of JMM over BMM in terms of CPU time in this case.

This confirms our conclusion from Section 3.3.2 that JMM reaches its highest

potential with NMF based on the IS divergence. We observe here again that

19

5 10 15 20 25

20

40
60
80

C
PU

 ti
m

e
(i

n
s)

5 10 15 20 25
Test ID

0.368

0.37

0.372

0.374

N
or

m
al

iz
ed

 c
ri

te
ri

on

BMM
JMM

Figure 3: Comparative performance with a spectrogram

(K = 10, β = 0).

JMM and BMM return the same solution (Ŵ, Ĥ) up to permutation of their

columns.

4.4. Factorization of song play-counts

NMF may be used in recommendation systems based on implicit user data.

In this case, the matrix V contains information about the interactions of users

with a collection of items. The factor W may extract user preferences while H

represents item attributes, see, e.g., [5].

We here consider the TasteProfile dataset [30] which contains counts of songs

played by users (e.g., of a music streaming service). Similarly to [31] and many

other papers using this dataset, we apply a preprocessing to the original data

to keep only users and songs with more than a given number of interactions

(here set to 20). This results in a large and sparse data matrix V of dimensions

16 301 × 12 118 with about 0.6% nonzero values. We set β to 1 (a common

choice in recommender systems, because its corresponds to the log-likelihood of

a Poisson model that is natural for count data), and K = 50.

Comparative results are displayed in Figure 4. We observe that on average,

20

5 10 15 20 25
5000

6000

7000
C

PU
 ti

m
e

(i
n

s)

5 10 15 20 25
Test ID

0.015

0.01505

0.0151

N
or

m
al

iz
ed

 c
ri

te
ri

on

BMM
JMM

Figure 4: Comparative performance with TasteProfile

(K = 50, β = 1).

JMM is 13% faster with an average CPU time of 1 hour 38 minutes whereas

BMM’s average time is equal to 1 hour 58 minutes. Finally, like in previous

scenarii, JMM and BMM return the same solution (Ŵ, Ĥ) up to a permutation

of their columns.

Similarly to our observations of Section 4.2, we observe that, while BMM

has generally a shorter trajectory than BMM, the number of iterations of both

methods has the same order of magnitude. Since the cost of BMM per iteration

is higher than JMM, this results in a higher overall CPU time.

4.5. Factorization of hyperspectral images

A hyperspectral image is a multi-band image that can be represented by

a nonnegative matrix: each row represents a spectral band while each column

represents a pixel of the image. Applying NMF to such matrix data allows

extracting a collection of individual spectra representing the different materials

arranged in the matrix W, as well as their relative proportions given by the

matrix H, see, e.g., [4].

21

We consider a hyperspectral image acquired over Moffett Field in 1997 by the

Airborne Visible Infrared Imaging Spectrometer [32]. The image contains 50×50

pixels over 189 spectral bands, which leads to a matrix V of dimensions 189×

2500. We consider β = 2 and β = 1.5. The latter value in particular was shown

to be an interesting trade-off between Poisson (β = 1) and additive Gaussian

(β = 2) assumptions for predicting missing values in incomplete versions of this

dataset, see [27]. The factorization rank K is set to 3, a standard choice with

this dataset (extraction of vegetation, soil and water).

Comparative results are given in Figure 5. On the top figure corresponding

to β = 2, we observe that JMM is faster than BMM with an acceleration of 31%

on average. On the other hand, for β = 1.5, we observe that BMM is faster in

general (though not always). This confirms again our analysis in Section 3.3.2:

when β is different from 0, 1, and 2, the benefit of JMM may be counterbalanced

by the additional divisions in the general formulae (9).

4.6. Summary of the experiments

Table 4 summarizes the average and the standard deviation of the CPU

times for all the datasets considered. It can be observed that JMM yields a

significant speed-up for the widely used settings when β equals to 0, 1, or 2.

This acceleration is observed on small, medium and large size datasets. The

corresponding 95% confidence intervals are given in Table 5.

5. Conclusion

In this paper, we have presented a joint MM method for NMF with the

β-divergence. Our algorithm relies on the alternating minimization of a non-

convex auxiliary function and leads to new multiplicative updates of the factor

matrices. These new updates are variants of the classic multiplicative updates

and are equally simple to implement. They can lead to a significant compu-

tational speedup, especially for the Itakura-Saito and Kullback Leibler diver-

gences, and the quadratic loss. Fortunately, the three later cases are the three

22

5 10 15 20 25

20

40

60

C
PU

 ti
m

e
(i

n
s)

5 10 15 20 25
Test ID

1.05

1.1

1.15

1.2

N
or

m
al

iz
ed

 c
ri

te
ri

on

10-5
BMM
JMM

(a) β = 2.

5 10 15 20 25

80

100

120
140
160

C
PU

 ti
m

e
(i

n
s)

5 10 15 20 25
Test ID

3.5

3.6

3.7

N
or

m
al

iz
ed

 c
ri

te
ri

on

10-5 BMM
JMM

(b) β = 1.5.

Figure 5: Comparative performance with Moffet hyperspectral image (K = 3).

most common cases of NMF with the β-divergence. The new updates guaran-

tee the descent property for the objective function. Moreover, we have observed

experimentally that the estimated factors are of the same quality as the ones re-

23

Table 4: Summary for the statistics on CPU times and the acceleration in all the tested

dataset. The displayed values are the averages while the standard deviations are indicated

within parenthesis.

BMM JMM Acc.

Olivetti (β = 2) 55s (8s) 36s (6s) 35%

Olivetti (β = 1) 40s (9s) 34s (6s) 16%

Olivetti (β = 0) 229s (32s) 63s (8s) 72%

Spectrogram (β = 0) 291s (90s) 41s (8s) 86%

TasteProfile (β = 1) 6776s (439s) 5909s (492s) 13%

Moffet (β = 2) 39s (13s) 24s (5s) 35%

Moffet (β = 1.5) 107s (22s) 123s (26s) -18%

turned by the classic block MM scheme. As a matter of fact, we have noted that

both algorithms usually return the same solutions up to column permutation.

The computational efficiency of the proposed updates has been demonstrated

on datasets with diverse characteristics. In future work, we intend to study the

convergence of the iterates of JMM. This is a challenging topic because of the

non-convexity of the majorizer which underpins our approach. Such a difficulty

explains the scarcity of results in the literature on the convergence of MM al-

gorithms with non-convex auxiliary functions. Another promising topic would

consist in designing stochastic versions of JMM for the factorization of massive

datasets [33, 34].

Acknowledgment

The authors acknowledge Rémi Flamary, Jérôme Idier, Paul Magron and

Emmanuel Soubies for discussions related to this work.

24

Table 5: The 95% confidence intervals for the CPU times of BMM and JMM (in seconds).

BMM JMM

Olivetti (β = 2) [52, 58] [34, 38]

Olivetti (β = 1) [36, 44] [32, 36]

Olivetti (β = 0) [216, 242] [60, 66]

Spectrogram (β = 0) [254, 328] [38, 43]

TasteProfile (β = 1) [6595, 6957] [5706, 6112]

Moffet (β = 2) [34, 44] [22, 26]

Moffet (β = 1.5) [98, 116] [112, 133]

References

[1] D. D. Lee, H. S. Seung, Learning the parts of objects by non-negative ma-

trix factorization, Nature 401 (6755) (1999) 788–791. doi:10.1038/44565.

[2] P. Smaragdis, C. Févotte, G. J. Mysore, N. Mohammadiha, M. Hoff-

man, Static and dynamic source separation using nonnegative factoriza-

tions: A unified view, IEEE Signal Process. Mag. 31 (3) (2014) 66–75.

doi:10.1109/msp.2013.2297715.

[3] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, R. J. Plem-

mons, Algorithms and applications for approximate nonnegative ma-

trix factorization, Comput. Stat. Data Anal. 52 (1) (2007) 155–173.

doi:10.1016/j.csda.2006.11.006.

[4] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,

J. Chanussot, Hyperspectral unmixing overview: Geometrical, statistical,

and sparse regression-based approaches, IEEE J. Sel. Top. Appl. Earth Obs.

Remote Sens. 5 (2) (2012) 354–379. doi:10.1109/jstars.2012.2194696.

[5] Y. Hu, Y. Koren, C. Volinsky, Collaborative filtering for implicit feed-

25

https://doi.org/10.1038/44565
https://doi.org/10.1109/msp.2013.2297715
https://doi.org/10.1016/j.csda.2006.11.006
https://doi.org/10.1109/jstars.2012.2194696

back datasets, in: Proc. IEEE Int. Conf. Data Mining, IEEE, 2008.

doi:10.1109/icdm.2008.22.

[6] A. Cichocki, R. Zdunek, A. H. Phan, Nonnegative Matrix and Ten-

sor Factorizations: Applications to Exploratory Multi-Way Data Anal-

ysis and Blind Source Separation, John Wiley & Sons Inc, 2009.

doi:10.1002/9780470747278.

[7] X. Fu, K. Huang, N. D. Sidiropoulos, W.-K. Ma, Nonnegative ma-

trix factorization for signal and data analytics: Identifiability, algo-

rithms, and applications, IEEE Signal Process. Mag. 36 (2) (2019) 59–80.

doi:10.1109/msp.2018.2877582.

[8] N. Gillis, Nonnegative Matrix Factorization, Society for Industrial and Ap-

plied Mathematics, 2020. doi:10.1137/1.9781611976410.

[9] A. Cichocki, S. Cruces, S. ichi Amari, Generalized Alpha-Beta divergences

and their application to robust nonnegative matrix factorization, Entropy

13 (1) (2011) 134–170. doi:10.3390/e13010134.

[10] D. D. Lee, H. S. Seung, Algorithms for non-negative matrix factorization,

in: Adv. Neural and Inform. Process. Syst., Vol. 13, 2001, pp. 556–562.

[11] R. Kompass, A generalized divergence measure for nonnega-

tive matrix factorization, Neural Comput. 19 (3) (2007) 780–791.

doi:10.1162/neco.2007.19.3.780.

[12] M. Nakano, H. Kameoka, J. L. Roux, Y. Kitano, N. Ono, S. Sagayama,

Convergence-guaranteed multiplicative algorithms for nonnegative matrix

factorization with β-divergence, in: IEEE Int. Workshop Mach. Learn. Sig-

nal Process., IEEE, 2010. doi:10.1109/mlsp.2010.5589233.

[13] C. Févotte, J. Idier, Algorithms for nonnegative matrix factoriza-

tion with the β-divergence, Neural Comput. 23 (9) (2011) 2421–2456.

doi:10.1162/neco_a_00168.

26

https://doi.org/10.1109/icdm.2008.22
https://doi.org/10.1002/9780470747278
https://doi.org/10.1109/msp.2018.2877582
https://doi.org/10.1137/1.9781611976410
https://doi.org/10.3390/e13010134
https://doi.org/10.1162/neco.2007.19.3.780
https://doi.org/10.1109/mlsp.2010.5589233
https://doi.org/10.1162/neco_a_00168

[14] Z. Yang, E. Oja, Unified development of multiplicative algorithms for linear

and quadratic nonnegative matrix factorization, IEEE Trans. Neural Netw.

22 (12) (2011) 1878–1891. doi:10.1109/tnn.2011.2170094.

[15] K. Lange, MMOptimization Algorithms, Society for Industrial and Applied

Mathematics, 2016. doi:10.1137/1.9781611974409.

[16] Y. Sun, P. Babu, D. P. Palomar, Majorization-minimization algorithms

in signal processing, communications, and machine learning, IEEE Trans.

Signal Process. 65 (3) (2017) 794–816. doi:10.1109/tsp.2016.2601299.

[17] A. Rakotomamonjy, Direct optimization of the dictionary learning

problem, IEEE Trans. Signal Process. 61 (22) (2013) 5495–5506.

doi:10.1109/tsp.2013.2278158.

[18] M. C. Mukkamala, P. Ochs, Beyond alternating updates for matrix factor-

ization with inertial Bregman proximal gradient algorithms, in: H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, R. Garnett (Eds.),

Proc. Ann. Conf. Neur. Inform. Proc. Syst., Vol. 32, Curran Associates,

Inc., 2019.

[19] J. Bolte, S. Sabach, M. Teboulle, Y. Vaisbourd, First order methods

beyond convexity and Lipschitz gradient continuity with applications to

quadratic inverse problems, SIAM J. Optim. 28 (3) (2018) 2131–2151.

doi:10.1137/17M1138558.

[20] I. Panageas, S. Skoulakis, A. Varvitsiotis, X. Wang, Convergence to

second-order stationarity for non-negative matrix factorization: Prov-

ably and concurrently, arXiv preprint: arxiv.org/abs/2002.11323 (2020).

arXiv:2002.11323.

[21] N. Marumo, T. Okuno, A. Takeda, Majorization-minimization-

based Levenberg-Marquardt method for constrained nonlinear

least squares, Comput. Optim. Appl. 84 (3) (2023) 833–874.

doi:10.1007/s10589-022-00447-y.

27

https://doi.org/10.1109/tnn.2011.2170094
https://doi.org/10.1137/1.9781611974409
https://doi.org/10.1109/tsp.2016.2601299
https://doi.org/10.1109/tsp.2013.2278158
https://doi.org/10.1137/17M1138558
http://arxiv.org/abs/2002.11323
https://doi.org/10.1007/s10589-022-00447-y

[22] M. Vandecappelle, N. Vervliet, L. D. Lathauwer, A second-order

method for fitting the canonical polyadic decomposition with non-

least-squares cost, IEEE Trans. Signal Process. 68 (2020) 4454–4465.

doi:10.1109/tsp.2020.3010719.

[23] N. Takahashi, J. Katayama, M. Seki, J. Takeuchi, A unified global

convergence analysis of multiplicative update rules for nonnegative

matrix factorization, Comput. Optim. Appl. 71 (1) (2018) 221–250.

doi:10.1007/s10589-018-9997-y.

[24] R. Zhao, V. Y. F. Tan, A unified convergence analysis of the

multiplicative update algorithm for regularized nonnegative matrix

factorization, IEEE Trans. Signal Process. 66 (1) (2018) 129–138.

doi:10.1109/tsp.2017.2757914.

[25] M. Razaviyayn, M. Hong, Z.-Q. Luo, A unified convergence analysis of

block successive minimization methods for nonsmooth optimization, SIAM

J. Optim. 23 (2) (2013) 1126–1153. doi:10.1137/120891009.

[26] K. Lange, Optimization, Springer New York, 2013.

doi:10.1007/978-1-4614-5838-8.

[27] C. Févotte, N. Dobigeon, Nonlinear hyperspectral unmixing with robust

nonnegative matrix factorization, IEEE Trans. Image Process. 24 (12)

(2015) 4810–4819. doi:10.1109/tip.2015.2468177.

[28] F. S. Samaria, A. Harter, Parameterisation of a stochastic model for human

face identification, in: Proc.Workshop on Applications of Computer Vision,

IEEE Comput. Soc. Press, 1994. doi:10.1109/acv.1994.341300.

[29] C. Févotte, N. Bertin, J.-L. Durrieu, Nonnegative matrix factorization with

the Itakura-Saito divergence: With application to music analysis, Neural

Comput. 21 (3) (2009) 793–830. doi:10.1162/neco.2008.04-08-771.

[30] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, P. Lamere, The million song

dataset, in: Proc. Int. Conf. Music Inform. Retrieval (ISMIR), 2011.

28

https://doi.org/10.1109/tsp.2020.3010719
https://doi.org/10.1007/s10589-018-9997-y
https://doi.org/10.1109/tsp.2017.2757914
https://doi.org/10.1137/120891009
https://doi.org/10.1007/978-1-4614-5838-8
https://doi.org/10.1109/tip.2015.2468177
https://doi.org/10.1109/acv.1994.341300
https://doi.org/10.1162/neco.2008.04-08-771

[31] O. Gouvert, T. Oberlin, C. Févotte, Ordinal non-negative matrix factor-

ization for recommendation, in: Proc. Int. Conf. Mach. Learn., 2020, pp.

3680–3689.

[32] Jet Propulsion Lab (JPL), Aviris free data, california Inst. Technol.,

Pasadena, CA (2006).

URL http://aviris.jpl.nasa.gov/html/aviris.freedata.html

[33] A. Mensch, J. Mairal, B. Thirion, G. Varoquaux, Stochastic subsampling

for factorizing huge matrices, IEEE Trans. Signal Process. 66 (1) (2018)

113–128. doi:10.1109/tsp.2017.2752697.

[34] W. Pu, S. Ibrahim, X. Fu, M. Hong, Stochastic mirror descent for low-

rank tensor decomposition under non-Euclidean losses, IEEE Trans. Signal

Process. 70 (2022) 1803–1818. doi:10.1109/tsp.2022.3163896.

29

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://aviris.jpl.nasa.gov/html/aviris.freedata.html
https://doi.org/10.1109/tsp.2017.2752697
https://doi.org/10.1109/tsp.2022.3163896

Algorithm 1 BMM

Input: Nonnegative matrix V and initialization (Winit,Hinit)

Output: Nonnegative matrices W and H such that V ≈WH

1: Initialize i to 1

2: Initialize (W̌i, Ȟi) to (Winit,Hinit)

3: repeat

4: Initialize W1 to W̌i

5: for l = 1 . . . LW do

6: Update W using (5)

Wl+1 ←−Wl.




(
(WlȞi)

.(β−2)
.V
)
Ȟ

⊤

i(
(WlȞi)

.(β−1)
)
Ȟ

⊤

i




.γ(β)

7: end for

8: W̌i+1 ←WLW+1

9: Initialize H1 to Ȟi

10: for l = 1 . . . LH do

11: Update H using (5)

Hl+1 ←− Hl.



W̌

⊤

i+1

(
(W̌i+1Hl)

.(β−2)
.V
)

W̌
⊤
i+1

(
(W̌i+1Hl)

.(β−1)
)




.γ(β)

12: end for

13: Ȟi+1 ← HLH+1

14: Increment i

15: until Convergence

16: return (W̌i, Ȟi)

30

Algorithm 2 JMM

Input: Nonnegative matrix V and initialization (Winit,Hinit)

Output: Nonnegative matrices W and H such that V ≈WH

1: Initialize i to 1

2: Initialize (W̃i, H̃i) to (Winit,Hinit)

3: repeat

4: Ṽi ← W̃iH̃i

5: Initialize (W1,H1) to (W̃i, H̃i)

6: for l = 1 . . . L do

7: Update W using (9)

Wl+1 ← W̃i.




V

Ṽ
.(2−β)
i

[χ1,β(Hl, H̃i)]
⊤

Ṽ
.(β−1)

i [χ2,β(Hl, H̃i)]
⊤




.γ(β)

8: Update H using (9)

Hl+1 ← H̃i.




[χ1,β(Wl+1,W̃i)]
⊤

V

Ṽ
.(2−β)
i

[χ2,β(Wl+1,W̃i)]
⊤
Ṽ

.(β−1)

i




.γ(β)

9: end for

10: (W̃i+1, H̃i+1)← (WL+1,HL+1)

11: Increment i

12: until Convergence

13: return (W̃i, H̃i)

31

	1 Introduction
	2 Preliminaries
	2.1 Nonnegative matrix factorization
	2.2 Classic multiplicative updates

	3 Joint Majorization-Minimization
	3.1 Construction of the auxiliary function
	3.2 Minimization step
	3.3 Discussion
	3.3.1 Special cases
	3.3.2 Computational advantages of JMM
	3.3.3 Failure of heuristic updates
	3.3.4 Convergence of the iterates of JMM

	4 Experimental Results
	4.1 Set-up
	4.1.1 Influence of the number of sub-iterations
	4.1.2 Initialization and stopping criterion
	4.1.3 Handling zero values and numerical stability
	4.1.4 Simulation environment
	4.1.5 Performance evaluation

	4.2 Factorization of face images
	4.3 Factorization of a spectrogram
	4.4 Factorization of song play-counts
	4.5 Factorization of hyperspectral images
	4.6 Summary of the experiments

	5 Conclusion

