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Abstract
Collecting relations between chemicals and drugs is crucial in biomedical research. The pre-trained transformer model, e.g. Bidirectional Encoder 
Representations from Transformers (BERT), is shown to have limitations on biomedical texts; more specifically, the lack of annotated data makes 
relation extraction (RE) from biomedical texts very challenging. In this paper, we hypothesize that enriching a pre-trained transformer model with 
syntactic information may help improve its performance on chemical–drug RE tasks. For this purpose, we propose three syntax-enhanced models 
based on the domain-specific BioBERT model: Chunking-Enhanced-BioBERT and Constituency-Tree-BioBERT in which constituency information 
is integrated and a Multi-Task-Learning framework Multi-Task-Syntactic (MTS)-BioBERT in which syntactic information is injected implicitly by 
adding syntax-related tasks as training objectives. Besides, we test an existing model Late-Fusion which is enhanced by syntactic dependency 
information and build ensemble systems combining syntax-enhanced models and non-syntax-enhanced models. Experiments are conducted 
on the BioCreative VII DrugProt corpus, a manually annotated corpus for the development and evaluation of RE systems. Our results reveal 
that syntax-enhanced models in general degrade the performance of BioBERT in the scenario of biomedical RE but improve the performance 
when the subject–object distance of candidate semantic relation is long. We also explore the impact of quality of dependency parses. [Our code 
is available at: https://github.com/Maple177/syntax-enhanced-RE/tree/drugprot (for only MTS-BioBERT); https://github.com/Maple177/drugprot-
relation-extraction (for the rest of experiments)]
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Introduction
Relation extraction (RE) is an essential task in the domain 
of Natural Language Processing (NLP) and biomedical infor-
mation extraction. The goal of biomedical RE is to automat-
ically detect relations between biomedical entities in scientific 
texts, thus facilitating the retrieval of valuable biomedical 
information. Compared to manual extraction, an effective 
automatic RE system consumes much less time and demands 
fewer human resources. In most cases of RE, relations refer 
to pre-defined semantic relations between entities, such as 
relations between chemicals and genes/proteins. An exam-
ple is given in Figure 1, where we can see the chemical 
‘Caffeine’ linked to the protein ‘kinase’ by the ‘INHIBITOR’
relation.

Over recent years, the pre-trained transformer model (1) 
has been ubiquitous in the domain of NLP due to its supe-
rior performance over various NLP tasks. As one of the most 
popular pre-trained transformer models, BERT (2) has been 
widely applied to RE tasks. However, vanilla BERT is found 

to be less effective in a domain-specific scenario due to sev-
eral reasons: differences between the corpus on which BERT is 
pre-trained and the domain-specific corpus on which it is fine-
tuned and limited amount of available data for fine-tuning. 
To tackle this problem, different variants of BERT targeted 
at specific domains have been proposed, such as BioBERT (3) 
and SciBERT (4).

Although these BERT variants proved to outperform 
vanilla BERT on domain-specific tasks, the lack of suffi-
cient data for fine-tuning remains a problem. Therefore, we 
seek to enhance their performance even further. We make 
the hypothesis that syntactic information might not be suffi-
ciently encoded in BERT models and that injecting syntax into 
BERT may enrich the representation of the input texts and 
therefore improve the performance. Previous studies support 
this hypothesis, as in (5–7). Furthermore, existing syntactic 
parsers make it possible to obtain parse trees at reason-
able computational cost, which facilitates the development of 
syntax-enhanced models. Dependency trees and constituent 

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/baac070/6675625 by guest on 22 N

ovem
ber 2022

mailto:anfu.tang@inrae.fr
https://github.com/Maple177/syntax-enhanced-RE/tree/drugprot
https://github.com/Maple177/drugprot-relation-extraction
https://github.com/Maple177/drugprot-relation-extraction
https://github.com/Maple177/drugprot-relation-extraction
https://creativecommons.org/licenses/by-nc/4.0/


2 Database, Vol. 00, Article ID baac070

Figure 1. An example drawn from the DrugProt data set, showing a 
sentence with an INHIBITOR relation between a chemical/drug entity 
(the subject, Caffeine) and a gene/protein entity (the object, kinase).

trees are common syntactic representations that we can obtain 
from syntactic parsers, as illustrated in Figure 2b.

Although some studies report that injecting syntax into 
BERT models improves performance on certain NLP tasks, 
there is no consensus on the effect of injecting syntactic infor-
mation into a pre-trained BERT model. Furthermore, there is 
no definitive conclusion about the extent of the syntactic infor-
mation implicitly encoded in BERT or the way it is encoded. 
To the best of our knowledge, relevant studies can be divided 
into two categories. The first category includes proposals of 
new neural network architectures that introduce syntactic 
information as extra input or weights inside the neural net-
work. The second category includes work studying how and 
how much syntax is already implicitly encoded inside BERT. 
However, among the proposed syntax-enhanced neural archi-
tectures, few researchers concentrate on RE tasks, and even 
fewer studies have been conducted on biomedical RE tasks. 
We aim to fill this gap by studying syntax-enhanced BERT 
models for biomedical RE. In this context, we summarize our 
main contributions as follows:

1. We propose three new syntax-enhanced neural architec-
tures:

• Chunking-Enhanced-BioBERT (CE-BioBERT), enh-
anced with chunking information;

• Constituency-Tree-BioBERT (CT-BioBERT), enh-
anced with encoding complete constituency trees;

• Multi-Task-Syntactic-BioBERT (MTS-BioBERT),
enhanced by fine-tuning with multiple tasks includ-
ing a RE task and two other syntax-related tasks 
that aim to recover geometric properties of depen-
dency trees.

2. We test an existing syntax-enhanced Late-Fusion model 
that was not previously evaluated on biomedical RE 
tasks.

3. We build ensemble systems containing different combi-
nations of syntax-enhanced models and models with no 
syntax.

We conducted our experiments on the DrugProt corpus 
from the BioCreative VII track 1 shared task. In this corpus, 
chemical–gene relations are annotated and we seek to auto-
matically extract relations on the test set. Details about the 
corpus will be given in the Materials and methods section.

Our paper is organized as follows: in the Related work 
section, we present syntax-related studies on the injection of 
syntactic information into BERT models and the capability of 
BERT models to encode syntactic information. Then we give 
details about the methods proposed and the DrugProt corpus 
in the Materials and methods section. In the Results section, 
we present the experimental setup and scores achieved by each 
model on the DrugProt corpus. At last we discuss results and 
give a conclusion about our work.

Related work
Due to their superior performance on various NLP bench-
marks, pre-trained transformer models such as BERT (2) have 
become the basis of most recent NLP approaches, includ-
ing RE approaches. Conventionally, an RE task is treated as 
a special kind of text classification problem as in (4, 7). A 
common pipeline is to first initialize a BERT model with pre-
trained weights and then fine-tune the model on the data set 
of interest. Our work employs this workflow.

Domain-specific BERT variants
Domain-specific models have been developed to improve the 
performance of BERT models on domain-specific tasks. The 
principle behind these BERT variants is either to continue or 
to start from scratch the pre-training phase on a domain-
specific corpus. For example, the pre-training corpus for 
BioBERT is enriched with PubMed abstracts and PubMed 

Figure 2. Syntax representations that we obtain from off-the-shelf parsers: (a) A sentence with the subject and the object wrapped by markers. (b) The 
dependency tree of the sentence in (a). (c) The constituency tree of the sentence in (a). (d) The adjacency matrix that corresponds to the dependency 
tree in (b).
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Central (PMC) full-text articles, and BioBERT is initialized 
with weights from vanilla BERT. Similarly, the pre-training 
corpus of SciBERT is enriched with scientific papers collected 
from Semantic Scholar: 18% are papers from the computer 
science domain and 82% are from the broad biomedical 
domain. We test both BioBERT and SciBERT in our experi-
ments, but for syntax-enhanced models, we use only BioBERT 
as the base model. Notice that there exist different versions of 
BioBERT and SciBERT; in our experiments, we use always 
the BioBERT v1.1 as described in (3), which is pre-trained on 
English Wikipedia, BookCorpus and PubMed Abstracts using 
the same wordpiece vocabulary as vanilla BERT; four versions 
of SciBERT are provided in (4), and we always use the ver-
sion pre-trained from vanilla BERT checkpoints with uncased 
newly constructed wordpiece vocabulary SciVocab.

Probing pre-trained BERT models
To shed light on the superior performance of BERT models 
and identify potential directions for further improvement, pre-
vious studies have looked into the linguistic properties of the 
representations learned by these models. In particular, there 
has been a focus on researching whether syntactic information 
is implicitly encoded in BERT. Probing tasks play an impor-
tant role in these studies. Probing tasks, also named diagnostic 
classifiers, refer to simple classification tasks that are designed 
to test the capability of a pre-trained transformer model to 
encode specific types of features. Several probing tasks have 
thus been designed to study how BERT encodes syntactic 
information. If simply training a linear classifier on top of 
a BERT model succeeds to outperform naive baselines like 
non-contextualized word embeddings on predicting syntax-
related labels, then it demonstrates that the pre-trained BERT 
model encodes some form of syntactic information. Hewitt 
and Manning (8) designed two probing tasks to test whether 
dependency trees are encoded in BERT’s embedding space. 
The first is a structural probe that aims to predict pairwise 
distances of tokens in the dependency tree given the BERT’s 
embedding space by calculating Euclidean distances between 
corresponding token embedding vectors. The second is a tree 
depth probe, which aims to predict the depth of each word 
in the dependency tree using the squared vector norm of the 
corresponding word embedding. Coenen et al. (9) hypothesize 
that the dependency graph is encoded in the weights across all 
attention layers of BERT. Thus, it should be possible to pre-
dict the existence of a dependency between two words or even 
its label, given the corresponding vector of attention weights 
along attention heads across all attention layers. Their exper-
imental results show that predictions made with these vectors 
of attention weights are more accurate than several baseline 
models, such as pre-trained BERT token embeddings, or shal-
low contextualized embeddings at the output of a randomly 
initialized biLSTM layer.

Although these studies agree that BERT models do encode 
some sort of dependency structure, it remains unclear whether 
this implicit information is sufficient for fully encoding syn-
tax trees. Still, as we will detail in the next subsection, a 
few recent studies have reported performance improvements 
on certain NLP tasks when injecting additional syntax into
BERT.

Although designed to test whether syntax is encoded in 
BERT, probing tasks can also be used as supervised objectives 
to guide a neural network to learn syntax. We propose to build 

on these tasks for our multi-task architecture [MTS-BERT, 
inspired by the work of Hewitt and Manning (8)].

Neural architectures integrating syntactic 
information
Many neural architectures have been developed in which 
syntactic information is introduced explicitly or implicitly.

Explicitly injecting syntactic information consists of encod-
ing that information partially or completely and then using the 
resulting syntactic representations as extra input to the neu-
ral network or embedding them inside the neural network. 
There exist multiple ways to encode syntactic information, 
among them is dependency information as organized in a 
syntactic dependency graph. A dependency graph is the adja-
cency matrix of a dependency parse tree; it gives information 
about whether two words are directly connected by a certain 
kind of dependency relation. An example of a dependency 
graph is given in Figure 2d. Sachan et al. (7) propose to 
append to BERT attention layers in which the word-to-word 
attention matrix is replaced by the dependency graph. Sim-
ply fine-tuning their proposed network on the TAC Relation 
Extraction Dataset (TACRED) RE data set (10) performed 
slightly better than the vanilla BERT. They also claim that 
dependency information helps improve the performance of 
BERT on RE tasks, but the improvement heavily depends 
on the quality of the dependency trees. Yu et al. (11) pro-
pose Dynamically Pruned Graph Convolutional Network to 
average the dependency graph with the attention matrix and 
control the information flow between words by applying a 
binary gate on each word. Guo et al. (12) propose Atten-
tion Guided Graph Convolutional Network (AGGCN), which 
consists of several stacked multi-head attention layers. Instead 
of totally replacing attention matrices in all layers by the 
dependency graph, in AGGCN the dependency graph is used 
to initialize the attention matrix in the first layer; in subse-
quent layers attention matrices are computed as in (1), i.e. 
attention weights are assigned to all pairs of words, includ-
ing edges that do not exist in the dependency graph. Besides 
dependency information, some networks are developed to 
incorporate constituency information. Nguyen et al. (5) pro-
pose to embed nodes in the constituency tree as well as 
the leaves that are tokens and to design masks that make 
each node attend to all descendent nodes and leaves in the 
dependency subtree.

Implicitly introducing the syntax into BERT models does 
not seek to encode syntactic information in input data or 
inside BERT, but rather make BERT learn itself syntactic infor-
mation by orienting the pre-training or fine-tuning stage using 
extra syntax-related tasks. Xu et al. (13) introduce a new 
pre-training task, Distance Prediction, whose objective is to 
predict distances between two words given the dependency 
tree of a sentence. Their results demonstrate that pre-training 
with extra syntax-related tasks improves model performance. 
Strubell et al. (6) propose a multi-task learning framework 
consisting of multiple stacked attention layers and train their 
model on four tasks containing the target Semantic Role 
Labelling (SRL) task and three syntactic tasks that predict 
part-of-speech (POS) tags and predicates, perform parsing 
and attend to syntactic heads, respectively. Their proposed 
model performs better on the SRL task than previous baselines 
with no syntactic information integrated. This is attributed 
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to sharing the weights of the lower layers of the model with 
syntactic tasks.

It is worth noticing that some above-mentioned architec-
tures do not involve transformer models and that most of 
them are not tested on biomedical RE tasks. Nevertheless, they 
provide possible solutions to integrate syntactic information 
into neural networks. The architectures that we propose in 
subsequent sections are inspired by these works.

Materials and methods
Methods
We investigate several approaches to inject syntax into BERT 
models, looking at both explicit and implicit methods and 
using syntactic information in the form of dependencies and 
constituents. We first test an existing approach not pre-
viously evaluated on biomedical RE tasks, which explic-
itly injects dependency-based syntactic information. We then 
propose two novel constituency-based explicit approaches. 
Finally, we introduce a multi-task method that implicitly 
injects syntax. The approaches are used in ensemble systems 
to mitigate the variance problem often encountered in neural
networks.

An existing dependency-enhanced model: 
Late-Fusion
We use the method of Sachan et al. (7) to explicitly inject 
dependency-based syntactic information. Sachan et al. (7) 
propose to encode the dependency tree in an adjacency 
matrix, which ignores the direction and the type of each 
dependency relation, but preserves the information about 
linkage between each pair of words. An example of an adja-
cency matrix is shown in Figure 2d. The adjacency matrix 
is then integrated by a syntax-graph neural network (GNN) 
layer in which the structure of an attention layer is kept as 
in (1) and the adjacency matrix serves as the attention mask. 
Besides, the authors also propose to extend the concept of 
dependency tree by introducing additional edges between the 
first wordpiece [BERT tokenizes text into wordpieces (14) that 
may be full words or sub-words.] (head wordpiece) and all 
subsequent wordpieces (tail wordpieces) for each token. The 
original dependency tree obtained by a syntactic parser is then 
transformed into a dependency tree over wordpieces, which is 
readable by a BERT model. Denoting the embedding of the 
i-th wordpiece by vi, the interaction score sij between the i-th 
and the j-th wordpieces is computed as the dot product of the 
i-th query vector and the j-th key vector: 

where viWQ and vjWK refer to the corresponding query and 
key vector, respectively, and dk refers to the dimension of key 
vectors, which is a scaling term as indicated in (1).

In a syntax-GNN layer the way attention scores αij are 
computed differs from that of a traditional attention layer. 
Originally αij is given as: 

where N refers to the number of wordpieces, while in the 
syntax-GNN, αij is given as: 

where 𝒩i refers to the group of wordpieces that are connected 
to the i-th wordpiece in the extended dependency tree.

Although Sachan et al. (7) propose two syntax-augmented 
models based on syntax-GNN layers, named Late-Fusion and 
Joint-Fusion, we choose to test the Late-Fusion model because 
firstly the original paper reported an improved performance of 
Late-Fusion on TACRED (10) which is a benchmark for RE in 
the general domain, and secondly, we observed in preliminary 
experiments that the Joint-Fusion model heavily degraded per-
formance on RE tasks. The Late-Fusion model consists of 
adding several syntax-GNN layers atop the pre-trained BERT 
and combining the outputs of the pre-trained BERT and the 
outputs of the syntax-GNN block by a Highway Gate (15) 
instead of the residual connection used in standard attention 
layers.

Two constituency-enhanced models: CE-BioBERT 
and CT-BioBERT
Different from the Late-Fusion model which is enhanced 
with dependency information, we propose to build syntax-
enhanced models with constituency information, which 
instead of establishing pairwise relations for each word 
assigns words to local groups in a hierarchical way.

CE-BioBERT The first method we propose does not use 
complete constituency trees. In this method, we aim to group 
together wordpieces that belong to a same constituent to cre-
ate embeddings at the constituent level rather than at the 
wordpiece level. We only group these leaves at the deep-
est level in the constituency tree. For example, in the sen-
tence ‘Caffeine inhibits the checkpoint kinase ATM.’, given 
the corresponding constituency tree shown in Figure 2c, we 
only group together the wordpieces of ‘the checkpoint kinase 
ATM’, which constitutes the smallest Noun Phrase (NP), but 
not the wordpieces of ‘inhibits the checkpoint kinase ATM’, 
which is a Verb Phrase above the NP mentioned before. In 
this case, we take each constituent as a token and group 
together the wordpieces that constitute the token. This pro-
cess can be regarded as a kind of shallow chunking, through 
which we can simplify the sentence representation by regard-
ing chunks, like compounds, as individual tokens. There-
fore, we name this model CE-BioBERT. In CE-BioBERT, atop 
the pre-training BioBERT, we add a block (as in Figure 3) 
which contains no trainable parameter but averages only 
wordpiece embeddings that belong to a same constituent 
to generate constituent embeddings. We name this block 
wp2const. Constituent embeddings are then fed into extra 
attention layers, which share the same architecture as pro-
posed in (1). Suppose that there are 𝑁 wordpieces in a sentence 
and 𝑀 smallest constituents: at the input of the wp2const 
block, we have a sequence of wordpiece embeddings 
[𝑣1,𝑣2,…,𝑣𝑁], where 𝑑 is the dimension of wordpiece embed-
ding. Inside the wp2const block, we compute constituent
embeddings by: 
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Figure 3. Diagram illustrating the architecture of CE-BioBERT: the wp2const block at the output of the BioBERT model groups together the wordpieces 
that belong to a pre-defined chunk to compute chunk embeddings.

Figure 4. Diagram illustrating the architecture of CT-BioBERT: linearized constituency trees are fed into the BioBERT model, and each BERT layer shares 
the same subtree mask.

where 𝒞𝑖 denotes the set of wordpiece indexes that belong 
to the 𝑖-th constituent and 𝑢𝑖 the embedding of the 𝑖-th 
constituent.

CT-BioBERT While our first approach relied mostly on 
chunks, our second method, named CT-BioBERT, aims to 
embed complete constituent trees. Inspired by (5) in which 
the authors propose to embed nodes in constituency trees 

as well as leaves (which are tokens) and apply a subtree 
attention mask that makes non-leaf nodes in a constituency 
tree attend to all nodes and leaves in their subtree, we
propose to:

• Linearize the constituency tree by iterating nodes in Depth 
First Search (DFS) order.
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• Make non-leaf nodes attend to all nodes in their subtree, 
while all leaves will attend to each other.

The example in Figure 4 illustrates the linearization of 
the constituency tree that we propose. By converting a con-
stituency tree to its DFS traversal, the resulting sequence is 
supposed to encode hierarchical information of the tree struc-
ture; furthermore, we keep the constituency tags of non-leaf 
nodes, which provides additional information about the tree. 
By applying subtree masks onto the attention matrix, we 
control the information flow between nodes so that non-leaf 
nodes are restricted to interact only with their descendants, 
and this masking also reflects the constituent hierarchy in a 
tree. Besides, we keep the wordpiece-to-wordpiece attention 
pattern, which is the same as in standard attention layers. 
However, we do not distinguish non-leaf nodes from leaf 
nodes (which are wordpieces) but treat these inserted con-
stituency tags as independent wordpieces by adding them to 
the vocabulary of the wordpiece tokenizer. This operation cer-
tainly increases the difficulty of fine-tuning due to the fact that 
wordpiece embeddings for these newly added constituency 
tags are randomly initialized and the pre-trained BioBERT 
does not see any of them during the pre-training phase; we 
still keep this model in experiments however, hypothesizing 
that the additional information brought by constituency tags 
may compensate for the negative effect caused by introducing 
new wordpieces.

A Multi-Task-Learning framework: MTS-BioBERT
Aside from explicitly injecting syntax into BioBERT by mod-
ifying either the input or the weights (especially attention 
weights) of the model, another option for integrating syn-
tactic information is to make the model learn syntax in an 
implicit way. In (6), this goal is accomplished by training 
a transformer encoder on extra syntax-related tasks such as 
predicting POS tags and predicates, performing parsing, etc. 
We adopt the same idea by designing an architecture that is 
jointly trained on: (i) assigning relation labels for the given 
sentence; (ii) predicting pairwise token distances in the depen-
dency tree given only token embeddings obtained from BERT 
and (iii) predicting the depth of each token in the depen-
dency tree given only token embeddings. (ii) and (iii) are 
two probing tasks firstly proposed in (8) to test a hypothe-
sis on the structural property of the vector space of BERT 
representations: pairwise distances between word represen-
tations of BERT are highly correlated to pairwise syntactic 
distances between words (structural probe) and so are norms 
of word representations and syntactic depths of words (tree 
depth structural probe). The architecture of MTS-BioBERT 
is illustrated in Figure 5. We hypothesize that using these 
two probing tasks as supervised objectives will force the 
model to encode syntactic information and that the word-
piece representations enriched with syntactic information will 
help better categorize relations. Formally, for a sequence 
of 𝑤1∶𝑛 and BERT vector representations h𝑙

1∶𝑛, denote the 
distance between (𝑤𝑙

𝑖,𝑤𝑙
𝑗) as 𝑑𝑙

𝑇(𝑤𝑙
𝑖,𝑤𝑙

𝑗) and the 𝐿2 distance 
between (h𝑖,h𝑗) transformed by a linear transformation 𝐵

as 𝑑𝐵(h𝑙
𝑖,h

𝑙
𝑗)

2
= 𝐵(h𝑙

𝑖 −h𝑙
𝑗)

𝑇
𝐵(h𝑙

𝑖 −h𝑙
𝑗); for the structural 

probe, the loss function is: 

Table 1. DrugProt corpus overview

Set
Number of 
abstracts

Number of 
relations

Train 3500 17 274
Dev 750 3761
Test 750 3491
Dummy data 10 000 –

The loss function for the tree depth structural probe is: 

For the RE task, we use the balanced cross entropy as loss 
function, which is a common practice: 

where yi is the one-hot vector of the gold label for a sentence 
l and ̂y

i
 is the prediction vector containing K probabilities for 

K relation categories. Denote the number of examples labelled 
with relation i as Ni; wi is the weighting coefficient for the i-th 
relation: 

Combining the two probing tasks with the RE task, the 
final loss function of MTS-BioBERT is: 

where α is a weighting coefficient which controls the quantity 
of injected syntactic information and serves as a hyperparam-
eter. We calculate the square root of ℒdist + ℒdepth to reduce 
the norm of gradients.

Ensemble systems
We adopt an ensemble strategy to evaluate our models. 
Ensemble methods combine predictions from multiple models 
to make the final prediction and are often able to outperform 
each individual model especially when a significant diversity 
exists between the models, which is the case for neural net-
works in the optimization scenario based on gradient-descent 
algorithms. In this work, for each neural architecture, we 
train multiple models initialized with different random seeds 
and combine the results of all models by simple majority
voting.

Additionally, we also propose combinations of models 
based on different architectures, in particular models with and 
without syntax. We hypothesize that different types of model 
might make different types of predictions and errors and that 
combining them might boost performance and reduce errors.

Data set
The DrugProt task (16) of the BioCreative challenge pro-
vides a corpus including 14 230 PubMed abstracts and 24 526 
annotated relations between chemical/drug and gene/protein 
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Table 2. DrugProt relations

Relation type Number of relations

ACTIVATOR 1674
AGONIST 789
AGONIST-ACTIVATOR 39
AGONIST-INHIBITOR 15
ANTAGONIST 1190
DIRECT-REGULATOR 2705
INDIRECT-DOWNREGULATOR 1661
INDIRECT-UPREGULATOR 1680
INHIBITOR 6535
PART-OF 1142
PRODUCT-OF 1078
SUBSTRATE 2497
SUBSTRATE PRODUCT-OF 27

entities. To prevent participants from manually annotating the 
test set, the organizers added dummy data (10 000 abstracts) 
to the manually annotated test set (750 abstracts). The statis-
tics of the corpus are shown in Table 1. It is worth noticing 
that ‘chemical’ and ‘drug’ are used interchangeably in the 
annotation, as well as ‘gene’ and ‘protein’. An example anno-
tation is shown in Figure 1. All chemical–gene relations are 
directed, and the direction is fixed from chemicals to genes. 
There are in total 13 classes of relations describing different 
interactions between genes and chemicals. We list these rela-
tion types and corresponding numbers of examples in Table 2 
[Statistics in Table 2 are calculated based on our pre-processed 
data set. We found that statistics reported in Table 2 of the 
DrugProt overview article (16) were not consistent with their 
published corpus]. 

Pre-processing
In the original corpus, we find that in the training set only 3 
among 17 274 (≈0.02%) relations are inter-sentence, while 
in the validation set there are no inter-sentence relations. 
Therefore, we choose to examine only intra-sentence relations 
and remove the three inter-sentence relations from the train-
ing set. We firstly segment each abstract into sentences, then 
enumerate all candidate pairs (subject, object) within each 
sentence and mark the subject and the object as presented 
in Figure 2. To indicate the candidate pair (subject, object), 
we wrap the subject in two consecutive ‘@’ characters and 
the object in two consecutive ‘$’ characters as in Figure 1. 
It is worth noticing that if the subject and the object refer 
to the same entity, we wrap the entity in two consecutive ‘¢’ 
characters.

Parsing sentences As mentioned in the Methods subsection, 
syntax-enhanced models require either dependency trees or 
constituency trees. To generate dependency trees, we choose 
a biomedical version of Stanza (17) trained on the GENIA 
treebank (18), which was collected from PubMed abstracts 
related to ‘transcription factors’. According to Zhang et al.
(17), Stanza consistently outperformed previous state-of-
the-art syntactic parsers (CoreNLP and scispaCy) on three 
biomedical or clinical treebanks including GENIA. Although 
we are unsure about the quality of syntactic parse trees that 
Stanza generates on biomedical texts related to gene–chemical 
interactions, we think the texts in GENIA are somewhat sim-
ilar to those in DrugProt because both contain mentions of 

Table 3. DrugProt challenge results

Rank/Team ID Precision Recall F1-score

#1 Team_15 79.6 79.9 79.7
#2 Team_18 78.5 80.5 79.5
#3 Team_13 79.7 78.2 78.9
#4 Team_7 80.4 74.5 77.6
#5 Team_21 (Ours) 75.5 79.7 77.5
#6 Team_3 77.1 77.7 77.4

genes or proteins. We also use this version of Stanza for sen-
tence segmentation. To generate constituency trees, we use 
the Berkeley Neural Parser (19), which is a state-of-the-art 
constituency parser. Subsequently, we generate concrete syn-
tax representations for each model, for example, adjacency 
matrix for Late-Fusion, linearized sequences and subtree 
masks for CT-BioBERT, etc.

Implementation detail
Implementation of all models is based on HuggingFace’s 
transformer (20) and Pytorch (21). For syntax-enhanced 
models (CE-BioBERT, CT-BioBERT, Late-Fusion and MTS-
BioBERT), we initialize parameters from BioBERT (3) version 
1.1 released by HuggingFace. In cases where extra attention 
layers (as in CE-BioBERT or Late-Fusion) are added atop 
BioBERT, weights of extra layers are randomly initialized. 
Specifically, for CT-BioBERT, we add 24 constituency tags 
into the vocabulary of BioBERT’s wordpiece tokenizer, and 
wordpiece embeddings for newly added constituency tags are 
randomly initialized. We fine-tune each model with mono 
32 G NVIDIA V100 Graphics processing unit (GPU) and con-
trol the fine-tuning process by early stopping, which is a 
common technique in deep learning to avoid overfitting by 
stopping when the performance on the validation set has not 
increased for a set number of epochs. In our experiments, we 
stop fine-tuning when the F1-score on the validation set has 
not increased for three epochs. We use the Adam (22) opti-
mizer and keep the learning rate constant during the whole 
fine-tuning stage with no warm-up steps.

Experiments
In this paper, we report post-BioCreative VII experiments in 
which we investigate the contribution of syntax rather than 
aim to maximize performance. However, to give an insight 
into what constitutes a high performance on the DrugProt 
data set, we present the performance of the top performing 
DrugProt participants in Table 3. We see that F1-scores on 
this dataset range from 77.4 to 79.7 for the top six teams. 

During the challenge, our best result was obtained with 
an ensemble system containing BioBERT and SciBERT mod-
els, which outperformed systems containing models of a same 
type. It demonstrates that having different types of models 
vote may counteract the systematic errors of each model and 
therefore boost the overall performance. We test ensemble sys-
tems consisting of syntax-enhanced models and non-syntax-
enhanced models based on the hypothesis that these two types 
of model will act in a complementary way.

For post-challenge experiments, besides the syntax-
enhanced models introduced in the previous section, we use 
three non-syntax-enhanced models as baselines:
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Table 4. Hyperparameter optimization with grid search: customized grid of each model

Model Learning rate # extra attention layers 𝛼

BioBERT {1𝑒−5,2𝑒−5,3𝑒−5,5𝑒−5} – –
SciBERT {1𝑒−5,2𝑒−5,3𝑒−5,5𝑒−5} – –
BioBERT (+extra layers) {1𝑒−5,2𝑒−5,3𝑒−5,5𝑒−5} {1,2,3,4} –
CE-BioBERT {1𝑒−5,2𝑒−5,3𝑒−5,5𝑒−5} {1,2,3,4} –
CT-BioBERT {5𝑒−6,8𝑒−6,1𝑒−5,2𝑒−5,3𝑒−5,5𝑒−5} – –
Late-Fusion {1𝑒−5,2𝑒−5,3𝑒−5,5𝑒−5} {1,2,3,4} –
MTS-BioBERT {1𝑒−5,5𝑒−5,1𝑒−4} – {0.1,1.0}

• an ensemble containing five fine-tuned BioBERT models;
• an ensemble containing five fine-tuned SciBERT models;
• an ensemble containing five fine-tuned modified BioBERT 

models in which attention layers were added atop the pre-
trained BioBERT model; the number of added layers is a 
hyperparameter.

The third baseline is built as a contrast for the CE-BioBERT 
and Late-Fusion methods, as they both require the addition 
of extra layers to integrate syntactic information. By adding 
extra layers (with no syntax) into the baseline model, we 
ensure that the integration of syntactic information is the only 
difference between the second baseline and CE-BioBERT or 
Late-Fusion, and therefore we can make a fair comparison.

We always use the original train/dev split provided by the 
challenge organizers. We use the training set for training the 
models and monitor model performance on the validation set 
in order to avoid overfitting.

Hyperparameters
For each type of model, we use grid search to determine the 
optimal hyperparameters and instead of applying the same 
grid for all models, we first empirically establish a hyperpa-
rameter grid and then slightly enlarge or reduce the search 
space for each model according to preliminary experiments. 
Due to the limitation of computing resources, we set the 
batch size to 16 and focus on the learning rate, the num-
ber of extra attention layers and the weighting coefficient 
of syntactic loss (for MTS-BioBERT only). Complete hyper-
parameter grids are summarized in Table 4. Note that ‘-’ 
indicates that the corresponding parameter is not taken into 
consideration. We always test parameter combinations in the 
Cartesian product of the available parameter set: for example, 
for the Late-Fusion model, we construct 16 ensembles each 
with one parameter combination out of 16. 

Evaluation metrics
We use the same evaluation setting as used by the DrugProt 
organizers (16): we measure micro-averaged precision, recall 
and F1-score.

Results
In this section, we present the results that we obtain for each of 
the seven model types: BioBERT, SciBERT, BioBERT (+extra 
layers), CE-BioBERT, CT-BioBERT, Late-Fusion and MTS-
BioBERT. For each model type, we firstly find the optimal 
combination of hyperparameters based on the average of the 
micro-averaged F1-scores on the DrugProt validation set. The 
summary of optimal hyperparameters is shown in Table 5. 

Table 5. Optimal combination of hyperparameters for each model based 
on the performance on the validation set: learning rate LR, # extra attention 
layers EAL, 𝛼

Model LR EAL 𝛼

BioBERT 2𝑒−5 – –
SciBERT 1𝑒−5 – –
BioBERT (+ extra layers) 2𝑒−5 1 –
CE-BioBERT 2𝑒−5 2 –
CT-BioBERT 2𝑒−5 – –
Late-Fusion 1𝑒−5 4 –
MTS-BioBERT 1𝑒−5 – 0.1

Table 6. Voting F1-score for each model type (in the second column). %Δ
denotes the relative gain in voting F1 over BioBERT with no syntax. Aver-
aged F1-score and standard deviation calculated over five independent 
runs within ensembles for each model type are presented in the rightmost 
column

Model F1 (vote) %Δ F1 (ave ±

Baseline models
 BioBERT 76.9 – 74.3 ± 0.6
 SciBERT 77.0 +0.1 74.0 ± 0.2
 BioBERT (+ extra layers) 76.5 −0.4 74.9 ± 0.2
Syntax-enhanced models
 CE-BioBERT 75.8 −1.1 74.2 ± 0.6
 CT-BioBERT 75.1 −1.8 72.4 ± 0.5
 Late-Fusion 63.3 −13.6 60.4 ± 1.0
 MTS-BioBERT 70.3 −6.6 66.2 ± 2.2
Combination of non-syntax-enhanced models
 BioBERT + SciBERT 77.5 +0.6
 BioBERT + BioBERT

(+ extra layers)
76.7 −0.2

Syntax-enhanced + non-syntax-enhanced models
 BioBERT + CE-BioBERT 76.5 −0.4
 BioBERT + CT-BioBERT 76.7 −0.2
 BioBERT + Late-Fusion 72.9 −4.0
 BioBERT + MTS-BioBERT 74.9 −2.0

We then test each model type on the DrugProt test set 
using the optimal hyperparameters. We calculate the micro-
averaged F1-score for each model within the ensemble and for 
the voting ensemble. We also compute performance for voting 
ensembles consisting of different types of model. We merge 
different types of non-syntax-enhanced models (BioBERT 
and SciBERT models), as well as both syntax-enhanced and 
non-syntax-enhanced models. A detailed summary of perfor-
mances is presented in Table 6. We present voting F1-scores 
for all models and model combinations; to give an overview 
of the variance between models in the same ensemble, we also 
show averaged F1-scores for each model type. 
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Figure 5. The architecture of MTS-BioBERT: Besides the relation label, for the two probing tasks, we compute pairwise syntactic distance matrices and 
syntactic depths from dependency trees obtained from a syntactic parser.

Baseline BioBERT and SciBERT models both obtain high 
F1-scores (respectively, 76.9 and 77.0). Among the syntax-
enhanced models, CE-BioBERT gives the best performance 
(75.8), although it is unable to outperform baseline models. 
Combining BioBERT and SciBERT baseline models improves 
over individual models and yields the highest performance 
overall (77.5). Combining syntax-enhanced and non-syntax-
enhanced also improves over individual syntax-enhanced 
models but performance remains below that of non-syntax-
enhanced models.

Discussion
We can see from the results in the previous section that in 
all the tested syntax-enhanced models, introducing syntax 
degrades, to varying degrees, the performance of biomedical 
RE summarized in Table 6. Besides, integrating dependency 
information has a more significant negative impact than inte-
grating constituency information. Quite different from what 
is observed by Sachan et al. (7) in their experiments (they use 
Stanford CoreNLP as syntactic parser), our results show 
that replacing the original word-to-word attention matrix by 
a hard-pruned adjacency matrix of the dependency graph 
causes severe degradation on DrugProt, rather than slightly 
boosting the performance.

Impact of syntactic parsing quality
We make a hypothesis that the degradation of syntax-
enhanced models might be due in part to the quality of depen-
dency information obtained from the off-the-shelf syntactic 
parser Stanza on the DrugProt corpus.

To verify this hypothesis, we manually evaluated depen-
dency analysis on a small subset of sentences in the validation 
set. Firstly, we divide sentences in the validation set into 
groups according to the length of the shortest dependency 
path (SDP) between the two arguments of the candidate rela-
tion. We then randomly select sentences from each group to 
form a subset containing 48 sentences. For each sentence, we 
manually examine the dependency parse provided by Stanza 
and report two numbers: the number of erroneous depen-
dency links on the full-dependency parses and the number of 
erroneous dependency links in the SDP between the two argu-
ments of the candidate relation. The number of errors on the 
full-dependency parses allowed us to compute an ‘Unlabelled 
Attachment’ Precision score of 94.9. Compared to Stanza (17) 
reporting 91.01 as Unlabeled Attachment Score on the GENIA 
treebank (18), although we cannot make a direct comparison 
(since their score is a F1-score), it is fair to conclude that the 
quality of dependency parses from Stanza is acceptable on the 
subset of sentences that we extracted.

We further analyse whether there exists a negative corre-
lation between the number of errors (in full sentences and 
in SDPs) in the dependency parsing and the RE performance 
of Late-Fusion and MTS-BioBERT, which are enhanced with 
dependency information. We gather sentences that share the 
same number of errors and calculate micro F1-scores on 
sentences from each group. Note that ‘no_relation’ is not 
counted in the calculation of micro F1-scores, so we remove 
groups that include only examples labelled as ‘no_relation’ 
(otherwise, in the stratified results zero micro F1-scores 
will be reported for these groups which are unrepresenta-
tive). Because only Late-Fusion and MTS-BioBERT integrate 
dependency information, we analyse only these two models. 
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Figure 6. RE performance on the subset of sentences used for manual dependency analysis: (a) stratified by the number of erroneous dependency links 
identified in full parses and (b) stratified by the number of erroneous dependency links in SDPs.

Table 7. Spearman’s rank coefficient 𝑟𝑠 between number of errors (in full 
sentences and in SDPs) and micro F1-score that syntax-enhanced models 
obtain

Model rs P-value

# total errors
 Late-Fusion −0.20 0.70
 MTS-BioBERT −0.44 0.38
# errors in the SDP
 Late-Fusion −0.40 0.60
 MTS-BioBERT −0.40 0.60

This result is visualized in Figure 6. To highlight the signif-
icance of results for each group, the width of the bars is 
proportional to the number of examples for each group. We 
observe that both figures show no negative correlation.

Mathematically, the size of the subset on which we perform 
manual analysis is relatively small and there exist outliers: for 
example, Late-Fusion obtains 1.0 F1-score on sentences with 
four total errors, and obtains 0.0 F1-score with three errors in 
the SDP. So we choose to compute Spearman’s rank coefficient 
between the numbers of errors and corresponding micro F1-
scores. The result is summarized in Table 7. Spearman’s rank 
coefficients indicate that there is no strong negative correla-
tion in either cases (high P-values indicate that two variables 
are uncorrelated, which is the null hypothesis in the com-
putation of Spearman’s rank coefficient), which is coherent 
with our previous observation from the figures. Therefore, we 
conclude that errors in the dependency parse do not lead to 
degradation of RE performance. This may be explained by 
the fact that errors in dependency parses are often ‘local’, and 
our proposed syntax-enhanced models search to capture the 
linkage of full-dependency graph or geometric properties of 
full-dependency trees. To summarize, our hypothesis about 
relating degradation of syntax-enhanced models to the quality 
of syntactic parsing does not hold, since by manually examin-
ing dependency parses of Stanza on a randomly selected subset 
of sentences, we observe a rather good decision; at the same 
time, there is no strong negative correlation between the num-
ber of errors in the dependency parsing (either in full sentences 
or in SDPs) and the RE performance. 

However, due to time limitations, we have focused our 
analysis on dependency parses. To be more thorough and give 

a more definitive conclusion on the impact of parsing quality, 
analysis on constituency parses should also be performed. We 
plan to do this in future work.

Training difficulties
Besides the quality of syntactic parsers, we also hypothesize 
that the degradation in performance of the CT-BioBERT and 
MTS-BioBERT models may be due to the difficulty of train-
ing neural networks. We had speculated that constituency tag 
information and hierarchical information of the constituency 
tree encoded in the linearized sequence would compensate the 
possible degradation caused by adding constituent tags as new 
wordpieces, but this hypothesis is not supported by the results. 
For MTS-BioBERT, using a same learning rate to jointly train 
the neural network on three tasks may not be ideal to make a 
balance between three training objectives.

Difference between syntax-enhanced models and 
BioBERT
Although we observe degraded performance of syntax-
enhanced models, it remains unclear how these models behave 
differently compared to BioBERT. We examine the following 
questions: although syntax degrades performance in gen-
eral, (i) do syntax-enhanced models make unique errors that 
BioBERT does not make and vice versa? and (ii) do syntax-
enhanced models improve performance on some examples?

To answer the first question, we choose the best syntax-
enhanced model CE-BioBERT and find mistakes in the vali-
dation set that occur solely for CE-BioBERT and BioBERT, 
respectively. There exist 212 CE-BioBERT-only mistakes and 
272 BioBERT-only mistakes. Because it is hard to manually 
examine these examples and find the differences, we choose 
to calculate statistics for the two groups of mistakes: surface 
distance between the arguments of a candidate relation; the 
length of the dependency path between the subject and the 
object of a candidate relation and sentence length. The result 
is shown in Table 8. We observe that BioBERT make mistakes 
on examples which consist of slightly longer sentences and 
longer distance between the arguments. This observation leads 
us to hypothesize that CE-BioBERT might perform better than 
BioBERT in cases where inter-argument distance of the target 
relation is longer. 
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To answer the second question, from our previous obser-
vation we hypothesize that syntax may help identify relations 
on examples in which two arguments of a candidate relation 

are far from each other, because the subject–object distance 

Figure 7. Stratified results on DrugProt validation set: Examples in the validation set are regrouped based on their subject–object surface distances. 
Intervals are of length 5 except two special cases 0 and ≥40. For each interval, the number of examples that fall in this interval is shown on top of bars.

Figure 8. Stratified results on the DrugProt validation set (surface distance ≥40): Examples in the validation set are regrouped based on their 
subject–object surface distances. For each interval, the number of examples that fall in this interval is shown on top of the bars.
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Table 8. Statistics on mistakes that only occur for CE-BioBERT and only 
for BioBERT. Surface distance refers to inter-argument distance, and SDP 
length refers to the length of the SDP between arguments

Model Surface distance SDP length Sentence length

BioBERT 17.2 4.8 43.7
CE-BioBERT 16.3 4.5 43.0

of the target relation is shortened due to integrated depen-
dency information (by a shortened syntactic path) or con-
stituency information (by grouping words into constituents). 
We thus stratify examples in the validation set based on 
subject–object surface distance (e.g. if the subject is before 
the object, the subject–object surface distance equals the 
number of tokens between the last token of the subject and 
the first token of the object) and then compare the per-
formance of BioBERT and of all syntax-enhanced models. 
We first divide all possible distances into intervals to get a 
general overview of the stratified results. The result is shown 
in Figure 7. It is worth noting that for examples in which 
the subject and the object refer to the same token, there are 
1153/1167 examples labelled ‘no_relation’ (true negatives), 
and this label is excluded in the calculation of the micro 
F1-score. Besides, we observe that CE-BioBERT performs bet-
ter than BioBERT in multiple cases, which is coherent with the 
fact that CE-BioBERT outperforms BioBERT on the valida-
tion set (which is not the case on the test set). We observe also 
that when the subject–object surface distance is superior or 
equal to 40, CE-BioBERT, CT-BioBERT and Late-Fusion out-
perform BioBERT, which validates our hypothesis about pos-
sible improvements brought by syntax-enhanced models in 
cases where the distance between two arguments of candidate 
relation is long. We further subdivide the interval ‘superior or 
equal to 40’ into five intervals and show the result in Figure 8. 
We observe that for each interval, syntax-enhanced mod-
els outperform BioBERT, which confirms that syntax helps 
improve the performance of RE on examples in which the 
subject–object surface distance is relatively long (≥40). How-
ever, due to the limited number of these examples (≈2.7%), 
the overall performance of syntax-enhanced models is worse 
than BioBERT. This gives us a clue towards building a hybrid 
system consisting of BioBERT and syntax-enhanced models 
and uses them respectively on examples with short-distance 
arguments and long-distance examples during the inference 
stage. Because labels of the DrugProt test set are unavailable 
and there exists a huge amount of dummy data in the test 
set, it is impossible to know how many long-distance exam-
ples are used for evaluation, and we leave this part for future
work.

Conclusion
In this work, we investigate the effect of integrating syn-
tactic information into pre-trained BioBERT models on a 
chemical–drug RE task. We conduct experiments with our 
proposed syntax-enhanced architectures CE-BioBERT, CT-
BioBERT and MTS-BioBERT, along with an existing syntax-
enhanced architecture (Late-Fusion) on the DrugProt corpus 
from the BioCreative VII track 1 shared task. By comparing 
the performance of syntax-enhanced architectures with three 
baseline models, we find that these syntax-enhanced models 

degrade, to varying degrees, the performance of BioBERT in 
general. We also investigate a hypothesis relating the quality 
of syntactic parses and the degradation of RE performance 
by manually analysing dependencies on a randomly selected 
sentence from the DrugProt validation set. The result shows 
that there is no negative correlation between the number of 
errors in dependency parses obtained from an off-the-shelf 
parser Stanza and the RE performance. Although syntax-
enhanced models are found to degrade the general RE per-
formance, stratified results on the validation set show that 
syntax-enhanced models improve the performance of RE on 
examples in which the subject–object (arguments of the tar-
get relation) surface distance is long (≥40). In future work, we 
will investigate more thoroughly the impact of parsing quality, 
suggest to build hybrid systems that ensemble both BioBERT 
and syntax-enhanced models and choose different models at 
inference stage based on subject–object surface distances. We 
also plan to test our models and perform analyses on other 
specialized corpora besides the DrugProt corpus. This will 
allow us to draw more nuanced conclusions regarding the 
injection of syntax into BERT models for RE in the biomedical 
domain. Additionally, we plan to look at other types of infor-
mation to integrate into the models, such as information from 
biomedical knowledge bases, which might be more stable and 
more reliable than syntactic parsing.
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