
HAL Id: hal-03799264
https://hal.science/hal-03799264v2

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Majorization-minimization for Sparse Nonnegative
Matrix Factorization with the β-divergence

Arthur Marmin, José Henrique de M Goulart, Cédric Févotte

To cite this version:
Arthur Marmin, José Henrique de M Goulart, Cédric Févotte. Majorization-minimization for Sparse
Nonnegative Matrix Factorization with the β-divergence. IEEE Transactions on Signal Processing,
2023, 71, pp.1435-1447. �10.1109/TSP.2023.3266939�. �hal-03799264v2�

https://hal.science/hal-03799264v2
https://hal.archives-ouvertes.fr

ar
X

iv
:2

20
7.

06
31

6v
3

 [
cs

.L
G

]
 9

 M
ay

 2
02

3
1

Majorization-minimization for Sparse Nonnegative

Matrix Factorization with the β-divergence
Arthur Marmin, José Henrique de Morais Goulart, and Cédric Févotte, Fellow, IEEE

Abstract—This article introduces new multiplicative updates
for nonnegative matrix factorization with the β-divergence and
sparse regularization of one of the two factors (say, the activation
matrix). It is well known that the norm of the other factor (the
dictionary matrix) needs to be controlled in order to avoid an
ill-posed formulation. Standard practice consists in constraining
the columns of the dictionary to have unit norm, which leads
to a nontrivial optimization problem. Our approach leverages a
reparametrization of the original problem into the optimization of
an equivalent scale-invariant objective function. From there, we
derive block-descent majorization-minimization algorithms that
result in simple multiplicative updates for either ℓ1-regularization
or the more “aggressive” log-regularization. In contrast with
other state-of-the-art methods, our algorithms are universal in
the sense that they can be applied to any β-divergence (i.e., any
value of β) and that they come with convergence guarantees.
We report numerical comparisons with existing heuristic and
Lagrangian methods using various datasets: face images, an
audio spectrogram, hyperspectral data, and song play counts.
We show that our methods obtain solutions of similar quality
at convergence (similar objective values) but with significantly
reduced CPU times.

Index Terms—Nonnegative matrix factorization (NMF), beta-
divergence, majorization-minimization method (MM), sparse reg-
ularization

I. INTRODUCTION

Nonnegative matrix factorization (NMF) consists in decom-

posing a data matrix V with nonnegative entries into the

products WH of two nonnegative matrices [1], [2]. When

the data samples are arranged in the columns of V, the first

factor W can be interpreted as a dictionary of basis vectors

(or atoms). The second factor H, termed activation matrix,

contains the expansion coefficients of each data sample onto

the dictionary. NMF has found many applications such as

feature extraction in image processing and text mining [2],

audio source separation [3], blind unmixing in hyperspectral

imaging [4], [5], and user recommendation [6]. For a thorough

presentation of NMF and its applications, see [7]–[9].

NMF is usually cast as the minimization of a well-chosen

measure of fit between V and WH. A widespread choice for

the measure of fit is the β-divergence, a family of divergences

This work is supported by the European Research Council (ERC
FACTORY-CoG-6681839), the French Agence Nationale de la Recherche
(ANITI, ANR-19-P3IA-0004) and the National Research Foundation, Prime
Minister’s Office, Singapore under its Campus for Research Excellence and
Technological Enterprise (CREATE) programme.

A. Marmin is with Aix-Marseille Université, CNRS, I2M, UMR 7373,
Marseille, France (email: arthur.marmin@univ-amu.fr).

J. H. de M. Goulart is with IRIT, Université de Toulouse, Toulouse INP,
Toulouse, France (e-mail: henrique.goulart@irit.fr).

C. Févotte is with IRIT, Université de Toulouse, CNRS, Toulouse, France
(email: cedric.fevotte@irit.fr).

parametrized by a single shape parameter β ∈ R. This family

notably includes the squared Frobenius norm (quadratic loss)

as well as the Kullback-Leibler (KL) and Itakura-Saito (IS)

divergences [10], [11]. NMF is well-known to favor part-based

representations that de facto produce a sparse representation

of the input data (because of the sparsity of either W or

H) [2]. This is a consequence of the nonnegativity constraints

that produce zeros on the border of the admissible domain of

W and H. However, it is sometimes desirable to accentuate

or control the sparsity of the factors by regularizing NMF

with specific sparsity-promoting terms. This can improve the

interpretability or suitability of the resulting representation as

illustrated in the seminal work of Hoyer [12], [13].

Sparse regularization using penalty terms on the factors

is the most common approach to induce sparsity. A classic

penalty term is the ℓ1 norm (the sum of the entries of the

nonnegative factor), used for example in [12], [14]–[19]. Other

ℓp norms such as the ℓ1/2 norm have also been considered,

e.g., [20], [21]. Other works have considered log-regularization

(i.e., penalizing the sum of the logarithms of the entries of the

factor) which leads to more “aggressive” sparsity, e.g., [22]–

[24]. Sparse regularization with information measures is also

considered in [25], [26]. Another approach to induce sparsity

consists in applying hard constraints to the factors (rather than

mere penalization), using ℓ0 constraints [27], [28] or using the

sparseness measure introduced in [13]. Regularization of NMF

with group-sparsity has also been a very active topic, see, e.g.,

early references [22], [23], [29].

In this paper, we assume without loss of generality that the

sparse regularization is applied to H (our results apply equally

as well to W by transposing V and exchanging of the roles

of W and H). NMF with sparse regularization of H requires

controlling the norm of W. Indeed, the measure of fit only

depends on the product of W and H while the regularization

term solely depends on H: it is then possible to arbitrarily

decrease the overall objective function by decreasing the scale

of H and increasing the scale of W (this will be made more

precise in Section II-B). There are two main approaches to

control the norm of W. The first and most common approach,

used in many of the references above, e.g., [12]–[14], [16],

[17], consists in imposing that the norms (either ℓ1 or ℓ2)

of the individual columns of W are less or equal to one.1

The second approach consists of merely penalizing the norm

of W by adding a supplementary regularization term to the

objective function, e.g., [15]. The first approach fits well with

1As a matter of fact, it is easy to show that imposing the norms of the
columns to be less than 1 actually produces solutions with saturated norm
equal to 1 [17].

http://arxiv.org/abs/2207.06316v3

2

the dictionary learning view of matrix factorization. It means

that the atoms of the dictionary (the columns of W) are

normalized and only convey shape information. All scaling

information is relegated to the coefficients of the activation

matrix W. It is also consistent with traditional NMF practice

(i.e., NMF without sparsity constraints) where the columns of

W are often renormalized (together with the rows of H) after

every iteration in order to solve the scale ambiguity between

W and H. The second approach (penalization of the norm

of W) leads to more simple optimization problems but is

less interpretable in the perspective of dictionary learning as

it is bound to return columns of unequal norms. In this paper

we consider the first and most common approach. Next, we

review methods that have been proposed to enforce the unit-

norm constraint on the columns of W in the context of sparse

NMF with the β-divergence.

A. State of the art

A first strategy, employed in [12], [17], consists in using

projected gradient descent for the update of W. This procedure

works well with the quadratic loss function and unit ℓ2 norm

constraint that is used in those papers.

A second strategy consists in reparametrizing W as

WDiag−1(‖w1‖ , . . . , ‖wK‖), where wk denotes the k-th

column of W, and optimizing over the new rescaled vari-

able. This approach was proposed in [14] for NMF with

the quadratic loss and was extended to NMF with the β-

divergence (referred to as β-NMF in the following) in [30].

The proposed update for W is heuristic (it will be presented

in Section III-B); while successful in practice, it lacks a

proof of convergence (in particular, it does not ensure non-

increasingness of the objective function as it will be illustrated

in Section VI-C1).

A third strategy consists in following a Lagrangian approach

and minimizing an augmented objective function that includes

the desired constraints on the columns of W. This is the

approach pursued in [31] for β-NMF and described in Sec-

tion III-A. Unfortunately, practical updates are only obtained

for β ≤ 1 and specific values β ∈ { 54 ,
4
3 ,

3
2 , 2}. This excludes

most of the interval β ∈]1, 2[which is of applicative interest.

For admissible values of β, this method offers theoretical

guarantees and good experimental performance. However,

the update of Lagrangian multipliers requires a numerical

procedure that can be costly. In the special case β = 1,

the Lagrangian multipliers have a closed-form expression that

simplifies the updates (see, e.g., [32]).

Finally, a last strategy consists in rewriting sparse NMF

as the optimization of an equivalent scale-invariant objective

function. In this approach, detailed in Section IV, the rows

of H are multiplied by the norms of the columns of W

and the new objective function can be optimized without

norm constraints. In this scheme, the columns of W can be

normalized at the end of the optimization (and the rows of

H rescaled accordingly). This approach was applied to NMF

with the IS divergence and log-regularization in [22] and to

NMF with the KL divergence and a Markov regularization of

the rows of H in [33]. In these two cases, a block-descent

Majorization-Minimization (MM) algorithm was proposed.

The approach is well-posed and does not rely on any heuristic.

The MM algorithm results in simple multiplicative updates that

ensure non-increasingness of the objective function.

B. Contributions

In this paper, we generalize the approach of [22], [33] to

NMF with every possible β-divergence, i.e., for all β ∈ R

and not merely β = 0 and β = 1. More precisely, we first

design a universal block-descent MM algorithm for β-NMF

with ℓ1-regularization of H, and unit ℓ1 norm constraint on

the columns of W. This algorithm extends [33], that was

specifically designed for the KL divergence and a different

regularization term. Then, we design another universal block-

descent MM algorithm for β-NMF with log-regularization of

H, and unit ℓ1 norm constraint on the columns of W. The

algorithm extends [22] that was aimed at the IS divergence

solely. In both cases, the block-descent MM approach leads

to alternating multiplicative updates that are free of tuning

parameters. They are easy to implement and enjoy linear

complexity per iteration. By design, the MM framework

ensures the non-increasingness and thus the convergence of

the objective function. We further show the convergence of

the iterates to the set of stationary points of the problem using

the theoretical framework of [19].

Then we demonstrate the practical advantages of our method

with extensive simulations using datasets arising from various

applications: face images, audio spectrogram, hyperspectral

data and song play-counts. We compare our MM algorithm for

ℓ1-regularized β-NMF with the heuristic presented in [30] and

also with the Lagrangian method from [31]. Additionally, we

adapt the heuristic of [30] for β-NMF with log-regularization

and compare it with our MM algorithm. In all cases, we

show that our MM algorithms obtain solutions whose qual-

ity is similar to that of existing algorithms at convergence

(similar objective values) but often with significantly reduced

CPU times. Moreover, our algorithms overcome some of

the limitations of these other approaches, namely that the

heuristic [30] has no convergence guarantees and that the

Lagrangian approach [31] cannot be applied to any value of

β.

C. Outline

The rest of this article is organized as follows. Section II

introduces β-NMF with ℓ1-regularization of the activation

matrix H. It explains the necessity of controlling the norm

of W to formulate a well-posed optimization problem. Sec-

tion III details the state of the art for the latter problem,

and more precisely the heuristic method [30] and the La-

grangian method [31]. Section IV presents our universal block-

descent MM algorithm for β-NMF with ℓ1-regularization. The

derivations lead to multiplicative updates with convergence

guarantees. Section V extends the methodology of Section IV

to β-NMF with log-regularization of H. Experimental results

are presented in Section VI and Section VII concludes.

3

D. Notation

The set N denotes the set of natural numbers while J1, NK
denotes its subset containing natural numbers from 1 to N .

The set R+ denotes the set of nonnegative real numbers. Bold

upper case letters denote matrices, bold lower case letters

denote vectors, and lower case letters denote scalars. The

notation [M]ij and mij both stand for the element of M

located at the ith row and the j th column. The operators

⊙ and /, and .α applied to matrices denote the entry-wise

multiplication, division and power α, respectively. For a matrix

M, the notation M ≥ 0 denotes entry-wise nonnegativity. The

vector 1N and the matrix 1F×N are the vector of dimension

N and the matrix of dimension F ×N composed solely of 1
respectively.

II. NMF WITH β-DIVERGENCE AND ℓ1 REGULARIZATION

A. Objective

Our goal is to factorize an F ×N nonnegative data matrix

V into the product WH of two nonnegative factor matrices of

dimensions F ×K and K×N respectively. The inner rank K
is assumed to be a fixed parameter of the problem. Placing a

ℓ1-regularization term on H, we aim at solving the following

problem

min
W,H≥0

J (W,H)
def
= Dβ(V |WH) + α ‖H‖1

s.t. (∀k ∈ J1,KK) ‖wk‖1 = 1 ,
(1)

where ‖H‖1 =
∑

k,n |hkn| =
∑

k,n hkn and α is a nonnega-

tive hyperparameter that governs the degree of sparsity of H.

The data-fitting term Dβ is defined as

Dβ(V |WH) =

F
∑

f=1

N
∑

n=1

dβ(vfn | [WH]fn) ,

where dβ is the β-divergence [10], [11] given by

dβ(x | y) =

x log x
y − x+ y if β = 1

x
y − log x

y − 1 if β = 0

xβ

β(β−1) +
yβ

β −
xyβ−1

β−1 otherwise.

The choice of β can be made in accordance with the applica-

tion or the assumed noise model for V [11]. Common values

for β are 0, 1, and 2; they correspond to the IS divergence,

KL divergence and squared Frobenius norm, respectively. The

range β ∈ [0, 2] is the one with largest practical interest.

Values of β ∈ [0, 0.5] are, for example, customary in audio

spectral decomposition [34], [35]. Values of β ∈ [1, 2] have

proven efficient in hyperspectral unmixing [36]. Note that the

latter interval is important because the β-divergence dβ(x|y)
is convex with respect to (w.r.t.) y when β ∈ [1, 2]. In that

case, the optimization subproblems in W and H are separately

convex, though J (W,H) is always jointly non-convex.

B. Necessity of the constrained formulation

As mentioned in Section I, removing the unit-norm con-

straint in (1), i.e., solving

min
W,H≥0

Dβ(V |WH) + α ‖H‖1 (2)

would lead to an ill-posed problem. Indeed, Dβ suffers from

a scaling ambiguity since it only depends on the product

WH and not on W and H separately. As a consequence,

Problem (2) is ill-posed: for any solution (W∗,H∗), there

is always a solution (τW∗, 1τH
∗), with τ > 1 a positive real

constant, that yields a better minimizer, i.e., J (τW∗, 1τH
∗) <

J (W∗,H∗). Hence, the function J is not coercive: for any

feasible point (W,H), we can find a real number τ > 1
such that the sequence

{

τkW, 1
τkH

}

k∈N
remains feasible but

diverges in norm while the sequence
{

J (τkW, 1
τkH)

}

k∈N
is

decreasing and bounded. Therefore, the infimum of (2) is never

attained and there exists no minimizer (W∗,H∗).

Controlling the norm of W is a natural way of tackling the

ill-posedness of (2). This can be done by adding a penalizing

term ‖W‖ (for a chosen norm) to J (W,H) [15], [19].

Alternatively, we may minimize J (W,H) subject to the

additional constraint ‖W‖ ≤ θ where θ is a positive hyper-

parameter (it can be easily shown that this returns solutions

such that ‖W‖ = θ) [28], [37]. We chose in this paper

to minimize J (W,H) subject to the additional constraint

that the individual columns of W have unit norm, leading

to Problem (1). This is a rather natural option for dictionary

learning, as it makes sense to retrieve atoms (the columns of

W) that have equal norm. Instead, a constraint on the norm of

the full matrix W can return a solution with atoms of different

weights. We chose to constrain the ℓ1 norm of the columns

of W for practical commodity. Section III presents the state-

of-the-art methods for solving Problem (1) [30], [31] while

Section IV introduces our block-descent MM algorithm.

III. STATE OF THE ART

A. Lagrangian method

A standard method to solve optimization problems with

constraints is the method of Lagrange multipliers. This method

has been suggested by [31] to solve β-NMF under a wide

possibility of linear equality constraints on either W or H.

The Lagrangian associated to Problem (1) can be written as

L(W,H,ν)
def
=

Dβ(V |WH) + α ‖H‖1 −

K
∑

k=1

νk(‖wk‖1 − 1) , (3)

where ν = [ν1, . . . , νK]
⊤
∈ R

K is the vector of Lagrangian

multipliers.

The saddle points of L(W,H,ν) subject to W,H ≥ 0
yield solutions of Problem (1). As such, the authors of [31]

describe a block-coordinate algorithm that alternately updates

the blocks W, H, and ν. Given ν, the individual updates of

W, H are handled with one step of block-descent MM, using

the methodology of [11], [38] (see also Section IV-B). 2 This

2To be accurate, [31] uses a slightly different formulation. Indeed, instead
of optimizing the Lagrangian (3) associated to Problem (1), they optimize
the Lagrangian associated with the problem of minimizing a majorizer of
C(W) = Dβ(V|WH) subject to unit norm constraints. The resulting
updates turn out to be the same.

4

leads to the following updates when β ≤ 1

H ←− H⊙

(

W
⊤
Sβ

W⊤Tβ + α

). 1
2−β

(4)

W ←− W ⊙

(

SβH
⊤

TβH
⊤ − 1Fν

⊤

). 1
2−β

, (5)

where the matrices Sβ and Tβ are defined as

Sβ = V ⊙ (WH)
.(β−2)

, (6)

Tβ = (WH)
.(β−1)

. (7)

Other closed-form updates can be obtained for β ∈
{ 54 ,

4
3 ,

3
2 , 2}. In every case, only the update of W depends on

ν, which we highlight next with the abusive notation W(ν).
The k-th multiplier νk must ensure that W(ν) given by (5)

satisfies ‖wk(νk)‖1 = 1, i.e.,
∑

f

wfk(νk) = 1 .

The latter equation involves finding the root of a rational func-

tion and has no closed-form solution. However, the authors

of [31] show that it has a unique solution that can be estimated

with a standard Newton-Raphson procedure in about 10 to

100 subiterations. The solution is also shown to ensure that

the denominator in (5) remains positive so that the update is

well-defined and preserves nonnegativity.

Overall, the Lagrangian method [31] is conceptually well-

grounded and elegant. It ensures that W satisfies the desired

norm constraint at every iteration and also ensures non-

increasingness of J (W,H). However it applies to specific

values of β and requires a numerical subroutine for the

estimation of the Lagrange multipliers.

B. Heuristic multiplicative updates

Another way to solve Problem (1) was proposed in [14]

for NMF with the quadratic loss and extended to β-NMF

in [30]. It consists first in formulating (1) as an unconstrained

problem based on a reparametrization of the factor W. More

precisely, the factor W is replaced by the normalized factor

WΛ
−1, where Λ is a K × K diagonal matrix with entries

λk = ‖wk‖ and ‖.‖ is some chosen norm. The original

papers [14], [30] consider ℓ2 normalization. We adapt their

methodology to ℓ1 normalization for a fair comparison with

the other methods considered in this paper. This results in the

following minimization problem

min
W,H≥0

J̃ (W,H)
def
= Dβ

(

V |WΛ
−1

H
)

+ α ‖H‖1 . (8)

The authors of [14], [30] then propose to solve Problem (8)

using a block-alternating algorithm that updates W and H in

turns. Multiplicative updates for each factor are obtained by

employing a heuristic commonly used in NMF, see [34], [39].

Looking at the update of W, the heuristic first consists in

decomposing the gradient ∇WJ̃ (W,H) of J̃ (W,H) w.r.t.

W into the difference of two nonnegative functions, i.e.,

∇WJ̃ = ∇+
W
J̃ − ∇−

W
J̃ . Such a decomposition does exist

for the considered function, though it might not exist for other

problems. Then, given a current iterate of H, a multiplicative

update of W is constructed as

W ←− W ⊙
∇−

W
J̃ (W,H)

∇+
W
J̃ (W,H)

. (9)

The motivating principle of update (9) is as follows. Assume

that [∇WJ̃]fk > 0 for a given coefficient wfk, then the ratio

in (9) is lower than 1 and the multiplicative update decreases

wfk as it can be expected from a descent algorithm. Likewise,

update (9) increases the value of wfk when the gradient is

negative. The heuristic works well in practice but does not

come with any guarantee. In particular, it does not ensure

that J̃ decreases at every iteration (and it turns out that J̃
sometimes increases). Applying the heuristic to W and H in

Problem (8) leads to the following updates

H ←− H⊙
W

⊤
Sβ

W⊤Tβ + α
(10)

W ←− W ⊙
SβH

⊤ + 1F×F (W ⊙TβH
⊤)

TβH
⊤ + 1F×F (W ⊙ SβH

⊤)
(11)

W ←− WΛ
−1 , (12)

where Sβ and Tβ are defined in (6) and (7).

Note that the updates (4) and (10) coincide up to the

exponent 1/(2 − β). As a matter of fact, when the other

variables are fixed, the problems of minimizing L and J̃ w.r.t.

H are identical, but solved differently. The MM update (4)

can be generalized to all values of β as shown in [23,

Supplementary Material], [19]. This means that we could use

a theoretically-grounded MM update of H instead of the

heuristic (10). However, omitting the exponent often results

in a beneficial acceleration in practice and we stick to the

formulation of [30] given by (10) for fair comparison.

In summary, the approach proposed by [30] is intuitive,

easy to implement, and applicable in principle for all values

of β. Unfortunately, it lacks theoretical support. In the next

section, we present a theoretically sound algorithm that results

in equally simple multiplicative updates with equal or better

performance.

IV. A UNIFIED BLOCK-DESCENT MM ALGORITHM FOR

β-NMF WITH ℓ1 REGULARIZATION

In this section, we first reformulate (1) into a well-posed

optimization problem that is free of norm constraints. This

is similar to the approach of [30] except that we use a

different reformulation. The reformulated problem allows to

derive a block-descent MM algorithm that results in simple

multiplicative updates for both W and H. By design, the

algorithm ensures that the objective function values are non-

increasing and convergent. Additionally, we show that the

sequence of iterates produced by the algorithm also converges.

A. Equivalent scale-invariant objective function

1) Reformulation without norm constraints: Let us intro-

duce the following problem

min
W,H≥0

J̌ (W,H)
def
= Dβ(V |WH) + α ‖ΛH‖1 , (13)

5

where Λ is defined like in Section III-B, i.e., Λ =
Diag (‖w1‖1 , . . . , ‖wK‖1). Let us denote by F the feasible

set of Problem (1), i.e.

F = {(W,H) ∈ R
F×K
+ ×RK×N

+ |(∀k ∈ J1,KK) ‖wk‖1 = 1} .

Then for any (W,H) ∈ F, we have J̌ (W,H) = J (W,H).
The following lemmas show that Problem (13) and Prob-

lem (1) are equivalent.

Lemma 1. Let (W∗,H∗) ≥ 0 be a solution of Prob-

lem (13). Let us define their renormalized equivalents by

W̄
∗ = W

∗
Λ

∗−1 and H̄
∗ = Λ

∗
H

∗ where Λ
∗ =

Diag
(

‖w∗
1‖1 , . . . , ‖w

∗
K‖1

)

. Then, (W̄∗, H̄∗) is a solution of

Problem (1).

Proof. Assume that W̄
∗, H̄

∗ is not a solution of Prob-

lem (1). Then, there exists (W̄+, H̄+) ∈ F such that J (W̄+,

H̄
+) < J (W̄∗, H̄

∗). By design, we have J (W̄∗, H̄∗) =
J̌ (W∗,H∗). Furthermore, J (W̄+, H̄

+) = J̌ (W̄+, H̄
+).

It follows that J̌ (W̄+, H̄+) < J̌ (W∗,H∗), which contra-

dicts the assumption that (W∗,H∗) is a solution of Prob-

lem (13).

Lemma 2. Let (W̄∗, H̄∗) ∈ F be a solution of Problem (1).

Then (W̄∗, H̄∗) is a solution of Problem (13).

Proof. This follows from J̌ (W̄, H̄) = J (W̄, H̄) when

(W̄, H̄) ∈ F.

Thanks to Lemma 1, we can solve Problem (13) without

norm constraints and renormalize the solution to obtain a

solution to Problem (1).

2) Symmetry of the roles of W and H: Note that the

penalty term ‖ΛH‖1 in (13) now depends on W. Interestingly,

it can be expanded and written as follows

‖ΛH‖1 =
∑

k,n

‖wk‖1 hk,n =
∑

f,k,n

wfkhkn =
∑

f,k

‖hk‖1 wfk,

(14)

where hk denotes the kth row of H, and the indices f, k, n
run from 1 to F,K,N , respectively. This shows that the

updates of H and W in alternating minimization correspond

to equivalent problems: the roles of H and W can be

exchanged by transposition of V. However, this property is

specific to sparse NMF with ℓ1-regularization and unit ℓ1-norm

constraints. The symmetry does not hold for example for the

log-regularization considered in Section V. Going further, our

study shows that sparse NMF with ℓ1-regularization and unit

ℓ1-norm constraints is equivalent to decomposing the matrix

V into sparse rank-1 matrices. This is because (14) can also be

written as ‖ΛH‖1 =
∑

k ‖wkhk‖1, which induces a mutual

sparsity of W and H. Note that this is not a consequence of

the reformulation (13), but instead revealed by the equivalence

between (13) and (1). Next, we describe a block-descent MM

algorithm for Problem (13). We start by recalling the principle

of MM.

B. Principle of majorization-minimization

MM is a two-step iterative optimization method with a

long history and renewed interest, see recent overviews [40],

[41]. Let C(X) be a real-valued function to minimize over

its domain E, where X is a matrix variable of arbitrary size.

Let X̃ ∈ E be a current iterate. The majorization step of MM

consists of building an auxiliary function G(X|X̃) which is an

upper bound of C that is locally tight at X̃. Mathematically,

it must satisfy the two following properties

(∀X ∈ E) G(X | X̃) ≥ C(X) (15)

G(X̃ | X̃) = C(X̃) . (16)

The minimization step of MM consists in minimizing

G(X|X̃) w.r.t. X, or at least finding an update X̂ such that

G(X̂|X̃) ≤ G(X̃|X̃). This results in the following descent

lemma

C(X̂) ≤ G(X̂ | X̃) ≤ G(X̃ | X̃) = C(X̃) . (17)

As such, MM ensures by design that the objective function C
is non-increasing at every iteration. Convergence of the iterates

of X is not straightforward and usually involves problem-

dependent assumptions, see, e.g., [19] for NMF. Next, we

apply MM to alternating minimization of W and H for

Problem (13).

C. Construction of an auxiliary function for sparse NMF

In this section we are interested in the minimization of

the functions H 7→ J̌ (W,H) (with fixed W) and W 7→
J̌ (W,H) (with fixed H). As explained at the end of Sec-

tion IV-A, these two optimization problems are essentially

the same and we will only address the first one. Given

W, our strategy to build an auxiliary function G(H|H̃) for

C(H) = Dβ(V|WH) + α ‖ΛH‖1 consists in majorizing the

data-fitting and regularization terms separately, and adding up

the resulting functions.

1) Majorization of the data-fitting term: Producing an

auxiliary function for the data-fitting term H 7→ Dβ(V|WH)
is a well-known problem and we use the existing results

of [11], [38], [42]. For all values of β, the data-fitting term

can be decomposed into the sum of a convex function and a

concave function. The convex term may be majorized using

Jensen’s inequality while the concave term may be majorized

with the tangent inequality. Adding up the two resulting

functions results in the auxiliary function Gβ(H|H̃) given in

Table I. This procedure has been used in many NMF papers,

including [31], and the details can be found in [11].

2) Majorization of the regularization term: We now address

the majorization of S(H) = ‖ΛH‖1 =
∑

k,n λkhkn, where

we recall that λk = ‖wk‖1. We need to distinguish two cases:

when β ≤ 1, no majorization of S is actually needed. Indeed,

in that case we may use

G(H | H̃) = Gβ(H | H̃) + αS(H) , (18)

because G(H|H̃) has a simple closed-form minimizer, given

in Section IV-D. When β > 1, this property is no longer

true. In that case, we need to majorize S(H) as well. Fol-

lowing [38], we use the following inequality that holds for

h, h̃ > 0 and β > 1

h ≤
h̃

β

(

h

h̃

)β

+ h̃

(

1−
1

β

)

. (19)

6

TABLE I: Expression of the auxiliary function Gβ(H|H̃) for

the data-fitting term H 7→ Dβ(V|WH), up to an additive

constant (from [11]). We use the following notations: p̃kn
denotes the elements of the matrix W

⊤
S̃β , where S̃β is

computed from (6) with H = H̃. Similarly, q̃kn denotes the

elements of W⊤
T̃β .

Gβ

(

H|H̃
)

β < 1
∑

k,n

[

q̃knhkn −
1

β − 1
p̃knh̃kn

(

hkn

h̃kn

)β−1
]

β = 1
∑

k,n

[

q̃knhkn − p̃knh̃kn log

(

hkn

h̃kn

)]

β ∈ (1, 2]
∑

k,n

[

1

β
q̃knh̃kn

(

hkn

h̃kn

)β

−
1

β − 1
p̃knh̃kn

(

hkn

h̃kn

)β−1
]

β > 2
∑

k,n

[

1

β
q̃knh̃kn

(

hkn

h̃kn

)β

− p̃knh̃kn

]

Note that the inequality is tight when h = h̃. Applied term

to term to S(H), this leads to the following majorizer of the

regularization term

GS(H | H̃) =
∑

k,n

λk
h̃kn
β

(

hkn

h̃kn

)β

+ cst ,

where cst contains terms that are constant w.r.t. hkn. 3 In the

end, when β > 1, we use

G(H | H̃) = Gβ(H | H̃) + αGS(H | H̃) ,

which admits a simple closed-form solution given in the

next section. The extra majorization step (19) essentially

allows G(H|H̃) to be composed of monomials of only two

different orders, β and β − 1, hence allowing for closed-form

minimization.

D. Minimization of the auxiliary function

The second step of MM consists of minimizing G(H|H̃)
w.r.t. H. By design, G is smooth, separable and strictly convex

and thus we only need to set its gradient to zero (w.r.t. H).

This step involves standard calculus and leads in the end to

the following update

hkn = h̃kn

(

p̃kn
q̃kn + α ‖wk‖1

)γ(β)

,

where p̃kn and q̃kn are defined in Table I and

γ(β) =

1
2−β if β < 1

1 if β ∈ [1, 2]
1

β−1 if β > 2

.

3We will use the same notation cst in different places to avoid cluttering,
though the constants might be different.

Algorithm 1 MM-SNMF-ℓ1
Input: Nonnegative matrix V, initialization (Winit,Hinit),

and α > 0.
Output: Nonnegative matrices W and H such that V ≈WH with

sparse H.
1: Initialize i to 0.
2: Initialize (Wi,Hi) to (Winit,Hinit).
3: repeat
4: Update Hi using (20):

Ṽ ←WiHi

Hi+1 ← Hi ⊙

W
⊤
i

(

V ⊙ Ṽ
.(β−2)

)

W⊤
i (Ṽ

.(β−1)
+ α1F×N)

.γ(β)

5: Update Wi using (21):

Ṽ ←WiHi+1

Wi+1 ←Wi ⊙

(

V ⊙ Ṽ
.(β−2)

)

H
⊤
i+1

(Ṽ
.(β−1)

+ α1F×N)H⊤
i+1

.γ(β)

6: Increment i.
7: until stopping criterion is met
8: Rescale Wi and Hi:

Λ← Diag
(

(‖wk‖1)k∈J1,KK

)

(Wi,Hi)← (WiΛ
−1

,ΛHi)

9: return (Wi,Hi)

As explained before, a similar update can be derived for wfk

by exchanging the roles of W and H. In the end, this leads

to the following multiplicative matrix updates

H ←− H⊙

(

W
⊤
Sβ

W⊤(Tβ + α1F×N)

).γ(β)

(20)

W ←− W ⊙

(

SβH
⊤

(Tβ + α1F×N)H⊤

).γ(β)

. (21)

A pseudo-code of the resulting procedure, coined MM-SNMF-

ℓ1, is given in Algorithm 1. A few comments are in order. First,

as in standard NMF practice, only one step of MM is applied

to H and W in each iteration. Applying several sub-iterations

brings no benefit in practice. Like J , J̃ or L, the objective

function J̌ is non-convex w.r.t. W and H. When β ∈ [1, 2],
the individual sub-problems in W and H are convex, but

J̌ is still jointly non-convex. As such, initialization matters

and we will present average performance results over several

random initializations in Section VI. Several data-dependent

initialization schemes are presented in [9]. In the next sec-

tion we discuss the convergence of the iterates produced by

Algorithm 1.

E. Convergence

By construction, the sequence of objective values produced

by Algorithm 1 is non-increasing. Because J̌ is bounded

below by zero, the sequence thus converges. The following

theorem additionally states the convergence of the iterates.

7

Theorem 1. For any data matrix V ∈ R
F×N
+ , rank K ∈ N

and regularization parameter α > 0, the sequence of iterates

{Wi,Hi}i∈N generated by Algorithm 1 converges to the set

of stationary points of Problem (13). 4

Proof. The authors in [19] prove the convergence of the

iterates of a block-descent MM algorithm constructed like

Algorithm 1 for the following problem

min
W,H≥0

Dβ(V |WH) + α1 ‖H‖1 + α2 ‖W‖1 .

As a matter of fact, their proof of convergence can be applied

step by step to our own block-descent MM approach for

solving Problem (13). Indeed, the auxiliary functions that we

derived for H and equivalently for W satisfy the five proper-

ties required in [19, Definition 2] to establish convergence.

Using G(H|H̃) for exposition, the five properties are the

following.

• Property 1 and 2 correspond to Equations (15) and (16)

that define a valid auxiliary function.

• Property 3 dictates that ∇hkn
G(H|H̃) is a function of

hkn/h̃kn.

• Property 4 dictates that the directional derivatives of

G(H|H̃) and J̌ (H) coincide at H = H̃.

• Property 5 dictates that G(H|H̃) is strictly convex w.r.t.

H.

Standard calculus and convex analysis show that Properties

3–5 are satisfied by G(H|H̃), whereas Properties 1–2 are

satisfied by construction. The results of [19] also require J̌
to be coercive which is satisfied thanks to the regularization

term ‖ΛH‖1.

V. EXTENSION TO NMF WITH THE β-DIVERGENCE AND

LOG-REGULARIZATION

In this section, we extend the methodology of Section III-B

and Section IV to sparse β-NMF with log-regularization. More

precisely, we are interested in solving

min
W,H≥0

Jlog(W,H) s.t. (∀k ∈ J1,KK) ‖wk‖1 = 1 , (22)

where

Jlog(W,H)
def
= Dβ(V |WH) + α

∑

k,n

log(hkn + ǫ) . (23)

The log-regularization term ψ(x) = log(|x|+ ǫ) used in (23)

was popularized by [43] for sparse linear regression (x ∈ R).

For small positive ǫ, this function is much sharper at the origin

than the ℓ1 norm. As such, it accentuates the sparsity of the

solutions, which can be necessary or desired in practice. In the

context of NMF, it was considered in [22]–[24]. Following the

discussion in Section II-B, the unit-norm constraints in (22)

ensure that the minimization problem is well-posed.

Changing the regularization term in J (W,H) only influ-

ences the update of H in the Lagrangian and heuristic methods

4Due to the coercivity and the continuity of J̌ , the sequence {Wi,Hi}i∈N

has at least one limit point. As such, the convergence of {Wi,Hi}i∈N to
the set of stationary points means that every limit point of {Wi,Hi}i∈N is
a stationary point. A stationary point is defined as a feasible point for which
the necessary optimality condition given by Euler’s inequality holds.

described in Sections III-A and III-B. Indeed, the update of

W is unchanged given H. This is not true with our approach

described in Section IV because the regularization term in

the reformulated scale-invariant objective function depends on

both W and H. Furthermore, under the log-regularization

term, the minimization problems w.r.t. W and H are not

exchangeable anymore but can still be handled in the MM

framework.

In Section V-A, we first extend the method of [30] to

Problem (22) and derive heuristic multiplicative updates that

appear to work in practice. Then, we derive our principled

block-descent MM algorithm in Section V-B. The Lagrangian

method from [31] could be also extended to Problem (22)

for values of β ≤ 1 by combining the update of W in

Section III-A with our update of H in Section V-B. However

this does not change the conclusions of Section III-A about

the limitations of the Lagrangian approach and we chose

to omit this method in our experimental comparisons when

considering log-regularization.

A. Heuristic multiplicative updates

We adapt the approach of [30] by replacing W with WΛ
−1

in (23) and using alternating multiplicative updates of W and

H derived using the heuristic (9). By standard calculus, this

results in the following updates

H ←− H⊙
W

⊤
Sβ

W⊤Tβ + α
H+ǫ

(24)

W ←− W ⊙
SβH

⊤ + 1F×F (W ⊙TβH
⊤)

TβH
⊤ + 1F×F (W ⊙ SβH

⊤)
(25)

W ←− WΛ
−1 , (26)

where Sβ and Tβ are defined in (6) and (7). As stated before,

only the update of H is changed when compared to the updates

derived in Section III-B for β-NMF with ℓ1 regularization.

B. Block-descent majorization-minimization algorithm

We now apply the methodology of Section IV to Prob-

lem (22). Following Section IV-A we can show that Prob-

lem (22) is equivalent to

min
W,H≥0

J̌log
def
= Dβ(V |WH) + α

∑

k,n

ψ (λkhk,n) , (27)

where we recall that λk = ‖wk‖1. As opposed to J̌ , the

roles of W and H are not exchangeable anymore in J̌log and

we now proceed to derive separate MM updates for the two

factors.

1) Update of H: Given W, we start by constructing

an auxiliary function G(H|H̃) for the function C(H) =
Dβ(V|WH)+αS(H), where S(H) =

∑

k,n ψ (λkhk,n). We

use the same notations C, S and G as in Section IV in order

to avoid cluttering. We majorize the data-fitting term with the

same function Gβ(H|H̃) than before, given in Table I. We

now turn to the majorization of S(H).

8

By concavity of the logarithm, the individual summands

of S(H) can be majorized locally at H̃ with the tangent

inequality

ψ(λkhkn) ≤ ψ(λkh̃kn) + λkψ
′(λkh̃k)(hkn − h̃kn) , (28)

where ψ′(x) = 1/(x+ǫ) for all x ∈ R+. From there, we need

to distinguish two cases like in Section IV-C.

When β ≤ 1, we may simply apply (28) to and use the

following auxiliary function for S(H)

GS(H|H̃) =
∑

k,n

hkn

h̃kn + ǫ
λk

+ cst ,

where cst contains terms that are constant w.r.t. hkn. This leads

to an auxiliary function G(H|H̃) = Gβ(H|H̃) + αGS(H|H̃)
that has a simple closed-form minimizer when β ≤ 1. The

minimization is infeasible when β > 1 and we need to resort

to an additional majorization step, using again (19). This leads

to the following auxiliary function for S(H)

GS(H, H̃) =
1

β

∑

k,n

h̃kn

h̃kn + ǫ
λk

(

hkn

h̃kn

)β

+ cst .

In the end, for all β ∈ R, G is a smooth, separable and strictly

convex function that is easily minimized by setting its gradient

to zero. This leads to the following multiplicative update

H ←− H⊙

(

W
⊤
Sβ

W⊤Tβ + α
H+ ǫ

Υ

).γ(β)

, (29)

where Υ = W
⊤
1F×N .

2) Update of W: A very similar strategy can be em-

ployed for the update of W. Given H, we now need to

build an auxiliary function F (W|W̃) for the minimization

of B(W) = Dβ(V|WH) + αR(W), where R(W) =
∑

k,n ψ(hkn ‖wk‖1). The data-fitting term can be majorized

by switching the roles of W and H in Table I; slightly

abusing the notations again we denote the resulting auxiliary

function by Gβ(W|W̃). Let us now address the majorization

of R(W). Given the current update W̃, we may again invoke

the concavity of ψ(x) to form the following inequality

ψ(hkn ‖wk‖1) ≤ ψ(hkn ‖w̃k‖1) +
‖wk‖1 − ‖w̃k‖1
‖w̃k‖1 +

ǫ
hkn

=
1

‖w̃k‖1 +
ǫ

hkn

∑

f

wfk + cst . (30)

From there, we use a path that is similar to the update of H.

When β ≤ 1, we may simply apply inequality (30) to the

summands of R(W) and use the following majorizer

FR(W|W̃) =
∑

f,k

(

∑

n

1

‖w̃k‖1 +
ǫ

hkn

)

wfk + cst .

When β > 1 we need to further majorize the terms wfk

using (19). In the end, the minimization of F (W|W̃) =
Gβ(W|W̃)+αFR(W|W̃) leads to the following multiplica-

tive update of W

W ←− W ⊙

SβH
⊤

TβH
⊤ + 1F×N

(

α
Υ+ ǫ

H

)⊤

.γ(β)

. (31)

Algorithm 2 MM-SNMF-log

Input: Nonnegative matrix V,initialization (Winit,Hinit),
and α > 0.

Output: Nonnegative matrices W and H such that V ≈WH with
sparse H.

1: Initialize i to 0.
2: Initialize (Wi,Hi) to (Winit,Hinit).
3: repeat
4: Υ←W

⊤
i 1F×N

5: Update Hi using (29):

Ṽ←WiHi

Hi+1 ← Hi ⊙

W
⊤
i

(

V ⊙ Ṽ
.(β−2)

)

W⊤
i Ṽ

.(β−1)
+ α

Hi+
ǫ
Υ

.γ(β)

6: Update Wi using (31):

Ṽ←WiHi+1

Wi+1 ←Wi ⊙

(

V ⊙ Ṽ
.(β−2)

)

H
⊤
i+1

Ṽ
.(β−1)

H⊤
i+1 + 1

(

α
Υ+ ǫ

Hi+1

)⊤

.γ(β)

7: Increment i.
8: until stopping criterion is met
9: Rescale Wi and Hi:

Λ← Diag
(

(‖wk‖1)k∈J1,KK

)

(Wi,Hi)← (WiΛ
−1

,ΛHi)

10: return (Wi,Hi)

3) Resulting algorithm and convergence: Our resulting

MM algorithm to address (27) is displayed in Algorithm 2 and

is referred to as MM-SNMF-log. By design, the algorithm en-

sures that the sequence of objective values (J̌log(Wi,Hi))i∈N

is non-increasing and convergent. The convergence of the

iterates can also be proven, using the same rationale as the

proof of Theorem 1. We simply need G and F to verify the

five properties listed in the proof, which is easily checked.

Properties 1–3 hold by construction of the auxiliary functions,

Property 4 can be verified using standard calculus, and Prop-

erty 5 results from convexity properties. In the end, we have

derived the first universal algorithm for sparse β-NMF with

log-regularization. The algorithm is simple to implement, has

linear complexity per iteration and can be applied for any value

of β ∈ R. It is free of tuning parameters and enjoys strong

convergence properties.

VI. EXPERIMENTAL RESULTS

In this section, we compare our MM methods against the

Lagrangian and the heuristic methods presented in Section III

on four different datasets. We first give an example showing

that the heuristic is not a descent algorithm in contrast with our

MM method. We then compare MM-SNMF-ℓ1 described by

Algorithm 1 for solving Problem (1) with its Lagrangian and

heuristic counterparts presented in Sections III-A and III-B.

We refer to the latter two methods as L-SNMF-ℓ1 and H-

SNMF-ℓ1 respectively. We finally compare our algorithm MM-

9

SNMF-log described by Algorithm 2 with H-SNMF-log which

is the variant of the heuristic method given in Section V-A and

aimed at solving Problem (22).

A. Description of the datasets and hyperparameter choices

To compare the algorithms under realistic conditions, we

select four different datasets coming from various applications

that are described below.

• The Olivetti dataset from AT&T Laboratories Cam-

bridge [44] contains 400 greyscale images of faces with

dimensions 64× 64 that are vectorized and stored as the

columns of V. From these images, NMF can be used

to learn part-based features that are represented by the

dictionary of features W [2]. The factor H then contains

the activation encodings of the features for each image

of the collection.

• We generate an audio magnitude spectrogram from an

excerpt of the original recording of the song “Four on

Six” by Wes Montgomery. The signal corresponds to the

first five seconds of the song sampled at 44.1 kHz. The

spectrogram is then computed with a Hamming window

of length 1024 (23ms) and with an overlap of 50%.

The use of NMF in this context consists in extracting

elementary audio time-frequency patterns represented in

W with their temporal activations given by H [3].

• The Moffett dataset is a hyperspectral image with resolu-

tion 50×50 pixels over 189 spectral bands acquired over

Moffett Field in 1997 by the Airborne Visible Infrared

Imaging Spectrometer [45]. Using NMF on such an

image allows extracting a dictionary W of individual

spectra representing the different materials, as well as

their relative proportions stored in H [5].

• The TasteProfile dataset [46] contains counts of songs

played by users of a music streaming service. In this

context, NMF may extract the user preferences repre-

sented by the matrix W as well as the different song

attributes represented by the matrix H [6]. We apply a

preprocessing to the dataset similarly to [47] and many

other papers using this dataset: we keep only users and

songs with more than twenty interactions. The latter

preprocessing still results in a large and highly sparse

dataset.

Table II displays the dimensions of each dataset together with

the values of β and α that we have used in our experiments.

The value of αℓ1 is used for Problem (1) while the value

of αlog is used for Problem (22). The constant ǫ in the log-

regularization is set to 0.01. For the spectrogram and Moffett

dataset, we perform tests with two different values of β and

thus use different values of α accordingly. Note that we have

tested several values of the regularization parameter α and we

have chosen one that yields representative results. In particular,

for the chosen values, the regularization does not become

negligible in comparison with the data term and conversely.

The values of β have been chosen according to standard

practice, see, e.g., [11] and references in Section II-A. Values

of β in the [0, 0.5] interval are recommended for audio spectra

as they give more importance to small-energy coefficients. The

TABLE II: Dimensions of the datasets used in our experiments

F N K β αℓ1 αlog

Olivetti 4 096 400 10 1 0.01 5
Spectrogram 513 858 10 {0, 0.5} {600, 5} {0.5, 5}
TasteProfile 16 301 12 118 50 1 5000 0.5
Moffett 189 2 500 3 {1.3, 2} {1000, 0.05} {0.5, 0.02}

value β = 1 produces a data-fitting term that corresponds

to the log-likelihood of a Poisson model; this fits well with

integer-valued data such as counts (TasteProfile) or RGB

images (Olivetti). Values of β in the [1, 2] interval offer a good

compromise between Poisson and additive Gaussian noise

assumptions, which suits well to hyperspectral data (Moffett).

B. Set-up

All the simulations presented in this section have been

conducted in Matlab 2021a running on an Intel i7-8650U

CPU with a clock cycle of 1.90GHz shipped with 16GB of

memory.5

For each dataset, we compare the factorization obtained

by the different methods from 50 different initializations.

The elements of (Winit,Hinit) are drawn randomly according

to a half-normal distribution obtained by folding a centered

Gaussian distribution of standard deviation equal to 5.

1) Stopping criterion: The following stopping criterion has

been used for all the algorithms

|J (W−,H−)− J (W,H)|

|J (W,H)|
≤ δ , (32)

where δ is a tolerance set to 10−5, W and H are the

current iterates while W
− and H

− are the previous ones.

The regularization term in J depends on the context and is

either the ℓ1 or the log-regularization. The absolute value at the

denominator is necessary in the case of the log-regularization

since the logarithm function, and thus J , could be negative. If

the convergence is not reached after 5, 000 iterations, we stop

the algorithm and return the current estimated factor matrices.

2) Implementation: The pseudo-code for MM-SNMF-ℓ1
and MM-SNMF-log is shown in Algorithms 1 and 2 respec-

tively. The implementation of H-SNMF-ℓ1 and H-SNMF-log is

similar except that the multiplicative rules are replaced by the

ones given by (10), (11) and (24), (25) respectively, together

with the renormalization (12).

The implementation of L-SNMF-ℓ1 follows the one of MM-

SNMF-ℓ1 but uses the multiplicative updates given by (4)

and (5) instead of (20) and (21). Furthermore, an additional

step consisting in computing the optimal Lagrangian multi-

pliers has to be performed between the steps 4 and 5 of

Algorithm 1.

The β-divergence dβ(x|y) is not always well defined when

x or y takes the value zero due to the presence of quotients and

logarithms. Consequently, we use in practiceDβ(V+κ|WH+
κ) with a small constant κ instead of the objective function

Dβ(V|WH) for numerical stability. For the heuristic method,

5Matlab code is available at https://arthurmarmin.github.io/research.html.

https://arthurmarmin.github.io/research.html

10

1 10 20 30 40 50
1

10

100

1,000

Iteration

O
b

je
ct

iv
e

fu
n

ct
io

n
H-SNMF-ℓ1
MM-SNMF-ℓ1

Fig. 1: Values of the normalized objective function through

the first hundred of iterations. Results obtained on synthetic

data matrix V with parameters (F,N) = (50, 40), K = 3,

β = −0.5.

this leads to replacing WH by WH+ κ in the expression of

the gradient and thus in the updates (10) and (11). For our

method and the Lagrangian one (which both rely on MM), we

can also safely replace WH by WH+κ in the multiplicative

updates. This can be proven by treating κ as a (K + 1)
th

constant component in the derivations like in [36].

3) Performance evaluation: We compare the different algo-

rithms with two metrics: their computational efficiency (CPU

time) and the quality of the returned solutions. The latter is

assessed by the value of the normalized objective function

J (W,H)/FN at the solution returned by the algorithms.

C. Results

1) Descent property: We illustrate in this section that H-

SNMF-ℓ1 is not a descent algorithm unlike MM-SNMF-ℓ1. To

this end, we generate a random data matrix V of dimension

50 × 40 by drawing its elements according to the same

half-normal distribution used for drawing the elements of

(Winit,Hinit). We apply both H-SNMF-ℓ1 and MM-SNMF-

ℓ1 with K = 3, β = −0.5, and α = 5. Then, we plot

the values of the normalized objective function for the first

fifty iterations in Figure 1. We use the same initialization

for both methods but do not plot the value of the objection

function at the initialization (iteration 0) for the sake of

clarity. We observe that the blue curve corresponding to MM-

SNMF-ℓ1 is non-increasing whereas the red curve representing

H-SNMF-ℓ1 is oscillating. This example demonstrates the

theoretical advantage to use MM-SNMF-ℓ1 over H-SNMF-ℓ1.

Furthermore, we observe on this example that H-SNMF-ℓ1
requires more iterations than MM-SNMF-ℓ1 to reach a given

value of the objective function close to a local optimum. This

observation will be verified in the experiments on the datasets

in the next section.

2) Performance comparison for Problem (1): We now run

H-SNMF-ℓ1, L-SNMF-ℓ1, and MM-SNMF-ℓ1 on the four

datasets. The average values of the normalized objective func-

tion J /FN at the solutions returned by the three algorithms

are given in the top part of Table III. We observe first that

optimal values of the objective function do not vary much with

the initialization for the three methods. Moreover, we notice

1 5 10 15 20 25
0

50

100

150

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1 L-SNMF-ℓ1

(a) Olivetti dataset.

2 4 6 8 10 12 14 16 18 20 22 24
0

50

100

150

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1 L-SNMF-ℓ1

(b) TasteProfile dataset.

Fig. 2: Comparative performance with Olivetti and TasteProfile

datasets using the ℓ1-regularization (β = 1).

that H-SNMF-ℓ1 and MM-SNMF-ℓ1 yield solutions with a

similar quality while L-SNMF-ℓ1 may return higher-quality

solutions.

On Figures 2, 3, and 4, we show the CPU time used by each

method before convergence. For the sake of clarity, we only

show the first 25 realizations, the behaviour of the others is

similar. We observe that the efficiency of the methods in term

of CPU time depends on the dataset, on the value of β and on

the initialization (e.g., for Moffett or the spectrogram datasets).

However, we notice some general trends: for example, H-

NMF-ℓ1 is always the slowest on Olivetti and TasteProfile

datasets. The middle part of Table III exposes this trend

by displaying the corresponding average run times together

with their standard deviations shown within parentheses. We

observe that H-SNMF-ℓ1 is the slowest in average for every

dataset while MM-SNMF-ℓ1 is the fastest one except for

TasteProfile for which L-SNMF-ℓ1 is 13% faster.

The three algorithms do not follow the same path in the opti-

mization space. In particular, we can observe in the bottom part

of Table III that MM-SNMF-ℓ1 converges in fewer iterations

than H-SNMF-ℓ1. Since the complexity per iteration of these

methods are similar—compare the multiplicative updates (10)

with (20) and (11) with (21)—this explains the observed

difference in CPU time. Furthermore, one can see that L-

SNMF-ℓ1 converges in a smaller number of iterations than

MM-SNMF-ℓ1 for some datasets. However, its iterations are

more expensive due to the update of the Lagrangian multipliers

through a Newton-Raphson iterative method.

3) Performance comparison for Problem (22): We now

compare H-SNMF-log with MM-SNMF-log. Similarly to the

previous section, the statistics on the values of the objective

function, on the CPU times, and on the numbers of iterations

are shown in Table IV while Figures 5, 6, and 7 display the

CPU time for the first 25 Monte-Carlo realizations. Results

similar to the ℓ1-regularization can be observed: both methods

return solutions of nearly same quality whereas MM-SNMF-

ℓ1 is significantly faster for all datasets except for the spectro-

gram, for which both methods use in average the same CPU

time. This difference in CPU time is explained by the number

11

1 5 10 15 20 25
0

5

10

15

Test ID

C
P

U
ti

m
e

(i
n

s)
MM-SNMF-ℓ1 H-SNMF-ℓ1 L-SNMF-ℓ1

(a) β = 0.

1 5 10 15 20 25
0

20

40

60

80

100

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1 L-SNMF-ℓ1

(b) β = 0.5.

Fig. 3: Comparative performance with a spectrogram using the

ℓ1-regularization.

1 5 10 15 20 25
0

1

2

3

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1

(a) β = 1.3.

1 5 10 15 20 25
0

0.5

1

1.5

2

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1 L-SNMF-ℓ1

(b) β = 2.

Fig. 4: Comparative performance with Moffett dataset using

the ℓ1-regularization.

of iterations before convergence as shown in Table IV: MM-

SNMF-ℓ1 takes on average about 20% to 50% less iterations

than H-SNMF-ℓ1 to converge. The difference in CPU time is

particularly significant for the large scale dataset TasteProfile.

VII. CONCLUSION

We have presented a block-descent MM algorithm for β-

NMF with ℓ1-regularization or log-regularization on one factor

and unit ℓ1-norm constraint on the columns of the other. Our

algorithm takes the form of iterative multiplicative updates

with are simple and efficient to compute. In contrast with

state-of-the-art methods, our resulting algorithm can be applied

to every β-divergence and owns desirable theoretical proper-

ties such as non-increasingness, convergence of the objective

function as well as the convergence of its iterates to the set

of stationary points of the problem. Furthermore, we have

observed experimentally that our MM algorithm estimates

factors with competitive quality and leads in many cases to

a significant decrease of CPU time when compared to state-

of-the-art methods.

TABLE III: Statistics for the three algorithms designed to

solve Problem (1). The top section shows the average values

of the objective function J /FN at the returned solutions.

The middle section gives the average CPU times with the

lowest ones highlighted in bold. The bottom section yields

the corresponding average number of iterations. Standard

deviations are given within parentheses.

L-SNMF-ℓ1 H-SNMF-ℓ1 MM-SNMF-ℓ1

Objective function
Olivetti 3.16 (±7E-3) 3.16 (±9E-3) 3.16 (±6E-3)
Spectrogram (β = 0) 0.88 (±3E-2) 20.3 (±3E-2) 20.3 (±3E-2)
Spectrogram (β = 0.5) 0.60 (±3E-2) 2.98 (±7E-3) 2.98 (±6E-3)
TasteProfile 0.76 (±7E-6) 9.15 (±5E-6) 9.15 (±5E-6)
Moffett (β = 1.3) — 0.17 (±2E-5) 0.17 (±2E-4)
Moffett (β = 2) 4.1E-3 (±7E-3) 4.6E-3 (±1E-2) 4.6E-3 (±7E-3)

CPU time

Olivetti 14.1s (± 3.8) 103.4s (±16.8) 11.2s (±3.5)
Spectrogram (β = 0) 6.5s (± 3.4) 6.4s (± 2.2) 6.3s (±1.8)
Spectrogram (β = 0.5) 23.5s (± 2.5) 24.5s (± 6.3) 22.5s (±7.2)
TasteProfile 60.6s (± 6.5) 117.5s (±12.9) 69.8s (±3.4)
Moffett (β = 1.3) — 1.2s (± 0.6) 0.9s (±0.4)
Moffett (β = 2) 0.8s (± 0.3) 1.1s (± 0.3) 0.6s (±0.1)

Number of iterations
Olivetti 763 (±112) 947 (± 99) 767 (±111)
Spectrogram (β = 0) 219 (±109) 160 (± 46) 239 (± 55)
Spectrogram (β = 0.5) 197 (± 93) 144 (± 37) 183 (± 55)
TasteProfile 14 (± 0) 23 (± 0) 23 (± 0)
Moffett (β = 1.3) — 12 (± 6) 11 (± 6)
Moffett (β = 2) 137 (± 25) 133 (± 49) 95 (± 19)

1 5 10 15 20 25
0

50

100

150

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1

(a) Olivetti dataset.

1 5 10 15 20 25
0.5

1

1.5
·104

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1

(b) TasteProfile dataset.

Fig. 5: Comparative performance with Olivetti and TasteProfile

datasets using the log-regularization (β = 1).

REFERENCES

[1] P. Paatero and U. Tapper, “Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values,”
Environmetrics, vol. 5, no. 2, pp. 111–126, Jun. 1994.

[2] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, pp. 788–791,
Oct. 1999.

[3] P. Smaragdis, C. Févotte, G. J. Mysore, N. Mohammadiha, and M. Hoff-
man, “Static and dynamic source separation using nonnegative factor-
izations: A unified view,” IEEE Signal Process. Mag., vol. 31, no. 3,
pp. 66–75, May 2014.

[4] M. W. Berry, M. Browne, A. N. Langville, V. P. Pauca, and R. J.
Plemmons, “Algorithms and applications for approximate nonnegative

12

1 5 10 15 20 25
10

15

20

25

Test ID

C
P

U
ti

m
e

(i
n

s)
MM-SNMF-log H-SNMF-log

(a) β = 0.

1 5 10 15 20 25

30

40

50

60

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-log H-SNMF-log

(b) β = 0.5.

Fig. 6: Comparative performance with a spectrogram using the

log-regularization.

1 5 10 15 20 25
0

10

20

30

40

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1

(a) β = 1.3.

1 5 10 15 20 25

5

10

15

Test ID

C
P

U
ti

m
e

(i
n

s)

MM-SNMF-ℓ1 H-SNMF-ℓ1

(b) β = 2.

Fig. 7: Comparative performance with Moffett dataset using

the log-regularization.

matrix factorization,” Comput. Stat. Data Anal., vol. 52, no. 1, pp. 155–
173, Sep. 2007.

[5] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader,
and J. Chanussot, “Hyperspectral unmixing overview: Geometrical,
statistical, and sparse regression-based approaches,” IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens., vol. 5, no. 2, pp. 354–379, Apr. 2012.

[6] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets,” in Proc. IEEE Int. Conf. Data Mining. IEEE, Dec.
2008.

[7] A. Cichocki, R. Zdunek, and A. H. Phan, Nonnegative matrix and tensor

factorizations: Applications to exploratory multi-way data analysis and

blind source separation. John Wiley & Sons Inc, 2009.

[8] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative ma-
trix factorization for signal and data analytics: identifiability, algorithms,
and applications,” IEEE Signal Process. Mag., vol. 36, no. 2, pp. 59–80,
Mar. 2019.

[9] N. Gillis, Nonnegative matrix factorization. Society for Industrial and
Applied Mathematics, Jan. 2020.

[10] A. Cichocki, S. Cruces, and S. ichi Amari, “Generalized Alpha-Beta
divergences and their application to robust nonnegative matrix factor-
ization,” Entropy, vol. 13, no. 1, pp. 134–170, jan 2011.

[11] C. Févotte and J. Idier, “Algorithms for nonnegative matrix factorization
with the β-divergence,” Neural Comput., vol. 23, no. 9, pp. 2421–2456,
Sep. 2011.

[12] P. O. Hoyer, “Non-negative sparse coding,” in Proceedings of the 12th

IEEE Workshop on Neural Networks for Signal Processing. IEEE,

TABLE IV: Statistics for the three algorithms designed to

solve Problem (22). The top section shows the average values

of the objective function J /FN at the returned solutions.

The middle section gives the average CPU times with the

lowest ones highlighted in bold. The bottom section yields

the corresponding average number of iterations. Standard

deviations are given within parentheses. Average numbers of

iterations to solve Problem (22).

H-SNMF-log MM-SNMF-log

Objective function

Olivetti 1.96 (±9E-3) 1.96 (±7E-3)
Spectrogram (β = 0) 5.16E-1 (±4E-3) 5.09E-1 (±4E-3)
Spectrogram (β = 0.5) -6.58E-3 (±7E-2) -5.68E-2 (±9E-3)
TasteProfile 1.77E-2 (±4E-5) 1.76E-2 (±2E-5)
Moffett (β = 1.3) 1.13E-3 (±6E-5) 1.08E-2 (±5E-5)
Moffett (β = 2) 1.03E-3 (±1E-5) 1.02E-2 (±1E-5)

CPU time
Olivetti 132s (± 15) 23s (± 6)
Spectrogram (β = 0) 17s (± 4) 17s (± 4)
Spectrogram (β = 0.5) 34s (± 6) 39s (± 9)
TasteProfile 12613s (±927) 6704s (±603)
Moffett (β = 1.3) 25s (± 4) 16s (± 2)
Moffett (β = 2) 10s (± 2) 7s (± 3)

Number of iterations

Olivetti 1180 (± 130) 920 (±112)
Spectrogram (β = 0) 512 (± 86) 611 (±132)
Spectrogram (β = 0.5) 198 (± 33) 300 (± 73)
TasteProfile 1900 (± 131) 929 (± 83)
Moffett (β = 1.3) 1001 (± 240) 801 (±206)
Moffett (β = 2) 1235 (± 282) 959 (±286)

2002.

[13] ——, “Non-negative matrix factorization with sparseness constraints,”
J. Mach. Learn. Res., vol. 5, p. 1457–1469, Dec. 2004.

[14] J. Eggert and E. Körner, “Sparse coding and NMF,” in Proc. Int. Joint

Conf. Neur. Netw. IEEE, Jul. 2004, pp. 2529–2533.

[15] H. Kim and H. Park, “Sparse non-negative matrix factorizations via
alternating non-negativity-constrained least squares for microarray data
analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, May 2007.

[16] A. Cichoki and A.-H. Phan, “Fast local algorithms for large scale
nonnegative matrix and tensor factorizations,” IEICE Trans. Fund.

Electron. Comm. Comput. Sci., vol. E92-A, no. 3, pp. 708–721, 2009.

[17] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” J. Mach. Learn. Res., vol. 11, pp. 10–
60, 2010.

[18] N. Guan, D. Tao, Z. Luo, and B. Yuan, “NeNMF: An optimal gradi-
ent method for nonnegative matrix factorization,” IEEE Trans. Signal
Process., vol. 60, no. 6, pp. 2882–2898, Jun. 2012.

[19] R. Zhao and V. Y. F. Tan, “A unified convergence analysis of the
multiplicative update algorithm for regularized nonnegative matrix fac-
torization,” IEEE Trans. Signal Process., vol. 66, no. 1, pp. 129–138,
Jan. 2018.

[20] Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, “L1/2 sparsity con-
strained nonnegative matrix factorization for hyperspectral unmixing,” in
Proc. International Conference on Digital Image Computing: Techniques
and Applications. IEEE, Dec. 2010.

[21] J. Sigurdsson, M. O. Ulfarsson, and J. R. Sveinsson, “Hyperspectral
unmixing with ℓq regularization,” IEEE Trans. Geosci. Remote Sens.,
vol. 52, no. 11, pp. 6793–6806, Nov. 2014.

[22] A. Lefèvre, F. Bach, and C. Févotte, “Itakura-Saito nonnegative matrix
factorization with group sparsity,” in Proc. Int. Conf. Acoust. Speech

Signal Process. IEEE, May 2011.

[23] V. Y. F. Tan and C. Févotte, “Automatic relevance determination in
nonnegative matrix factorization with the β-divergence,” IEEE Trans.

Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1592–1605, Jul. 2013.

[24] C. Peng, Y. Zhang, Y. Chen, Z. Kang, C. Chen, and Q. Cheng, “Log-
based sparse nonnegative matrix factorization for data representation,”
Knowledge-Based Syst., vol. 251, p. 109127, Sep. 2022.

13

[25] M. Shashanka, B. Raj, and P. Smaragdis, “Sparse overcomplete latent
variable decomposition of counts data,” in Proc. Ann. Conf. Neur. Inform.
Proc. Syst., J. Platt, D. Koller, Y. Singer, and S. Roweis, Eds., vol. 20.
Curran Associates, Inc., 2007, pp. 1313–1320.

[26] C. Joder, F. Weninger, D. Virette, and B. Schuller, “A comparative study
on sparsity penalties for NMF-based speech separation: Beyond LP-
norms,” in Proc. Int. Conf. Acoust. Speech Signal Process. IEEE, May
2013.

[27] R. Peharz and F. Pernkopf, “Sparse nonnegative matrix factorization
with ℓ0-constraints,” Neurocomputing, vol. 80, pp. 38–46, Mar. 2012.

[28] J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating linearized
minimization for nonconvex and nonsmooth problems,” Math. Pro-

gramm., vol. 146, no. 1-2, pp. 459–494, Jul. 2013.
[29] J. Kim, R. D. C. Monteiro, and H. Park, “Group sparsity in nonnegative

matrix factorization,” in Proc. SIAM Int. Conf. Data Mining. Society
for Industrial and Applied Mathematics, apr 2012.

[30] J. Le Roux and F. W. J. R. Hershey, “Sparse NMF – half-baked or
well done?” Mitsubishi Electric Research Laboratories, Tech. Rep., Mar.
2015.

[31] V. Leplat, N. Gillis, and J. Idier, “Multiplicative updates for NMF with
β-divergences under disjoint equality constraints,” SIAM J. Matrix Anal.

Appl., vol. 42, no. 2, pp. 730–752, Jan. 2021.
[32] L. Filstroff, O. Gouvert, C. Févotte, and O. Cappé, “A comparative

study of Gamma Markov chains for temporal non-negative matrix
factorization,” IEEE Trans. Signal Process., vol. 69, pp. 1614–1626,
2021.

[33] S. Essid and C. Févotte, “Smooth nonnegative matrix factorization for
unsupervised audiovisual document structuring,” IEEE Trans. Multime-

dia, vol. 15, no. 2, pp. 415–425, Feb. 2013.
[34] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factor-

ization with the Itakura-Saito Divergence: With application to music
analysis,” Neural Comput., vol. 21, no. 3, pp. 793–830, Mar. 2009.

[35] E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic spectral
decomposition for multiple pitch estimation,” IEEE Trans. Audio Speech
Lang. Process., vol. 18, no. 3, pp. 528–537, Mar. 2010.

[36] C. Févotte and N. Dobigeon, “Nonlinear hyperspectral unmixing with
robust nonnegative matrix factorization,” IEEE Trans. Image Process.,
vol. 24, no. 12, pp. 4810–4819, Dec. 2015.

[37] X. Fu, K. Huang, and N. D. Sidiropoulos, “On identifiability of
nonnegative matrix factorization,” IEEE Signal Process. Lett., vol. 25,
no. 3, pp. 328–332, mar 2018.

[38] Z. Yang and E. Oja, “Unified development of multiplicative algorithms
for linear and quadratic nonnegative matrix factorization,” IEEE Trans.

Neural Netw., vol. 22, no. 12, pp. 1878–1891, Dec. 2011.
[39] A. Cichocki, R. Zdunek, and S. ichi Amari, “Csiszár’s divergences for

non-negative matrix factorization: Family of new algorithms,” in Inde-

pendent Component Analysis and Blind Signal Separation. Springer
Berlin Heidelberg, 2006, pp. 32–39.

[40] K. Lange, MM optimization algorithms. Society for Industrial and
Applied Mathematics, Jul. 2016.

[41] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algo-
rithms in signal processing, communications, and machine learning,”
IEEE Trans. Signal Process., vol. 65, no. 3, pp. 794–816, Feb. 2017.

[42] M. Nakano, H. Kameoka, J. L. Roux, Y. Kitano, N. Ono, and
S. Sagayama, “Convergence-guaranteed multiplicative algorithms for
nonnegative matrix factorization with β-divergence,” in IEEE Int. Work-
shop Mach. Learn. Signal Process. IEEE, Sep. 2010.

[43] E. J. Candès, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted ℓ1 minimization,” J. Fourier Anal. Appl., vol. 14, no. 5-6,
pp. 877–905, Oct. 2008.

[44] F. S. Samaria and A. Harter, “Parameterisation of a stochastic model
for human face identification,” in Proc. Workshop on Applications of

Computer Vision. IEEE Comput. Soc. Press, 1994.
[45] Jet Propulsion Lab (JPL). (2006) Aviris free data. Cal-

ifornia Inst. Technol., Pasadena, CA. [Online]. Available:
http://aviris.jpl.nasa.gov/html/aviris.freedata.html

[46] T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere, “The million
song dataset,” in Proc. Int. Conf. Music Inform. Retrieval (ISMIR), 2011.

[47] O. Gouvert, T. Oberlin, and C. Févotte, “Ordinal non-negative matrix
factorization for recommendation,” in Proc. Int. Conf. Mach. Learn.,
2020, pp. 3680–3689.

http://aviris.jpl.nasa.gov/html/aviris.freedata.html

	I Introduction
	I-A State of the art
	I-B Contributions
	I-C Outline
	I-D Notation

	II NMF with -divergence and 1 regularization
	II-A Objective
	II-B Necessity of the constrained formulation

	III State of the art
	III-A Lagrangian method
	III-B Heuristic multiplicative updates

	IV A unified block-descent MM algorithm for -NMF with 1 regularization
	IV-A Equivalent scale-invariant objective function
	IV-A1 Reformulation without norm constraints
	IV-A2 Symmetry of the roles of W and H

	IV-B Principle of majorization-minimization
	IV-C Construction of an auxiliary function for sparse NMF
	IV-C1 Majorization of the data-fitting term
	IV-C2 Majorization of the regularization term

	IV-D Minimization of the auxiliary function
	IV-E Convergence

	V Extension to NMF with the -divergence and log-regularization
	V-A Heuristic multiplicative updates
	V-B Block-descent majorization-minimization algorithm
	V-B1 Update of H
	V-B2 Update of W
	V-B3 Resulting algorithm and convergence

	VI Experimental Results
	VI-A Description of the datasets and hyperparameter choices
	VI-B Set-up
	VI-B1 Stopping criterion
	VI-B2 Implementation
	VI-B3 Performance evaluation

	VI-C Results
	VI-C1 Descent property
	VI-C2 Performance comparison for Problem (1)
	VI-C3 Performance comparison for Problem (22)

	VII Conclusion
	References

