
HAL Id: hal-03799226
https://hal.science/hal-03799226

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Efficient Cache Allocation for High-Frequency
Checkpointing

Avinash Maurya, Bogdan Nicolae, M Mustafa Rafique, Amr Elsayed, Thierry
Tonellot, Franck Cappello

To cite this version:
Avinash Maurya, Bogdan Nicolae, M Mustafa Rafique, Amr Elsayed, Thierry Tonellot, et al.. Towards
Efficient Cache Allocation for High-Frequency Checkpointing. HiPC’22: 29th IEEE International
Conference on High Performance Computing, Data, and Analytics, Dec 2022, Bangalore, India. �hal-
03799226�

https://hal.science/hal-03799226
https://hal.archives-ouvertes.fr

Towards Efficient Cache Allocation for
High-Frequency Checkpointing

Avinash Maurya∗, Bogdan Nicolae†, M. Mustafa Rafique∗, Amr M. Elsayed‡, Thierry Tonellot§, Franck Cappello†
∗Rochester Institute of Technology, USA
†Argonne National Laboratory, USA

‡Brightskies Technologies, Alexandria, Egypt
§Exploration and Petroleum Engineering Advanced Research Center, Saudi Aramco, Dhahran, Saudi Arabia

Email: ∗{am6429, mrafique}@cs.rit.edu; †{bnicolae, cappello}@anl.gov;
‡amr.nasr@brightskiesinc.com; §thierrylaurent.tonellot@aramco.com

Abstract—While many HPC applications are known to have
long runtimes, this is not always because of single large runs:
in many cases, this is due to ensembles composed of many
short runs (runtime in the order of minutes). When each such
run needs to checkpoint frequently (e.g. adjoint computations
using a checkpoint interval in the order of milliseconds), it is
important to minimize both checkpointing overheads at each
iteration, as well as initialization overheads. With the rising
popularity of GPUs, minimizing both overheads simultaneously
is challenging: while it is possible to take advantage of efficient
asynchronous data transfers between GPU and host memory,
this comes at the cost of high initialization overhead needed
to allocate and pin host memory. In this paper, we contribute
with an efficient technique to address this challenge. The key
idea is to use an adaptive approach that delays the pinning
of the host memory buffer holding the checkpoints until all
memory pages are touched, which greatly reduces the overhead
of registering the host memory with the CUDA driver. To this
end, we use a combination of asynchronous touching of memory
pages and direct writes of checkpoints to untouched and touched
memory pages in order to minimize end-to-end checkpointing
overheads based on performance modeling. Our evaluations show
a significant improvement over a variety of alternative static
allocation strategies and state-of-art approaches.

Index Terms—GPU checkpointing, multi-level caching, fast
initialization

I. INTRODUCTION

High-Performance Computing (HPC) applications produce
massive amounts of distributed intermediate data during their
execution that needs to be checkpointed concurrently in real-
time at scale. This is a fundamental I/O pattern used in a wide
range of scenarios [1]: fault tolerance based on checkpoint-
restart, producer-consumer patterns in workflows (e.g., offline
or in-situ analytics), reproducibility (validation of intermediate
states in addition to end results), etc.

One such popular scenario is the use of checkpointing for
the purpose of revisiting previous states in order to advance a
computation. For example, the adjoint state method is an effi-
cient numerical method to compute the gradient that is widely
employed by automatic differentiation (AD) tools [2], [3] and
used in a variety of scientific applications: climate and ocean
modeling [4], multi-physics [5], seismic imaging in the oil
industry [6], etc. Deep learning (DL) techniques are also based
on AD and often paired with stochastic gradient descent [7].
They involve two phases: a forward pass, during which a large
number of intermediate checkpoints are produced, followed by

a backward pass, during which the checkpoints are consumed
in reverse order.

With the growing popularity of accelerators, in particular
GPUs, adjoint computations make progress quickly. For ex-
ample, reverse time migration (RTM), a seismic imaging ap-
plication popular in the oil industry, involves large ensembles
of many short-lived adjoint computations, each of which often
runs for a few minutes or tens of seconds. During this time,
each adjoint computation needs to capture/restore checkpoints
during the forward/backward pass at high frequency, which is
often in the order of milliseconds and involves large data sizes
in the order of hundreds of MB. At these time scales, even one-
time operations like allocating a buffer to store the checkpoints
can introduce significant initialization overheads. The problem
is further complicated by the need co-locate and run many
such short-lived adjoint computations on powerful HPC nodes
that feature a large number of GPUs. In this case, even if
each adjoint computation manages its own buffer, allocations
happen concurrently and introduce competition for resources,
which further amplifies the initialization overhead.

Even if it was possible to make GPU memory allocation
overheads negligible, GPUs have limited memory capacity,
therefore it is typically not feasible to store the checkpoints
in GPU memory exclusively. In this case, it is possible to use
a simple solution like Unified Virtual Memory (UVM) [8],
which enables applications to allocate a large host buffer that
can be directly accessed both by GPUs and CPUs using trans-
parent on-demand paging. However, despite growing popular-
ity, such an approach not only has high initialization overheads
(further amplified by competition between multiple GPUs for
host memory), but it also causes significant I/O performance
degradation due to on-demand paging. Another solution is
to adopt state-of-art multi-level checkpointing strategies that
leverage heterogeneous node-local storage tiers (e.g., a GPU
memory buffer acting as a cache for a large host memory
buffer) to flush and prefetch checkpoints to/from slower tiers
asynchronously using explicit data movements [9]. Using this
approach, a large part of the data movements between the
storage tiers can be overlapped with the computations, which
greatly reduces the I/O overheads associated with writing and
reading checkpoints during the forward and backward pass.

However, state-of-art checkpointing approaches are not
designed for short-lived jobs and incur huge initialization

overheads. For example, to enable efficient data movements
between the GPU and host memory that progress at full
bandwidth, the host buffer needs to be registered with the
GPU driver, which in turn triggers an allocation and pinning
of physical memory pages. This can be orders of magnitude
slower than the read/write bandwidth to the GPU memory
(e.g., for an NVIDIA DGX A100 node, host memory reg-
istration bandwidth 3 GB/s, while GPU read/write memory
bandwidth is 500 GB/s). Therefore, before optimizations like
asynchronous caching and prefetching can take advantage of
the full I/O bandwidth, the full initialization cost needs to be
paid upfront. With this cost in the order or tens of seconds,
which is similar in duration to the runtime, it does not justify
the benefits for short-lived jobs.

In this paper we address the problem of reducing ini-
tialization overheads for multi-level checkpointing strategies
of short-lived adjoint computations. Our goal is to avoid
paying a high initialization cost upfront, while at the same
time maintain a high I/O bandwidth for checkpoint/restore
both during the forward and backward pass. To this end, we
introduce an adaptive allocation strategy that works as follows.
First, it allocates the GPU cache incrementally by relying on
the low-level VMM operations to overlap registration with
read/write operations. This reduces the GPU cache initial-
ization overheads. Second, it delays the registration of the
host buffer (which cannot happen incrementally) and allows
data transfers between the GPU and host memory to progress
immediately at reduced I/O bandwidth, while concurrently
touching the pages of the host buffer in an opportunistic
fashion in the background, which forces an allocation of
the physical pages in advance, thereby greatly reducing the
subsequent registration overhead once all pages were touched.

Given that multiple adjoint computations on different GPUs
compete for host memory bandwidth, a key challenge our
proposal addresses is how to decide when to allow checkpoint
flushes/prefetches to untouched pages and when to touch pages
in advance, such as to optimize the overall I/O throughput. We
summarize our contributions as follows:

• We formulate the problem of multi-level checkpoint-
ing for short-lived adjoint computations that combine a
small GPU cache and a large host memory buffer to
checkpoint/restore large amounts of data at high fre-
quency (§ II).

• We propose a series of design principles for multi-level
checkpointing that avoid high initialization overheads
incurred upfront through a combination of several key
ideas: incremental GPU cache allocation, opportunistic
touching of the memory pages of the host buffer, con-
currency control to optimize competition between oppor-
tunistic touching and reads/writes to memory, delayed
registration of the host buffer (§ IV-A).

• We illustrate these design principles as an extension
to VELOC [9], a production-ready HPC multi-level
checkpoint-restart library. In this context, we take advan-
tage of CUDA-enabled GPUs to enable low-level GPU
cache and host buffer memory management (§ IV-C).

• We evaluate our proposal in a series of experiments
conducted on a multi-GPU Nvidia DGX-A100 platform.
Compared with existing state-of-art multi-level check-
pointing approaches and UVM, our proposal reduces the
combined checkpoint/initialization overheads by orders
of magnitude in a variety of synthetic scenarios and
traces of a real-time HPC applications: RTM (reverse time
migration), a seismic imaging application used in the oil
and gas industry (§ V).

II. PROBLEM FORMULATION

We formulate the problem of reducing initialization over-
heads for multi-level checkpointing strategies of short-lived
adjoint computations as follows. Consider an HPC node con-
sisting of N GPUs, each of which is equipped with high-
bandwidth memory (HBM, also known as device memory)
and main memory (host memory). N independent, short-lived
adjoint computations Pi are started simultaneously, each on
a dedicated GPU. For each process Pi, a fraction of the
device and host memory is reserved as cache and host buffer
respectively (there are N independent host buffers that are not
shared between the GPUs).

Each adjoint computation takes tiinit time to initialize its
device buffer and host buffer. Then, it produces K checkpoints
during the forward pass using a multi-level checkpointing
library. This works as follows: each checkpoint is stored to
the device cache (by creating a blocking copy of the GPU
data structures that are part of the checkpoint), then it is
flushed asynchronously from the device cache to the host
buffer in the background (using the FIFO order), while the
application continues running. If the device cache cannot store
a new checkpoint, then the oldest checkpoints are evicted until
enough room for the new checkpoint becomes available. An
eviction blocks the application until the corresponding flush to
the host memory is complete. During the backward pass, the
checkpoints are restored in reverse order. To reduce the read
latency perceived by the application, consumed checkpoints
are discarded from the device cache and the free space is
used to prefetch checkpoints from the host buffer to the device
cache in advance. Under ideal circumstances this blocks the
application only for the duration of a device-to-device copy
(from the device cache to the GPU data structures).

Our goal is to minimize the time spent during initialization
and the time spent blocking during checkpoint operations
(forward pass) and restore operations (backward pass) for
the whole group of N adjoint computations. This goal is
subject to several constraints: (1) checkpoints cannot be
evicted before the device cache has been fully initialized and
filled, which avoids trashing during the backward pass by
limiting competition between pending flushes and prefetches;
(2) the host buffer cannot be registered incrementally because
DMA transfers from two contiguous but separately pinned
memory regions are not supported by modern GPU drivers
(e.g. NVIDIA).

III. RELATED WORK

Memory allocation libraries: Allocating large chunks
of memory have been well studied in the past [10]–[17]
that optimize various aspects of memory allocation such as
fragmentation, allocation-latency, lightweight reclamation of
free memory, physical memory consumption, lock-free al-
location, and scalability. SuperMalloc [17] outperforms the
state-of-the-art allocation techniques such as Hoard [14] and
JEmalloc [12] by up to 3× by allocating larger chunks of
2MiB that contain homogeneous sized objects. Hoard [14] uses
a global and per-process heap to bound the memory consump-
tion for producer-consumer based applications. JEMalloc [12],
SFMalloc [16], and TCMalloc [13], McRT-malloc [15] are
general purpose memory allocators that outperfom the default
Linux allocator for use cases such as frequent malloc/free
pattern, multi-threaded applications running at scale, and trans-
actional memory accesses. However, none of these studies
focus on aggressively allocating physical memory for latency-
critical applications, that are committed to using the entire
memory in the future. Additionally, our approach optimizes
both allocating and pinning the memory for future accesses.

HPC Checkpoint-Restart: Checkpoint-restart techniques
are traditionally used in for fault-tolerance on HPC infrastruc-
tures. Transparent fault tolerance approaches (DMTCP [18],
BLCR [19]) automatically capture the full state of a group
of process, at the expense of generating a large checkpoint
sizes that cannot be used for any other purpose than resum-
ing the process execution. Application-level fault tolerance
approaches (FTI [20], SCR [21]) rely on the application to
define critical data structures, which are checkpointed and
restored using multi-level checkpointing strategies. Some ap-
proaches such as VELOC [22] specialize on asynchronous
multi-level checkpointing, which enables many use cases
beyond resilience, including the scenario targeted in this
paper. Checkpoint-restore techniques have been extended to
GPUs, both for fault-tolerance [23]–[28] and workload mi-
gration [24], [29]. System-level checkpointing libraries such
as NVCR [24] and CheCUDA [23], transparently record and
replay the memory based CUDA APIs for checkpointing
and restoring. Approaches such as CheckFreq [30], GPU-
snapshot [31] and Multi-layered Buffered System [32] also
exploit heterogeneous storage tiers. However, none of these
approaches consider short-running jobs, for which the impact
of initialization overheads is non-negligible.

Data movement engines: Data staging solutions such as
Stacker [33], DataStager [34], DataSpaces [35], Data Eleva-
tor [36], and TRIO [37] have been proposed to mitigate the I/O
overheads of interacting with remote storage repositories such
as parallel file systems and object stores by using intermediate
caching layers, both node-local (e.g., DRAM, SSDs) and
remote (e.g., burst buffers). However, such data services have
no support (or limited support) for GPUs and typically rely
on the applications to explicitly allocate a staging buffer on
the host memory and move the data to/from it.

To our best knowledge, we are the first to consider the

problem of optimizing asynchronous multi-level checkpointing
for short-running jobs with high-frequency checkpoint require-
ments for which initialization overheads cannot simply be
amortized over the total runtime.

IV. SYSTEM DESIGN

A. Design principles

Incremental GPU cache allocation using low-level GPU
Virtual Memory Management (VMM) to avoid GPU ini-
tialization delays: High bandwidth device memory allocation
and preparation on GPUs (i.e., all steps needed to access the
memory at full I/O bandwidth) is generally a lightweight,
single operation. For example, NVIDIA A100 GPUs can
allocate and prepare a cache in excess of 1.4 TB/s using a
single API call. However, this bandwidth does not scale with
an increasing number of concurrent allocation requests, even if
the applications issuing them are unrelated and run on separate
GPUs. This happens because of synchronization needed in
the GPU driver to coordinate memory-related book-keeping
across the GPUs. As a consequence, even a few concurrent
allocation requests are enough to slow down the allocation
bandwidth below the read/write bandwidth. To address this
issue, modern GPU drivers expose a low-level GPU VMM
manipulation API in the same spirit as the mmap Linux kernel
system call: first a device memory region can be reserved
in advance at negligible overhead, then parts of it can be
mapped to physical memory pages later. We leverage this
approach to propose an incremental device cache allocation
strategy that avoids large initial allocations suffering from
concurrency bottlenecks. Specifically, we reserve the whole
device cache from the beginning, but then map the contiguous
chunks of the device cache to physical pages asynchronously
in a background. Meanwhile, any reads and writes to the GPU
cache are permitted, as long as they refer to the mapped
region, which in turn is atomically extended as soon as the
next chunk finished being mapped in the background. Since
evictions are not allowed before the device cache has been
fully allocated, writes may block waiting for new chunks to
be mapped. However, in practice, the reads and writes may
progress at different rates on different GPUs, which means
incremental allocations become staggered and therefore do not
suffer from concurrency bottlenecks, which effectively reduces
the overall device cache allocation overheads.

Opportunistic touching of host buffer virtual pages to
force allocation of physical pages in advance: Unfortunately,
as mentioned in Section II, a similar incremental approach
cannot be used for host buffer allocation and preparation, as
this involves registering a single contiguous memory region
with the GPU driver, which in turn reserves and pins physical
memory pages on the host side. To circumvent this issue,
we leverage the fact that the operating system reserves and
maps physical memory pages to virtual memory pages as
soon as they are touched, and it is unlikely for these pages to
get swapped if the memory utilization is below the physical
capacity. In fact, a majority of the registration overhead
is related to reserving and mapping the physical memory

pages, while pinning them incurs a much smaller overhead.
As a consequence, we propose to reduce the registration
overhead by delaying the registration until all pages have been
touched. Specifically, we start by allocating the host buffer
using a regular mmap that requests huge pages (to reduce
the number of page table entries) and that typically has a
negligible overhead. Then, we allow checkpoint flushes from
the device cache to the host buffer to proceed immediately
without registration, which is much slower than flushes to
registered host memory (e.g., 3 GB/s vs. 12 GB/s on an
NVIDIA A100 GPU). However, at the same time, the pages
that are not involved in flushes are touched asynchronously
in the background. Touching can be achieved by writing a
single byte, which has negligible overhead in itself but triggers
the reservation and set up of the memory pages in advance,
which under the right circumstances can be overlapped with
the flushes and therefore their overhead can be masked. In
addition to enabling a faster registration after all pages have
been touched, this approach also speeds up flushes before
the memory registration, because writes to untouched memory
pages need to pay the preparation overhead on-demand. This
speed-up can be significant: for example, on a NVIDIA A100
GPU, the write bandwidth increases from 3 GB/s (untouched
pages) to 6 GB/s (touched pages). Thus, our approach manages
to keep initial flush throughput high while at the same time
eliminating a majority of the registration overhead.

Concurrency control to optimize competition between
flushes and opportunistic page touching: It is important to
note that asynchronous opportunistic page touching competes
for host memory bandwidth with the checkpoint flushes. Thus,
the touch throughput and flush throughput are both slower
when they progress concurrently compared to the case when
they progress sequentially. This introduces a trade-off: if
we allow asynchronous touches to share the host memory
bandwidth with the checkpoint flushes, then more pages will
be touched during one iteration, which allows flushes in the
next iteration to progress faster. At the same time, flushes
in the current iteration will be slower. To address this issue,
we propose two alternative strategies. First, consider a simple
decoupled producer-consumer strategy in which the producer
touches the pages is ascending order, while the consumer
concurrently flushes to touched pages. Second, based on the
observation that a checkpoint flush does not necessarily need
to wait until all host pages involved in its transfer have been
touched, we introduce an alternative strategy pauses touches
during flushes and resumes them when the host memory band-
width is idle (which can happen if the flushes are faster than
the computations performed during each iteration). Depending
on the duration of the computations, host memory throughput
under concurrency, and flush pattern under concurrency from
multiple GPUs (flushes may be staggered and involve different
checkpoint sizes), we can select one or the other strategy. We
illustrate these concurrency control techniques and resulting
interactions between the device cache and host buffer in
greater detail in Section IV-B.

Device
cache full

(A) Standard allocation and registration

(C) Sequential touch and flush

(B) Concurrent touch and flush

Wait for buffer
touching

Compute

Touch

App to device
cache transfer

Device to touched
host buffer

Register host
buffer Idle host buffer

Device to untouched
host buffer

D2D blocked

Device to registered
host buffer

Fig. 1: Comparative illustration of the interactions between the device
cache and the host buffer

Serialized registration of host buffers to avoid competi-
tion for pinning physical memory pages on the host: We run
independent adjoint computations on each GPU, each of which
manage their own host buffer. However, even so, when the
adjoint computations exhibit similar behavior patterns (which
is often the case in ensembles), it is likely that multiple host
buffer registration requests happen simultaneously. Unfortu-
nately, a registration blocks not only device-to-host transfers,
but also device-to-device transfers, which essentially means
neither the device cache, not the host buffer are available
during host memory registration. Furthermore, competition for
pinning physical memory pages leads to a dramatic slow-down
of the registration. Therefore, left to compete naturally for
registering host buffers, the application processes end up slow-
ing each other down by simultaneously pausing flushes and
opportunistic touching unnecessarily. As a consequence, we
propose a coordinated approach that serializes the registration
of the host buffers in a round-robin fashion. Specifically, only
one GPU is allowed to register its host buffer at any given time,
while the rest continue flushing to unregistered memory pages
until their turn arrives (even if all pages have been touched).
While this approach favors some GPUs over others, overall it
leads to lower overheads for the whole group.

B. Interactions between the device cache and host buffer

In this section, we focus on the interactions between the de-
vice cache and the host buffer for the two concurrency control
strategies introduced above, in comparison with a traditional

solution that pays the initialization overheads in advance.
We assume a traditional adjoint computation in which each
iteration consists of a computation followed by capturing a
checkpoint (forward pass) or restoring a checkpoint (backward
pass). Furthermore, we assume the device cache is not large
enough to hold all checkpoints, which means it gets filled and
triggers the registration of the host buffer before the forward
pass is complete. Therefore, we do not study the backward
pass as it operates on a registered host buffer and does not
differ from a standard multi-level prefetching strategy.

Specifically, Figure 1 depicts three approaches: (A) standard
allocation and pinning, which corresponds to a traditional
solution: in this case, at the end of the first iteration, when
the first checkpoint is requested, the application blocks until
the device cache and host buffer is fully allocated and prepared
(i.e., host pages are mapped and pinned). Later, all device-to-
host flushes proceed at full speed. Next, (B) concurrent touch
and flush corresponds to the decoupled producer-consumer
strategy that allows opportunistic touches to compete with
the flushes for host memory bandwidth. In this case, no
initialization overhead is paid in advance. Flushes take longer
than in the case of the standard approach, both because they
involve writes to touched but unregistered memory pages
and because they are subject to competition with concurrent
touching of the memory pages. Eventually, after the device
cache is fully touched, the host buffer is registered signifi-
cantly faster as this operation only has to pin the physical
pages. Finally, (C) sequential touch and flush alternates be-
tween flushing and touching pages to address the situation
when competition between touching and flushing is counter-
productive. Specifically, the memory pages are touched only
during “idle” intervals that start when the flushing of the
checkpoint corresponding to the previous iteration finished
and that end when the current iteration finished. Eventually
this may lead to an accumulation of untouched, unregistered
pages that are directly written to.

C. Implementation details

We implemented the mentioned design principles and per-
formance model as an extension of VELOC [9], a production-
ready, multi-level checkpointing user-space runtime. As de-
picted in Figure 2 during the initialization, VELOC Init, step,
child threads are spawned for initializing device and host
buffer, and performing asynchronous transfers between the
device and the host buffer. The device cache thread first
allocates the entire cache using cuMemAddressReserve,
and then incrementally maps the virtual allocation of the cache
to physical HBM memory by using cuMemMap calls. Finally,
the access to the mapped regions can be enabled for a given
to peer GPUs (if required) using cuMemSetAccess API.
Similarly, the host buffer allocation thread first allocates the
virtual memory for the cache using malloc call, and later
incrementally touches the cache, either using memset or
setting the first bit of every page, which is enough to generate
a physical mapping for the entire page. Once the entire host

Application Init

VELOC Init

Compute
Next

iteration
Checkpoint

Initialize meta
data structures

Device
cache

Host cache

Host cache allocation threads

Device cache allocation thread

Main application thread

Used cache

Available cache

Unmapped cache Device to Host cache trf. thread

Wait until avail_cache >= ckpt_size

SSD

Host to SSD trf. thread

1
2

34

5

Start restore phase

PFS

Fig. 2: VELOC memory mapping and checkpointing workflow

buffer is touched, it is pinned using cudaHostRegister,
which then allow for faster DMA transfers.

Until the host buffer is fully touched, checkpoints can be
written to the touched or untouched regions as per the per-
formance model described in Section IV-B. However, unlike
the host buffer, checkpoints cannot be written to un-mapped
regions of the device cache, thus checkpoints to the device
cache are blocked until the required amount of memory is
mapped by the device-allocation thread. Finally, if any of
the cache tiers are full with checkpoints, we evict one or
more of the existing checkpoints that have been flushed to
a slower memory tier using a first in first out (FIFO) schedule
to accommodate the next checkpoint.

V. EVALUATION

A. Experimental Setup

We conduct our experiments on the ThetaGPU HPC testbed,
that consists of 24 Nvidia DGX A100 nodes. Each node is
equipped with 1 TB DDR4 memory (20 GB/s, 8 NUMA
domains), two 64-core AMD Rome CPUs (256 threads), four
3.84 TB Gen4 NVME drives (4 GB/s) and 8 Nvidia A100
Tensor core GPUs (aggregating to a total of 320 GB HBM
memory). The nodes have access to a 10 PB Lustre [38] PFS
that is accessible through a POSIX mount point. On each node,
the 8 A100 GPUs are interconnected with each other using
6 NVSwitches and with the host memory through a SXM4
interface. The peak unidirectional Device-to-Device, pinned,
and unpinned Device-to-Host (and vice versa) bandwidths on
each GPU are 500 GB/s, 25 GB/s and 12 GB/s, respectively.
Two GPUs share the same interconnect to host buffer, which
effectively reduces their Device-To-Host bandwidths during
concurrent access, and also allows for only 4 out of the 8
available NUMA domains to be directly accessible from the
GPUs. To emphasize the cost of node-local cache initialization,
we use a single node consisting of 8 GPUs in our experiments.

B. Compared Approaches

Throughout our evaluations, we compare the following
approaches for initializing the device and the host buffers.

1) Device buffer: We compare the following two ap-
proaches for initializing the device buffer:

Direct allocation: Uses the cudaMalloc API, and
blocks the application’s I/O operations until the reserved buffer
on the device is fully allocated and mapped. While state-of-
the-art HPC checkpoint-restore runtimes such as FTI [27] rely
on checkpointing directly to the host buffer, frameworks such
as PyTorch [3] initialize the device buffer for checkpointing
and/or staging data using this approach. Therefore, we con-
sider this approach as the baseline for comparison against our
proposed approach.

Our approach: As outlined in Section IV-A, this ap-
proach uses CUDAs virtual memory management (VMM)
technique that first reserves virtual address space on the
device and later incrementally maps it in chunks to physical
HBM memory. Incrementing in chunks smaller than 1 GB
results in slower device memory allocation rates. Therefore
we increment the VMM buffer in chunks of 1 GB.

2) Host buffer: For initializing the host buffer, we compare
the following approaches. The notations used in the evaluation
graphs are abbreviated in bold font.

Direct pin (standard allocation and registration):
This approach refers to the standard technique of allocat-
ing pinned memory on the host buffer in using the CUDA
API cudaHostMalloc. Checkpoint-restore runtimes such
as FTI [27] allocate the host buffer using this approach, and
thus we consider it as the baseline representing the current
state-of-the-art host cache initialization approach.

UVM (Unified Virtual Memory): In this approach, we
allocate the collective device and host buffer using a single
UVM call on each process. Since the UVM presents a general
purpose multi-tier memory management approach adopted by
CUDA drivers, it implicitly balances trade-off such as on-
demand page touching, evictions, locality-aware data place-
ment, and transparent interaction between host and device
buffers, and is thus relevant to our use-case.

Incremental memset: This approach corresponds to the
concurrent touch and flush technique outlined in Figure 1.
Default Linux pages of 4 KB are used during allocation, and
the touch operation sets the entire contents of page range to a
default value (0).

Our approach: Lastly, we compare the approach im-
plemented using our proposed design principles (§ IV-A)
as described in Section IV-B. Our optimized approach uses
transparent hugepages of 2 MB, and we incrementally touch
only the first bit of the allocated pages which is enough to
create a physical mapping of entire pages.

C. Evaluation Methodology

For each of the aforementioned approaches (§ V-B), we
evaluate the total checkpoint and restore overheads observed
by the application across all the processes. In our evalu-
ations, we report the time for which the application was

blocked during checkpointing, and blocked for total I/O
(checkpoint+restart) during its complete execution cycle, i.e.
the aggregated checkpointing and restoring time.

We consider the case of two complementary applications
to evaluate our proposal that generate uniform and variable
sized checkpoints respectively. Applications that checkpoint
for revisiting previous states or fault-tolerance, typically pro-
duce checkpoints of homogeneous sizes, primarily because
the same set of critical data structures, or intermediate buffer
is checkpointed. On the other hand, applications that run
data-reduction techniques such as compression and decimation
before checkpointing generate checkpoints of varying sizes.

To evaluate the case of variable-sized checkpoints, we con-
sider a real-life HPC adjoint computation workload- Reverse
Time Migration (RTM) [39], that is extensively used in the oil
and gas industry, specifically for generating subsurface images
from seismic data. In RTM, the forward and backward propa-
gated wave fields are first calculated for a known propagation
model, after which the two wave fields are cross-correlated
in time to form the subsurface image. Since the wave fields
need to be combined at identical propagation times, one of
the wave fields is reversed in time using checkpoint-restore
techniques [40]. The wave fields to be checkpointed can
amount to several terabytes for large-scale production runs,
because of which compression is crucial to mitigate I/O
overheads during transfers.

To study factors such as compute time between consec-
utive checkpoints or restore operations, number of seismic
images (shots) processed per node, and the amount of host
buffer required per process, we design a set of benchmarks
that emulates the behaviour of RTM application based on
the traces (§ V-D) collected from full-scale production run.
While our benchmark performs trivial iterations by sleeping
for the specified compute interval, it generates checkpoints
of the same sizes as observed in the traces, and hence is
representative for demonstrating the effects of our proposed
approach for real-world settings.

Considering the restoration of checkpoints done in reversed
order by the RTM application, we adopt a reverse restore
pattern for both uniform and variable sized checkpoint bench-
marks, such that the checkpoints written during the end of the
checkpoint cycle will be restored and consumed first by the
application. Similar to the state-of-the-art checkpoint-restore
runtimes [30], we enable prefetching in our benchmarks, that
enable the checkpoints to be restored in the near future to
be staged on the device buffer for faster Device-To-Device
transfer when required by the application. However, since
the UVM approach transparently manages prefetching using
CUDA’s density based prefetcher, we do not enable explicit
prefetching in this approach.

We evaluate each of the aforementioned approaches against
two configurations- the first in which the device buffer is large
enough to accommodate all the checkpoints of a given process,
and the second in which the host-cache is large enough to hold
all checkpoints generated by its process. These configurations
are abbreviated as large-device and large-host re-

spectively. For the case of large-device, 32 GB of device
memory (80% of total capacity) is allocated as device buffer,
and since it can contain all the checkpoints, the host buffer
becomes redundant in this configuration. In the large-host
configuration, we allocate 4 GB of device memory (10% of
its capacity) as device buffer and 32 GB of main memory per
process to be used as the host-cache, which when aggregated
across 8 processes constitutes to 25% of total host memory.
Both the large-device and large-host configurations
are representative of the spare memory available during ex-
ecution cycle of the RTM application for low and high-
frequency seismic simulations respectively. Note that VELOC
support asynchronous data movements further from host-cache
to local and remote storage, but we do not consider them under
the scope for our study that aims to ephemerally store the
intermediate checkpoints for short-lived computations. Unless
otherwise noted, the device buffer for large-device and
large-host are 32 GB and 4 GB respectively, and the host
buffer for large-host is set to 32 GB.

D. Shot Traces

In this section, we describe the distribution of checkpoints
sizes and compute intervals for both uniform and variable-
sized checkpoints.

Variable checkpoint sizes: The RTM application com-
presses the intermediate data generated during the forward
pass before checkpointing it. Since it uses lossy compression
techniques, that yield as high as ∼30× compression ratio, the
checkpoint sizes differ not only across different processes, but
also within same process for successive checkpoint operations.
Figure 3a depicts the checkpoint size distribution per process
for 8 representative shots. The aggregated size of each shot
ranges between 20 GB to 24 GB.

Instead of capturing checkpoints after every timestep, to
reduce the I/O, they can be captured after certain number
of timesteps and can be interpolated later when required in
restore phase. Capturing checkpoints after a large number of
timesteps minimizes the required I/O but also reduces the
image quality. However, depending on the size and frequency
of the input shot, the checkpoint capture interval can range
from checkpointing after succesive timesteps to checkpointing
after tens of timesteps have been evaluated. Therefore, we
evaluate for varying capture intervals which are represented
in terms of compute time between consecutive checkpoints.

Uniform checkpoint sizes: Next, we consider the case
when the HPC application performs an even domain decompo-
sition and generates checkpoints of homogeneous sizes, either
by capturing checkpoints in raw form of applying fixed size
output data reduction techniques such as truncating, padding,
etc. Unlike the case of variable-sized checkpoints, in this case
all processes attempt to capture checkpoints at simultaneously,
that leads to contention on device-host memory interconnect
(two GPUs share the same SXM), and the writes made on
the host buffer. We derive the checkpoint size for this class of
applications from the RTM traces, where the size of every
checkpoint is 128 MB, which roughly corresponds to 50

percentile distribution of 1600 RTM shots. We capture 256
checkpoints on each process, which amounts to 32 GB of
checkpoints per GPU.

E. Results

Cache initialization throughput: We first evaluate the
initialization throughput of the device memory by measuring
the time taken to allocate, map and pin 32 GB of device
buffer (80% of HBM capacity) per GPU. We launch multiple
processes such that each GPU is exclusively associated with
a single process. All processes then concurrently initialize
their entire device buffer, which resembles the with concurrent
initialization pattern of real-world adjoint computations. As
observed in Figure 4a, the allocation throughput decreases
with an increasing number of processes. More specifically, we
observe up to 1.2 TB/s initialization rate for a single process,
which drops down to 160 GB/s for 8 processes. Although
every process independently handles the memory allocation
of its local GPU, the CUDA drivers by default enables peer
access of the allocated device buffer, due to which it needs to
sequentially register this memory in all of its peers’ CUDA
contexts for inter-GPU memory access. Thus, we observe that
the allocation rate of the device buffer is inversely proportional
to the number of processes.

For the case of host-cache, we observe no difference in the
allocation and touching throughput on increasing the number
of processes to a maximum of 8 processes (total number of
GPUs on our system). This is due to the fact that we have
a total of 8 NUMA domains, each having their independent
PCIe and cache access lines thereby making allocations and
touches scalable for our system. However, similar to the
case of device buffer the rate of pinning the host buffer
is inversely proportional to the number of processes, that
effectively reduces the overall cache initialization rate for an
increasing number of processes.

As mentioned in Section IV-A, the rate of mapping virtual
to physical memory is 3 GB/s, which is done either during
cache initialization or direct transfers. Therefore, for writing
checkpoints of 128 MB, we do not experience any transfer
stalls if the time between consecutive checkpoints is greater
than 43 ms. Thanks to our incremental device based cache that
acts as an intermediary buffer between application and host
cache, our system enables minimum transfer overheads even
when consecutive checkpoints are issued significantly faster
than the host cache allocation rate.

Checkpointing and overall blocking time of the appli-
cation: Our next set of experiments evaluates the blocking
time per process of the application during checkpoint and
restore operations. The blocking time per process is reported
as the (total blocking time of all processes divided by the total
number of processes).

We first evaluate the case of uniform-sized checkpoints
for the large-device configuration. As observed in Fig-
ure 4b, we observe up to 76% faster checkpointing when
device buffer is allocated using our proposed incremental
CUDA virtual-memory management based approach. Since the

0 100 200 300 400
Snapshot number

0

50

100

150

Si
ze
 (
M
B)

GPU-0
GPU-1
GPU-2
GPU-3

GPU-4
GPU-5
GPU-6
GPU-7

(a) RTM checkpoint sizes

5 10 15 20 30 40 60
Compute interval (ms)

0

25

50

75

100

Ck
pt

 o
ve

rh
ea

d
(s
) Direct pin

UVM
Incr. memset
Our approach

(b) Checkpoint overhead

5 10 15 20 30 40 60
Compute interval (ms)

0

25

50

75

100

I/O
 o
ve

rh
ea

d
(s
) Direct pin

UVM
Incr. memset
Our approach

(c) Ckpt+restore overhead

Fig. 3: Checkpoint sizes per GPU of RTM application running on 8 GPUs (Fig. 3a). Total checkpoint (Fig. 3b) and checkpoint+restore
overhead (Fig. 3c) for variable-sized checkpoints for the large-host configuration.

1 2 3 4 5 6 7 8
Number of processes

0

250

500

750

1000

Al
lo
ca
ti
on

 r
at
e
(G

B/
s)

(a) Device buffer allocation rate

1 2 4 8 16 32 48 64
Compute interval (ms)

0

1

2

3

4

Ck
pt
 o
ve

rh
ea

d
(s
) Direct allocation Our approach

(b) Checkpoint overhead

1 2 4 8 16 32 48 64
Compute interval (ms)

0

2

4

I/O
 o
ve

rh
ea

d
(s
) Direct allocation Our approach

(c) Ckpt+restore overhead

Fig. 4: Device allocation rate with an increasing number of processes per node (Fig. 4a). Total checkpoint (Fig. 4b) and check-
point+restore (Fig. 4c) overhead for uniform-sized checkpoints for large-device configuration.

checkpoints consume the entire device buffer, our incremental
cache approach initializes the entire cache before the restore
phase begins, thereby performing restore operations at peak
Device-To-Device bandwidths without any interference from
cache allocation. Additionally, as seen in Figure 4c, the total
application overhead is reduced by up to 63% when using our
approach as compared to initializing device buffer using the
baseline (Direct allocation).

Next, we consider the case of uniform-sized checkpoints
by using the large-host configuration. Figure 5a and
Figure 5b depict the overheads associated with checkpointing
and overall I/O of the application for different compute inter-
vals. On comparing the performance of Direct pin, UVM
and Incr. memset, we observe that the UVM approach
outperforms the other two approaches during checkpoint cycle,
primarily due to on-demand cache initialization as opposed
to the proactive cache initialization adopted by the other
approaches. However, when comparing the overall I/O over-
head, the cost of proactive cost initialization pays off for
the Incr. memset approach, while the UVM still pays
more, if not the same overall I/O overhead as the Direct pin
approach for short compute times. The on-demand overhead
of UVM is amortized by larger compute intervals, which leads
to smaller I/O overheads. Nonetheless, our proposed approach
outperforms the baseline (Direct pin) by up to 12.5× and 7.8×
respectively for checkpointing and checkpoint+restore cycles
respectively. We observe a similar behaviour of the com-
pared approaches for the case of variable-sized checkpoints
as depicted in Figure 3b and Figure 3c. For variable sized
checkpoints, the total checkpointing and checkpoint+restart
overhead is reduced by 16.7× and 9.3× respectively when
using our approach as compared to the baseline.

Comparison of sequential vs. concurrent cache initial-
ization and serial vs. parallel pinning for host buffer: We
next evaluate the impact of concurrency control performance
model by comparing the sequential initialization approach with
the concurrent initialization approach for the case of uniform-
sized checkpoints. We also study the performance implications
of performing serial pinning of the host buffer as compared
to parallel pinning. As outlined in Figure 5c, the sequential
pinning approach performs on average 6.4×, and a maximum
of 8× faster as compared to parallel pinning approach, which
supports our design principle of serially pinning the host-
cache.

Next, we observe that the sequential touching and check-
point writes approach outperforms the concurrent approach for
all compute intervals except the smallest interval of 5ms when
the host buffer is pinned serially. This is because for small
intervals during sequential touching, the forerunner threads do
not get enough time-slices in between checkpoint writes to
touch enough pages for the next checkpoint, due to which
the next checkpoint resort to writing on untouched pages.
As compared to this case of sequential touching, for smaller
compute intervals the concurrent touch and write approach
outperforms the sequential approach by 10%. However, for
larger compute intervals, the sequential touch approach proves
to be on average 43% and a maximum of 2.7× faster as
compared to the concurrent memory touching approach. These
results demonstrate the effectiveness of our proposed perfor-
mance model that dynamically chooses between the different
optimization techniques to yield the lowest checkpointing and
overall I/O overhead for the application.

Scalability: In our next set of experiments, we study the
scalability of our proposed allocation techniques by increasing
the number of processes on a given node from 1. . . 8 (max-

5 10 15 20 30 40 60
Compute interval (ms)

0

50

100

150
Ck

pt
 o

ve
rh

ea
d

(s
) Direct pin

UVM
Incr. memset
Our approach

(a) Checkpoint overhead

5 10 15 20 30 40 60
Compute interval (ms)

0

50

100

150

I/O
 o

ve
rh

ea
d

(s
) Direct pin

UVM
Incr. memset
Our approach

(b) Ckpt+restore overhead

5 10 15 20 30 40 60
Compute interval (ms)

0

25

50

75

100

Ck
pt
 o
ve

rh
ea

d
(s
) Seq. touch serial pin

Conc. touch serial pin
Seq. touch parallel pin
Conc. touch parallel pin

(c) Sequential vs concurrent checkpoint overhead

Fig. 5: Total checkpoint (Fig. 5a) and checkpoint+restore (Fig. 5b) overhead for uniform-sized checkpoints for large-host configuration.
Impact of sequential vs concurrent touching and serial vs parallel pinning of host buffer for different compute intervals (Fig. 5c).

1 2 3 4 5 6 7 8
Number of processes

0

50

100

Ck
pt
 o
ve
rh
ea
d
(s
) Direct pin

UVM
Incr. memset
Our approach

(a) Total checkpoint overhead for increasing pro-
cesses

1 2 3 4 5 6 7 8
Number of processes

0

50

100

I/O
 o
ve
rh
ea
d
(s
) Direct pin

UVM
Incr. memset
Our approach

(b) Total ckpt+restore overhead for increasing pro-
cesses

8 16 24 32 48 64
Host cache size (GB)

0

100

200

I/O
 o
ve

rh
ea

d
(s
) Direct pin

UVM
Incr. memset
Our approach

(c) Total ckpt+restore overhead for increasing host-
cache

Fig. 6: Weak scaling for the total checkpoint (Fig. 6a) and checkpoint+restore overhead (Fig. 6b). Total application blocking time during
checkpoint+restore on increasing the host buffer (Fig. 6c).

imum number of GPUs) for uniform sized checkpoints. For
this experiment, we select a compute interval of 20ms (that
represents the mean checkpoint interval of RTM traces with
similar checkpoint sizes) on the large-host configuration.
Figure 6a and Figure 6b represent the total amount of time a
process process was blocked on checkpointing and the total
I/O (checkpoint+restore). For a single process, our approach
yields 7.6× and 4.7× lower checkpointing and total I/O
overheads respectively as compared to the baseline approach.
As we increase the number of processes to 8, we observe
27.8× and 13.6× lower checkpoint and total I/O overheads
with our approach relative to the baseline. With more number
of processes, our optimizations such as concurrency control to
optimize competition between writes and eager touching, and
lazy sequential pinning contribute more significantly towards
reducing the I/O wait time of the application. This demon-
strates that our approach achieves significant performance
improvements as compared to the baseline even at scale.

Lastly, we evaluate how does our approach performs for
an increasing host buffer per process. As seen in Figure 6c,
our approach outperforms the baseline approach from 4.8×
to 12.4× for various host buffer size per process ranging
from 8. . . 64 GB The results of this experiment indicate that
larger host buffer provide more opportunity for overlapping
cache touching and registration with ongoing checkpointing;
thereby illustrating the effectiveness of our proposed approach
for minimizing the I/O overheads of the targeted set of short-
running applications performing checkpoint-restore at high-
frequencies.

VI. CONCLUSIONS

In this paper, we address the problem of reducing initial-
ization overheads for multi-level checkpointing strategies of

short-lived adjoint computations running on multiple GPUs
co-located on the same HPC node. Unlike state of art ap-
proaches that pay a high initialization cost upfront (map and
pin host memory pages), we propose a new approach that
combines GPU cache optimizations (incremental allocation)
with host cache optimizations (asynchronous opportunistic
touching of the memory pages to reduce pinning overheads)
We implemented a prototype of our proposal based on VE-
LOC, a production-ready multi-level HPC checkpoint-restart
runtime. We ran extensive experiments that compare state
of art approaches with our proposal. Our results show an
average of ∼12× faster checkpointing during the forward
pass (considering and amortized initialization cost) and ∼8×
lower overall I/O overhead when combining the checkpointing
overhead during the forward pass with the restore overhead
during the backward pass. Encouraged by these results, in
future work we plan to explore two complementary directions:
(1) a globally shared host buffer across all GPUs that improves
the overall host memory utilization by reducing fragmentation
(at the cost of higher synchronization overheads); (2) support
for Nvidia GPUDirect storage that enables the use of a third
tier (NVMe based SSDs) in addition to the host buffer.

ACKNOWLEDGMENTS

This work is supported in part by the ARAMCO Services
Company and the U.S. Department of Energy (DOE), Of-
fice of Science, Office of Advanced Scientific Computing
Research and Argonne National Laboratory, under contract
numbers PRJ1008127, Argonne: 0F-60169/DOE: DE-AC02-
06CH11357. The initial versions of results were obtained
using the Chameleon and CloudLab testbeds supported by the
National Science Foundations.

REFERENCES

[1] R. Ross, L. Ward, G. Grider, S. Klasky, G. Lockwood, K. Mohror,
and B. Settlemyer, “Storage systems and i/o: Organizing, storing, and
accessing data for scientific discovery,” Department of Energy, Office of
Science, Tech. Rep., 2019.

[2] J. Utke, U. Naumann, M. Fagan, N. Tallent, M. Strout, P. Heimbach,
C. Hill, and C. Wunsch, “Openad/f: A modular open-source tool for
automatic differentiation of fortran codes,” vol. 34, no. 4, jul 2008.
[Online]. Available: https://doi.org/10.1145/1377596.1377598

[3] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in NIPS 2017 Workshop on Autodiff, Long Beach, USA, 2017.

[4] R. M. Errico, “What is an adjoint model?” Bulletin of the American
Meteorological Society, vol. 78, no. 11, pp. 2577–2591, 1997.

[5] A. Lindsay, R. Stogner, D. Gaston, D. Schwen, C. Matthews, W. Jiang,
L. K. Aagesen, R. Carlsen, F. Kong, A. Slaughter et al., “Automatic
differentiation in metaphysicl and its applications in moose,” Nuclear
Technology, pp. 1–18, 2021.

[6] T. Alturkestani, T. Tonellot, H. Ltaief, R. Abdelkhalak, V. Etienne, and
D. Keyes, “Mlbs: Transparent data caching in hierarchical storage for
out-of-core hpc applications,” in HiPC’19: The IEEE 26th International
Conference on High Performance Computing, Data, and Analytics,
2019, pp. 312–322.

[7] H. Wan, “Deep learning: Neural network, optimizing method and
libraries review,” in ICRIS’19: The 2019 International Conference on
Robots and Intelligent System, 2019, pp. 497–500.

[8] T. Allen and R. Ge, “In-depth analyses of unified virtual memory system
for gpu accelerated computing,” in SC ’21: International Conference for
High Performance Computing, Networking, Storage and Analysis, St.
Louis, USA, 2021.

[9] B. Nicolae, A. Moody, E. Gonsiorowski, K. Mohror, and F. Cappello,
“VeloC: Towards High Performance Adaptive Asynchronous Check-
pointing at Large Scale,” in Proc. IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2019.

[10] M. Aigner, C. M. Kirsch, M. Lippautz, and A. Sokolova, “Fast,
multicore-scalable, low-fragmentation memory allocation through large
virtual memory and global data structures,” in Proceedings of the
2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA
2015. New York, NY, USA: Association for Computing Machinery,
2015, p. 451–469. [Online]. Available: https://doi.org/10.1145/2814270.
2814294

[11] A. Pi, J. Zhao, S. Wang, and X. Zhou, “Memory at your service: fast
memory allocation for latency-critical services,” in Proceedings of the
22nd International Middleware Conference, 2021, pp. 185–197.

[12] J. Evans, “A scalable concurrent malloc (3) implementation for freebsd,”
in Proc. of the bsdcan conference, ottawa, canada, 2006.

[13] “Tcmalloc : Thread-caching malloc,” https://gperftools.github.io/
gperftools/tcmalloc.html.

[14] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: A scalable memory allocator for multithreaded applications,”
ACM Sigplan Notices, vol. 35, no. 11, pp. 117–128, 2000.

[15] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C. Hertzberg, “Mcrt-
malloc: A scalable transactional memory allocator,” in Proceedings of
the 5th international symposium on Memory management, 2006, pp.
74–83.

[16] S. Seo, J. Kim, and J. Lee, “Sfmalloc: A lock-free and mostly
synchronization-free dynamic memory allocator for manycores,” in 2011
International Conference on Parallel Architectures and Compilation
Techniques. IEEE, 2011, pp. 253–263.

[17] B. C. Kuszmaul, “Supermalloc: A super fast multithreaded malloc for
64-bit machines,” in Proceedings of the 2015 International Symposium
on Memory Management, ser. ISMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 41–55. [Online].
Available: https://doi.org/10.1145/2754169.2754178

[18] J. Cao, K. Arya, R. Garg, S. Matott, D. K. Panda, H. Subramoni,
J. Vienne, and G. Cooperman, “System-level scalable checkpoint-restart
for petascale computing,” in ICPADS’16: The 22nd IEEE Int. Conf. on
Parallel and Distributed Systems. IEEE Press, 2016, pp. 932–941.

[19] P. H. Hargrove and J. C. Duell, “Berkeley lab checkpoint/restart (BLCR)
for linux clusters,” in Journal of Physics: Conference Series, vol. 46,
no. 1. IOP Publishing, 2006, p. 067.

[20] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High performance Fault
Tolerance Interface for hybrid systems,” in Proc. ACM/IEEE
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2011.

[21] A. Moody, G. Bronevetsky, K. Mohror, and B. R. d. Supinski, “De-
sign, modeling, and evaluation of a scalable multi-level checkpointing
system,” in Proc. ACM/IEEE International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis (SC), 2010.

[22] B. Nicolae, A. Moody, G. Kosinovsky, K. Mohror, and F. Cappello,
“VELOC: very low overhead checkpointing in the age of exascale,”
CoRR, vol. abs/2103.02131, 2021.

[23] H. Takizawa, K. Sato, K. Komatsu, and H. Kobayashi, “Checuda: A
checkpoint/restart tool for cuda applications,” in Proc. International
Conference on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2009, pp. 408–413.

[24] A. Nukada, H. Takizawa, and S. Matsuoka, “Nvcr: A transparent
checkpoint-restart library for nvidia cuda,” in Proc. IEEE International
Symposium on Parallel and Distributed Processing Workshops and PhD
Forum (IPDPSW), 2011.

[25] T. Suzuki, A. Nukada, and S. Matsuoka, “Transparent checkpoint and
restart technology for cuda applications,” in Proc. GPU Technology
Conference (GTC), 2016.

[26] R. Garg, A. Mohan, M. Sullivan, and G. Cooperman, “CRUM:
Checkpoint-restart support for CUDA’s unified memory,” in Proc. IEEE
International Conference on Cluster Computing (CLUSTER), 2018.

[27] K. Parasyris, K. Keller, L. Bautista-Gomez, and O. Unsal, “Checkpoint
restart support for heterogeneous hpc applications,” in Proc. IEEE/ACM
International Symposium on Cluster, Cloud and Internet Computing
(CCGRID), 2020.

[28] M. Siavvas and E. Gelenbe, “Optimum checkpoints for programs with
loops,” Simulation Modelling Practice and Theory, 2019.

[29] S. Xiao, P. Balaji, J. Dinan, Q. Zhu, R. Thakur, S. Coghlan et al.,
“Transparent accelerator migration in a virtualized gpu environment,” in
Proc. IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), 2012.

[30] J. Mohan, A. Phanishayee, and V. Chidambaram, “Checkfreq: Frequent,
fine-grained DNN checkpointing,” in Proc. USENIX Conference on File
and Storage Technologies (FAST), 2021.

[31] K. Lee, M. B. Sullivan, S. K. S. Hari, T. Tsai, S. W. Keckler, and
M. Erez, “Gpu snapshot: checkpoint offloading for gpu-dense systems,”
in Proc. ACM International Conference on Supercomputing (ICS), 2019.

[32] T. Alturkestani, T. Tonellot, H. Ltaief, R. Abdelkhalak, V. Etienne, and
D. Keyes, “MLBS: Transparent Data Caching in Hierarchical Storage for
Out-of-Core HPC Applications,” in Proc. IEEE International Conference
on High Performance Computing, Data, and Analytics (HiPC), 2019.

[33] P. Subedi, P. Davis, S. Duan, S. Klasky, H. Kolla, and M. Parashar,
“Stacker: an autonomic data movement engine for extreme-scale data
staging-based in-situ workflows,” in SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2018, pp. 920–930.

[34] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky, K. Schwan, and F. Zheng,
“Datastager: scalable data staging services for petascale applications,”
Cluster Computing, vol. 13, no. 3, 2010.

[35] C. Docan, M. Parashar, and S. Klasky, “Dataspaces: an interaction
and coordination framework for coupled simulation workflows,” Cluster
Computing, vol. 15, no. 2, pp. 163–181, 2012.

[36] B. Dong, S. Byna, K. Wu, H. Johansen, J. N. Johnson, N. Keen
et al., “Data elevator: Low-contention data movement in hierarchical
storage system,” in 2016 IEEE 23rd International Conference on High
Performance Computing (HiPC). IEEE, 2016, pp. 152–161.

[37] T. Wang, S. Oral, M. Pritchard, B. Wang, and W. Yu, “Trio: Burst
buffer based i/o orchestration,” in 2015 IEEE International Conference
on Cluster Computing. IEEE, 2015, pp. 194–203.

[38] “Lustre: A parallel file system that supports many requirements of
leadership class hpc simulation environments,” https://www.lustre.org/.

[39] H.-W. Zhou, H. Hu, Z. Zou, Y. Wo, and O. Youn, “Reverse time
migration: A prospect of seismic imaging methodology,” Earth-Science
Reviews, vol. 179, pp. 207–227, 2018.

[40] R.-E. Plessix, “A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications,” Geophysical
Journal International, vol. 167, no. 2, pp. 495–503, 2006.

https://doi.org/10.1145/1377596.1377598
https://doi.org/10.1145/2814270.2814294
https://doi.org/10.1145/2814270.2814294
https://gperftools.github.io/gperftools/tcmalloc.html
https://gperftools.github.io/gperftools/tcmalloc.html
https://doi.org/10.1145/2754169.2754178
https://www.lustre.org/

	Introduction
	Problem Formulation
	Related Work
	System Design
	Design principles
	Interactions between the device cache and host buffer
	Implementation details

	Evaluation
	Experimental Setup
	Compared Approaches
	Device buffer
	Host buffer

	Evaluation Methodology
	Shot Traces
	Results

	Conclusions
	References

