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LIX, École Polytechnique, IP Paris
rmagnet@lix.polytechnique.fr

Jing Ren
ETH Zurich

jing.ren@inf.ethz.ch

Olga Sorkine-Hornung
ETH Zurich

sorkine@inf.ethz.ch

Maks Ovsjanikov
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Abstract

We introduce pointwise map smoothness via the Dirich-
let energy into the functional map pipeline, and propose an
algorithm for optimizing it efficiently, which leads to high-
quality results in challenging settings. Specifically, we first
formulate the Dirichlet energy of the pulled-back shape co-
ordinates, as a way to evaluate smoothness of a pointwise
map across discrete surfaces. We then extend the recently
proposed discrete solver and show how a strategy based
on auxiliary variable reformulation allows us to optimize
pointwise map smoothness alongside desirable functional
map properties such as bijectivity. This leads to an effi-
cient map refinement strategy that simultaneously improves
functional and point-to-point correspondences, obtaining
smooth maps even on non-isometric shape pairs. Moreover,
we demonstrate that several previously proposed methods
for computing smooth maps can be reformulated as variants
of our approach, which allows us to compare different for-
mulations in a consistent framework. Finally, we compare
these methods both on existing benchmarks and on a new
rich dataset that we introduce, which contains non-rigid,
non-isometric shape pairs with inter-category and cross-
category correspondences. Our work leads to a general
framework for optimizing and analyzing map smoothness
both conceptually and in challenging practical settings.

1. Introduction
Shape correspondence is a fundamental task in Geome-

try Processing, acting as a building block for many down-
stream applications [46, 43, 9]. One of the key challenges
in designing a successful general-purpose shape matching
method is the choice of the objective function that should
promote high quality correspondences and, at the same
time, be easy enough to optimize in order to be applicable
on complex, densely sampled geometric objects.
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Figure 1. Our method can deal with noisy inputs and produce high-
quality and smooth pointwise maps for non-isometric shape pairs.
As a comparison, ZoomOut [28], the current state-of-the-art re-
finement method, cannot explicitly control the map smoothness
and can have large discontinuous patches in the obtained maps.
We report the smoothness metric ED for each map.

A widely acknowledged desirable objective in non-rigid
shape matching is smoothness, which intuitively promotes
local consistency or continuity of computed correspon-
dences, while being less restrictive than, e.g., isometries or
conformal maps. Several works have incorporated smooth-
ness into the map computation pipelines either via auxiliary
energy terms [16], or by structuring the search space priv-
ileging continuous, often low frequency, correspondences
or deformation fields, e.g., [12, 13]. Despite the utility of
smoothness as a supervising signal in map computation, ex-
isting approaches can either be difficult to scale to dense
meshes or are incorporated in an ad-hoc manner. Moreover,
there is no coherent framework for comparing different ex-
isting strategies for promoting map smoothness using a sin-
gle consistent computational and conceptual formalism.

In this paper we focus on the functional map framework,
which was originally proposed as a tool for near-isometric
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Figure 2. DEFORMTHINGS4D-MATCHING Dataset. We construct a new dataset for non-isometric shape matching based on the DE-
FORMTHINGS4D [25]. We show some example humanoid shapes and visualize the cross/inter-category correspondences via color transfer.
Note that the shapes in the same category are remeshed independently (zoom in to see the mesh wireframes).

shape matching [32] and has since then been significantly
extended to different tasks [42, 21] and correspondence
models [40, 24, 10], among many others. The key advan-
tages of this framework are its efficiency and flexibility. The
efficiency of functional maps-based approaches stems from
representing maps as small matrices using a reduced basis,
which leads to small-scale optimization problems. At the
same time, this framework is flexible and can incorporate a
wide range of desirable constraints using simple linear al-
gebraic formulations, e.g., [14, 31, 33].

Although originally functional map-based methods fo-
cused on constraints in the functional (spectral) domain,
recent works have started to highlight and exploit links
that exist between pointwise and functional map represen-
tations, while leveraging the strengths of both [39, 16, 38].
Specifically, a recent discrete optimization scheme was pro-
posed in [38], demonstrating that many desirable map prop-
erties can be optimized directly in the pointwise map repre-
sentation. Unfortunately, while the class of energies consid-
ered in [38] covers many existing functional map objectives,
such as bijectivity or commutativity with the Laplacian, it
does not address desirable pointwise map properties such
as map smoothness. This can lead to local inconsistencies,
such as discontinuous mapped patches, thus severely limit-
ing the utility of the computed maps in practice.

In this paper we introduce a novel method that allows
to explicitly promote pointwise map smoothness within the
functional map framework. Our method is based on, first,
formulating smoothness as the optimization of the Dirich-
let energy of the pointwise map, and second, an iterative
method for solving this energy optimization by extending
the method introduced in [38]. This allows our approach
to be used alongside other desirable objectives, while ex-
plicitly promoting smooth and locally consistent maps. We
therefore both extend the scope of discrete map optimiza-
tion to new energies not covered in [38] and use this insight
to develop an efficient non-rigid shape matching approach
that directly promotes pointwise map smoothness.

In addition to introducing a novel method for promot-
ing smooth maps within the functional maps framework,
we also investigate multiple previous approaches for com-
puting smooth maps in different settings [16, 13, 45, 3] and
show how they can be interpreted as variants of each other

and thus compared within a unified formalism. This allows
us to design a family of different approaches, parametrized
by the choice of the smoothness energy and its associ-
ated optimization strategy. We propose a coherent for-
malism within which various energies can be compared
and demonstrate their relative utility in different settings.
Finally, we observe that most public datasets focus on
near-isometric pairs, making it non-trivial to evaluate ac-
curacy and smoothness in more realistic scenarios, which
can involve diverse and non-isometric shapes. To fill this
gap we introduce a new challenging dataset based on DE-
FORMTHINGS4D [25], but with additional cross-category
ground truth maps (Fig. 2). We use this dataset alongside
existing benchmarks in a comprehensive comparison of var-
ious approaches computing smooth correspondences. To
summarize, our key contributions include:

1. We show how pointwise map smoothness can be formu-
lated and optimized within the functional map frame-
work, by extending the discrete solver proposed in [38].

2. Based on this construction, we introduce a simple and
effective map refinement method that is both computa-
tionally efficient and leads to high-quality results in non-
isometric settings (Fig. 1).

3. We show how several previously proposed methods are
intimately related both to our approach and within them-
selves, and propose a coherent framework, allowing us
to directly compare ways to promote smoothness within
a consistent formalism and computational strategy.

4. We construct a new dataset for non-rigid shape match-
ing tasks with inter-category correspondences for ani-
mal shapes, and inter-/cross-category correspondences
for humanoid shapes that are independently remeshed.

2. Related Work
In this section, we briefly review the previous works of

shape matching, commonly used map evaluation metrics,
and various map solvers, that are most related to this work.
We refer to recent surveys [9, 43, 4] for more thorough dis-
cussions of shape matching.

Shape Matching Our work focuses on the problem of
shape matching, that looks for dense correspondences be-
tween two non-rigid 3D shapes. One solution to shape



matching is to solve for correspondences directly by mini-
mizing an explicit and carefully designed energy [6, 20, 34],
which can lead to complex combinatorial problems with
high computational complexity. An alternative solution is to
find correspondences between parametric representations,
where the input shapes are mapped into a canonical do-
main [26, 2, 1]. Our work is based on the functional map
representation [32, 33], which computes correspondences
between functions defined on the shapes. Different regular-
izers have been proposed to promote the accuracy of func-
tional maps [31, 30, 39, 19, 49, 50]. Computing a functional
map is usually reduced to solving a least-square system,
which has a relatively low computation cost, but recover-
ing a point-wise correspondence from the computed func-
tional map is error-prone [41, 15, 38]. To further improve
the accuracy of the recovered point-wise correspondences,
different refinement methods have been proposed as a post-
processing step [44, 27, 48, 47]. A common technique for
map refinement in the functional maps framework is to it-
eratively update functional maps and the underlying point-
wise maps according to different energies such as Dirichlet
energy and bijectivity [32, 16, 39, 28, 37, 38]. In this work,
we present a new refinement method that can robustly deal
with noisy input and efficiently produce smooth maps in the
functional maps framework.

Metrics for Map Quality Evaluation Different criterion
have been taken into consideration to evaluate map qual-
ity, which are incorporated into map computation. The
most commonly-used metric is the map accuracy, which is
measured by comparing the geodesic distance between the
mapped position and the pre-specified ground-truth posi-
tion. Some previous work [3, 27, 19] adopt a landmark term
to enforce map accuracy. To achieve a fully automatic solu-
tion, other metrics such as smoothness, bijectivity, confor-
mality, and coverage are considered for map optimization
other than accuracy which needs manually specified land-
marks. For example, Reversible Harmonic Maps [16] pro-
poses to optimize the Dirichlet energy together with the bi-
jectivity of the pointwise maps. Smooth Shells [13] adopts
the ARAP energy [45] to compute a smooth deformation
field, which potentially leads to a smooth pointwise map.
[23] blends across multiple maps to get a smooth one. [39]
proposes heuristics to improve the bijectivity, smoothness,
and coverage of the pointwise map in both spatial and spec-
tral domain. In this work, we observe how several previous
proposed approaches are closely related in formulating map
smoothness. We show different variants can be compared
in a coherent way within a consistent formalism.

Map Solver Previous methods adopt different search
space for maps and hence need different solvers. For ex-
ample, some work [17, 44, 11, 35] solve for maps that
are represented by doubly stochastic matrices. Functional

maps framework [32, 31, 30, 39] usually solves a least-
square system for functional maps. Quadratic-splitting
technique [15, 16] is also used to solve vertex-to-point (also
called precise) maps. [38] introduces a discrete solver to op-
timize commonly used functional map energies constrained
on the proper functional maps, which is a subset of func-
tional maps that are associated with pointwise maps. In this
work, we introduce map smoothness into functional map
pipeline and present an efficient algorithm to minimize the
smoothness which extends the scope of discrete solver.

3. Notation & Background
Notation Given a triangle mesh S = (X,F ) with the ver-
tex positions X and face set F , we denote the cotangent
weight matrix by W and the diagonal lumped mass matrix
by A [29]. By solving the generalized eigenvalue problem
Wφj = λjAφj , we can obtain the Laplace-Beltrami basis
Φ by collecting the first k eigenfunctions as columns, i.e.,
Φ =

[
φ1...φk

]
and the corresponding eigenvalues in a diag-

onal matrix, denoted as ∆ = diag
(
λ1...λk

)
. We then have

Φ⊤AΦ = I . A pointwise map is denoted as Πij : Si → Sj ,
where the subscript indicates the map direction. Specifi-
cally, Πij ∈ {0, 1}ni×nj (ni is the number of vertices in
Si) is a binary matrix indicating the correspondences be-
tween the two shapes. For example, if the p-th vertex on
Si is mapped to the q-th vertex on shape Sj , we then have
Πij(p, q) = 1 and Πij(p, t) = 0 for ∀t ̸= q.

Functional Maps Framework The goal of shape match-
ing is to find semantically meaningful and continuous point-
wise map for a given shape pair. In this work, we follow
the functional map framework [32] and encode a point-wise
map as a linear transformation (called functional map) in the
Laplace-Beltrami basis. Specifically, for a pointwise map
Πij : Si → Sj , the associated functional map is given as
Cji = Φ†

iΠijΦj . Note that Cji a pull-back linear opera-
tor that maps functions on shape Sj to functions on shape
Si. In the original pipeline [32], a functional map is com-
puted by solving a least-squared system in the continuous
linear operator space, i.e., C21 = argminC∈Rk1×k2 E(C),
where E(·) is a functional map energy that preserves input
descriptors or landmarks, surface area or angles, multiplica-
tive operators, or shape orientation [32, 30, 39, 22]. Solv-
ing for a function map in the unconstrained search space
simplifies the optimization problem, but can lead to errors
when converting the computed functional map to a point-
wise one [41, 15, 38]. Thus, additional post-processing
techniques are used to improve the quality of the pointwise
maps [39, 16, 28, 35].

Discrete Optimization A recent work [38] has proposed
a discrete solver for functional map pipeline which con-
strains the optimization problem to the space of proper
functional maps. Specifically the functional map, C21 =



argminC∈P21
E(C), is solved in a discrete search space

P21 =
{
C21 | ∃Π12 s.t. C21 = Φ†

1Π12Φ2

}
, i.e., the set

of functional maps arising from some pointwise correspon-
dence. The general strategy to solve this constrained prob-
lem, advocated in [38] mimics the Augmented Lagrangian
methods with variable splitting [18] and consists of the fol-
lowing two main steps: (i) reformulate the energy E(·) by
making C21 and Π12 independent variables, and adding a
coupling term:

Ecouple(C21,Π12) =
∥∥C21 − Φ†

1Π12Φ2

∥∥2
F
, (1)

(ii) iteratively solve for C21 and Π12 with the other variables
fixed. This approach is shown to be efficient and leads to
high-quality and well-regularized functional maps. Key to
the success of this strategy is the ability to reformulate the
given functional map energy so that the resulting optimiza-
tion problems for C21 and Π12 in step (ii) can be solved
in closed form. In [38], a range of energies is considered
including bijectivity, landmarks preservation, orthogonality
and Laplacian commutativity.

Dirichlet Energy Given two Riemannian manifolds S1

and S2, the Dirichlet energy of a map f : S1 → S2 is
defined as ED(f) = 1

2

∫
S1

∥df∥2dµS1
, with df the map dif-

ferential, which intuitively acts as a measure of the stretch
induced by the map (see, e.g., [16] for a discussion). A
smooth map f is therefore characterized as being a mini-
mizer of the Dirichlet energy. In the discrete setting, a map
f : S1 → S2 can be seen as a function between the two
surface embeddings (i.e., f : R3 → R3) and is assumed
to be affine on each face. We can then define the discrete
Dirichlet energy [36]:

ED (f) =
∑

(xi,xj)∈E(S1)

wij

∥∥f(xi)− f(xj)
∥∥2, (2)

where E(S1) is the set of edges on S1 and wij the cotangent
weight of edge (i, j). We can rewrite Eq. (2) in a more
compact way: ED(f) = Trace(f⊤W1f) :=

∥∥f∥∥2
W1

, where
W1 is the cotangent weight matrix of shape S1.

Note that in practice one only needs to store the value
of f at each vertex of S1 and therefore if f is a point-
wise map from S1 to S2, we can represent it in matrix form
f = Π12X2, where the value at row i gives the coordinates
f(xi). We therefore define the Dirichlet energy of the map
Π12 as the Dirichlet energy of f , which is the W -norm of
the pull-back vertex coordinates:

ED (Π12) =
∥∥Π12X2

∥∥2
W1

. (3)

Note that [16] adopts a similar formulation to measure
the smoothness of a given map, but pulls-back a high-
dimensional embedding, in which the L2 distance approxi-
mates the geodesic distance, and that is computed via mul-
tidimensional scaling [8].

source ini ZoomOut DiscreteOp ours
ED=101.1 ED=107.4 ED=94.6 ED=3.91

Figure 3. Previous methods focus on improving map accuracy and
do not have explicit control over the map smoothness. Here we
show an example of a non-isometric pair. We report the Dirichlet
energy (ED) of maps after refinement by different methods.

While the Dirichlet energy defines a measure of distor-
tion induced by a map, we note that mapping all vertices in
S1 to a single vertex in S2 leads to zero energy, as seen by
setting f(xi) = y for some fixed y in Eq. (2). The Dirich-
let energy thus only contains partial information about the
quality of the map, and one needs to use additional con-
straints to obtain a non-trivial smooth map.

4. Discrete Solver for Dirichlet Energy

While functional maps intrinsically represent correspon-
dences using low frequency eigenfunctions, thus inducing
some smoothness, they do not provide any explicit control
over the pointwise map smoothness (see Fig. 3).The discrete
solver proposed in [38] has shown that many desirable map
properties can be promoted directly on the functional maps,
including bijectivity, landmarks preservation or conformal-
ity, the latter being unable to effectively promote smooth-
ness as shown in the supplementary material. In this work
we therefore seek to extend this framework by introducing
pointwise map smoothness constraint that can be efficiently
used alongside other objectives.

4.1. Problem Formulation

As discussed in Sec. 3, the Dirichlet energy, seen as a
measure of smoothness, is globally minimized by constant
maps. To avoid such trivial solutions, we propose to cou-
ple a smoothness energy with bijectivity constraints, which
can be enforced in the spectral domain using the discrete
optimization framework [38].

Specifically, given two shapes S1 and S2 we consider
functional maps Cij and pointwise maps Πij from both di-
rections, where (i, j) ∈ {1, 2}2 indicates the map direction.
The discrete solver framework [38] introduces a bijectivity
energy which reads:

Ebij

(
Π, C

)
=

∑
ij

∥∥ΠjiΦiCji − Φj

∥∥2
Aj

+ α
∥∥ΦjCij −ΠjiΦi

∥∥2
Aj
,

(4)
where the first term is derived from a spectral bijectivity
energy and the second is a coupling term between functional
maps Cij and pointwise maps Πji (note the change in map
directions). Note that variables Π and C contain maps in
both directions in order to simplify notations. We refer the
reader to [38] for a detailed derivation.



In this work, we augment this energy using smoothness
constraints, acting on the primal domain instead of the func-
tional (dual) one, which reads:

min
C,Π

Ebij(Π, C) + γ Esmooth(Π) (5)

where Esmooth penalizes non-smooth pointwise maps, its
most basic version being the sum of the Dirichlet energies
of the pointwise maps Esmooth(Π) =

∑
ij ED(Πij) with

ED being defined in Eq.(3). In section 5, we highlight how
other common energies for smoothness can be expressed
as variations of this Dirichlet energy, thus enabling their
straightforward introduction within our formulation.

4.2. Smoothness-promoting Discrete Solver

We aim at solving Eq. (5) using a similar algorithm to
the standard discrete solver discussed in Sec. 3. However
as long as the energy Esmooth includes quadratic terms in
Πij , for instance the Dirichlet energy, this solver cannot be
applied as it assumes row-separable variables (see Lemma
4.1 in [38]). Since quadratic terms in the Dirichlet energy
appear as W -norms of terms ΠijXj , we introduce auxiliary
variables Yij as surrogate for products ΠijXj , and add a
corresponding coupling term between the two, resulting in
a new coupled smoothness energy:

Ec
sm(Π, Y ) = Esmooth(Π, Y )+β

∑
ij

∥∥Yij−ΠijXj

∥∥2
Ai

(6)

where the second term is a spatial coupling term and, us-
ing some abuse of notations, Esmooth(Π, Y ) is obtained by
replacing products ΠijXj in Esmooth(Π) by Yij . In the par-
ticular case where Esmooth = ED, the coupled smoothness
energy is now row-separable for Π:

Ec
sm(Π, Y ) =

∑
ij

∥∥Yij

∥∥2
Wi

+ β
∥∥Yij −ΠijXj

∥∥2
Ai

(7)

Note that this particular half-quadratic splitting was used
in [16] to handle similar constraints. Furthermore we will
show in Sec. 5 that multiple common energy for smoothness
can benefit from this similar technique, resulting in a row-
separable problem for Π in all cases.

Total energy Eventually, the initial optimization prob-
lem, Eq. (5), has been relaxed into a problem of the form
min
Π,C,Y

Eours(Π, C, Y ) with

Eours(Π, C, Y ) = Ebij
(
Π, C

)
+ γ Ec

sm

(
Π, Y

)
(8)

Crucially, this reformulation makes the total energy row-
separable w.r.t. the pointwise maps Π. We can therefore
propose a general iterative method (summarized in Algo-
rithm 1) to minimize the total energy, in the spirit of the dis-
crete solver, which iteratively updates each variable Π, C, Y
with the other two sets fixed.

Solver The solver described in Algorithm 1 is divided
in three optimization problems for which we present the
solution procedure. (1) Computing C(k+1) from Π(k) re-
duces to a simple K ×K linear system, which has actually
been introduced as bijective ZoomOut in [37]. (2) Com-
puting Y (k+1) from Π(k) also reduces to a sparse linear
system whose form depends on the choice of smoothness
energy Esmooth, some of which are given in section 5. In
the case of Esmooth = ED, computing Yij requires solving
(Wi + βIn)Yij = βΠjiXj where the system can be pref-
actored to further improve efficiency. (3) Since introducing
auxiliary variables leads to a row-separable problem for Π,
computing Π(k+1) from C(k+1) and Y (k+1) reduces to a
simple nearest neighbor search. Note that this step is done
in a high-dimensional space obtained by concatenating sev-
eral terms, and can be heavily accelerated by only using
coupling terms from equations Eq. (4) and Eq. (6), which
significantly reduces the embedding dimension on which to
perform nearest neighbor Finally, following [38], we also
increase the size K of the functional map as iterations grow,
which has shown to be a great regularization procedure in
many spectral algorithms.

5. Smoothness Analysis in Unified Framework
In this section, we formulate several existing formu-

lations for promoting map smoothness, including non-
rigid ICP (nICP) [3], as-rigid-as-possible (ARAP) [45],
reversible harmonic maps (RHM) [16], and Smooth
Shells [13]. Our first objective is to provide a coherent for-
mulation of various smoothness terms in the form of the
Dirichlet energy on either a map or a deformation. Sec-
ondly, we aim to show how different energy terms and
solvers can ultimately be introduced in our smoothness-
promoting Discrete Solver. This will form the basis for
our quantitative evaluation in the next section, in which we
compare different terms within our solver. We remain suc-
cinct regarding the following derivations and their incorpo-
ration in our algorithm, and refer the interested reader to the
supplementary material for a more complete overview.

nICP was originally proposed to wrap a source shape S1

onto a target shape S2 via a per-vertex affine deformation

ALGORITHM 1: Meta-algorithm

Input : Initial maps Πin
12,Π

in
21 and vertex positions X1, X2

Output: Refined pointwise maps Π12,Π21

Initialization : Π(0)
ij = Πin

ij , Y
(0)
ij = Π

(0)
ij Xj for i, j ∈ {1, 2}

while Not converged do
C(k+1) = argminC Ebij

(
Π(k), C

)
Y (k+1) = argminY Ec

sm
(
Π(k), Y

)
Π(k+1) = argminΠ Eours

(
Π, C(k+1), Y (k+1)

)
end



field D. nICP implicitly maintains a pointwise map Π12

such that the deformed coordinates D◦X1 approximate the
pointwise map Π12X2.The total energy reads

Enicp(Π12,D) =
∥∥D∥∥2

W1
+ β

∥∥D ◦X1 −Π12X2

∥∥2
A1

(9)

with
∥∥D∥∥2

W1
=

∑
i∼j wij

∥∥Di −Dj

∥∥2
F

extends the Dirich-
let energy to per-vertex matrices. In our algorithm, this en-
ergy may be used as a surrogate for Ec

sm given in Eq. (7).

ARAP is a commonly-used energy that aims at promot-
ing local rigidity of the shape deformation by enforcing the
deformation to remain locally close to a rotation. ARAP
optimizes both for expected vertex coordinates Y12 and per-
vertex rotations R. The total reformulated energy reads:

Earap(Y12,R) =
∥∥Y12

∥∥2
W1

+ λErigid
arap (Y12,R), (10)

where Erigid
arap is a bilinear term promoting local rigid defor-

mations. One can augment the energy using the coupling
term from Eq. (6) to use the ARAP energy in our algorithm.

Smooth Shells models the deformation D as a simple
per-vertex translation seen as a function S1 → R3, restricted
to lie in the spectral basis of size K, i.e., D ∈ RK×3.
In addition smooth shells uses the ARAP energy to en-
force the smoothness of the deformation. Specifically if
Y12 = X1 + Φ1D denotes the updated vertex positions,
the shells energy is defined as

Eshells(D,R,Π12) = Earap(Y12,R) (11)

which is augmented with a coupling term ∥X1 + Φ1D −
Π12X2∥2A1

to remain close to given correspondences.

RHM directly minimizes the Dirichlet energy of a map
without manipulating deformation fields. To avoid making
the map collapse the authors look for bijective maps with
the lowest possible Dirichlet energy. Specifically using no-
tations of Sec. 4, smoothness is enforced by minimizing the
same energy as in Eq. (6) extended with a pointwise bijec-
tivity term

∑
ij

∥ΠijYji−Xi∥Ai , resulting in a slower solver.

All these smoothness terms can be incorporated quickly
within our solver, only affecting steps 2. and 3. of algo-
rithm 1. Furthermore note that, for fairness of compari-
son, we ignored additional building blocks used in these
works like normal preservation, high-dimensional embed-
dings, etc. More details on these two points can be found in
the supplementary material.

6. Experiment
6.1. DEFORMTHINGS4D-MATCHING Dataset

We propose DEFORMTHINGS4D-MATCHING (Fig. 2), a
new dataset based on the DEFORMTHINGS4D dataset [25],

a rich synthetic dataset with significant variations in both
identities and types of motions, containing 1,972 anima-
tion sequences spanning 31 categories of humanoids and
animals. However, using DEFORMTHINGS4D to evaluate
shape matching is difficult since: (1) most shape models
are disconnected; (2) the meshes belong to the same cate-
gory are in the same triangulation, which provides perfect
ground-truth but can lead to over-fitting issues for match-
ing algorithms [39], while cross-category ground truth is
missing; (3) some meshes of the synthesized poses have
unrealistic distortions such as large self-intersections and
unnatural twists. We therefore select 56 animal categories
and 8 humanoid categories from DEFORMTHINGS4D, each
containing 15-50 poses selected from different motion clips
while ensuring large enough pose variations. We then apply
LRVD [51] to independently remesh all the meshes in the
same category. For the humanoid shapes, we further use the
commercial software 1R3DS to non-rigidly fit one shape
into another to get cross-category correspondences. See
Fig. 2 for some examples, where the corresponding vertices
are assigned the same color. See supplementary materials
for more details of how we construct the dataset and obtain
the ground-truth correspondences between the remeshed
shapes with different triangulations. The dataset is
available at https://github.com/llorz/3DV22_
DeformingThings4DMatching_dataset.

6.2. Comparison on Smoothness Formulation

We evaluate our method on the standard benchmark
for non-isometric shape matching TOSCA non-Isometric
Dataset [7], and the cross-category humanoid shape pairs
from our DEFORMTHINGS4D-MATCHING Dataset. Note
that on standard benchmarks like the FAUST dataset [5], ex-
isting methods already perform well as shapes remain near-
isometric. We provide some results in Table 2 to show our
method performs similarly in these simple cases, and refer
to supplementary material for additional discussions.

Evaluation Metrics We follow [39] to measure the accu-
racy, bijectivity, coverage and runtime to compare different
methods. Additionally, We apply Eq. (3) to compute the
Dirichlet energy on the obtained pointwise maps to evaluate
the smoothness. See supplementary materials for detailed
definitions and discussions.

Initialization & Baselines Since the tested shape pairs
are highly non-isometric and challenging, standard shape
descriptors failed to produce reasonable initialization as
shown in supplementary. We therefore compute each initial
map from a 5× 5 functional map obtained by using 5 land-
marks. Our baselines can be categorized into three groups:
(1) We compare to ZoomOut (ZO) [28] and Discrete Solver
(DO) [38], the current-state-of-the-art refinement methods
1https://www.russian3dscanner.com/

https://github.com/llorz/3DV22_DeformingThings4DMatching_dataset
https://github.com/llorz/3DV22_DeformingThings4DMatching_dataset
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Figure 4. Qualitative evaluation on two pairs from DEFORMTHINGS4D-MATCHING. For a near-isometric shape pair shown on the top,
all methods achieve smooth maps. For a shape pair that is far from isometry shown on bottom, nICP, ARAP, RHM, and Shells achieve
relatively smooth maps but contain large patch of back-to-front ambiguity. The maps obtained by ZoomOut and Discrete Solver are
locally smooth due to their spectral representation, but fail to maintain global smoothness. As a comparison, our methods can be robustly
generalized to non-isometric shape maps and achieve globally smooth maps.

Table 1. DEFORMTHINGS4D-MATCHING Dataset: Summary
over 433 shape pairs. We highlight the best two in blue, except
those of Shells and RHM (see text for details).

methods accuracy bijectivity smoothness coverage runtime (s)

Init 12.71 11.70 3.60 24.57% -

RHM 11.8 1.6 0.50 56.6%
Shells 11.4 5.1 1.50 50.8%

Ours w/ ARAP 12.16 11.70 0.71 31.0% 25.3
Ours w/ nICP 9.56 3.89 1.72 40.4% 100.8
Ours w/ Shells 8.41 2.59 2.18 51.7% 48.2

ZO 8.57 7.14 4.02 67.0% 17.5
DO 9.01 1.78 3.21 62.4% 40.9

Ours w/ D 8.19 2.63 1.56 50.4% 21.4
Ours w/ RHM 8.10 2.18 1.47 56.0% 42.1

in functional maps pipeline. (2) We compare the stan-
dard Dirichlet Energy with the different variants presented
in Sec. 5, namely nICP [3], ARAP [45], Shells [13] and
RHM [16], all using the same algorithm. We highlight the
Dirichlet energy (ours w/ D) and the RHM energy (ours w/
RHM) as respectively the simplest and globally best per-
forming energies within our algorithm, which we both ad-
vocate. (3) We also include the results using original im-
plementations of RHM and Shells for reference only since
additional regularizers besides smoothness are included.

DeformThings4D-Matching Dataset We report the av-
erage metrics over 433 cross-category shape pairs from
the humanoid shapes from our DEFORMTHINGS4D-
MATCHING dataset in Tab. 1. Among all the baseline meth-
ods, our method achieves the best accuracy. Compared
to ZoomOut (ZO) and Discrete Solver (DO), our two se-

Table 2. Results on a random subset of 200 pairs of the FAUST
dataset. We highlight the best two in blue.

methods accuracy bijectivity smoothness coverage

Init 6.45 5.51 2.67 38.47 %

ZO 3.95 2.16 0.79 82.16 %
DO 4.07 1.08 0.86 77.96 %

Ours w/ D 4.43 1.83 0.64 67.47 %
Ours w/ RHM 3.94 1.11 0.71 79.26 %

lected energies achieve 3× better smoothness on average
with comparable bijectivity and coverage. It suggests that,
our method, as an extended algorithm of discrete solver by
adding a smoothness term, is indeed effective to promote
map smoothness. In supplementary, we also report per-
category map evaluation. We show two qualitative exam-
ples in Fig. 4, where the obtained maps are visualized by
color transfer. For the pair between CRYPTO and SKELE-
TONZOMBIE, we also visualize the per-vertex smoothness
error for each map. We additionally display texture transfer
for a difficult pair in Fig. 5, using [15] to obtain a vertex-to-
point map for each method to improve visualization. While
this figure shows that our maps clearly outperform standard
spectral method starting from poor initialization, there is
room for improvement for all energies.

TOSCA Non-Isometric Dataset contains cross-category
correspondences among one gorilla shape (with 5 different
poses), one male shape (with 7 different poses), and one
female shape (with 12 different poses). We use all 95 non-
isometric shape pairs between the gorilla shapes and the hu-
man (male and female) shapes. The summary evaluation is
shown in Tab. 3. See supplementary for qualitative exam-



Source Initial ours w/nICP ours w/ARAP ours w/Shells ours w/RHM ZoomOut DiscreteOp Ours w/ D

Figure 5. Starting from a poor initial map, our method can produce a more smooth and accurate map compared to the baseline methods.

Table 3. TOSCA Non-Isometric Dataset: Summary over 95 shape
pairs. We highlight the best two in blue, except those of Shells and
RHM (see text for details).

methods accuracy bijectivity smoothness coverage runtime (s)

Init 7.51 7.23 1.94 26.9% -

RHM 9.20 1.37 1.55 54.3 % 818
Shells 10.20 6.72 5.58 45.6 % 29.0

ours w/ ARAP 7.55 8.35 0.83 48.6% 42.8
Ours w/ nICP 7.78 3.63 1.16 40.2% 178
Ours w/ Shells 11.85 7.40 1.18 37.8% 72.5

ZO 12.47 8.17 6.53 56.8% 33.7
DO 13.30 1.90 5.51 53.4% 79.2

Ours w/ D 7.25 3.02 1.22 42.2% 33.3
Ours w/ RHM 6.26 1.87 1.39 53.1% 40.1

ples. Enforcing the smoothness of the pointwise maps via
Dirichlet energy (Ours + D) help us achieve much more ac-
curate and 5× smoother maps. We additionally highlight
that adding extra pointwise bijectivity (ours w/ RHM) has a
positive effect on the metrics, but results in a slower solver.
Finally, while ARAP and nICP energies perform quite well,
the Shells energy seems to suffer from the high level of non-
isometry in the dataset as it mainly relies on spectral quan-
tities.

6.3. Implementation & Parameters

We implemented all the baselines (based on their re-
leased code) and our methods in Python to guarantee a
fair comparison. We follow the discrete solver [38] to
adopt the progressive upsampling technique into our algo-
rithm, which is introduced in [28], and gradually increase
the spatial coupling term weight γ to avoid over-smoothing
in the earlier iterations. Detailed parameters can be found
in supplementary, or in the released version of the code at
https://github.com/RobinMagnet/smoothFM.

7. Conclusion, Limitations & Future Work
In this work, we extended the discrete solver formula-

tion from [38] to optimize the Dirichlet energy to promote
map smoothness. We then proposed an efficient algorithm
that can produce high-quality and smooth maps from noisy
initial maps for between non-isometric surfaces. Further-

more, we demonstrated that multiple previously proposed
methods for computing smooth maps, including nICP [3],
ARAP [45], RHM [16], and Smooth Shells [13], can be re-
formulated in a coherent framework. This allowed us to
compare and analyze different formulations for smoothness
using a single algorithm. Finally, to address the scarcity of
evaluation data, we proposed a new dataset based on DE-
FORMTHINGS4D, with variable mesh structure, and dense
ground truth cross-category correspondences for eight chal-
lenging categories. We believe both our framework and this
dataset can be helpful for the shape matching community.

Our method still has some limitations. First, optimiz-
ing the Dirichlet energy can indeed greatly improve the
smoothness compared spectral methods. This, however, can
come at the expense of loss of coverage, and we observe
that our maps can still collapse locally, as seen from the
texture transfer of Figure 5. It would be interesting to in-
vestigate techniques that to further prevent local collapse
and obtain a smooth maps with high coverage. Second,
our results show that the proposed method improves signif-
icantly results from ZoomOut and discrete solver on com-
plete shapes, even for non-isometric cases. However, for
the partial matching setting, though our maps still outper-
form ZoomOut and discrete solver, there is still a lot room
for further improvement. Finally, our energy is a weighted
sum of a bijectivity and a smoothness term, which can be-
come hard to balance across all initialization quality.

In the future, we would like to study different energies
for partial matching and to ways prevent local map collapse.
It will also be interesting to apply our approach for comput-
ing dense correspondences in other domains, such as point
clouds, graphs or even 2D images.
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Emanuele Rodolà, Mirela Ben-Chen, Leonidas Guibas,
Frederic Chazal, and Alex Bronstein. Computing and pro-
cessing correspondences with functional maps. In ACM SIG-
GRAPH 2017 Courses, pages 5:1–5:62, 2017. 2, 3

[34] Maks Ovsjanikov, Quentin Merigot, Facundo Memoli, and
Leonidas Guibas. One point isometric matching with the
heat kernel. CGF, 29(5):1555–1564, 2010. 3

[35] Gautam Pai, Jing Ren, Simone Melzi, Peter Wonka, and
Maks Ovsjanikov. Fast sinkhorn filters: Using matrix scaling
for non-rigid shape correspondence with functional maps.
In Computer Vision and Pattern Recognition (CVPR), pages
384–393, 2021. 3

[36] Ulrich Pinkall and Konrad Polthier. Computing Discrete
Minimal Surfaces and their Conjugates. Experimental math-
ematics, 2(1):15–36, 1993. 4

[37] Jing Ren, Simone Melzi, Maks Ovsjanikov, and Peter
Wonka. Maptree: Recovering multiple solutions in the space
of maps. ACM Transactions on Graphics (TOG), 39(6), Nov.
2020. 3, 5

[38] Jing Ren, Simone Melzi, Peter Wonka, and Maks Ovs-
janikov. Discrete optimization for shape matching. In Com-
puter Graphics Forum, volume 40, pages 81–96. Wiley On-
line Library, 2021. 2, 3, 4, 5, 6, 8

[39] Jing Ren, Adrien Poulenard, Peter Wonka, and Maks Ovs-
janikov. Continuous and orientation-preserving correspon-
dences via functional maps. ACM Transactions on Graphics
(TOG), 37(6), 2018. 2, 3, 6
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[41] Emanuele Rodolà, Michael Moeller, and Daniel Cremers.
Point-wise map recovery and refinement from functional cor-
respondence. In Vision, Modeling, and Visualization, 2015.
3

[42] Raif M Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela
Ben-Chen, Frédéric Chazal, and Leonidas Guibas. Map-
based exploration of intrinsic shape differences and variabil-
ity. ACM Transactions on Graphics (TOG), 32(4):72, 2013.
2
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