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Multi-Resolution Beta-Divergence NMF for
Blind Spectral Unmixing

Valentin Leplat, Nicolas Gillis, and Cédric Févotte

Abstract—Many datasets are obtained as a resolution trade-
off between two adversarial dimensions; for example between
the frequency and the temporal resolutions for the spectrogram
of an audio signal, and between the number of wavelengths
and the spatial resolution for a hyper/multi-spectral image. To
perform blind source separation using observations with different
resolutions, a standard approach is to use coupled nonnegative
matrix factorizations (NMF). As opposed to most previous works
focusing on the least squares error measure, which is the β-
divergence for β = 2, we formulate this multi-resolution NMF
problem for any β-divergence, and propose a novel algorithm
based on the multiplicative updates (MU). We show on numerical
experiments that the MU are able to obtain high resolutions in
both dimensions on two applications: (1) blind unmixing of audio
spectrograms: to the best of our knowledge, this is the first time
a coupled NMF model is used in this context, and (2) the fusion
of hyperspectral and multispectral images: we show that the MU
compete favorably with state-of-the-art algorithms in particular
in the presence of non-Gaussian noise.

Index Terms—blind spectral unmixing, nonnegative matrix fac-
torization, β-divergences, multiplicative updates, hyperspectral
and multispectral image fusion

I. INTRODUCTION

SPECTRAL unmixing is the problem of decomposing the
spectra of mixed signals into a set of source spectra

and their corresponding activations. The activations give the
proportion of each source within each mixed signal spectrum.
In this paper, we focus on the unmixing of nonnegative
signals with multiple resolutions using nonnegative matrix
factorization (NMF).

A. Nonnegative matrix factorization

Over the last two decades, NMF [1] has emerged as
a useful method to decompose mixed nonnegative signals,
including audio signals [2] and hyperspectral images [3], [4];
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see also [5], [6] and the references therein. Given a nonneg-
ative matrix V ∈ RF×N+ and an integer factorization rank
K ≤ min(F,N), NMF aims to compute a nonnegative matrix
W with K columns and a nonnegative matrix H with K rows
such that V ≈WH . Each column of V is the mixture of the
sources, so that each column of W corresponds to a source
estimate, and each column of H indicates which source is
active and in which intensity in each mixture. Mathematically,
we have, for all j,

V (:, j) ≈
K∑
k=1

W (:, k)H(k, j),

where W (:, k) represents the kth source, and H(k, j) is the
activation of the kth source within the jth mixture.

B. Multi-resolution data

In many applications, the input data usually results from a
trade-off between two adversarial dimensions. Let us illustrate
this on two applications which will be used throughout the
paper.

a) Audio signals: To unmix audio signals, their time-
frequency matrix representation V is often used; see, e.g., [7],
[8], [2]. In a nutshell, this matrix is computed as follows.
The temporal audio signal is divided into short segments of
the same length. These segments are multiplied by a window
function and then the magnitude Fourier transform of each
windowed segment is computed to obtain a column of V .
Hence each column of V corresponds to a time window, while
each row corresponds to a frequency, and the entry V (i, j)
is the intensity of the ith frequency at the jth time window
(e.g., the modulus of the Fourier coefficient). The window
length fixes the frequency and the time resolutions. Larger time
windows lead to a higher frequency resolution but comes at the
cost of lower temporal resolution, and vice versa. Factorizing
V using NMF provides the matrix W whose columns contain
the spectral content of the sources, and the matrix H whose
rows contain the activations of the sources over time; see [2]
and the references therein for more details.

b) Hyper/multi-spectral images: An image measures the
intensity of light in both spectral and spatial dimensions. A
multispectral image (MSI) typically measures between 4 and
30 spectral bands, and has a high spatial resolution, whereas
a hyperspectral image (HSI) has high spectral resolution,
typically between 100 and 200 spectral bands, but low spatial
resolution. MSI/HSI are typically represented as a wavelength-
by-pixel nonnegative matrix V where the entry V (i, j) is
the intensity of light at the ith wavelength located at the
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jth pixel. Each column of V records the so-called spectral
signature of a pixel, and each row is a vectorized image
at a given wavelength. Factorizing V using NMF gives the
matrix W whose columns contain the spectral signatures of
the sources, called endmembers, and the matrix H whose rows
contain the abundances of the pixels for each endmember;
see [3], [4] and the references therein for more details. Given
a MSI and a HSI of the same scene, computing a high spatial
and spectral resolution image of that scene, referred to as
the super-resolution (SR) image, is known as the HSI-MSI
fusion problem which has been extensively studied; see for
example [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22]. A popular and effective method to
perform this task is to perform coupled NMF decompositions
of the HSI and MSI; see Section II for the details.

Contribution and outline: In this paper, we consider the
fusion of multi-resolution data using a coupled NMF model
which is described in Section II. As opposed to most previous
works focused on the case β = 2, that is, least squares
error, we allow to use any β-divergence (a large family of
divergences commonly used in NMF [23]) to measure the
quality of the low-rank approximation. We refer to this model
as multi-resolution β-NMF (MR-β-NMF). To tackle MR-β-
NMF, we propose in Section III multiplicative updates that
are guaranteed to decrease the objective function at each step,
using the majorization-minimization principle. This principle
is already present in the NMF literature, but we adapted it
to handle our specific model which is more challenging. We
also explain how the downsampling operators (that map high
resolution data to low resolution data) can be estimated for
one-dimensional signals such as audio signals. Section IV
presents numerical results on audio datasets: as far as we know,
it is the first time such an approach is used in this context.
For audio signals, it is well-known that using β-divergences
for β < 2 is crucial in practice; see, e.g., [8], [2]. MR-β-
NMF leads to solutions with both high spectral resolution
and high temporal resolution. In Section V, MR-β-NMF is
shown to be competitive with state-of-the-art techniques for
the HSI-MSI fusion problem. As far as we know, it is the first
time that a HSI-MSI fusion algorithm tackles β-divergence for
β 6= 2. As we will see, considering β-divergences for β 6= 2
leads to much better solutions in the presence of non-Gaussian
noise. In particular, we show that in the presence of Poisson
noise, using β = 1, that is, the Kullback-Leibler divergence,
outperforms standard approaches. In the appendix, we also
show that in the presence of multiplicative Gamma noise,
our proposed MR-β-NMF with the Itakura-Saito divergence
(β = 0) outperforms the state of the art by a large margin.

II. FORMULATION OF MR-β-NMF

The aim of multi-resolution unmixing is to estimate the
sources and their activation with high resolutions in adversarial
dimensions, given observable data that show high resolution
in one dimension only.

In this section, we present a model widely used in the
hyperspectral imaging community for HSI-MSI fusion. As
we will see in Section IV-B, this model is also applicable

to decompose audio signals. For simplicity, we assume in
this paper that we are given only two input data matrices,
one with low resolution in one dimension, and the other with
low resolution in the other dimension. Generalizing to more
than two input data matrices with different resolutions in the
two dimensions is straightforward but would complicate the
presentation.

Let X ∈ RF`×N+ and Y ∈ RF×N`+ be these two matrices,
where X has low resolution in the first dimension, that is, F` <
F , and Y has low resolution in the second dimension, that is,
N` < N . Given X and Y , the goal is twofold: (1) compute
V ∈ RF×N+ that has high resolution in both dimensions, and
(2) identify the sources and activations that generated X and
Y . A standard approach to achieve these goals [18], [24], [25],
[19], [26], [27], [28], [21] is to rely on the following two
assumptions:

1) The matrix V satisfies the linear mixing model, that is,
V can be decomposed using NMF with

V ≈WH, (1)

where the columns of W ∈ RF×K+ are the elementary
spectra of the sources, H ∈ RK×N+ is the activation
matrix, and K is the number of sources that generated V
(e.g., the number of endmembers in a HSI); see [3], [4]
and the references therein in the context of HSIs, and [8]
in the context of audio signals.

2) The matrices X and Y are obtained using linear down-
sampling operators of V , that is,

X ≈ RV, (2)

where R ∈ RF`×F is the downsampling matrix in the
first dimension, and

Y ≈ V S, (3)

where S ∈ RN×N` is the downsampling matrix in
the second dimension. In practice, these downsampling
matrices need to be estimated.

For HSI-MSI fusion, a high spatial resolution image X , the
MSI, and a high spectral resolution image Y , the HSI, are
available to reconstruct the target SR image, V , that has high
spectral and high spatial resolutions. These images result from
the linear spectral and spatial degradations of the SR image
V , given by the equations (2) and (3).

A. Multi-Resolution β-NMF

Substituting (1) into (2) and (3), we obtain:

X ≈ RWH, (4)

Y ≈WHS. (5)

Equation (4) (resp. (5)) correspond to the linear spectral
mixture model degraded in the first (resp. second) dimension.

Given X and Y , to solve the multi-resolution problem and
obtain V , we need to estimate W , H , R and S. Trying to
minimize the approximation errors in (4) and (5) leads to the
following optimization problem

min
W≥0,H≥0,R≥0,S≥0

Dβ(X‖RWH) + λDβ(Y ‖WHS), (6)
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where A ≥ 0 means that A is component-wise nonnegative,
λ is a positive penalty parameter, and

Dβ(Z‖ABC) =
∑
fn

d(Zfn‖[ABC]fn),

with d(x‖y) a measure of fit between the scalars x and y. This
model is the coupled NMF approach proposed in the literature
for HSI-MSI fusion [29], [18], [30], [20], [31], [32].

When the downsampling matrices R and S are known, the
objective function is minimized over W and H only. In general
R and S respect a particular sparsity pattern; for example, for
HSI-MSI fusion, the spectral signature of a pixel in X will be
a linear combination of the spectral signatures of nearby pixels
from V ; see Section II-B for more details. As our algorithm
will rely on multiplicative updates, entries initialized at zero
remain zero in the course of the optimization process.

One of the most widely used measure of fit in the NMF
literature is the β-divergence, denoted dβ(x‖y), and equal to

1
β(β−1)

(
xβ + (β − 1) yβ − βxyβ−1

)
for β 6= 0, 1,

x log x
y − x+ y for β = 1,

x
y − log x

y − 1 for β = 0,

where x and y are nonnegative scalars. For β = 2, this
amounts to the standard squared Euclidean distance since
d2(x‖y) = 1/2(x − y)2. For β = 1 and β = 0, the β-
divergence corresponds to the Kullback-Leibler (KL) diver-
gence and the Itakura-Saito (IS) divergence, respectively. The
data fitting term should be chosen depending on the noise
statistic assumed on the data. For example, using the Euclidean
distance corresponds to the maximum likelihood estimator for
i.i.d. Gaussian noise, that is, it assumes that V (i, j) is a sample
of the normal distribution of mean (WH)i,j and variance σ
for all i, j. Similarly, the KL divergence corresponds to a
Poisson distribution, and the IS divergence to multiplicative
Gamma noise; see [8] for more details. KL and IS divergences
are usually considered for amplitude spectrogram and power
spectrogram, respectively. Both KL and IS divergences are
more adapted to audio spectral unmixing than the Euclidean
distance; see [8], [33]. The Euclidean distance is the most
widely used to tackle the HSI unmixing problem as well
as the HSI-MSI fusion problem. However, when no obvious
choice of a specific divergence is available, finding the right
measure of fit, namely the value for β, is a model selection
problem [34].

B. Downsampling matrices

The downsampling matrices, R and S in (2), are application
dependent. Let us discuss the two applications we focus on in
this paper.

1) HSI-MSI fusion: The matrix R from (2) is the relative
spectral bandpass responses from the SR image to the MSI,
while the matrix S introduced in (3) specifies the spatial
blurring and down-sampling responses that result in the HSI.
The matrices R and S can be acquired either by cross-
calibration [35], or by estimations from the HSI and MSI [18],
[36].

2) Audio spectral unmixing: In the case of the audio
spectral unmixing, as we restrict to the case of two input
matrices, the unmixing will be based on a high-frequency-
resolution (HFR) matrix and low-frequency-resolution (LFR)
matrix, the first one obtained with a smaller window size when
computing the spectrogram. As far as we know, there is no
prior work on estimating the downsampling matrices, R and
S, as the fusion problem is considered for the first time in this
paper. We have tested different structures for downsampling
matrices R and S, and we report here the form for R that
shows the best results in practice, while S is obtained in
the same way. This structure is a simple one-dimensional
downsampling linear operator, but turns out to perform well
in practice. Let us illustrate this on the simple example of
the frequency downsampling of a matrix W ∈ R8×3 with a
downsampling ratio d = 2. A possible structure for the matrix
R ∈ R4×8

+ is as follows:

R =


r11 r12 r13 0 0 0 0 0
0 r21 r22 r23 r24 0 0 0
0 0 0 r31 r32 r33 r34 0
0 0 0 0 0 r41 r42 r43

 ,

This downsampling matrix R performs a weighted arithmetic
mean over a set of rows of the matrix it is applied on; here,
W ∈ R8×3

+ is downsampled as RW ∈ R4×3
+ . The structure

of the matrix R relies on two parameters: d and f . The
parameter d corresponds to the downsampling ratio. Each row
of R has at least d non-zero values that correspond to the
rows in W that are combined to form the rows of RW ; see
the underlined entries of R above. The parameter f controls
the overlap between the linear combinations of the rows of
W . In the example above, f = 1 and one positive value is
added to the left and the right end of the d non-zero entries
corresponding to the downsampling parameter; see the bold
entries in matrix R above. These positive values allow an
overlap (or coupling) within the downsampling process. If we
consider two consecutive frequency bins that result from a
downsampling operation, it is reasonable to consider that they
share common frequency bins in the original frequency space.
We imposed f ≤ d/2 to avoid too much non-physical coupling.
This limitation is also based on numerical experiments that
show a degradation of the results when f exceeds d/2. When
f = 0, the downsampling matrix R performs a weighted
arithmetic mean over d rows without overlapping. Note that
such downsampling matrices are sparse and nonnegative.

When solving (6), we will alternatively update W , H , and
the non-zero entries of R and S. As far as we know, this is
the first time the matrices R and S are learned simultaneously
with the factors W and H .

C. Scope of this paper

To estimate V , W and H from X and Y , other models exist.
In particular, for the HSI-MSI fusion, many other approaches
have been proposed, e.g., based on tensor decompositions [22],
[37], or based on deep neural networks [38], [39]. In this
paper, we focus on the above linear assumptions and the
corresponding coupled NMF model (6), which have been
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shown to provide state-of-the-art results for HSI-MSI fusion;
see the survey [20]. More precisely, we will focus on the use
of any β-divergence, which has not been before. As we will
see in Section IV, β-divergence for β 6= 2 allows to obtain
improved separation for audio source separation compared to
standard NMF algorithms. In Section V-B, we will show that
using the Kullback-Leibler divergence (β = 1) outperforms
standard linear models in the presence of Poisson noise.

III. ALGORITHM FOR MR-β-NMF

Most NMF algorithms are based on an iterative scheme that
alternatively update H for W fixed and vice versa, and we
adopt this approach in this paper. The goal in this section is
to derive an algorithm to solve MR-β-NMF (6).

For R,S and W fixed, let us consider the subproblem in H:

min
H≥0

L(H) = Dβ(X‖RWH) + λDβ(Y ‖WHS). (7)

The subproblems in W , R and S can be solved similarly.
To tackle this problem, we follow the standard majorization-
minimization (MM) framework [40]. Note however that, be-
cause of the sum of the two terms Dβ(X‖RWH) and
Dβ(Y ‖WHS), the update for H does not follow directly
from previous MU derived in the literature. MM algorithms
are indeed available for the two terms separately [23], but a
more general auxiliary function needs to be used for the joint
problem. The auxiliary function, that we denote L̄, must be a
tight upper-bound for the objective L at the current iterate H̃ .
It is formally defined as follows.

Definition 1. The function L̄(H‖H̃) : Ω × Ω → R is
an auxiliary function for L (H) : Ω → R at H̃ ∈ Ω
if the conditions L̄(H‖H̃) ≥ L (H) for all H ∈ Ω and
L̄(H̃‖H̃) = L(H̃) are satisfied.

The optimization problem with L is then replaced by a
sequence of simpler problems for which the objective is L̄. The
new iterate H(i+1) is computed by minimizing the auxiliary
function at the previous iterate H(i), either approximately or
exactly. This guarantees L to decrease at each iteration.

Lemma 1. Let H,H(i) ≥ 0, and let L̄ be an auxiliary function
for L at H(i). Then L is non-increasing under the update
H(i+1) = argmin

H≥0
L̄(H‖H(i)).

Proof. By definition, L(H(i)) = L̄(H(i)‖H(i)) ≥
min
H

L̄(H‖H(i)) = L̄(H(i+1)‖H(i)) ≥ L(H(i+1)).

The most difficult part in using the majorization-
minimization framework is to design an auxiliary function
that is easy to optimize. Usually such auxiliary functions are
separable (that is, there is no interaction between the variables
so that each entry of H can be updated independently) and
convex. We will construct an auxiliary function for L(H) from
(7) by a positive linear combination of two auxiliary functions,
one for each term of L(H).

1) Separable auxiliary function for the first term
of L(H): The function Dβ(X‖RWH) separates into∑
nDβ(xn‖RWhn), where xn and hn are the nth column

of X and H respectively. Therefore we only consider the
optimization over one specific column x of X and h of
H . To simplify notation, we denote the current iterate as
h̃. We now use the separable auxiliary function presented
in [23] which consists in majorizing the convex part of the
β-divergence using Jensen’s inequality and majorizing the
concave part by its tangent (first-order Taylor approximation).
The β-divergence can be expressed as the sum of a convex,
concave, and constant part, such that:

dβ(x‖y) = ďβ(x‖y) + d̂β(x‖y) + d̄β(x‖y),

where ď is convex function of y, d̂ is a concave function of y
and d̄ is a constant of y, see [23] for the definition of these
terms for different values of β.

By denoting RW by P and RWh̃ by x̃ with entries[
RWh̃

]
f

= x̃f for f ∈ [1, FX ], the auxiliary function for∑
f dβ(xf‖ [Ph]f ) at h̃ is given by:

GX(h‖h̃) =

FX∑
f

[∑
k

pfkh̃k
x̃f

ďβ(xf‖x̃f
hk

h̃k
)

]
+ d̄β(xf‖x̃f )

+

[
d̂
′

β(xf‖x̃f )
∑
k

pfk(hk − h̃k) + d̂β(xf‖x̃f )

]
.

(8)
Therefore the function

GX(H‖H̃) =
∑
n

GX(hn‖h̃n) (9)

is an auxiliary function (convex and separable) for
Dβ(X‖RWH) at H̃ where GX(h‖h̃) is given by (8).

2) Separable auxiliary function for the second term of
L(H): Let ỹfn = [WHS]fn and let us use a result from
[23]:

GY (H‖H̃) =
∑
f,n

∑
k,j

(wfksjn)h̃kj
ỹfn

ďβ(yfn‖ỹfn
hkj

h̃kj
)


+ d̄β(yfn‖ỹfn) + d̂β(yfn‖ỹfn)

+ d̂
′

β(yfn‖ỹfn)
∑
k,j

wfk(hkj − h̃kj)sjn.

(10)
In [23], the authors show that (10) is an auxiliary function
(separable and convex) to Dβ(Y ‖WHS) at H̃ : by construc-
tion GY (H‖H̃) is an upper-bound to Dβ(Y ‖WHS) at H̃ and
is tight when H = H̃ .

3) Auxiliary function for multi-resolution β-NMF: Based
on the auxiliary functions presented in Sections III-1 and III-2,
we can directly derive a separable auxiliary function F̄ (H‖H̃)
for multi-resolution β-NMF (7).

Lemma 2. For H ≥ 0, λ > 0, the function

L̄(H‖H̃) = GX(H‖H̃) + λGY (H‖H̃),

where GX is given by (9) and GY by (10), is a convex and
separable auxiliary function for L(H) = Dβ(X‖RWH) +
λDβ(Y ‖WHS).
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Proof. This follows directly from (9) and (10).

4) Multiplicative updates for MR-β-NMF: Given the con-
vexity and the separability of the auxiliary function, the
optimum is obtained by canceling the gradient. The derivative
of the auxiliary function L̄(H‖H̃) with respect to a specific
coefficient hkz , with index z identifying the same column
specified by n in (8) and specified by j in (10), is given by:

∇hkz L̄ = ∇hkzGX(H‖H̃) + λ∇hkzGY (H‖H̃)

=

FX∑
f

pfk

[
ď′β

(
xfz‖x̃fz

hkz

h̃kz

)
+ d̂

′

β(xfz‖x̃fz)
]

+ λ

FY∑
f

NY∑
n

wfkszn[ď′β

(
yfn‖ỹfn

hkz

h̃kz

)
+ d̂

′

β(yfn‖ỹfn)].
(11)

For example, for β = 1, (11) becomes:

∇hkz L̄ =

FX∑
f

pfk

[
1−

xfzh̃kzx̃
−1
fz

hkz

]

+ λ

FY∑
f

NY∑
n

wfkszn

[
1−

yfnh̃kz ỹ
−1
fn

hkz

]
.

(12)

Setting (12) to zero, we get the following closed-form solution
for the hkz coefficient of H:

hkz = h̃kz

∑FX
f pfkxfzx̃

−1
fz + λ

∑FY
f

∑NY
n wfksznyfnỹ

−1
fn∑FX

f pfk + λ
∑FY
f

∑NY
n wfkszn

.

(13)
The generalization of the closed-form solution (13) for any β
for H is given in Table I in matrix forms.

Table I also gives the MU for W , R and S. They are
obtained exactly in the same was as for H . For the update
of S that should minimize Dβ(Y ‖WHS), use the update of
H for the term Dβ(X‖RWH) (that is, taking λ = 0) where
X is replaced by Y , R by W , W by H , and H by S. For the
update of W , use the invariance of (6) by transposition, that
is,

Dβ(X‖RWH) = Dβ(X>‖H>W>R>)

and
Dβ(Y ‖WHS) = Dβ(Y >‖S>H>W>).

For the update of R that should minimize Dβ(X‖RWH), use
the update of H for the term Dβ(X>‖H>W>R>) (that is,
taking λ = 0) where X is replaced by X>, R by H>, W by
W>, and H by R>.

Theorem 1. The updates provided in Table I are guaranteed
to decrease the objective function of (6).

Proof. This follows from Lemmas 1 and 2, and from the
derivations above so that Table I provides the closed-form
update of the auxiliary function of Lemma 2.

Algorithm 1 summarizes our method to tackle (6) which,
for simplicity, will be referred to as MR-β-NMF. It consists
in two optimization loops:

• Loop 1: W and H are alternatively updated with down-
sampling matrices R and S kept fixed to obtain good
estimates for W and H . The updates are performed for
a maximum number of iterations, MAXITERL1.

• Loop 2: W , H , S and R are alternatively updated so
that the algorithm learns the downsampling matrices.
The maximum number of iterations for loop 2 is MAX-
ITERL2.

For the HSI-MSI fusion problem, the matrices R and S are
usually known and therefore the parameter MAXITERL2 is
set to zero. In this paper, the second optimization loop is
considered only for the audio spectral unmixing application
since the matrices R and S are unknown; see Section IV-B.

After W and H are updated, we normalize W such that
‖W (:, k)‖1 = 1 for all k, and we normalize H accordingly so
that WH remains unchanged. This normalization is commonly
used for NMF-based methods and is mainly performed to
remove the scaling degree of freedom. As a convergence
condition, we consider the relative change ratio of the cost
function L from (6), namely |Li − Li+1| ≤ κLi where κ is
a given threshold in (0, 1), and i is the iteration counter. We
also stop the optimization process if the number of iterations
exceeds the predefined maximum number of iterations.

Algorithm 1 Multiplicative updates for MR-β-NMF

Input: A matrix X ∈ RFX×NX+ , a matrix Y ∈ RFY ×NY+ ,
an initialization H ∈ RK×NX+ , an initialization W ∈
RFY ×K+ , a matrix R ∈ RFX×FY+ , a matrix S ∈ RNX×NY+ ,
a factorization rank K, a maximum number of iterations
MAXITERL1, a maximum number of iterations MAX-
ITERL2, a threshold 0 < κ� 1, and a weight λ > 0

Output: A rank-K NMF (W,H) of V ≈ WH with W ≥ 0
and H ≥ 0, and matrices R and S such that X ≈ RWH
and Y ≈WHS.

1: % Loop 1
2: i← 0, L0 = 1, L1 = 0.
3: while i < MAXITERL1 and

∣∣∣Li−Li+1

Li

∣∣∣ > κ do
4: % Update of matrices H and W
5: Update H and W sequentially; see Table I
6: Compute the objective function Li+1

7: (W,H)← normalize (W,H), i← i+ 1
8: end while
9: % Loop 2

10: i← 0
11: while i < MAXITERL2 and

∣∣∣Li−Li+1

Li

∣∣∣ > κ do
12: % Update of matrices H,W,S and R
13: Update H,W,S,R sequentially; see Table I
14: Compute the objective function Li+1

15: (W,H)← normalize (W,H), i← i+ 1
16: end while

It can be verified that the computational complexity of
the MR-β-NMF is asymptotically equivalent to the standard
MU for β-NMF, that is, it requires O (FNK) operations per
iteration.

Choice of β: In practice, a crucial issue is to choose the
data fitting term; in our case the value of β. This is a non-trivial
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TABLE I: Multiplicative updates for MR-β-NMF (6).

H = H̃ �
( [

WT
(
RT

(
(RWH̃).(β−2)�X

)
+λ
(
(WH̃S).(β−2)�Y

)
ST
)]

[
WT

(
RT (RWH̃).(β−1)

+λ(WH̃S).(β−1)
ST
)]

).γ(β)
,

W = W̃ �
( [(

RT
(
(RW̃H).(β−2)�X

)
+λ
(
(W̃HS).(β−2)�Y

)
ST
)
HT

]
[(
RT (RW̃H).(β−1)

+λ(W̃HS).(β−1)
ST
)
HT

]
).γ(β)

,

S = S̃ �
( [

HT
(
WT

(
(WHS̃).(β−2)�Y

))]
[
HT

(
WT (WHS̃).(β−1)

)]
).γ(β)

, R = R̃�
( [((

(R̃WH).(β−2)�X
)
HT

)
WT

]
[(
(R̃WH).(β−1)

HT
)
WT

]
).γ(β)

,

where A�B (resp. [A]/[B]) is the Hadamard product (resp. division) between A and B, A(.α) is the element
-wise α exponent of A, γ(β) = 1

2−β for β < 1, γ(β) = 1 for β ∈ [1, 2] and γ(β) = 1
β−1 for β > 2 [23].

task, and many papers have addressed this issue. Without prior
knowledge, a standard approach is to use cross-validation, that
is, hide a subset of the entries and compare the performance
of the different models to predict the hidden entries; see, e.g.,
the discussion in [6, Section 5.1.2].

IV. NUMERICAL EXPERIMENTS ON AUDIO DATASETS

In this section, we perform numerical experiments to vali-
date the effectiveness of MR-β-NMF on two synthetic audio
datasets.

A. Experimental setup and evaluation

1) Data: The proposed technique for joint factorization of
amplitude audio spectrograms is applied to two synthetic audio
samples. A dedicated test procedure is presented in Section
IV-A2 in order to evaluate the performance of MR-β-NMF
based on quantitative criteria detailed in subsection IV-A3.
The first audio sample is the first measure of “Mary had a
little lamb” and composed of three notes; E4, D4 and C4.
The signal is 5 seconds long and has a sampling frequency
fs = 44100Hz yielding T = 220500 samples.

Fig. 1: Musical score of “Mary had a little lamb” (dataset 1).

The second audio sample, inspired from [8], is a piano
sequence played from the score given in Figure 2. The piano
sequence is composed of four notes; D4, F4, A4 and C5,
played all at once in the first measure and then played by
pairs in all possible combinations in the remaining measures.
The signal is 14.6 seconds long and has a sampling frequency
fs = 44100Hz yielding T = 643817 samples.

Fig. 2: Musical score of the second audio sample (dataset 2).

The music samples have been generated with a professional
audio software called Sibelius based on the musical score
shown in Figures 1 and 2.

2) Experimental comparison: This section describes the
test procedure elaborated to evaluate the quality of the results
obtained with MR-β-NMF (6) that jointly factorizes two audio
spectrograms X and Y . In the following, matrices W and H
stand for the solutions computed with Algorithm 1 that solves
MR-β-NMF (6). We aim at showing that the factor W has a
high frequency resolution whereas the matrix H has a high
temporal resolution. To achieve this goal, we compare W to
WY computed with a baseline β-NMF approach that factorizes
the high frequency spectrogram Y only. The baseline β-NMF
applied on Y solves the following optimization problem:

min
WY ≥0,HY ≥0

Dβ(Y ‖WYHY ). (14)

Due to the trade-off between the frequency and temporal
resolutions, the activation matrix HY shows a low temporal
resolution. To compare the accuracy of the solutions W and
WY , we need to have access to an oracle matrix W# that
is the reference for the comparison. For instance, for the
dataset 1, each column of W# is supposedly the ”true” spectral
signature of each of the three notes, namely E4, D4 and C4.
We estimated W# as follows:
• We synthetically generate three audio signals and each

one contains the sequence of one note in particular.
• Based on the three audio signals, we generate three am-

plitude spectrograms that have high frequency resolution
with the same window size as the one used to generate Y .

• For each amplitude spectrogram, we perform a rank-1
NMF. The resulting FY -dimensional vectors are concate-
nated to form the oracle matrix W#.

We show the accuracy of H with a similar procedure; H is
compared to an activation matrix HX obtained by solving

min
WX≥0,HX≥0

Dβ(X‖WXHX), (15)

using multiplicative updates. The oracle matrix H#, that is, the
reference for the comparison, is computed by performing three
independent rank-1 NMF on three amplitude spectrograms that
have high temporal resolution, all generated with the same
window size as the one used to generate X .

3) Performance Evaluation: This section presents the qual-
itative criteria for evaluating the performance of the solutions
obtained with Algorithm 1. We compute the following mea-
sures of reconstruction.
• Activation matrices: in order to avoid the scaling and permu-
tation ambiguities inherent to the considered NMF models, we
first normalize in L-1 norm the rows of the activation matrices
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H and solve an assignment problem w.r.t. the oracle matrix
H#. The quality of the activation matrix H is compared to HX

w.r.t. H# by computing the following signal-to-noise ratios
(SNR): for all k,

SNRHk = 20 log10

(
‖H̄(k, :)‖F

‖H̄(k, :)− H̄#(k, :)‖F

)
, (16)

where H̄(k, :) = H(k,:)
‖H(k,:)‖1 and ‖H(k, :)‖1 =

∑
j |H(k, j)|,

and

SNRHX,k = 20 log10

(
‖H̄X(k, :)‖F

‖H̄X(k, :)− H̄#(k, :)‖F

)
. (17)

The higher the SNRs (16) and (17), the better is the estimation
for the activation matrix.
• Source matrices: The quality of the source matrix W is
evaluated in the same fashion, except that the normalization
is performed by columns.

B. Results

In this section, we use the following setting:
• 100 random initializations for W and H for each NMF.
• the window lengths are set to 1024 (23ms) and 4096 (93ms),
then the downsampling ratio d is equal to 4. For the generation
of R and S, the parameter f is set to 2.
• β = 1, and we consider the amplitude spectrograms as the
input data.
• we use λ = 1 in all our experiments.

1) Dataset 1: ”Mary had a little lamb”: In this section
we report the numerical results obtained after the completion
of the test set up presented in section IV-A, and using
MAXITERL1=100 and MAXITERL2=400 for Algorithm 1.

Table II reports the average SNR, the standard deviation
and the best SNR computed for the activations and sources
obtained with the models described in Section IV-A2 over
the 100 initializations. As it can be observed, activations H
are slightly better than activations HX , and with a significant
smaller standard deviation for each note. The results for the
recovered sources are even more conclusive; MR-β-NMF
outperforms baseline NMF (14) for which the SNR (best
case) can be up to two times larger. Moreover, the standard
deviations of MR-β-NMF are significantly lower than those
obtained with baseline NMF (14). It appears that the second
term in the objective function in (6) acts as a regularizer so
that MR-β-NMF is more robust to different initializations.

Figure 3 shows the source matrices W#, W , WY and WX .
For more clarity, the frequency range is limited to 2 kHz.
This limited range includes all the most significant peaks
in terms of magnitude. We observe that all the frequency
peaks are accurately estimated by MR-β-NMF for each note.
Figure 3 also integrates the source matrix WX to highlight the
impact of using baseline NMF (15) that uses a higher temporal
resolution.

We conclude that MR-β-NMF is able to obtain more robust
and more accurate results than baseline β-NMFs that factorize
a single spectrogram.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-15

-10

-5

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-15

-10
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0

Fig. 3: Columns of W#, W , WY and WX in semi-log scale.
Top, middle and bottom sub-figures show the spectral content
respectively for C4, D4 and E4.

2) Data set 2: In this section we report the numerical
results obtained for the dataset 2, using MAXITERL1=500
and MAXITERL2=1500 for Algorithm 1.

Table III reports the average SNR, the standard deviation
and the best SNR computed for activations and sources
obtained with the methods described in IV-A2 over 100
initializations. We observe that:
• MR-β-NMF provides results that show high resolutions in
both frequency and temporal domains,
• the regularization effect of MR-β-NMF w.r.t. baseline NMFs
is less stunning than observed for the dataset 1. However the
standard deviations obtained with MR-β-NMF for the sources
are significantly lower than those obtained with the baseline
NMFs.
• by looking more accurately at the results for the sources,
MR-β-NMF globally performs better than baseline NMFs. For
the activations, baseline NMFs perform slightly better than
MR-β-NMF for three scores, with an improvement of at most
1.9% (for the F4 score).

V. NUMERICAL EXPERIMENTS ON HSI-MSI FUSION

In this section, we perform numerical experiments to vali-
date the effectiveness of MR-β-NMF on the HSI-MSI fusion
problem.

A. Test setup and criteria

1) Test data: The proposed MR-β-NMF algorithm is tested
on semi-real datasets against several methods and algorithms
widely used to tackle the HSI-MSI fusion problem, namely
GSA [41], CNMF [18], HySure [36], FUMI [42], GLP [43],
MAPSMM [44], SFIM [45] and Lanaras’s method [46]. In a
nutshell: GSA, SFIM and GLP are pansharpening-based meth-
ods, the remaining methods belong to subspace-based methods
that can be split into unmixing methods (CNMF, Lanaras’s
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TABLE II: Comparison of MR-β-NMF with baseline β-NMF in terms of SNR on the activations and the sources with respect to
true factors on the dataset 1. The table reports the average, standard deviation and the best SNR over 100 random initializations
for W and H . Bold numbers indicate the highest SNR.

Note Activation SNRs (dB) Basis SNRs (dB)
SNRHk SNRHX,k SNRWk SNRWY,k

average ± std best average ± std best average ± std best average ± std best
C4 12.33 ± 0.17 12.74 3.89 ± 8.99 12.19 21.35 ± 1.77 22.66 7.95 ± 7.84 12.38
D4 14.50 ± 0.08 14.62 8.57 ± 6.44 14.38 21.25 ± 0.35 21.61 14.71 ± 6.06 18.23
E4 19.68 ± 0.04 19.82 15.28 ± 5.06 19.74 22.71 ± 0.36 23.02 19.36 ± 2.02 20.66

TABLE III: Comparison of MR-β-NMF with baseline β-NMF in terms of SNR on the activations and the sources with
respect to true factors on the dataset 2. The table reports the average, standard deviation and the best SNR over 100 random
initializations for W and H . Bold numbers indicate the highest SNR.

Note Activation SNRs (dB) Sources SNRs (dB)
SNRHk SNRHX,k SNRWk SNRWY,k

average ± std best average ± std best average ± std best average ± std best
A4 11.98 ± 0.01 12.03 12.17 ± 0.01 12.17 16.24 ± 0.02 16.43 16.29 ± 0.26 16.42
C5 9.54 ± 0.02 9.57 9.43 ± 0.01 9.43 9.41 ± 0.02 9.42 8.61 ± 0.72 8.73
D4 14.81 ± 0.01 14.82 14.92 ± 0.01 14.92 16.20 ± 0.06 16.33 15.24 ± 2.37 15.64
F4 11.23 ± 0.01 11.32 11.52 ± 0.01 11.54 16.47 ± 0.05 16.50 16.76 ± 0.99 16.93

method and HySure) and Bayesian-based approaches (FUMI,
MAPSMM) [20].

All the algorithms are implemented and tested on a desktop
computer with Intel Core i7-8700@3.2GHz CPU, Geforce
RTX 2070 Super GPU and 32GB memory. The codes1 are
written in MATLAB R2018a. The implementation for bench-
marked algorithms comes from the comparative review of
the recent literature for HSI-MSI fusion detailed in [20]. We
consider the following real HSI:
• HYDICE Urban: The Urban dataset2 consists of 307×307
pixels and 162 spectral reflectance bands in the wavelength
range 400nm to 2500nm. We extract a 120×120 subimage
from this dataset.
• HYDICE Washington DC Mall: this dataset3 has been ac-
quired with HYDICE HS sensor over the Washington DC Mall
and consists of 1208×307 pixels and 191 spectral reflectance
bands in the wavelength range 400nm to 2500nm. We extract
a 240×240 subimage from this dataset.
• AVIRIS Indian Pines: this dataset has been acquired with
NASA Airborne Visible/Infrared Imaging (AVIRIS) Spectrom-
eter [47] over the Indian Pines test site in North-western
Indiana and consists of 145×145 pixels and 200 spectral
reflectance bands in the wavelength range 400nm to 2500nm.
We extract a 120×120 subimage from this dataset.

Note that entries of the datasets are uncalibrated relative
values, also referred as Digital Numbers (DN). As the goal is
to fuse data and not to perform HS unmixing and classification,
we do not convert these values into reflectances.

2) Test procedure: In this paper we consider semi-real data
by conducting the numerical experiments based on the widely
used Wald’s protocol [48]. This protocol consists in simulating
input MSI and HSI from a reference high-resolution HSI. In
this paper, the MSI X and HSI Y are obtained from a high-
resolution HSI V through the models (4) and (5) respectively.
Let us recall that the matrix R from (2) designates the relative

1https://naotoyokoya.com/Download.html
2http://lesun.weebly.com/hyperspectral-data-set.html
3https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

spectral responses from the SR image to the MSI. In other
words, it defines how the satellite instruments measure the
intensity of the wavelengths (colors) of light. We generate
a six-band MSI X by filtering the reference image V with
the Landsat 4 TM-like reflectance spectral responses4. The
Landsat 4 TM sensor [49] has a spectral coverage from 400nm
to 2500nm so that it is consistent with the spectral coverage
of the datasets.

The matrix S (5) corresponds to the process of spatial
blurring and downsampling. The high spectral low spatial
resolution HSI Y is generated by applying a 11×11 Gaussian
spatial filter with a standard deviation of 1.7 on each band
of the reference image V and downsampling every 4 pixels,
both horizontally and vertically. The HSI and MSI are finally
both contaminated with noise. The level of noise is usually
characterized by the SNR expressed in dB. Here, SNRX
and SNRY refer to the noise level for the MSI and HSI,
respectively. In this paper, we apply the same level of noise for
each spectral band. Let us give more insights on the last step
of the MS image generation: X = max

(
0, RV + εX

)
where

the noise matrix εX is constructed as follows: we introduce
xi for i = 1, 2, some binary coefficients, and

Ñ = x1
NP

‖NP‖F
+ x2

NF

‖NF‖F
,

where
• Each entry of NP is generated using the Poisson distribution
of parameter (RṼ )i,j for all (i, j), where Ṽ is a noiseless low-
rank approximation of V that is computed separately. More
precisely, by setting εX = 0FX×NX where 0FX×NX is all-
zero matrix, a solution (W,H) for MR-β-NMF (6) is first
computed with Algorithm 1, and the parameter for the Poisson
distribution is defined as Ṽ = WH .
• Each entry of NF is generated using the normal distribution
of mean 0 and variance 1.

We set εX = η ‖RV ‖F‖Ñ‖F
Ñ with η = 1

10
SNRX
20

. For example,

if we fix SNRX = 25dB, V1 = max(0, RV + εX) is a MS

4https://landsat.usgs.gov/spectral-characteristics-viewer

https://naotoyokoya.com/Download.html
http://lesun.weebly.com/hyperspectral-data-set.html
https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
https://landsat.usgs.gov/spectral-characteristics-viewer
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image contaminated with 5.62% of noise (that is, ‖εX‖F =
0.0562‖RV ‖F ) and projected onto the nonnegative orthant.
The noise matrix εY is obtained in the same way.

The benchmarked algorithms listed in V-A1 are configured
as recommended in the comparative review [20] with the
following variations:
• The number of endmembers is a key parameter for
unmixing-based methods. For MR-β-NMF, CNMF, Lanaras’s
method and HySure, K is set to the 5 and 6 for HYDICE Ur-
ban and HYDICE Washington DC Mall datasets respectively
as done in [50]. For the Indian Pine dataset, K = 16 as in [51].
• The benchmarked algorithms are stopped when the relative
change of the objective function is below 10−4 or when the
number of iterations exceeds 500. For algorithms such as
CNMF that include outer and inner loops, we contacted the
authors to set up the best balance for the maximum number
of inner (I1) and outer (I2) loop iterations to fairly compare
the methods, the following couples of values are considered:
I1 = 100 and I2 = 5 and I1 = 250 and I2 = 2. The couple of
values that gives the best results for each dataset is considered
in section V-B, that is I1 = 100 and I2 = 5.
• The matrix R is known for all algorithms that make use of
it. For MR-β-NMF, it means we use MAXITERL1=500 and
MAXITERL2=0.

Finally, let us summarize the initialization strategy:
• MR-β-NMF uses random nonnegative initializations for W
and H .
• CNMF starts by unmixing the HSI using VCA [52] to
initialize the endmember signatures,
• SISAL [53] is used to initialize the endmembers for La-
naras’s method.

Four variants of the MR-β-NMF are considered, namely
β = 2, β = 3

2 , β = 1 and β = 1
2 . We test the algorithms

under a scenario where no noise is added (that is, Ñ = 0), and
a scenario where noise is added so that the SNRs for the noise
terms in εX and εY are SNRX = 25dB and SNRY = 25dB.

3) Performance evaluation: In order to assess the fusion
quantitatively, we use the following five complementary and
widely used quality measurements:
• Peak SNR (PSNR): the PSNR is used to assess the spatial
reconstruction quality of each band. It corresponds to the ratio
between the maximum power of a signal and the power of
residual errors. A larger PSNR value indicates a higher quality
of spatial reconstruction.
• The root-mean-square error (RMSE): RMSE is a similarity
measure between the SR image V and the fused image
Ṽ = WH . The smaller the RMSE is, the better the fusion
quality is.
• Erreur Relative Globale Adimensionnelle de Synthèse (ER-
GAS): ERGAS provides a macroscopic statistical measure
of the quality of the fused data. More precisely, ERGAS
calculates the amount of spectral distortion in the image [48].
The best value is at 0.
• Spectral Angle Mapper (SAM): SAM is used to quantify
the spectral information preservation at each pixel. More
precisely, SAM determines the spectral distance by computing
the angle between two vectors of the estimated and reference
spectra. The overall SAM is obtained by averaging the SAMs

computed for all image pixels. The smaller the absolute value
of SAM is, the better the fusion quality is.
• The universal image quality index (UIQI) introduced in
[54]: UIQI evaluates the similarity between two single-band
images. It is related to the correlation, luminance distortion,
and contrast distortion of the estimated image w.r.t. reference
image. UIQI indicator is in the range [−1, 1]. For multiband
images, the overall UIQI is computed by averaging the UIQI
computed band by band. The best value for UIQI is at 1.

For more details about these quality measurements, we refer
the reader to [55] and [42].

B. Experimental results

We ran 20 independent trials for each dataset detailed in
V-A1. The average performance of each algorithm is shown
in Tables IVto VI. Except for runtimes, MR-β-NMF generally
rank in the fifth first for all the quality measurements. For
Urban dataset with noise added, MR-β-NMF with β = 1,
β = 1/2 and β = 3/2 respectively rank first, second and third
for all the metrics except for SAM for which CNMF ranks
first. For the condition with no noise added, MR-β-NMF with
β = 1, β = 1/2 ranks first and second for all metrics. MR-
β-NMF with β = 3/2, FUMI and HySure give similar results.
For Washington DC Mall without noise added, MR-β-NMF
with β = 1, β = 1/2 ranks first and second for all metrics. For
Indian Pines dataset without noise added, MR-β-NMF with
β = 1 ranks second while HySure ranks first. When noise is
added, Lanaras’s method ranks first while MR-β-NMF with
β = 1/2, β = 1 rank second and third for most criteria.

In order to give more insights on the performance compar-
ison between algorithms, Figure 4 displays the SAM maps
obtained for one trial for the Urban, Washington DC Mall and
Indian Pines datasets. Visually, the proposed method performs
competitively with other state-of-the-art methods. Indeed, as
already observed with the SAM comparison in Tables IV to
VI, the variants of MR-β-NMF show in general lower values
for SAM errors across the images. For the Urban dataset,
the highest SAM errors obtained with the variants of MR-
β-NMF are less widespread and localized at some specific
spots which correspond to the edges of the roofs and trees.
This observation makes sense as those regions show more
atypic reflectance angles and therefore more non-linear effects
in terms of spectral mixture. The same observations apply for
the Washington DC Mall dataset with and without noise added.
For the Indian Pines dataset without noise added, HySure and
FUMI algorithms show lower SAM errors across images, we
visually confirm that MR-β-NMF with β = 1, 1/2, 3/2 rank
third to fifth. When the noise is added, Lanaras’s method gives
the lowest SAM errors and is less widespread, while MR-
β-NMF with β = 1, 1/2, 3/2 appear to provide less accurate
estimates than CNMF that visually looks better.

C. Appendix and discussion

In the Appendix, we provide additional numerical experi-
ments on the widely used Cuprite data set5. First, we perform

5This data sets can be retrieved from the AVIRIS NASA site, https://aviris.
jpl.nasa.gov/.

https://aviris.jpl.nasa.gov/
https://aviris.jpl.nasa.gov/
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the same experiment as for the Indian Pine data set, for which
the conclusions are similar, namely: without noise added, MR-
β-NMF with β = 1 ranks second while HySure ranks first.
When noise is added, Lanaras’s method ranks first while MR-
β-NMF with β = 1/2, β = 1 rank second and third for most
criteria.

The reason other methods sometimes perform better than
MR-β-NMF is because the β-divergences are guaranteed to
perform better only when the data follows certain distributions;
for example, the Kullback-Leibler divergence (β = 1) is the
maximum likelihood estimator if the data follows a Poisson
distribution. This explains why, state-of-the-art methods based
on the Frobenius norm sometimes perform similarly as our
model based on β-divergences. To validate this behavior, we
also perform a new numerical experiment where we add
multiplicative Gamma noise. We show that our proposed MU
for β = 0, corresponding to the Itakura-Saito (IS) divergence,
outperforms by a large margin all other approaches. This is
explained by the fact that the IS divergence corresponds to the
maximum likelihood estimator in the presence of multiplica-
tive Gamma noise [8]. This shows that using the right data
fitting term can significantly improve the performance of the
unmixing.

VI. CONCLUSION

In this paper, we have considered the multi-resolution
β-NMF (MR-β-NMF) problem (6). The estimation of the
sources and their activations relies on the minimization of
the β-divergence, a flexible family of measures of fit. MR-
β-NMF addresses the resolution trade-off between two ad-
versarial dimensions by fusing the information coming from
multiple data with different resolutions in order to produce
a factorization with high resolutions for all the dimensions.
We have provided multiplicative updates (MU) to tackle the
minimization problem. We have showcased the efficiency of
the MU on two instrumental examples. The first is the audio
spectral unmixing for which the frequency-by-time data matrix
is computed with the short-time Fourier transform and is the
result of a trade-off between the frequency resolution and the
temporal resolution. We highlighted the capacity of this model
to provide solutions with high frequency and high temporal
resolution. MR-β-NMF was shown to be well suited for audio
applications such as transcription problems, and performs in
general better than baseline NMF methods. The second is blind
hyperspectral unmixing for which the wavelength-by-location
data matrix is a trade-off between the number of wavelengths
measured and the spatial resolution. We demonstrated the effi-
ciency of MR-β-NMF to tackle the HSI-MSI fusion problem
compared to state-of-the-art methods.
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audio signals used in this paper, and Xavier Siebert for his
insightful comments that helped us improve the paper.
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Fig. 4: SAM maps for the different hyperspectral images. From top to bottom: Urban HSI with K = 5, Washington DC Mall
HSI with K = 6, and Indian Pines HSI with K = 16. On the left column: SAM maps without added noise. On the right
column: SAM maps with added noise (SNRX = SNRY = 25dB). For each image, the 12 SAM maps correspond to the
different benchmark algorithms; from left to right, top to bottom: MR-2-NMF, MR-3/2-NMF, MR-1-NMF, MR-1/2-NMF,
GSA, CNMF, HySure, FUMI, GLP, MAPSMM, SFIM, and Lanaras’s method.
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TABLE IV: Comparison of MR-β-NMF with state-of-the-arts methods for HSI-MSI fusion on the HYDICE Urban dataset.
The table reports the average, standard deviation for the quantitative quality assessments over 20 trials. Bold, underlined and
italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 ∞ 0 0 0 1

Data set - HYDICE Urban - SNR = 25dB
MR-β = 2-NMF 52.25 ±2.45 33.88 ± 0.10 16.26 ± 0.19 2.48 ± 0.03 4.13 ± 0.06 0.97 ± 0.00

MR-β = 3/2-NMF 54.46 ±2.31 34.54 ± 0.06 14.92 ± 0.09 2.28 ± 0.01 3.65 ± 0.04 0.98 ± 0.00
MR-β = 1-NMF 52.20 ±2.03 34.85 ± 0.10 14.51 ± 0.14 2.22 ± 0.03 3.49 ± 0.06 0.98 ± 0.00

MR-β = 1/2-NMF 54.47 ±1.96 34.81± 0.10 14.65 ± 0.15 2.24 ± 0.02 3.52 ± 0.06 0.98 ± 0.00
GSA 0.72 ±0.05 32.52± 0.00 19.41 ± 0.00 2.87 ± 0.00 5.63 ± 0.00 0.96 ± 0.00

CNMF 9.73 ±1.84 34.33± 0.50 15.45 ± 0.85 2.37 ± 0.17 3.64 ± 0.27 0.98 ± 0.00
HySure 31.57 ±2.93 33.90± 0.00 16.44 ± 0.00 2.57 ± 0.00 4.17 ± 0.00 0.97 ± 0.00
FUMI 0.39 ±0.03 32.92± 0.00 20.30 ± 0.00 2.85 ± 0.00 4.92 ± 0.00 0.96 ± 0.00
GLP 6.05 ±0.42 27.24± 0.00 34.37 ± 0.00 5.10 ± 0.00 6.27 ± 0.00 0.91 ± 0.00

MAPSMM 44.12 ±2.60 25.57± 0.00 41.95 ± 0.00 6.15 ± 0.00 6.82 ± 0.00 0.87 ± 0.00
SFIM 0.24 ±0.03 26.32± 0.00 37.89 ± 0.00 5.71 ± 0.00 5.90 ± 0.00 0.90 ± 0.00

Lanaras’s method 8.12 ±8.71 29.33± 0.29 26.84 ± 0.85 4.39 ± 0.23 4.88 ± 0.26 0.94 ± 0.00
Data set - HYDICE Urban - No added noise

MR-β = 2-NMF 49.55 ±0.31 38.10 ± 0.40 10.94 ± 0.31 1.67 ± 0.07 3.28 ± 0.10 0.99 ± 0.00
MR-β = 3/2-NMF 51.54 ±0.52 40.01 ± 0.50 8.82 ± 0.32 1.35 ± 0.09 2.60 ± 0.10 0.99 ± 0.00

MR-β = 1-NMF 49.71 ±0.12 41.53 ± 0.56 7.86 ± 0.28 1.19 ± 0.07 2.27 ± 0.10 0.99 ± 0.00
MR-β = 1/2-NMF 52.09 ±0.35 41.69± 0.64 7.81 ± 0.35 1.19 ± 0.08 2.23 ± 0.12 0.99 ± 0.00

GSA 0.67 ±0.04 32.93± 0.00 22.17 ± 0.00 2.87 ± 0.00 5.25 ± 0.00 0.97 ± 0.00
CNMF 10.56 ±2.02 35.35± 0.64 13.91 ± 1.81 2.18 ± 0.32 3.26 ± 0.53 0.98 ± 0.00
HySure 28.51 ±1.09 40.27± 0.00 9.67 ± 0.00 1.46 ± 0.00 2.50 ± 0.00 0.99 ± 0.00
FUMI 0.36 ±0.02 41.01± 0.00 14.14 ± 0.00 1.67 ± 0.00 2.71 ± 0.00 0.99 ± 0.00
GLP 5.61 ±0.09 27.97± 0.00 31.97 ± 0.00 4.65 ± 0.00 4.78 ± 0.00 0.94 ± 0.00

MAPSMM 42.19 ±0.84 25.92± 0.00 40.56 ± 0.00 5.89 ± 0.00 5.66 ± 0.00 0.89 ± 0.00
SFIM 0.21 ±0.03 27.05± 0.00 35.19 ± 0.00 5.21 ± 0.00 4.21 ± 0.00 0.93 ± 0.00

Lanaras’s method 4.72 ±4.72 29.50± 0.35 26.54 ± 0.69 4.26 ± 0.23 4.57 ± 0.21 0.95 ± 0.00

TABLE V: Comparison of MR-β-NMF with state-of-the-arts methods for HSI-MSI fusion on the HYDICE Washington DC
Mall dataset. The table reports the average, standard deviation for the quantitative quality assessments over 20 trials. Bold,
underlined and italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 ∞ 0 0 0 1

Data set - HYDICE Washington DC Mall - SNR = 25dB
MR-β = 2-NMF 57.59 ±0.32 26.77 ± 0.25 202.02 ± 3.59 18.21 ± 0.13 3.38 ± 0.11 0.90 ± 0.01

MR-β = 3/2-NMF 60.04 ±0.39 26.37 ± 0.32 194.40 ± 6.38 18.07 ± 0.23 3.05 ± 0.18 0.87 ± 0.01
MR-β = 1-NMF 57.95 ±0.24 26.29 ± 0.20 188.42 ± 11.18 18.50 ± 0.25 2.83 ± 0.28 0.86 ± 0.01

MR-β = 1/2-NMF 60.38 ±0.20 25.68± 0.28 201.62 ± 14.05 19.46 ± 0.41 3.06 ± 0.30 0.83 ± 0.01
GSA 0.79 ±0.04 23.00± 0.00 235.64 ± 0.00 32.25 ± 0.00 4.20 ± 0.00 0.74 ± 0.00

CNMF 7.25 ±1.26 27.60± 0.09 192.67 ± 6.50 17.37 ± 0.10 2.55 ± 0.14 0.89 ± 0.00
HySure 34.14 ±0.94 24.01± 0.00 351.13 ± 0.00 33.51 ± 0.00 6.15 ± 0.00 0.75 ± 0.00
FUMI 0.42 ±0.02 24.67± 0.00 243.06 ± 0.00 19.73 ± 0.00 4.04 ± 0.00 0.80 ± 0.00
GLP 6.42 ±0.24 19.85± 0.00 423.89 ± 0.00 33.64 ± 0.00 5.28 ± 0.00 0.67 ± 0.00

MAPSMM 40.91 ±0.46 19.34± 0.00 494.39 ± 0.00 32.18 ± 0.00 5.91 ± 0.00 0.65 ± 0.00
SFIM 0.24 ±0.01 18.08± 0.00 892.35 ± 0.00 42.23 ± 0.00 5.45 ± 0.00 0.64 ± 0.00

Lanaras’s method 3.11 ±1.94 25.95± 0.06 235.62 ± 2.67 17.36 ± 0.02 2.78 ± 0.03 0.90 ± 0.00
Data set - HYDICE Washington DC Mall - No added noise

MR-β = 2-NMF 58.55 ±1.50 32.61 ± 0.28 128.50 ± 5.87 5.54 ± 0.13 2.59 ± 0.12 0.97 ± 0.00
MR-β = 3/2-NMF 60.95 ±1.58 35.36 ± 0.38 104.11 ± 5.89 2.41 ± 0.22 1.89 ± 0.12 0.98 ± 0.00

MR-β = 1-NMF 59.01 ±2.02 37.80 ± 0.75 89.20 ± 5.43 1.76 ± 0.27 1.47 ± 0.07 0.99 ± 0.00
MR-β = 1/2-NMF 61.21 ±1.05 38.27± 0.83 90.88 ± 6.26 1.55 ± 0.20 1.48 ± 0.10 0.99 ± 0.00

GSA 0.81 ±0.08 29.93± 0.00 262.27 ± 0.00 3.11 ± 0.00 3.84 ± 0.00 0.97 ± 0.00
CNMF 7.90 ±2.67 31.46± 1.07 152.95 ± 14.25 5.93 ± 8.92 2.01 ± 0.49 0.96 ± 0.03
HySure 35.85 ±2.19 31.23± 0.00 190.57 ± 0.10 3.21 ± 0.00 3.21 ± 0.00 0.96 ± 0.00
FUMI 0.43 ±0.03 36.52± 0.00 142.92 ± 0.00 2.32 ± 0.00 1.76 ± 0.00 0.98 ± 0.00
GLP 6.95 ±0.52 26.19± 0.00 373.07 ± 0.00 4.53 ± 0.00 4.16 ± 0.00 0.93 ± 0.00

MAPSMM 42.88 ±0.85 24.42± 0.00 459.09 ± 0.00 5.61 ± 0.00 4.98 ± 0.00 0.88 ± 0.00
SFIM 0.27 ±0.05 25.12± 0.00 408.40 ± 0.00 6.53 ± 0.00 3.95 ± 0.00 0.92 ± 0.00

Lanaras’s method 4.70 ±3.55 28.46± 0.36 230.31 ± 7.44 3.94 ± 0.21 2.55 ± 0.03 0.96 ± 0.00
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TABLE VI: Comparison of MR-β-NMF with state-of-the-arts methods for HSI-MSI fusion of the dataset AVIRIS Indian Pines
dataset. The table reports the average, standard deviation for the quantitative quality assessments over 20 trials. Bold, underlined
and italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 ∞ 0 0 0 1

Data set - AVIRIS Indian Pines - SNR = 25dB
MR-β = 2-NMF 15.48 ±0.53 27.11 ± 0.03 187.37 ± 0.80 1.64 ± 0.01 2.26 ± 0.02 0.78 ± 0.00

MR-β = 3/2-NMF 16.76 ±0.75 27.29 ± 0.02 183.47 ± 0.56 1.57 ± 0.00 2.14 ± 0.01 0.78 ± 0.00
MR-β = 1-NMF 15.57 ±0.53 27.38 ± 0.02 181.77 ± 0.51 1.55 ± 0.00 2.09 ± 0.01 0.78 ± 0.00

MR-β = 1/2-NMF 16.90 ±0.55 27.55± 0.03 179.10 ± 0.41 1.52 ± 0.01 2.03 ± 0.01 0.79 ± 0.00
GSA 0.31 ±0.04 21.79± 0.00 326.23 ± 0.00 2.94 ± 0.00 3.28 ± 0.00 0.64 ± 0.00

CNMF 2.13 ±0.10 24.05± 0.21 241.72 ± 5.39 2.33 ± 0.07 1.68 ± 0.04 0.60 ± 0.01
HySure 22.70 ±0.43 24.82± 0.28 241.17 ± 3.31 2.33± 0.13 3.25 ± 0.05 0.64 ± 0.01
FUMI 0.12 ±0.02 24.71± 0.00 242.25 ± 0.00 2.27 ± 0.00 3.19 ± 0.00 0.66 ± 0.00
GLP 2.36 ±0.07 20.24± 0.00 403.70 ± 0.00 3.47 ± 0.00 3.14 ± 0.00 0.49 ± 0.00

MAPSMM 10.63 ±0.21 18.35± 0.00 519.28 ± 0.00 4.30 ± 0.00 3.36 ± 0.00 0.42 ± 0.00
SFIM 0.20 ±0.02 19.74± 0.00 423.46 ± 0.00 3.68 ± 0.00 3.31± 0.00 0.48 ± 0.00

Lanaras’s method 2.82 ±1.69 29.59± 0.71 149.59 ± 13.20 1.19 ± 0.09 1.43 ± 0.06 0.76 ± 0.05
Data set - AVIRIS Indian Pines - No added noise

MR-β = 2-NMF 14.55 ±0.07 36.43 ± 0.15 69.71 ± 1.65 0.65 ± 0.02 1.23 ± 0.03 0.92 ± 0.00
MR-β = 3/2-NMF 15.69±0.09 38.09 ± 0.09 57.69 ± 0.89 0.48 ± 0.00 1.00 ± 0.02 0.93 ± 0.00

MR-β = 1-NMF 14.56 ±0.03 39.30 ± 0.13 51.66 ± 0.79 0.41 ± 0.01 0.90 ± 0.01 0.94 ± 0.00
MR-β = 1/2-NMF 16.00 ±0.05 39.15± 0.20 52.98 ± 1.18 0.42 ± 0.01 0.91 ± 0.02 0.94± 0.00

GSA 0.29 ±0.03 23.33± 0.00 300.32 ± 0.00 2.42 ± 0.00 1.38 ± 0.00 0.90± 0.00
CNMF 1.94 ±0.09 26.72± 0.16 184.42 ± 2.95 1.71 ± 0.04 1.17 ± 0.03 0.74 ± 0.01
HySure 20.83 ±0.17 40.96± 0.03 44.29 ± 0.18 0.34 ± 0.00 0.56 ± 0.00 0.96 ± 0.00
FUMI 0.11 ±0.02 39.13± 0.00 115.58 ± 0.00 0.83 ± 0.00 0.90 ± 0.00 0.95 ± 0.00
GLP 2.24 ±0.05 23.12± 0.00 312.46 ± 0.00 2.48 ± 0.00 1.42 ± 0.00 0.85 ± 0.00

MAPSMM 10.09 ±0.14 22.27± 0.00 346.40 ± 0.00 2.74 ± 0.00 1.54 ± 0.00 0.78 ± 0.00
SFIM 0.18 ±0.01 22.66± 0.00 328.92 ± 0.00 2.62 ± 0.00 1.39 ± 0.00 0.85 ± 0.00
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APPENDIX

This appendix contains additional numerical experiments for
the fusion of hyperspectral and multispectral images (HSI-MSI
fusion) on the widely used Cuprite data set.

First, we perform the same experiment as in the paper for
the Indian Pine data set, namely comparing state-of-the-art
algorithms for the noiseless and noisy (Gaussian and Poisson
noise) Cuprite hyperspectral image.

Then, we also perform a new numerical experiment where
we add multiplicative Gamma noise. We show that our
proposed MU for β = 0, corresponding to the Itakura-Saito
(IS) divergence, outperforms all other approaches in this
scenario. This is explained by the fact that the IS divergence
corresponds to the maximum likelihood estimator in the
presence of multiplicative Gamma noise [8].

As done in the numerical experiments of this paper, we ran
20 independent trials for the Cuprite data set. Three MSI-MSI
fusion analysis are performed. The first two are the same as
in this paper, namely (1) without noise, and (2) with Gaussian
and Poisson noise added to the images. Then, we also ass
multiplicative Gamma noise (mean equal to 1 and 5% of
standard deviation) applied to the HSI and MSI. For such noise
statistics (multiplicative Gamma distribution), the most suited
β-divergence for the objective function of the optimization
problem is the Itakura-Saı̈to divergence (β = 0) [8]. Therefore
we also run our proposed algorithm, MR-β-NMF, with β = 0.

The average performance of each algorithm is shown in
Table VII. For analysis (1) and (2), the conclusions are similar
to the ones observed for Indian Pines dataset, namely: without
noise added, MR-β-NMF with β = 1 ranks second while
HySure ranks first. When noise is added, Lanaras’s method
ranks first while MR-β-NMF with β = 1/2, β = 1 rank second
and third for most criteria.

For the case when Gamma noise is added, MR-β-NMF with
β = 0 significantly outperforms the others methods, while MR-
β-NMF with β = 1/2 and β=1 respectively rank second and
third. This illustrates the importance of using the right data
fitting term depending on the noise statistics.
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TABLE VII: Comparison of MR-β-NMF with state-of-the-arts methods for HSI-MSI fusion of the dataset AVIRIS Cuprite
dataset. The table reports the average, standard deviation for the quantitative quality assessments over 20 trials. Bold, underlined
and italic to highlight the three best algorithms.

Method Runtime (seconds) PSNR (dB) RMSE ERGAS SAM UIQI
Best value 0 ∞ 0 0 0 1

Data set - AVIRIS Cuprite - No added noise (1)
MR-β = 2-NMF 13.01 ±0.27 37.75 ± 0.12 54.72 ± 0.88 4.21 ± 0.08 1.11 ± 0.02 0.94 ± 0.00

MR-β = 3/2-NMF 14.63±0.16 38.66 ± 0.12 48.24 ± 0.61 4.19 ± 0.10 0.97 ± 0.01 0.95 ± 0.00
MR-β = 1-NMF 13.02 ±0.15 39.56 ± 0.17 44.08 ± 0.53 4.16 ± 0.06 0.89 ± 0.01 0.96 ± 0.00

MR-β = 1/2-NMF 15.36 ±0.24 38.98± 0.21 46.74 ± 1.25 3.79 ± 0.04 0.95 ± 0.03 0.95± 0.00
MR-β = 0-NMF 13.76 ±0.24 37.88± 0.25 53.60 ± 1.86 2.41 ± 0.02 1.07 ± 0.04 0.94± 0.00

GSA 0.09 ±0.05 5.10± 0.00 2694.68 ± 0.00 24.15 ± 0.00 81.44 ± 0.00 0.09± 0.00
CNMF 1.72 ±0.19 20.23± 0.06 375.37 ± 2.67 4.73 ± 0.02 0.70 ± 0.01 0.62 ± 0.00
HySure 9.66 ±0.29 41.03± 0.05 39.66 ± 0.40 2.68 ± 0.08 0.60 ± 0.01 0.97 ± 0.00
FUMI 0.11 ±0.03 37.88± 0.00 102.43 ± 0.00 2.82 ± 0.00 0.86 ± 0.00 0.95 ± 0.00
GLP 2.72 ±0.09 23.28± 0.00 265.16 ± 0.00 3.51 ± 0.00 0.65 ± 0.00 0.86 ± 0.00

MAPSMM 21.63 ±0.52 22.59± 0.00 287.05 ± 0.00 3.68 ± 0.00 0.65 ± 0.00 0.83 ± 0.00
SFIM 0.14 ±0.01 22.80± 0.00 278.27 ± 0.00 16.82 ± 0.00 0.65 ± 0.00 0.86 ± 0.00

Lanaras’s method 19.04 ±4.20 28.84± 0.84 137.94 ± 12.71 4.63 ± 0.31 1.39 ± 0.21 0.76 ± 0.07
Data set - AVIRIS Cuprite - SNR = 25dB (2)

MR-β = 2-NMF 12.97 ±0.40 26.81 ± 0.04 176.60 ± 0.91 5.21 ± 0.11 2.56 ± 0.03 0.71 ± 0.00
MR-β = 3/2-NMF 14.64 ±0.38 26.79 ± 0.04 176.02 ± 0.63 5.14 ± 0.12 2.53 ± 0.01 0.71 ± 0.00

MR-β = 1-NMF 13.06 ±0.42 26.84 ± 0.03 175.02 ± 0.66 5.07 ± 0.12 2.49 ± 0.02 0.71 ± 0.00
MR-β = 1/2-NMF 15.26 ±0.35 26.85± 0.05 174.83 ± 0.97 4.79 ± 0.19 2.47 ± 0.02 0.71 ± 0.00

MR-β = 0-NMF 13.65 ±0.33 26.63± 0.08 177.76 ± 1.67 8.67 ± 0.29 2.45 ± 0.03 0.70 ± 0.01
GSA 0.07 ±0.06 3.16± 0.00 2724.95 ± 0.00 25.53 ± 0.00 Inf ± Inf 0.00 ± 0.00

CNMF 1.36 ±0.16 20.05± 0.12 387.29 ± 5.69 6.42 ± 2.83 1.59 ± 0.05 0.52 ± 0.02
HySure 9.99 ±0.14 18.83± 0.40 580.01 ± 45.86 11.26± 1.88 8.84 ± 0.52 0.29 ± 0.01
FUMI 0.14 ±0.16 20.14± 0.00 460.49 ± 0.00 7.75 ± 0.00 7.23 ± 0.00 0.34 ± 0.00
GLP 2.74 ±0.14 20.37± 0.00 365.72 ± 0.00 6.13 ± 0.00 2.67 ± 0.00 0.39 ± 0.00

MAPSMM 21.71 ±0.50 20.12± 0.00 378.12 ± 0.00 5.99 ± 0.00 2.39 ± 0.00 0.43 ± 0.00
SFIM 0.14 ±0.01 19.90± 0.00 384.45 ± 0.00 12.55 ± 0.00 2.87± 0.00 0.37 ± 0.00

Lanaras’s method 18.74 ±5.10 29.53± 0.71 127.24 ± 9.90 5.01 ± 0.23 1.53 ± 0.16 0.71 ± 0.04
Data set - AVIRIS Cuprite - Multiplicative Gamma noise (3)

MR-β = 2-NMF 13.00 ±0.22 29.66 ± 0.06 137.33 ± 1.08 4.45 ± 0.07 2.30 ± 0.02 0.71 ± 0.00
MR-β = 3/2-NMF 14.75 ±0.62 29.80 ± 0.04 134.49 ± 0.68 4.41 ± 0.08 2.24 ± 0.01 0.71 ± 0.00

MR-β = 1-NMF 13.07 ±0.19 29.75 ± 0.04 133.11 ± 0.69 4.39 ± 0.06 2.23 ± 0.01 0.71 ± 0.00
MR-β = 1/2-NMF 15.30 ±0.13 30.28± 0.07 125.51 ± 0.96 4.00 ± 0.07 2.08 ± 0.02 0.73 ± 0.00

MR-β = 0-NMF 13.69 ±0.12 32.18± 0.06 98.65 ± 0.61 2.55 ± 0.02 1.49 ± 0.01 0.81 ± 0.00
GSA 0.29 ±0.08 19.34± 0.00 442.91 ± 0.00 6.20 ± 0.00 6.15 ± 0.00 0.42 ± 0.00

CNMF 1.38 ±0.20 17.71± 0.20 505.46 ± 11.47 6.04 ± 0.10 1.93 ± 0.03 0.39 ± 0.02
HySure 9.38 ±0.12 21.92± 0.30 434.95 ± 18.14 9.13± 1.68 7.86 ± 0.30 0.37 ± 0.01
FUMI 0.12 ±0.06 23.31± 0.00 339.19 ± 0.00 7.48 ± 0.00 6.25 ± 0.00 0.43 ± 0.00
GLP 2.71 ±0.13 21.26± 0.00 334.89 ± 0.00 4.41 ± 0.00 3.27 ± 0.00 0.47 ± 0.00

MAPSMM 21.73 ±0.48 21.47± 0.00 328.00 ± 0.00 4.18 ± 0.00 2.91 ± 0.00 0.57 ± 0.00
SFIM 0.14 ±0.01 20.80± 0.00 352.83 ± 0.00 5.64 ± 0.00 3.52± 0.00 0.45 ± 0.00

Lanaras’s method 24.62 ±3.70 28.02± 0.56 150.84 ± 9.76 4.72 ± 0.17 1.74 ± 0.12 0.69 ± 0.04
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