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Abstract—In this paper, a novel way for dual-band power
amplifiers (PA) linearization is proposed based on spiking neuron
networks (SNN). A dual-input dual-output SNN is interacted with
classical memory polynomial model, which can largely reduce the
computational complexity. The experimental results on a real PA
show that the proposed method can reach similar linearization
performance compared with traditional methods but with low
energy consumption. This is the first time that the SNN is
deployed for multi-band PA linearization. Future work is to
develop a trainable SNN model for real-time PA linearization.

Index Terms—Artificial intelligence (AI), linearization, multi-
band, power amplifiers, spiking neuron networks (SNN)

I. INTRODUCTION

Brain-like AI system is a growing subject today. The spiking
neural networks (SNN) has been considered as the third
generation of neural networks for its high bio-mimicry of
the human brain [1]. Different from conventional artificial
neural networks (ANN) which process digital data, the SNN
better mimics the biological behavior of the brain cortex
which processes spike trains. This brings advantages to the
information processing of an artificial intelligence (AI) system
and on energy consumption [2]. Its event-driven property helps
to capture the rich dynamics of neurons within the brain. As
the research on brain science is advancing rapidly, the process
of inference and decision-making of the human brain can bring
more and more inspiration to AI.

In aspect of hardware, circuit simulation results show gains
in energy consumption of at least two orders of magnitude
compared with current solutions [3]. Studies on neuromorphic
systems for spike processing have considered complementary
metal-oxide semiconductor (CMOS) technology operation in
the subthreshold region (100 mV and 1 nA) [4]. According
to [5], while implemented on a field-programmable gate array
(FPGA), the energy efficiency of an SNN reaches over 100
times higher than an ANN. This opens the opportunity to have
numerous applications of SNN which demands a very high
energy efficiency, such as the linearization of radiofrequency
(RF) power amplifiers (PA). Recently, a single neuron has been
found helpful in complexity reduction of PA modeling in [6].

The PA is blamed for the majority of nonlinear distortion
and digital predistortion (DPD) technique has been one of
the most commonly used method for its linearization [7].
However, the complexity of the DPD which corresponds to
its power consumption has always been a challenge. Some
simplified versions have been proposed in past decades by

reducing the model dimension [8] or by splitting the model
into cascade structure [9].

In massive multi-input multi-output (MIMO) systems for
5G, the system with multiband transmitters needs to be
linearized [10]. The signal suffers intermodulation (IMD)
distortion at the output of a multi-band PA [11]. Neural net-
works has been applied to address the dual-band linearization
problem [12], which helps to guide the implementation of an
SNN-based solution. In [13], a technique based on periodical
nonuniform sampling theory is believed to reach the lowest
computational complexity for dual-band linearization methods.
However, this technique is still based on classical continue-
value computing which always consumes a large amount of
energy compared with event-driven computing [14]. Using an
SNN opens a new window for further improving the energy
efficiency of PA linearization.

In this paper, we propose an SNN-based technique to
compensate for different types of distortion brought by a dual-
band PA. We mathematically analyze the nonlinear behaviors
of spiking neurons and of power amplifiers from perspective
of polynomials. The effectiveness of neuron-based PA model
is experimentally validated on a testbench of PA.

II. DUAL-BAND PA LINEARIZATION

The cascade system of dual-band PA linearization is de-
picted in Fig 1. For each band of transmission, a post-inverse
of the PA is identified using indirect learning architecture
(ILA) and is applied upstream of the PA as a DPD. A 2D-MP
model has been proposed in [11]. The predistorted output of
the i-th band (i=1,2) can be written as

xi(n) =

K−1∑
k=0

k∑
r=0

L−1∑
l=0

c
(i)
krlui(n− l)

× |ui(n− l)|k−r|u3−i(n− l)|r

=

L−1∑
l=0

a
(i)
l ui(n− l)× Si(n− l),

(1)

where ui(n) is the i-th input signal, K is the nonlinearity
order and L is the memory depth, c(i)krl = a

(i)
l b

(i)
kr are model

coefficients for the i-th band, and

Si(n) =

K−1∑
k=0

k∑
r=0

b
(i)
kr |ui(n)|k−r|u3−i(n)|r. (2)

Its identification is detailed in [15].
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Fig. 1. System of PA and 2D DPD.

Fig. 2. Normalized characteristics of 4 neurons in [3] and [4].

III. SPIKING NEURON AND ITS NETWORK

A neuron fires spikes by varying its membrane voltage Vm.
If we consider a single spiking neuron as a system as in [6],
the input information is coded in an excitation current Iex and
the output information is contained by the firing rate fspike.

A. Nonlinear behavior of spiking neurons
The variation of Vm as a function of excitation current Iex

can be described by the leaky integrate-and-fire (LIF) model:
dVm

dt
= Iex + a− bVm

Vm = Vc, if Vm > Vs

(3)

where Vs is the threshold voltage to fire a spike, Vc is the rest
voltage after firing a spike, a and b are constants. Under the
excitation by a current Iex which is large enough, the gradient
of Vm is kept positive. The membrane voltage of a neuron
keeps increasing till a threshold voltage and then is abruptly
reset to the rest voltage. This procedure generates a spike. With
the existence of Iex, the neuron keeps on generating spike train
with a frequency related to the value of Iex. Thus as described
in [6], the transfer function of a neuron can be expressed by
polynomials as:

fspike = G(Iex) =

K1−1∑
k=0

a
(i)
k Ikex, (4)

where G(·) represents the neuron function, K1 is the maximum
of nonlinearity orders. Comparing (1)and (4), we can easily
find that the terms |ui(n− l)|k is close to G(|ui(n− l)|). The
layout of a neuron circuit designed in [3] and [4] confirms this
mathematical behavior as illustrated in Fig. 2.

Fig. 3. A system scheme of SNN.

Fig. 4. Characteristics of neurons: (a) f1(|u1|); (b) Φ1(f1); (c) Φ1(|u1|).

B. Spiking neural networks

The neurons are connected with synapses which transmit
spikes of membrane voltage from a pre-neuron to a post-
neuron. The membrane voltage of the j-th post-neuron V

(jpost)
m

increases by wipre,jpost once a spike is received from the i-th pre-
neuron, where wipre,jpost is the weight of synapse, ipre and jpost
are indices of the pre-neuron and the post-neuron respectively.
The increase of V

(jpost)
m accumulates if the j-th post-neuron

receives spikes from different pre-neurons.
By constructing a two-layer SNN as illustrated in Fig. 3, we

have G(|u1|) and G(|u2|) at the output of two neurons in the
input layer. With the neurons in output layer are connected to
both neurons in the input layer, we have

Φi =

K2−1∑
k=0

γ
(i)
k (w1iG(|u1|) + w2iG(|u2|))k. (5)

By parallelized Φi with appropriate weights w1i and w2i,
we can reproduce the product of Skl in (1) by

∑
i Φi. In

Fig. 4, the relations between |ui|, fi, and Φi are depicted as
simulation results in Brian 2, which has the same property as
layout simulation results in Fig. 2. The output of the SNN
renders the absolute nonlinear envelope Si(n) as (2). The
SNN system in Fig. 3 followed by a filter with coefficients
a
(i)
l can result in a parallel Hammerstein structure, which is

equivalent to an MP model in (1). Thus an SNN-based 2D-MP
DPD can be proposed as in Fig. 5. The SNN block is used to
generate the nonlinearity of the DPD, which reduces largely
the computational complexity compared with traditional digital
computation [5].



Fig. 5. SNN-based 2D-MP DPD for the i-th band.

TABLE I
LINEARIZATION PERFORMANCE AND IDENTIFICATION COMPLEXITIES OF

DIFFERENT DPD MODELS

No 2D Proposed
DPD MP Method

Band
ACPR.L (dBc) -39.7 -49.7 -48.6

1
ACPR.H (dBc) -39.0 -46.9 -45.2

EVM (%) 5 1.3 1.3

Band
ACPR.L (dBc) -40.1 -48.6 -47.4

2
ACPR.H (dBc) -39.3 -49.7 -48.1

EVM (%) 5 1.3 1.3

IV. EXPERIMENTAL RESULTS

We use test bench of Chalmers WebLab [16] for measure-
ments. The baseband IQ signal is fed from the PC Workstation
to the driver through a Vector Signal Transceiver (PXIe-
5646R VST) using a 200 MHz sampling frequency. The
VST up-converts the baseband signal to the carrier frequency
2.14 GHz. A GaN PA CGH40006P transistor mounted in the
manufacturer demo-board fabricated by CREE has been used
to validate the proposed low rate DPD. Its nominal gain is
13 dB at 2 GHz and the output power at 1dB gain compression
is 40.2 dBm. The measured average output power of the PA
is 29.45 dBm.

The linearization performances of the classical 2D-MP
model and the proposed SNN-based model are compared in
Table I and their spectra are illustrated in Fig. 6. The energy
consumption of spike processing in the SNN is negligible in
front of the digital signal processing. In terms of linearity, the
proposed method reaches a similar level as traditional meth-
ods. The SNN weights w1i and w2i (i=1,..,N) are determined
in an empirical way, which fails the proposed method to reach
the best performance. To the best of authors’ knowledge, this
is the first time that the emerging SNN technique is applied
for multi-band PA linearization. The results show that it is

Fig. 6. Linearization performance of the proposed method.

promising but some further development is needed for high
frequency signal processing and real-time implementation. A
future prospect is the optimization of SNN weights.

V. CONCLUSION

In this paper, we propose an SNN-based technique for
dual-band PA linearization with lower complexity and power
consumption. The nonlinearity of spiking neurons are utilized
to compensate for the IMD distortions of the PA. Experimental
results confirm the robustness of the proposed method.
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