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Abstract

The establishment of neuronal connectivity reliestbe microtubule (MT) cytoskeleton,
which provides mechanical support, roads for axtragsport and mediates signalling events.
Fine-tuned spatiotemporal regulation of MT funcforby tubulin post-translational
modifications and MT-associated proteins is critifta the coarse wiring and subsequent
refinement of neuronal connectivity. The defectregulation of these processes causes a
wide range of neurodevelopmental disorders assatiaith connectivity defects. This review
focuses on recent studies unravelling how MT comntipos post-translational modifications
and associated proteins influence MT functions xonaguidance and/or pruning to build
functional neuronal circuits. We here summariseeexpental evidence supporting the key
role of this network as a driving force for growtbne steering and branch-specific axon
elimination. We further provide a global overvieWtloe MT-interactors that tune developing
axon behaviours, with a special emphasis on timearging versatility in the regulation of MT
dynamics/structure. Recent studies establishingge¢lgeand highly selective role of the tubulin
code in the regulation of MT functions in axon padting are also reported. Finally, our
review highlights the emerging molecular links beén these MT regulation processes and
guidance signals that wire the nervous system.

Key words

Microtubules; Axon guidance; Axon pruning; Microtubule-associatpdbteins; tubulin
isotypes; tubulin posttranslational modifications.

I ntroduction

The nervous system governs vital functions as wsllcomplex behaviours enabling
animals to interact with their environment. The wmat nervous system is composed of
billions of neurons that are interconnected acecwydio a highly precise map.€ the
connectome). Fine-tuned regulation of these cormmextis crucial for the accurate
functioning of the network. Neuronal connectivity eéstablished during development by
linked processes of axon specification, outgrovatigation, synapse formation and pruning
of exuberant connections and undergoes limited detfing in the mature central nervous
system [1,2]. Consequently, ectopic, exuberantngprécise connections can lead to major
neurodevelopmental disorders [3—6]. A crucial stefhne assembly of neuronal circuits lies in
the ability of axons to accurately navigate towatiuksir appropriate targets, which can be
located over very long distancese( more than one meter). During their road trip ie th
developing embryo, the distal tips of growing ax@ns the growth cone) undergo cycles of
growth, pausing, turning or retraction behaviowsich are dictated by a myriad of physical,
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mechanical and chemical cues present in their edtrdar environment. Different classes of
chemical cues are encountered by the growth camgats journey such as permissiegy(
Netrin-1) or adhesive moleculee.d. CAMs), extra-cellular matrix component®.d.
laminin), anti-adhesive substrate-bound cusg Slits) and diffusible chemotropic cuesg
Semaphorins, morphogens, neurotrophic factors)chwhiill elicit growth cone attraction or
repulsion [2,7,8]. Importantly, several studies dagemonstrated that the response of
attraction versus repulsion is not due to thensta property of a particular cue. Rather, it is
due to the specific growth cone receptors and doeas effectors engaged, including
cytoskeleton-associated proteins [9,10; FiguredLF&gure 2].

While the repertoire of guidance cues and assatia@eeptors wiring the nervous system
has mostly been identified, the intracellular pafg/that modulate axon responsiveness to
guidance signals are far from being decipheredablgt how guidance signals are integrated
and translated into the cytoskeleton remodellingt tnderlies growth cone mechanical
behaviours remains largely unknown. Pioneer studiesng at linking guidance signals to
the cytoskeleton remodelling first focused on tléinacytoskeleton [11,12]. Since then,
several cues have been shown to drive growth ctirecton, repulsion or collapse through
RhoGTPase-mediated actin remodelling [for reviexe $3—15]. By contrast, molecular links
between guidance signals and the MT cytoskeletae mamained largely unstudied until
recently. This is mostly due to the fact that ualfcactin, MTs have only recently emerged as
key driving forces and direct targets of guidancescin axon pathfinding and pruning
[16,17]. Indeed, several MT-interacting proteinyédeen identified as decisive players in
these developmental processesitro and/orin vivo [18-27]. Furthermore, tubulin isoforms
and posttranslational modifications have lately eamt as key regulators of MT functions in
the axon navigation processes influencing MT priperas well as the activity/MT binding
affinity of MT-interacting proteins [28-31]. Thigview summarises the main experiments
that have established MT remodelling as a key uigiiorce in axon guidance and pruning
and provides a detailed overview of the moleculacimanisms that tune MT properties and
functionalities to steer developing axons or prexeberant connections.

I. Neuronal microtubules: Key cytoskeletal elements with various properties and
functionalities

Microtubules (MTs) are one of the major cytoskdletanponents of eukaryotic cells and are
essential for cell morphology, movement and intitatae trafficking. MTs are hollow 25 nm
diameter tubes composed of polarised linear pilatagnts built of head-to-tail assembled
andp-tubulin heterodimers [32]. MTs are highly dynammymers that stochastically switch
between polymerisation and depolymerisation, ags®d&nown as dynamic instability. This
dynamic property is driven by GTP binding to ti&tubulin dimer and its hydrolysis into
GDP. The transition from MT growth to shrinkagecalled catastrophe, while the reverse
reaction is termed rescue [33]. Since their discpwe 1950, MTs have emerged as critical
structures in neuronal development and functioayiging mechanical support and rails for
axonal transport, as well as mediating key signglpathways. The fine-tuned spatiotemporal
regulation of MT structure, mechanical propertidgnamics and crosstalk with the actin
cytoskeleton (F-actin), which is mediated by tubusiotypes, posttranslational modifications
and MT-associated proteins (MAPS), is decisive wddbfunctional neuronal circuits [34].
This is highlighted by the increasing number of noeevelopmental disorderg.g. ASD,
schizophrenia, lissencephaly...) caused by mutationgenes encoding the MT building
blocks (.e. tubulins), tubulin-modifying enzymes, or MT-regudey proteins [35-37]

Over the past decades, the emergence of novelmgagthnologies with high spatiotemporal
resolution (correlation EM microscopy, TIRF, supesolution, expansion microscopy, motor
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painting approach, cryoelectron tomography) haslgakly added to the complexity of the
neuronal MT architecture and function [38—44]. Waliwhat was initially thought, the MT
cytoskeleton is not a homogeneous network, bueraghhighly mosaic array composed of
several subpopulations of MTs. These subpopulatiGhsare decorated by different
posttranslational modifications (PTMs) and MT-asatad proteins [MAPSs; 34,38,45,46] and
(i) exhibit distinct structural/dynamic propertiesnd functionalities. In axons, unlike
dendrites, MTs are organised in a highly polarisethner with a fast-growing end (plus end)
pointed outwards, towards the synapse, and a stowhgg end (minus end) pointed inwards,
towards the soma. This typical polarity patterrmawdnal MTs has recently been shown to rely
on non-centrosomal MT nucleation, mediated by thenanyTuRC complex [47].
Furthermore, the axonal MT network is organised iltngitudinal parallel bundles and
consists of a mixed population of stabie.(long persistance) MTs decorated with distinct
posttranslational modifications, including acetidat detyrosination, glutamylation. While
some of these PTMs influence the binding affinibgd/r activity of several MAP& vitro
[46,48,49], the functional specificity of thesefdient subtypes of stable axonal MTs remains
mostly unknown under physiological conditions [50he distal tip of developing axonise(

the growth cone) is divided into three compartmentsch are characterised by their specific
composition and arrangements of cytoskeletal elésnfsil; Figure 1 and Figure 2]. The
central domain (C-domain) exclusively contains letadnd acetylated MTs. These polymers
extend from the axon shaft and are locally regd@nd bundled by an actin barriee.(actin
contractile arcs) present at the transition zonedie; 52,53]. In this T-zone, the local
coupling between MT growing plus ends and the awirograde flow drags MTs back into
the C-domain, thereby inducing MT looping and bagdiThe peripheral domain (P-domain)
of the growth cone is composed of an F-actin bradatetwork called lamellipodia-like veils
and long bundles of F-actin forming the filopodldnese F-actin-based structures are locally
intermingled with a few individual MTs (also callpibneer MTs) that have escaped from the
C-domain. In contrast to MTs that are constraireethe C-domain, MTs that penetrate the
actin-rich P-domain are tyrosinated and highly lali.e. dynamic; ,52,53]. Notably, this
subpopulation of MTs are often found in close agpmwswith F-actin bundles in filopodia,
where their growing plus tips sometimes reach tioath cone margin. Their local exposition
to extracellular cues makes them relevant canddaténtegrate axon guidance signals [53—
55].

The following sections will emphasise how the chtedstic organisation and heterogeneity
of the neuronal MT cytoskeleton are critical far filinctions in axonal navigation.

[I. Microtubulesin axon guidance: the outside players

I1.1 Instructiverole of microtubulesin growth cone steering

MTs, together with the actin cytoskeleton, are majeterminants of the mechanical
properties of growing axons. Despite this evidertbe, role of MTs as driving forces of
growth cone mechanical turning has long been disdegl compared to that of the actin
cytoskeleton. Indeed, due to their highly dynamd g@rotrusive behaviours at the leading
edge of the growth cone and their well-establistudel in cell migration, actin filaments (F-
actin) have long held the leading (if not excluika@e in growth cone steering processes. By
contrast, MT remodelling was thought to occur isp@nse to F-actin changes and to be
required to consolidate the novel portion of theraxshaft and stabilise growth in the
appropriate direction. MTs were first postulatedptay an instructive role in growth cone
steering decisions in the late 1990s. This hypath&as based on live imaging studies from
the Kirschner lab revealing that in advancing gfowtones, a few individual MTs
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dynamically explore the P-domain and that theimghoorientation often precedes growth
cone turning and predicts the steering directidhg3]. Several groups subsequently showed
that the asymmetric invasion and stabilisationhafses dynamic MTs in filopodia facing an
adhesive/attractive cue or located on the oppasgite of a repulsive cue is decisive to drive
growth cone turning towards or away from the cwspectively [58-61,62; Figure 1 and
Figure 2]. The first experimental evidence estalig the instructive role of MTs in growth
cone decision-making behaviours comes from theaelegork of Buck and Zheng in 2002.
Their study shows that modulation of MT dynamicsonie side of the growth cone by photo-
uncaging a MT-stabilising.e. Taxol) or destabilising agent€. Nocodazole) is sufficient to
induce growth cone turning towards or away from tileated side, respectively [16]. These
data have been strengthened by the work of segeoaips revealing that (i) asymmetric
manipulation of MT-associated protein activity WWHCRO-CALI techniques is sufficient to
drive growth cone turning [63—-65] and that (i) M{reore precisely, brain specific tubulin
isoforms) can be direct targets of guidance cuesxon navigation processes [29]. However,
it is worth noting that the instructive role of Mirs growth cone steering critically relies on
their fine-tuned coupling to the actin network. Tlager either acts as a barrier preventing
premature MT invasion of the P-domain or as a gtadditating MT growth and stabilisation
within filopodia [62,66,67]. Notably, the myosin-based actin retrograde flow, which is
regulated by the RhoA GTPase, has been shown yoaptagnificant role in restricting and
bundling stable MTs within the C-domain [68]. Itshiarther been shown to regulate dynamic
MT growth alongside filopodia [53,55,69-71].

Despite the now well-established role of MTs asvidg forces of axon guidance, the
numerous actors that control MT remodelling anénpity with F-actin in navigating axons,
as well as their specific mode of action and retjumaby guidance cues are only starting to be
deciphered. This is mostly explained by the tedhinichallenge associated with the
monitoring of these nanoscale structures with tsigatiotemporal resolution in growth cones
while locally applying guidance cuae vitro and above all in single-labelled axons navigating
in a complexin vivo environment. However, over the past decade, thergance of novel
microscopy approaches such as super resolutiorosaigpy (e.g. SIM, STED) and live TIRF
imaging as well as of optically transparent verddrmodels with straightforward genetic
manipulations €.9. zebrafish and Xenopus models) have allowed segeoalps to overcome
the above-mentioned limitations. This has contedub provide novel pieces of information
regarding the regulation of MT functions in axondgunce and targeting [22,24—26,72—74].

1.2 Microtubule-interacting proteins: key effectors of gquidance signals in growth cone
steering

In neurons, MT organisation, dynamics and crodssaih F-actin are tightly regulated by a
myriad of MT-interacting proteins. The vast majpriof them, including MT plus-end
tracking proteins (+TIPs), structural MAPs, MT-dgpoerising and severing enzymes, or
molecular motors, have been shown to play critiodds in axon extension. However, only
few of them have been reported to influence groedhe steeringn vitro or to ensure the
fidelity of axon targetingin vivo. We will here focus on the different classes of -MT
interacting proteins whose regulation of MT funoBan neurons is crucial to evoke growth
cone behaviours (Table 1). It is worth noting tleaen if these MT-interactors remain
classified in different functional categories, datdlected over the past years have gradually
revealed their functional versatility in neuronaitait wiring and homeostasis.

I1.2.1 Plus-end tracking proteins as key signalling integratorsin axon navigation
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MT plus-end tracking proteins (+TIPs) bind the gimogvplus end of MTs, which can
extend to the growth cone periphery where guidammeeptors reside. This specific
subcellular distribution combined with their akjlio regulate MT dynamics, anchoring at the
cell cortex and interplay with F-actin makes thedeal signalling integrators of axon
guidance processes. CLASP proteins, for cytoplaskmker protein (CLIP)-associated
protein, were the first +TIPs to be implicated xoa navigation. In 2004, thBrosophila
CLASP orthologue was identified as a downstreanectédir of the Slit/Robo repellent
pathway and the Abelson (Abl) tyrosine kinase dynmdline crossing [19]. This new role in
axon repulsion came as a surprise given the preljadentified role of CLASP in MT rescue
and stabilisation [75-78]. A later study, conductkoling axon elongation, has nevertheless
offered possible keys to the problem, reporting thatinct MT-binding activities for CLASP
in nerve growth cones: both at MT plus ends andhenMT lattice [79]. While GSK@3
inhibition induces CLASP binding to the MT latti@nd impedes growth cone advance,
CLASP plus-end activity enables axon elongationstapilising MTs. Further supporting a
dual CLASP binding activity, elevation of Abl aaty in spinal cord growth cones has also
been shown to delocalise CLASP away from MT plugseim association with slower growth
cone advance [80]. Abl has moreover been foundinad land phosphorylate CLASP in
response to extracellular signals, such as seruRD@F. Finally, using biochemical assays
as well as culture experiments, the authors suggestle for the Abl-induced CLASP
phosphorylation in CLASP-mediated MT-F-actin crodshg. While such studies
highlight CLASP as a modulator of MT dynamics dotweam of guidance signals, the role of
its plus-end binding activity — rather than its Mattice activity — needs further
characterisation, especially in a context of axavigation (Figure 2C).

The adenomatous polyposis coli (APC) protein istlago+TIP involved in axon navigation.
Originally identified as a tumour suppressor mutatecolorectal cancers [81], APC has been
reported in many studies to act in synergy with EBsd-Binding proteins) to promote MT
stabilisation, in addition to its role as a regotatf the WntB-catenin canonical pathway [82—
84]. Zhou and colleagues were the first to reporble for APC at MT plus ends in axon
elongation, downstream of NGF and its G8K&ffector [69]. Since then, studies have
involved APC in growth cone steerinmgr se. Indeed, local MICRO-CALI inactivation of
APC in one half of retinal ganglion cell growth esnis sufficient to regulate axon turning
[64]. Wnt3a has also been shown to delocalise ARG fMT plus ends in DRG sensory
neurons, resulting in a MT growth directionalitydalopping phenotype that resembles APC
loss of function [85]. Similarly, APC2, an APC-likarotein [86], is also important in the
ephrin-A2-induced repulsive guidance of chick ratiaxons [87; Figure 2D], and to promote
Drosophila axon growth across the midline [27]. Of note, stgdiave implicated APC in the
crosslinking of the MT and actin cytoskeleton dgricell migration [88-91]. Given the
importance of this crosstalk during axon navigatioture investigations will be of interest to
assess its influence on axon pathfinding.

Importantly, a study irDrosophila has shown that Msps (minispindles), the fly orbigobf
the +TIP and MT polymerase XMAP215, physically natgs with CLASP, and functions
during axon guidance by antagonising both CLASP aibdl activity [92]. The authors
propose a model in which CLASP and Msps converganimntagonistic manner on the Abl
signalling pathway to regulate midline crossingstdy inXenopus laevis embryos further
confirms this role for XMAP215 in axon guidancedé®d, using SIM super-resolution
microscopy and live imaging in cultured spinal caxgplants, the Lowery lab reveals that
XMAP215 promotes MT/F-actin interactions and is uiegd to regulate growth cone
morphology and dynamic behaviour. They further slioat XMAP215 accurately mediates
repulsion to the ephrinA5 guidance cue iniarvitro stripe assay [25]. Importantly, as for
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CLASP, a dual mode of XMAP215 binding to MTs hasialentified, on the MT lattice and
at the MT plus ends in the growth cone [93]. Bothdes of MT binding appear to regulate
MT-F-actin coupling, in addition to the known XMAP2 MT polymerase activity at plus
ends (Figure 2D). Understanding how these diffed@tAP215 functions are coordinated
and synchronised by intracellular signalling patissvéo regulate different aspects of axon
outgrowth and/or pathfinding requires further imigations. It is likely that a
phosphorylation-based regulation of XMAP215 by kes acting downstream specific
guidance cues such as Abelson may regulate iteHBulac targeting and coupling with MTs
and/or F-actin, as shown for CLASP and APC [53].

A known binding partner of XMAP215 is TACC3, a mesnlof the family of proteins
carrying a transforming acidic coiled-coil (TACCymain. TACC3 was initially known as a
centrosome-associated protein regulating MT groavtth stability during mitosis, at least in
part via its interaction with XMAP215 [94-97]. Howex, TACC3 has also been identified as
a +TIP that colocalises with XMAP215 in vertebrgtewth cones and is required to enhance
the MT growth dynamics influencing axon outgrowfl8]. Since then, the same group has
explored the role of TACC3 in axon steering. Erdogad colleagues report that TACC3
depletion induces spinal motor axon misrouting iholg-mount Xenopus spinal cords.
Consistently, TACC3 overexpression leads to anes®ed resistance to repulsive signal-
induced growth cone collapse, such as Slit2 oriephi [21,99; Figure 2C]. Interestingly,
TACC3 phosphorylation by the Abl tyrosine kinases laéso been involved in axon outgrowth
[99]. Altogether, these results suggest that TACG3d be acting in concert with XMAP215
to drive the MT remodelling required for growth eoresponsiveness to specific repellent
signals such as ephrin-A5. However, further ingadions will be needed to confirm the
physiological relevance of the TACC3-XMAP215 comgpie a context of axon guidance.

Another +TIP, navigator-1 (NAV1), has recently beexported to play a role in axon
navigation via its MT/actin crosslinking activitiNAV proteins were initially described as
+TIPs regulating MT bundling and stabilisation [1D@1]. Despite a few studies reporting
misguided neuronal tracts ( elegans or mouse mutant animals for Nav proteins [102,103],
most studies have so far focused on a role foeth@$Ps in axon outgrowth, and the precise
cellular and molecular mechanisms involving Navt@ires in axon navigation have remained
unexplored until recently. Sanchez-Huertas et alehrecently identified NAV1 as a MT-
actin crosslinker required to promote MT persiséent the P-domain of exploring cortical
growth cones and to elicit axon attractive turnimgesponse to Netrin-1 gradients in Dunn
chamber assays [26; Figure 1B]. More studies wallréquired to explore the role of other
NAV proteins in axon pathfinding, and to deciphee signalling cascades that could regulate
their activities.

Similarly to NAV proteins, the spectraplakin +TIRave mostly been studied for their role in
axon extension, despite a few reports mentionindagece defects in loss of function models
[104-107]. Interestingly, during axon outgrowth, #8 many other +TIPs, a role for
spectraplakins in MT-actin crosstalk has been desdr[108—-110], as well as a dual MT
lattice and plus-end binding activity [111]. Explay the mechanisms that regulate this
functional switch therefore appears of particulateiest in a context of axon guidance.
Finally, theDrosophila Shot spectraplakin has also been shown to suppioiiine axon
repulsion via its binding to the Krasavietz (Kregrtslation inhibition factor [106], suggesting
an additional role for +TIPs in mediating localrstation during growth cone steering.

Surprisingly, while the core proteins of MT plusdeoomplexes (EBs) act as hubs locally
recruiting many of the above mentioned +TIPs, fiomal evidence demonstrating their role
in growth cone steering are still lacking. Nevelglss, three MT-interacting proteins critical

6



281
282
283
284
285
286
287
288

289
290
291
292
293
294
295

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317

318
319
320
321
322
323
324
325
326
327
328

for the guidance of different populations of axgMAP1B, Tau and Fidgetin-like 1) have
been reported to regulate EB binding at MT pludsethrough distinct mechanisms [22,112—
114], suggesting a key role for these MT plus-esaffelding proteins in axon guidance.
Altogether, data from the past decade reveal thersity of processes that +TIPs may
coordinate at the cell cortex to promote steervenes. They further highlight the importance
of their fine-tuned subcellular targeting and atyivor proper neuronal circuit development.

11.2.2 Structural MAPsin axon guidance: morethan just MT stabilisers

Structural MAPs form a family of MT-interacting peins whose characteristics have
considerably evolved since their discovery in tB&0s [115,116]. Early on, structural MAPs

have been defined as proteins that can be co-pdinfith MTs and that have the ability to

promote the assembly and stabilisation of thesgnpais. However, during the past 20 years,
the extensive characterisation of neuronal MAPs draslually expanded their functional

diversity, unravelling among others their roleskag MT/actin crosslinkers [24,117] and as
signalling molecules in developing neurons [118].

MAP1B was the first MT stabilising protein involved axon guidancen vivo. Its loss of
function leads to white matter deficits in miemd humans, including corpus callosum
agenesis [119,120]. MAP1B is highly expressed mwgin cones where it is required for the
Netrin-1-induced outgrowth of cortical axons [2f}je guidance of DRG axons facing a non-
permissive substrate [121], as well as for nitsde- or Draxin-evoked growth cone collapse
[122,123]. Notably, MAP1B functions in axon guidanare critically dependent on its
posttranslational modifications [124]. Asymmetriodkage of phospho-MAP1B activity in
growth cones using MICRO-CALI approaches is sugfitito induce growth cone turninig
vitro [63]. Consistently, GSKBmediated phosphorylation of MAP1B regulates theasyics
and spatial distribution of tyrosinated MTs in gtbweones [125] and is necessary for both
Netrin-1- and Draxin-evoked axon outgrowth and tsipn, respectively [20,122; Figure 1B
and Figure 2F]. By contrast, MAP1B S-nitrosylatiorediates nitric oxide-induced axon
retraction [122; Figure 2E]. Furthermore, in deyahg axons, MAP1B was reported on the
one hand to enhance the assembly rate of tyrodinsk€s [125] and on the other to
negatively regulate EB binding at MT plus ends EB sequestration [112]. While these
independent studies might at first glance appeatradictory, they both converge on the
same conclusion that physiological levels of MAPA critical to maintain MT dynamic
growth and proper axon extension. Further challengs role as a structural MAP, MAP1B
has been suggested to influence MT/actin cros§i2i]. However, whether MAP1B directly
or indirectly {.e. via its influence on EBs) modulates MT/actin iplay in growth cones and
whether this emerging function of MAP1B is requifed axon responsiveness to the Netrin-
1/GSK3 or Draxin/GSK3P pathways remains to be assessed.

During the past decades, particular attention heenlpaid to the Tau protein due to its
implication in several neurodegenerative disord€eal is a structural MAP, which was first
shown to crosslink protofilaments within MTs. Taashthen been shown to increase MT
polymerisation, prevent MT shrinkage [127] and tatgg MT network organisation [128].
Interestingly, as for MAP1B, Tau has been showmeuce EB binding at MT plus ends
[113,114], supporting an emerging key role foustural MAPs in fine tuning MT dynamics
through the regulation of EB levels at MT plus endlshough mainly studied for its role in
neuronal homeostasis, Tau is highly expressedeméveloping brain where it is required for
Wnt5a-evoked cortical axon outgrowth and repulsivgning [72]. In this context,
phosphorylation of the Tau MT binding domain atZ&& by CAMKII (i.e. phosphorylation
that impacts Tau binding to MTis vitro) is required for the reorientation and bundling of
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dynamic MTs that drive Wnt5a-induced axon extensaod repulsive steering [72; Figure
2G]. Elie et al. have moreover revealed that Tamatly binds to F-actin, promotes MT/F-
actin crosslinking and regulates the co-polymepsatof both filaments in cell-free
reconstructed systems [117]. Consistently, usimqestesolution STED microscopy, Biswas
and colleagues have shown that Tau localises tatgreone regions characterised by an
extensive crosstalk between these two networks T-zone and filopodia). Its loss of
function further impairs MT growth alongside F-acbundles in growth cone filopodia [24].
Notably, by combining Dunn chamber guidance assajyth live TIRF imaging of
cytoskeletal dynamics, they show that Tau-mediadgdlation of MT invasion in filopodia is
critical for both Wnt5a-induced axon extension aticectional turning [24; Figure 2G].
Interestingly, Tau has recently been shown toracbncert with the above mentioned +TIPs,
XMAP215/Msps and EBL1 to regulate MT polymerisataond bundling in developing axons,
both in vitro andin vivo [129]. While these proteins have independentlynbieeolved in
axon guidance, whether their cooperative role enrdgulation of MT dynamics/organisation
is required to drive the growth cone turn in regmto specific extracellular cues remains to
be confirmed.

MAPG6 (also known as STOP) is a versatile regulatoneuronal connectivity that was first
identified as a MT stabilising protein required fdviT protection against cold- and
nocodazole-induced depolymerisation [130,131]. Nenatomical analysis of MAPG6
knockout brains reveals substantial hypoplasia exesal commissures and axonal tracts,
including the absence of the post-commissural pathe fornix [132—-134]. Regarding this
latter phenotype, MAPG6 is required for the Semadfticed axon outgrowth of subicular
neurons i(e. axons that form the fornix). Notably, Deloulme amdlleagues have
unexpectedly revealed that the function of MAP6aadownstream effector of Sema6E is
independent of its MT-binding domains. Rather,itgaN-terminal prolin-rich domain, MAP6
acts as a signalling hub promoting interactionsvbeh components of the Sema6E receptor
complex and key downstream effectors during axodagce [e.g. PI3K, Src; 130; Figure
1C]. However, they identify the MAPG6-interacting NMACRMP4 as the final effector of this
Sema6E signalling pathways directly connecting $leena6E receptor complex to the MT-
cytoskeleton in extending subicular neurons [134ufe 1C]. Interestingly, the same group
has recently revealed another functional facet &P@ in neuronal connectivity. Indeed,
neuronal activity-induced phosphorylation of MAP§ KKAMKII relocalises MAPG6 to
dendritic spines, where it locally binds to F-acimd stabilises this network to adapt dendritic
spine morphology [135]. Since MAP6 also binds tadin in growth cones, it will be of
particular interest to determine whether its apild switch from one cytoskeleton to another
in response to specific signalling pathways infeesn the targeting of specific axonal
populations. Another important issue regards theveamce of its emerging role as a MT
intraluminal protein (MIP) in a context of neuror@tcuit wiring. It will be interesting to
investigate whether the suggested ability of lumMAPG6 to relieve MT mechanical tension
by promoting MT lattice torsion [136] increases ftexibility and resistance of navigating
axons to compressive forces generated by the swuinog developing tissues.

Collapsin response mediator prote(@RMPs) were first identified as signalling moleajle
before being classified as structural MAPs basetherability of a subset of their members to
stimulate the MT assembly and stabilisation [113;4189]. CRMP2 has long been described
as a key effector of Sema-3A repulsive cues [140],1t its non-phosphorylated state,
CRMP2 binds to tubulin dimers and promotes theilyperisation [137]. However, upon
phosphorylation by the Sema-3A downstream kinagsd @nd GSKB, CRMP2 dissociates
from MTs, thereby allowing the MT remodelling unilyarg Sema3A-induced axon repulsion
[142,143; Figure 2B]. Supporting these findings,M#R loss of function has been shown to

8



378
379
380
381
382
383
384
385
386
387
388
389
390
391

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407

408
409
410
411

412

413
414
415
416
417
418
419
420
421
422
423
424

mostly affect the pathfinding of Sema3A-sensitiv@raal populations both in invertebrate
[144,145] and vertebrate models, including peripheerves [140,146] and callosal axons
[146]. By contrast, CRMP4 is required for Sema6éudiced axon outgrowth of subicular
neurons [134; Figure 1C]. Supporting the non-oygriag role of CRMP2 and CRMP4 in
axon guidance, knockdown approaches in the zebrdfee revealed that while CRMP2
regulates retinal axon outgrowth, CRMP4 promotedline crossing, most likely downstream
of Neuropilin 1 [147; Figure 1D]. Whether CRMP4-neddd regulation of growth cone
decision-making behaviours at the zebrafish ogtiasim relies on its dual regulation of MT
and actin dynamics in growth cones [148] needsetolarified. Still in the zebrafish, CRMP2
has been identified as an effector of the Rac-@2&fhimaerin in ocular motor axon wiring
and has been suggested to act in concert with thedépolymerising enzymes stathmin 1/2 in
this process [149; Figure 2B]. Interestingly, CRMis/e been identified as direct binding
partners and potential regulators of the MT-seweBpastin [150-152supporting possible
cooperative roles for CRMPs and MT destabilisingtg@ins in neuronal circuit wiring.

Doublecortin (DCX) is a MT-associated protein eheid at the distal tip of developing
neurites, which mutations cause lissencephaly,usodevelopmental disorder characterised
by severe cortical malformations [153]. DCX has rbetassified among structural MAPs
based on its ability to promote MT assembly throagtastrophe inhibition and to induce MT
bundling [154-156]. DCX is critical for cortical griation (Kappeler et al., 2006; Friocourt et
al., 2007). However, its MT-related functions al®em to be required for later stages of
neuronal development, including axon guidance. éemg study from the Winckler lab has
revealed its role as a downstream effector of tiberinediate filament protein Nestin in the
regulation of growth cone morphology and sensitiiit Sema3A [157]. Indeed, Nestin
increases growth cone responsiveness to Sema3achiyating DCX phosphorylation by the
Cdk5 kinase through scaffolding activity. Howevéne molecular mechanisms involved
remain to be clarified. The authors suggest thatiN@aependent phosphorylation of DCX by
Cdk5/p35 might release MTs from DCX stabilisatioontpction by promoting DCX
detachment from MTs as shown for CRMP2 downstredma cSema3A/Cdk5/Nestin-
independent pathway. This mechanism might therebgnpte the MT remodelling required
for Sema3A-evoked axon repulsion [157; Figure 2B].

Interestingly, among their emerging functions, sahthe above-mentioned structural MAPs
(e.g. Tau and CRMPs) influence the activity of MT semgror depolymerising enzymes in
developing axons [150,151,157], which paves the \a@yfuture investigations of their
cooperative or antagonistic roles in axon navigafioocesses.

11.2.3 MT severing/depolymerising enzymes. Engines that power the growth coneturn

MT severing enzymes including spastin, p60-katamid fidgetin are nanomachines from the
AAA+ superfamily [ATPases Associated with diversdluar Activities; 157] that combine
chemical (.e. ATP hydrolysis) and mechanical forces to promdte éxtraction of tubulin
dimers from MTs through tubulin unfolding [160].dpagation of the nanodamages generated
by these enzymes leads to MT severing. Based srfuhctional property, MT severers are
critical regulators of MT mass, length and orgatiisain cells [161,162] and thereby of axon
elongation and/or branching [158,163-166]. Newwes$s, their ability to rapidly breakdown
taxol-stabilised MTs in cell-free systems [160,1@Fd to dismantle the MT network when
overexpressed in non-neuronal cells [168-170] powt them as relevant candidates to
promote the asymmetric disassembly of MTs thatedrithe growth cone turn [52]. Using
several genetic approaches combined wittivo live imaging in zebrafish larvae, the Hazan
team has recently uncovered the decisive and nerlapping roles of p60-katanin [31] and
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spastin main isoforms [M1 versus M61; 23] in zeistafmotor circuit wiring and larval
locomotion. They show that loss of function of gpamain isoforms leads to highly specific
pathfinding errors of rostral motor nerves, whi@gkatanin deficiency mainly impairs dorsal
motor nerve targeting.€. abnormal splitting). This group further revealattthe functional
specificity of these severers in zebrafish axordguoce relies on their preference for specific
populations of MTs and on their selective involveme guidance signalling pathways.
Indeed, they identify TTLL6-mediated MT-polyglutatagon as a selective regulator of p60-
katanin activity in motor axon guidance [31; Fig@®]. Moreover, they uncover a selective
role for M1 and M61 spastin as a BMP signallingiloiior and a Neuropilin-1 downstream
effector, respectively [23; Figure 2B]. Althoughtniovestigated in these studies, the selective
regulation of the p60-katanin and spastin MT-sexgeactivity by structural MAPse[g. Tau

or CRMP proteins, respectively; 143-145,155] migisb underlie their specificity of action
in axon pathfinding, as suggested by the overlgppmotor neuron phenotypes associated
with Sema3A [171], CRMP2 [172] and spastin M61 Kwmwn [23] in zebrafish embryos.
Nevertheless, an important unsolved issue condbemolecular mechanisms by which MT
severers drive growth cone turning. Spastin andka®@nin knockdown drastically reduce
the number of dynamic growing plus ends in zebhafisotor neuron axons, a phenotype
consistent with a lack of MT severing activity [16Blowever, depending on whether newly
generated ends are stabilised or not, MT-sevemnagraes can either promote MT breakdown
or on the contrary, increase MT mass [161,173]tHeumore, theéDrosophila orthologue of
p60-katanin has been shown to have a MT plus-epiblg®erising activityin vitro, in
addition to its MT severing activity [174,175]. Bhiual function seems to be dependent on
its concentration and might thereby underlie theeddependent effect of p60-katanin on
motor axon targeting [31]. Finally, an elegant wémm the Roll-Mecak lab - based om
vitro reconstructed systems - reveals that nanodamngyesated by MT severers can be
repaired through the incorporation of novel GTPulubdimers. This suggests an additional
role for these AAA+ machines in MT lattice renewal’6].In vivo investigations in the
zebrafish model, which offers the possibility tomtor cytoskeleton dynamics in navigating
growth cones, should provide crucial informatiogaeling the basic mechanisms governing
this “Cut and Turn process”.

Fidgetin-like 1 (fignll) belongs to the same subifgrof AAA+ engines as spastin and p60-
katanin. However, unlike its extensively studieanmbogues, fignll functions in the nervous
system had never been investigated until the prosieely from Fassier et al. in 2018. Their
work identifies this MT-associated ATPase as aicdiitplayer in zebrafish motor axon
pathfinding [22,73]. The authors show that fignldntrols growth cone morphology and
steering behaviours at guidance choice points tirothe regulation of MT plus-end
dynamics. Usingn vitro systems, they have unexpectedly discovered theuits related
proteins, fignll does not sever MTs but rather lags MT plus-end composition and
dynamics. Indeed, alternative translation of thlgmlfi transcript generates two isoforms with
distinct functionalities. The full-length proteimsglaces EBs from MT plus ends in an ATP-
dependent manner. By contrast, the N-terminal atett variant exhibits an F-actin-
dependent cortical MT depolymerising activity [2Z[hrough this functional versatility,
fignll may concomitantly tune +TIP-dependent MT déburs {(.e. MT growth
directionality, MT/F-actin crosstalk and MT anchugiat the cell cortex) and promote MT
dynamics in the P-domain to drive the growth camra.tBy taking advantage of the zebrafish
model, the authors were able to monitor MT dynanmc®avigating axons of live fignll-
deficient larvae. Thén vivo MT phenotype they describe, including the susthistability of
MTs, their aberrant invasion and growth directidgaln the P domain, as well as the
increased MT growth duration in filopodia, fits ithe above-mentioned hypothesis [22].
Deciphering how the actin network influences the-Wepolymerising activity of fignll and
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connecting this process to guidance signals shsiddi new light on the regulation of the
MT/actin crosstalk underlying axon guidance.

Another family of MT-destabilising enzymes that heecently been involved in axon
guidance is the stathmin family. Stathmins promdie depolymerisation by decreasing the
concentration of free-tubulin through tubulin dins@questration [177]. While stathmins have
long been identified as critical regulators of axextension [178,179], Carretero-Rodriguez et
al. have unravelled a role for stathminl/2 as ddngasn effectors of the Rac-GAP alpha2-
Chimaerin required for zebrafish oculo-motor axasciculation and guidance [149]. Further
work will be required to define the role and reguaa modes of stathmins downstream of this
signalling protein

Altogether, these studies emphadise key role of alternative translation in multiply the
functional diversity of MT-destabilising enzymesdimected axon outgrowth. This conclusion
is strengthened by the recent work of Atkins anlteagues, uncovering an additional role for
the MT AAA+ machine fignll in the regulation of neaular motor motility and its decisive
contribution to axon guidance [7Sge §1.2.4].

I1.2.4 Molecular motors: Microtubule sliding and bidirectional cargo transport

Navigating growth cones need to be provided witthiveerse set of building and navigation
material (lipids, membrane receptors, mRNAs, mitoahria...) in order to accurately
respond to their environment in a spatiotempornatulated manner. It is therefore generally
assumed that molecular motors are required for axawigation. Confirming this idea,
various animal models carrying mutations affectmglecular motors or altering kinesin
binding sites on specific tubulin isoforms have rbassociated with guidance defects [180—
184]. However, the precise mode of action and mubégcmechanisms through which
molecular motors may control growth cone turningpanses remain poorly characterised.

A first set of studies reports a role for molecutastors in MT sliding [for review, see 185]
and asymmetric invasion of the growth cone durimgnihg events [186-189]. In a model
proposed by Baas and colleagues, extracellularago®l cues signal to the growth cone
molecular motors in order to regulate this MT slglprocess. In this model, dynein counters
myosinll-driven forces to instruct MT invasion dfet P-domain on the turning side of the
growth cone. On the opposite side, kinesins 5 @ndrtagonise dynein-driven forces, thereby
locally restricting MTs to the C domain [190]. Tleesynchronised force balances between
dynein and myosin Il on the one hand, and dynethkamesins on the other, could ensure the
polarised MT sliding required for the growth coodurn.

Importantly, other forms of axonal transport, sashreceptor-containing vesicle trafficking,
are also starting to emerge in a context of axorigafion. First, it has been shown that
axonal transport of different cargoes can be amd/dy extracellular guidance cues, such as
TrkB anterograde axonal transport downstream of NI®&,192] or retrograde transport of a
Plexin A4-TrkA downstream of Sema3A [193]. Seleetiinks between specific molecular
motors and cargo complexes are also just startingnterge in a context of axon guidance.
For example, in mouse embryonic cortical axons,riNdt regulates axon initiation,
branching and targeting by promoting anterograalesport of the Myosin X molecular motor
in a KIF13B-dependent manner [194; Figure 1B]. &ny, Saez and colleagues have linked
the kinesin-1 motor to the axonal transport of @dmmoid type-1 receptors, a process required
for mouse corticofugal axon pathfinding [195]. Attatively, some studies have focused on
adaptor/regulatory proteins of known molecular matd@he ATPase fignll has been shown
in this context to restrict dynein-based retrogradeasport velocity through dynein coupling
to the opposite polarity-directed motor Kifllkihereby fine tuning bidirectional vesicular
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trafficking in vivo in navigating axons of zebrdfi®mbryos. Importantly, pharmacological
inhibition of the dynein motor rescues the pathifigddefects associated with fignll loss of
function, confirming the key role of fignll as ardyn speed limiter required for accurate
axon targeting [73]. The kinesin-1 adaptor proteiitsZ1 (fasciculation and elongation
protein zeta 1) and Calsyntenin 1 have also begohad in axon pathfinding events.
Calsynteninl regulates Robol and Frizzled3 trafiigkduring midline crossing and
longitudinal axon guidance, respectively [196]. Bgntrast, FEZ1 binds to Neuropilinl
(Nrpl) and DCC and regulates the response of pgidsampal axons to Sema3A and Netrin-
1, respectively [197].

Importantly, such studies highlight the variety a#frgoes that can be loaded via different
adaptor complexes onto distinct sets of molecularons. Further studies will be required to
increase our knowledge on the possible combinatmishow their precise synchronisation
in space and time is required to instruct accuyadg/th cone turning.

1.3 Emeraging key role of the tubulin code in axon navigation

As mentioned above (8 I.), our vision of the MTwetk has considerably evolved across the
past decades. It is now fully accepted that the dyiibskeleton is a highly mosaic network
composed of mixed populations of MTs that diffeonfr one another based on their
composition .e. the nature of the tubulin isoforms that compose plémer) and the
posttranslational modifications (PTMs) that decerdahe tubulin dimers [48,49]. Both
elements establish the tubulin code.(by analogy to the histone code), which is starting
emerge as a highly selective regulator of MT fumrtdiin axon guidance.

11.3.1 Tubulin isoforms as direct targets of guidance cuesin growth cone steering

Tubulin dimers are the building blocks of the eykdic MT cytoskeleton and are formed
through chaperone-assisted folding and assembbnefr- and oneB-tubulin isoform. The
tubulin gene family has gradually expanded acrestudon, from 2i- and B- tubulin genes

in yeast to - and 9B-tubulin genes in humans [198]. Functional speatfan of tubulin
isotypes is supported by (i) their different sptioporal expression patterns, (ii) their
selective incorporation into specialised populaiai MTs €.g. axonemal, axonal...), (iii)
their critical and non-overlapping roles in the deepment/homeostasis of particular
tissues/cells, and above all (iv), the broad spettof human disorders caused by mutations
in tubulin genes [i.e. Tubulinopathies; for revie’8,49,198,199]. Notably, mutations in
genes encoding the neuronal-specifietubulin isoforms, TUBB2 and TUBB3, are
responsible for brain malformations in humans assed with axon guidance defects
including ocular nerve hypoplasia, dysgenesis ef ¢brpus callosum, anterior commissure
and corticospinal tracts [181,184,201,202; FigureD8rect binding of TUBB3 to DCC or
UNCS5C receptors has been shown to couple Netriigidalling to MT dynamics in axon
guidance [28,29]. In this context, Netrin-1 stintida promotes DCC or reduces UNC5C
interaction and colocalisation with polymerised TR@8in primary neuron growth cones and
locally influences MT dynamics (Figure 3A). Impartly, TUBB3 knockdown or pathogenic
mutations impair these processes and thereby affeirin-evoked growth cone attraction or
repulsionin vitro (Figure 1B & Figure 2H), as well as the pathfirgliof spinal axon
populations sensitive to Netrin-1/DCC or Netrin-N&C signallingin vivo [28,29,202,203;
Figure 3B]. Interestingly, the TUBB2 E421K pathomgemutation {.e.; located in the C-ter
tubulin tail), responsible for commissural axonhbaiding errors in mice and humans, affects
the recruitment of the MT depolymerising motor K8t MT plus ends and increases MT
stability in yeast [184]. These effects strikingtpntrast with other TUBB2 pathogenic
variants, which drastically impair tubulin hetenogirisation and cause brain malformations
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without guidance defects [205]. These data demaitasthe critical role of residues lying in

the C-terminal tail of tubulin isotypes for theumictional specification. Further investigations
will be required to clarify how these mutations mep growth cone MT behaviours and

responsiveness to guidance cues. An attractive thgpis is that through their sequence
specificity, tubulin isoforms generate specificraliing hubs on MTs selectively recruiting

guidance receptors, downstream kinases and MTatmgylproteins that will act in concert to

locally tune MT dynamics and thereby axon behawour

Altogether, these studies emphasise how the gedetersity of MT structural subunits
influences MT functions in axon guidance. The fumwl specification of tubulin isoforms
has been shown to arise at transcriptional, tréiosk and posttranslational levels [200].
Nevertheless, despite their striking degree of Hogyg tubulin isotypes exhibit a significant
divergence in their C-terminal tail, which is sutigd to extensive PTMs, suggesting a
prominent role for PTMs in the functional specifioa of tubulins. This hypothesis is
strengthened by the above-mentioned work of Jaliaml. and the recent work of Zheng and
colleagues, uncovering a nowetubulin isotype inC.elegans which, unlike othewr-tubulin
isoforms, destabilises MTs and lacks potentiakdite polyamination and polyglutamylation
[206].

11.3.2 Tubulin posttranglational modifications. a selective code that tunes critical MAPs in
axon guidance

With the exception of acetylation, which occurstba luminal Lysine 40 of-tubulin, PTMs
consist in the covalent addition of amino acidshwdifferent physio-chemical propertiesd.
glutamate, glycine, tyrosine) on the outer surfalcMTs, and more specifically on the acidic
C-terminal tail of tubulins. Tubulin PTMs moduld®T properties and/or tune the activity of
MT-interacting proteins at molecular and cellulaalss [48,49]. However, the physiological
role of these modifications remains largely unknpespecially in a context of neural circuit
wiring where MTs are key driving forces for axonigdance. Since excellent reviews
describing the tubulin PTM observed in neuronstéed influence on neuronal MT functions
have recently been published [45,46], we will Hexaus on the very few studies that directly
involve tubulin PTMs in axon pathfinding.

Tubulin tyrosination was the first PTM to be invetl in axon guidance. Following the
incorporation of tubulin dimers in protofilamenthe C-terminal tyrosine residue of
tubulins is removed by the tubulin carboxypeptidaggsoinhibins (VASH1/2), assisted by its
regulatory subunit, the small vasoinhibin bindingptpin [SVBP; 207,208]. This tyrosine
residue is subsequently re-added on free tubuitimed by the tubulin-tyrosine ligase [TTL;
209,210]. This tubulin detyrosination/tyrosinaticycle has been shown to be critical for axon
specification and outgrowtm vitro [207,211,212], as well as for neuronal connectivity
vivo. Indeed, TTL knockout mice exhibit several axotratt defects including a disrupted
cortico-thalamic loop [211] and aberrant navigagibmehaviours of olivary fibres at the floor
plate [30]. Moreover, SVBP knockout micee( equivalent of VASH1/2 knockout mice)
show axonal tract agenesis associated with comitgctiefects [213]. At the cellular and
molecular levels, TTL-deficient neurons show abrargrowth and branching behaviours at
guidance choice points or on specific substratéyTalso exhibit enlarged growth cones
with defective polarisation of F-actin protrusiossd mislocalisation of several cytoskeleton
regulators, including the CLIP-170 +TIP and thedgiyn IIb motor [30,211]. Importantly,
TTL loss of function does not directly impact MTraymics [214]. Thus, tubulin tyrosination
may act as a local signal within growth cones fag tecruitment of key mediators of the
MT/actin crosstalk underlying axon steering (FigB&). Investigating the role of thetA-
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tubulin isotype, a natural source of detyrosinatdallin in neurons [214,215], during nervous
system development should provide additional keygimt into the contribution of the tubulin
tyrosination/detyrosination cycle to axon pathfimgli

An additional tubulin PTM that has recently beerocived in neuronal circuit wiring is
polyglutamylation. Tubulin polyglutamylation is tmeost abundant tubulin PTM in neurons.
It consists in the enzymatic addition of glutamatde chains on tubulin C-terminal tail
glutamate residues. This modification is catalybgdenzymes from the Tubulin Tyrosine
Ligase Like family [TTLL; 217,218] and removed bynzaymes from the Cytosolic
Carboxypeptidase family [CCP; 219,220]. Each TTLashan enzymatic specificityi.&.
generation of short or long glutamate side chaamg) a substrate preference éerversusp-
tubulin [221]. Tubulin polyglutamylation has bedmos/n to tune the binding affinity and/or
activity of molecular motors [222—-224], structurBAPs [225,226] and MT-severing
enzymes [227-230jn vitro. It has therefore emerged as a potential regulatoaxon
guidance. A recent study from Ten Martin and cgjless provides the firsh vivo evidence
that tubulin glutamylases act in a highly selectivenner to tune the activity of MT severers
during neuronal circuit wiring [31]. TTLL6 and TTUW1 are two tubulin glutamylases
enriched in the zebrafish developing spinal cor8il]2 which catalyse the addition of long
glutamate side chains on the C-terminal taibigtibulins [218]. Using loss of function and
rescue experiments, Ten Martin et al. show thafpiteestheir strong similarities, both
glutamylases have non-overlapping key roles in &etdr motor axon pathfinding. Notably,
the authors reveal that TTLL6-mediated polyglutaatiph specifically boosts p60-katanin
activity in navigating axons to control their tatigg [31]. However, TTLL6 and TTLL11-
deficient larvae also exhibit motor neuron migrgtand axon guidance defects that resemble
those described in spastin mutants [23,31]. Thasa sliggest a concerted action of TTLL6
and TTLL11 in the fine tuning of spastin activitymotor circuit wiring (Figure 3B).

In conclusion, the emerging key roles of tubuliofisms and PTMs in the establishment of
neuronal connectivity emphasise the need to usé-suale and system approaches in order
to crack the tubulin code that regulates MT funtioin developing axons. Notably,
investigating the role of other PTMs present inrpes such as tubulin acetylation and
phosphorylation, respectively shown to influenceD-gétanin severing activity [232] or
DCC/TUBBS3 interaction [233], will be of particularterest.

[11. Microtubulesin axon pruning

After reaching their terminal targets, many develgpaxons, including motor and sensory
axons, initially form exuberant collaterals and euqumerary synapses. While a subset of
them is stabilised to form the mature terminal atoarbour, misplaced branches and
synapses are pruned. Pruning comes in diversefestations that differ in morphology and
extent as well as in their initiation signal. Whilesome cases, axonal pruning is initiated by
growth cone exposure to conventional guidance duesn also be induced by the lack of
sufficient trophic support or activity-dependentmgetition mechanisms. In some species
such as in insects undergoing metamorphosis, lacge axon remodelling is induced by
intrinsic genetic programs [234,235]. In all casalsyious changes of the MT cytoskeleton
architecture have been reported as a common aiyl @ant in axon pruning. Such MT
remodelling has been described in various systehes:axonal branch elimination in the
Drosophila mushroom body during metamorphosis, the seleatibthe single axon that
innervates each muscle fibre at the mammalian rewscular junction or the neurotrophin-
dependent pruning of sensory axons [17,236,237poftantly, abnormal refinement of
exuberant connectivity is likely to explain subtt@nnectivity defects at the origin of
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neurodevelopmental disorders including schizoplareautism spectrum disorders, attention
deficit hyperactivity disorders. Consistently, calugnutations in a few MT-regulatory
proteins have been reported in these disorders].[288vever, although postulated as key
players in axon pruning for many years, the precw#ribution of MTs and their regulatory
proteins to this developmental process is onlytistato be deciphered.

[11.1 MT remodelling as a driving for ce of axon pruning

During the past decades, several lines of evidérase underpinned MT breakdown as an
early event required for axon pruning. In 2002,06atnd colleagues revealed MT loss as an
early cellular process in the stereotyped prunifigDoosophila neuromuscular junction
supernumerary synapses, preceding the removaksfypaptic markers [239]. Supporting this
idea, Watts et al. subsequently showed that dublngsophila metamorphosis, branches
subjected to pruning in the mushroom body loserth#ulin content before any other
reported change in their protein content includawin, presynaptic proteins or adhesion
molecules. These observations establish MT remadelis one of the earliest molecular
changes occurring in axonal branches to be pru2&s] [ Consistently, motor axons retreating
from mammalian neuromuscular junctions are largdgvoid of MTs [240]. Further
supporting MT disassembly as an early and evolatipiconserved feature of axon pruning,
Brill and colleagues have recently revealed thatsMife preferentially fragmented in motor
axon branches undergoing retraction. Indeed, thhoesi show that the density of EB3-
positive MT growing plus ends is reduced in brascteebe pruned. Notably, this loss of MT
polymerisation is correlated with a reduction i tlIT mass and occurs before organelle
evacuation [17]. Importantly, they further demoatdrthat in this system, epothilone B-
induced stabilisation of MTs delays synapse remalahonstrating that MT loss is required
for efficient axonal branch pruning [17]. This needdisassemble the MT network to drive
axonal branch elimination is supported by the wafrkMaor-Nof and colleagues [237]. Using
anin vitro assay based on NGF deprivation-driven DRG axaniedition, they show that the
lack of NGF induces a reduction in DRG axon MT maHse latter is correlated with a
reduction in posttranscriptional modifications @dweristic of stable MTd.€. detyrosination,
acetylation and glutamylation). Notably, the authatemonstrate that pharmacological
stabilisation of MTs with paclitaxel prevents NGFpdivation-induced changes of MT
dynamics and posttranslational modifications in DR&ns, as well as their subsequent
degeneration. Overall, these pharmacological studirelerpin MT breakdown as a common
intrinsic driving force of sensory and motor axamrpng occurring downstream of diverse
initiation signals, such as neurotrophic factor rdegtion or activity-based competition,
respectively. However, despite this evidence, thteacellular signalling events and MT-
interacting effectors that selectively drive MT aisembly in response to these pruning
initiation signals remain largely unknown.

[11.2 MT-regulatory proteinsregquired for axon pruning

Several MT-regulatory proteins involved in dendripruning have been identified [for
review, see 241]. However, the driving mechanisraxain pruning might largely differ from
the one underlying dendritic branch eliminatiorddad, some MT-interactors involved in this
latter process fail to influence axon remodelliAgelevant example comes from the work of
Lee et al. showing that duriri@rosophila metamorphosis, the MT severer katanin-like 1 is
required to drive the pruning ofla neuron dendrites, while it is dispensable for the
elimination ofy neuron axonal branches in the mushroom body [ZA&k report highlights
the difficulty to extend the mechanisms involved dendritic pruning to axonal branch-
specific elimination processes without experimeimeéstigations.
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Studies identifying MT-regulatory proteins required axon pruning are scarce. However, a
few modulators of MT dynamidsave recently emerged as key playerthia process (Table
1), including the MT-severing enzyme spastin. Spakhnck-out mice exhibit a delayed
elimination of polyinnervated neuromuscular junogp highlighting the involvement of
spastin in motor axon branch pruning [17,243]. Aevated MT content is found in delayed
retreating motor axons of spastin-deficient micenfeming the key contribution of the
spastin severing activity to the MT cytoskeletoadkage required for efficient axon pruning
[17; Figure 4A]. Interestingly, the loss of MT ma&specially polyglutamylated and stable
MTs) reduces local membrane tension [244] and ierefore predicted to promote
endocytosis, another driving process in neuritenimg [245,246]. Based on its molecular and
functional links with the ESCRT-Ill (Endosomal 8ng Complex Required for Transport Il
proteins) proteins Istl and CHMP1B in the endacptthway [247-249], it is most likely
that spastin drives axon pruning by coordinating Miisassembly with membrane
remodelling.

Spastin is also part of a set of MT-destabilisigt@ins screened by Maor-Nof et al. to
identify the molecular mechanisms underlying MTdik&ge in NGF-deprivation-induced
DRG axon pruning. The screened proteins includedbe members of the stathmin family,
the MT severers katanin and spastin, as well adihelepolymerising motor Kif2A. Among
these candidates, only the knock-down of Kif2A poté DRG axons from NGF deprivation-
induced degeneratian vitro. The involvement of Kif2A in axon pruning is supfed by the
hyperinnervation of the skin by sensory axons if2Kiknock-out animals [236; Figure 4B].

While MT regulators involved in axon pruning mem@al so far exclusively comprise MT-
destabilising proteins, two recent studies haveouered a critical role for CRMP structural
MAPs in a subset of axon refinement models [14§,250is observation is consistent with
their implication in neurodevelopmental disordessaxiated with subtle connectivity defects
[251]. Extensive anatomical analysis of neuronainaztivity in CRMP2 knockout mice has
led Ziak and colleagues to uncover a critical foleCRMP2 in Sema3F-induced pruning of
the infrapyramidal bundle of hippocampal mossyefband cortico-collicular axons. These
observations are consistent with the CRMP2 requerdrfor Sema3F-induced axon repulsion
invitro [146]. By contrast, although CRMP2 also mediatesi&A-induced axon collapse
vitro [142,143], the Sema3A-dependent pruning of hippgmaseptal axons is not affected in
CRMP2 knockout mice [146], suggesting a selectole for CRMP2 as a Sema3F effector in
axon pruningin vivo (Figure 4C). In line with this observation, Nakdmist al. have
uncovered a non-overlapping role for CRMP2 and CRNtPthe axon pruning of mossy
fibres in the mouse hippocampus and reveal a sedeepistatic interaction between the
Sema3F receptor, Neuropilin-2 [252] and CRMP2 is grocess [250]. The counter intuitive
role of these MT stabilising proteins in MT breatkehedriven axon pruning suggests that
CRMP proteins might not directly operate on MTghis process. Rather, they may be acting
as key signalling hubs promoting interactions betweomponents of the Semaphorin or
Neuropilin receptor complex and downstream effectsuch as MT-destabilising enzymes
(e.g. stathmins, spastin). Addressing this issue wilbbparticular interest in the field.

Overall, a diversity of MT-regulatory proteins anwolved in axon pruning, with functional
specificities that might rely on the neuronal spletyconsidered and/or on the nature of the
initiating signal €.g. activity-dependent mechanisms, trophic deprivaboraxon guidance
cues). Deciphering the signalling events underlyhregselective regulation of MT-associated
proteins downstream of specific axon pruning sighas well as their contribution to the MT
breakdown that drives axon remodelling, should glewessential information on the basic
mechanisms governing neuronal connectivity refingme
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Conclusion

Our understanding of the microtubule function aslrawing force of axon guidance and
pruning has considerably expanded and evolved @enteyears, as highlighted by the
numerous studies reported here and the compleryergaiew from Sanchez-Huertas and
Herrera that was published during the final writstgps of the present article [253]. These
emerging studies reveal not only the importancethd microtubule composition and
posttranslational modifications in fine tuning Mdntctions in neuronal circuit wiring, but also
of the functional versatility of the numerous MTtdractors in such process. This extensive
intracellular diversity contrasts with the relativéimited number of identified extracellular
cues that wire the nervous system. It thereforélights how decisive the tubulin code and
the diversity/versatility of MT-interactors are expanding the range of axon guidance
behaviours and underlying neuronal connectionsdhatbe controlled by a limited repertoire
of extracellular cues. The versatility of a givenl Nhteractor may be dependent on the
neuronal subtype in which it is expressed (whicfinds the pool of genes expressed), the
diversity of the upstream intracellular signalliegents by which it is recruited to the MTs, its
binding partners, but also the subpopulations oENdependent on the tubulin isoforms and
MT modifying enzymes expressed in this neurondltgple) with which it interacts. Adding
to this complexity, different sets of MT interactarith cooperative or antagonistic functions
may be acting concomitantly downstream of a siggielance molecule to regulate different
aspects of MT dynamics/organisation required fosnasteering or pruning. With this in
mind, dissecting the MT regulatory networks thatagtdthe axon responsiveness to
extracellular signals, rather than focusing on vitlial MT-associated effectors, will
represent a major challenge in the field to gairmare comprehensive and realistic
understanding of the basic intracellular mechanismderlying neuronal circuit wiring and
refinement. Tackling these issues will require ¢benbined use of global transcriptomic and
proteomic approaches, as well as multigenic funetianalyses (such as the one recently
published by Hahn and colleagues [129]). Similartyoving towards model organisms
enablingin vivo live imaging of MT dynamics and genetic/optogen@tanipulation of MT
regulatory proteins in navigating growth cones etracting axons will be crucial to dissect
MT functions in a physiological context, where @tagks between several chemical but also
physical and mechanical extracellular signals mélyeénce MT functions.

Legendsto figures:

Figure 1. MT-regulatory proteins that drive the growth cone turn in response to
attractive/per missive guidance cues and their associated molecular mechanism(s).

(A) Asymmetric invasion and stabilisation of MTs withgmowth cone filopodia facing an
attractive/permissive cue drives the growth coma.tB, C andD are higher magnifications
of the boxed region i\ and depict the molecular effect(s) of NetrinB),(Sema3E Q) or
Sema3D/3ER) on the MT cytoskeleton through different MT-regfolry proteins. While the
boxed region in A gives an example of the growtmecaegion where the depicted
mechanisms occur, it is important to bear in mihdt tthese mechanisms may also be
functioning in other growth cone regions, suchtees transition zone or the central domain.
Molecular mechanisms are schematised accordindneoliterature cited in Table 1. Full
arrows indicate the direct effect of the attradfpeemissive cue on a specific receptor and its
downstream effectors. Dotted arrows represent @dineict effect of the cue on a given effector
through a receptor that remains unidentified. MAWRcrotubule-associated protein; MTSs:
microtubules.
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Figure 2: MT-regulatory proteins that drive the growth cone turn in response to
repulsive/non per missive guidance cues and their associated molecular mechanism(s).

A. Asymmetric destabilisation of MTs on the growth eoside facing a repulsive/ non
permissive cue drives the growth cone tuBaH are higher magnifications of the boxed
region inA and depict the different effectors engaged dowastr of Sema-3AB), Slit/Slit2
(C), EphrinA2/AD), NO (), Draxin ), Wnt5A (G) and Netrin-1 Id) to drive the MT
remodelling required for growth cone repulsion. Whihe boxed region in A gives an
example of the growth cone region where the degiotechanisms occur, it is important to
bear in mind that these mechanisms may also beidmnay in other growth cone regions,
such as the transition zone or the central domdimiecular mechanisms are schematised
according to the literature cited in Table 1. WHué arrows indicate the direct effect of the
repulsive/non-permissive cue on a specific recepiw its downstream effectors, dotted
arrows represent an indirect effect of the cue ogiven effector through a receptor that
remains unidentified. MAP: Microtubule-Associatetein; MTs: Microtubules; NO: Nitric
Oxide.

Figure 3: Emerging key role of the tubulin code in axon guidance. Diagram depicting our
current knowledge of the tubulin code impact onragaidance from a single molecule scale
(left hand panels) to a physiological one (righhdhganels). A) Selective involvement of
tubulin isotypes in axon guidance pathwaydl (light pink sphere) angs-11l tubulin (dark
pink sphere) isotypes control the pathfinding oéafic populations of mammalian axons
through  their selective interaction with MT-regolky proteins or axon guidance
receptors(respectively) and their subsequent mbdaola of MT dynamics. B)
Posttranslational modifications of the C-terminal of a-tubulin (e.g. tubulin tyrosination
and polyglutamylation) tune the activity of specifMT-regulatory proteins, thereby
influencing MT-driven growth cone steeringh-8) Molecular mechanisms are schematised
according to the literature cited in Table 1. (Usdind panels) The C-terminal tyrosine residue
of a-tubulin is indicated in blue, while glutamic acidabjected to polyglutamylation are
shown in grey. Polyglutamate side chains generbted TLL6 or TTLL11 are shown in
yellow and red, respectively. (Middle panels) Tubu-terminal tails that protrude from the
MT lattice are represented in grey in the abserideep PTMs. Dotted arrows indicate MT
polymerisation events. Purple arrow represents My displacement on F-actin (red
filament). Boxes are higher magnifications of thdjaaent left hand dotted panel.
Polymerising and depolymerising microtubules arpicted as in Figures 1 and 2. CA:
callosal axons; CSA: corticospinal axons, OMA: acobtor axons; FB: forebrain; MB:
midbrain; HB: hindbrain; SC: spinal cord; FP: flquate; DRG: dorsal root ganglia; DREZ:
dorsal root entry zone; PCN: precerebellar nudiyl: horizontal myoseptum; Myollb:
myosin llb; TTL: tubulin tyrosine ligase; TTLL: twitin tyrosine ligase like; Kinesin depol:
Kinesin depolymerising motor; ABP: Actin bindingopein.

Figure4: MT-regulatory proteinsthat contributeto the MT breakage required for axon
pruning. (A) Activity-dependent retraction of supernumeraryora in polyinnervated
neuromuscular junctions relies on the spastin Miegag activity. B) NGF deprivation-
induced pruning of DRG axons requires the MT depelyising motor Kif2A C) Sema3F-
evoked elimination of exuberant axonal brancheslires the structural MAP CRMP2. Since
CRMP2 mostly stabilises MTs, Sema3F might detaciMR from MTs, thereby favouring
their depolymerisation. Whether phospho-CRMP2 astsa signalling hub promoting the
interaction between Sema3F receptor complex compesrend MT-destabilising enzymes
remains to be addressedable 1: Summary table of the MT regulatorsinvolved in axon
guidance and pruning.
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1701 Protein Models/Systems Links with guidance cues Functions in axon guidance References Figure
Plus-end tracking proteins
CLASP Drosophila nenous system Slit/Robo Downstream effector of Abl in Slit-mediated repulsion at the midline, regulation of MT-F-actin crosstalk [19; 79; 80] Fig. 2C
TACC3 Xenopus spinal neurons Slit2 Regulation of MT dynamics involved in steering behaviours [21] Fig. 2C
APC2 Chick retinal axons Ephrin-A2 Regulation of MT stability and retinal axon pathfinding; +TIP function? [27; 94] Fig. 2D
APC Mouse DRG neurons Wwnt3a Required for Wnt3a-induced axonal remodelling, regulation of MT plus-end growth directionality in growth cones [92] -
NAV1 Mouse cortical neurons Netrin-1 Instructs growth cone steering, promotes MT perduration in the P-domain, MT-F-actin crosslinking [26] Fig. 1B
XMAP215 Xenopus embryonic neural tube explants EphrinA5 Regulation of growth cone morphology, response to the EphrinA5 repellent cue, MT-F-actin crosslinking; [25; 81] Fig. 2D
Drosophila nenous system midline repellent cues ? Growth cone repulsion from the midline by antagonising CLASP and Abl activity [80] -
Structural MAP
MAP18 Mouse forebrain commissural axons pein LS Netrin-1- and Draxin-evoked axon outgrowth and repuision, respectivel (20,122 [Fig. 1B & 2F
Draxin/DCC/Gsk3p 9 pulsion, respectively b o-
Promotes tyrosinated MT dynamics, reduces EB-binding at plus ends, regulates MT-Factin crosstalk (?) in growth cones  [[111; 124; 125]
DRG axons Non permissive substrate Abnormal steering behaviour when facing a non-permissive substrate, regulation of growth cone MT dynamics (?) [120] -
DRG axons Nitric oxyde (NO) Required for NO-induced growth cone collapse; MT effects ? [121] Fig. 2E
MAPG/STOP Mouse subicular neurons Sema6E eCiEs] i SEmEkSAITENEES e Crigeriis 1131 Fig.1C
Signalling hub protein
Tau Mouse cortical neurons Whnt5a Required for Wnt5a-evoked axon outgrowth and repulsive turing; MT invasion, remodelling and [24; 72) Fig.2G
reorientation in the P-domain; MT-F-actin crosslinking [116]
Mouse peripheral nerves Downstream effector of Sema3A required for axon repulsion; N .
CRMEZ and callossal axons Sepast e phosphorylation-induced detachment from MTs, permissive for MT breakdown [KER 8 ) Fig.2B
Zebrafish oculo motor axons 2/ a2-Chimaerin Downstream effector of the RNoGAP_a2-Chimaerin; concerted regulation of MT dynamics with stathmin1/2 [148]
- . Required for midline crossing of retinal axons; N
-1? N
CRMP4 Zebrafish retinal axons Neuropilin-17? MT effects (2) [133; 146] Fig.1D
. . Regulation of growth cone morphology and sensitivity to Sema3A; .
e AR GEEE MEmS SR NESIEIS MT breakdown through phosphorylation-induced detachment from MTs (?) = A
MT severing/depolymerizing enzymes
Controls rostrally-projecting axon pathfinding through BMP inhibition; B
M1 spastin Zebrafish spinal motor neuron axons BMPs MT dynamics (?), BMP receptor trafficking (?) [23]
M61 spastin ST i) (el S S Neuropilin-1 Downstream effector of Neuropilin-1, controls steering behaviours at guidance choice points , [23; 164] Fig. 28
Promotes growth cone MT dynamics (?)
p60-Katanin Zebrafish spinal motor neuron axons ? R I o e Gl motg rnene peiiacnfansing [31; 164] Fig.3B
Promotes MT dynamics in growth cones?
Controls growth cone morphology and steering behaviours at choice points,
-| ? -
AEEERIED S ST (TR ISR T ’ Regulates MT-plus-end composition and dynamics; Regulates MT-F-actin crosstalk (?) =
Required for a2-Chimaerin-dependent ocular motor axon pathfinding/targeting;
2/ 02+
Stathmin 1/2 Zebrafish oculo motor nerves Sema3A?/a2-Chimaerin Concerted regulation of MT dynamics with CRMP2? [148] Fig.2B
Molecular motors/regulatory proteins
kinesin-5 IR PRy (UGS NGF ? Antagonises dynein-mediated forces to prevent MT invasion in the P-domain on the opposite of the growth cone turning side [186; 188] -
Xenopus neural tube explants
Kinesin-12 Rat primary neurons > Restricts MT bidirectional transport in the axon, as well as MT invasion of the growth cone P-domain; [187] B
e i Regulates growth cone morphology Via its interaction with the actin cytoskeleton (?)
Fignl1/KIF1bB (kinesin-3)/bicd1l complex Zebrafish spinal motor neuron axons ? . L CEiiES rostr.al. mot.or (TCR (PRI . [73] -
Dynein speed limiter; regulates bidirectional axonal transport of Rab3 vesicules
Kif13B (kinesin-3) Mouse cortical neurons Netrin-1 . Conitrel Ly M ERI (TEIETEaLS (E1iar et (27 DEC (rTErai) [193] Fig.1B
Required to promote axon inititiation and branching/targeting in a Netrin-1 dependent manner
kinesin-1 Mouse cortical and hippocampal neurons ? Regulates mouse growth cone remodelling and corticofugal axon pathfinding by mediating CB1R anterograde axonal transport [194] -
Tubulin isoforms
TUBB2 RO humsgj:rrt:;x:uron ORI, ? Required for proper axon pathfinding; regulates MT dynamics and MT-depolymerase targeting at MT plus ends [183] Fig.3A
TUBB3 Mouse/chicken commissural neurons Netrin-1/DCC Controls Netrin-1/DCC-induced axon attraction of commissural neurons, promotes MT dynamics in growth cones [28] .
DRG axons Netrin-1/UNC-5 Required for Netrin-1/UNC5-evoked axon repulsion and DRG axon pathfinding; promotes MT dynamics in growth cones [29; 202] APER
Tubulin modifying enzymes
™ Mouse c(;r:;a;f::;o;::spm axons 2 Required for proper navigational behaviour of olivary fibres at the floor plate and cortico-thalamic loop formation; [30; 210] Fig.38
Regulates growth cone morphology; recruitment of MT-F-actin crosstalk mediators in growth cones
TTLLE Zebrafish spinal motor neuron axons ? Required for proper dorsal nerve pathfinding/targeting; regulator of p60-Katanin activity [31] Fig.3B
TTLL11 Zebrafish spinal motor neuron axons ? Required for proper rostral nerve pathfinding/targeting, concerted regulation of spastin activity with TTLL6? [31] Fig.3B
Protein Models/systems Axon pruning mechanism Functionsin axon pruning References Figure
MT severing/depolymerizing enzymes
spastin Mouse neuromuscular junction activity-dependent competition Elimination of supernumerary synaptic connections; MT severing [17] Fig.4A
KIF2A Mouse KO/ primary cultures NGF deprivation Control of skin inenation; MT depolymerisation [236] Fig.4B
Structural MAP
CRMP2 Mouse hippocampus and visual cortex Sema3F Branch-specific elimination; MT dynamics/ disassembly [145] Fig.4C
Table 1
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