
HAL Id: hal-03799078
https://hal.science/hal-03799078v1

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Superconductivity in cuprates governed by topological
constraints

Yves Noat, Alain Mauger, William Sacks

To cite this version:
Yves Noat, Alain Mauger, William Sacks. Superconductivity in cuprates governed by topological
constraints. Physics Letters, 2022. �hal-03799078�

https://hal.science/hal-03799078v1
https://hal.archives-ouvertes.fr


Superconductivity in cuprates governed by topological constraints

Yves Noat,1 Alain Mauger,2 and William Sacks2

1Institut des Nanosciences de Paris, CNRS, UMR 7588
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The remarkable universality of the cuprate Tc dome suggests a very fundamental unifying prin-
ciple. Moreover, the superconducting gap is known to persist above Tc in the pseudogap phase of
all cuprates. So, contrary to BCS, the gap cannot be the order parameter of the transition.

In this work, we show that both the Tc-dome and the pseudogap line T ∗(p) arise from a unique and
identifiable principle : the interaction of localized ‘pairons’ on an antiferromagnetic square lattice.
The topological constraints on such preformed pairons give rise to both the Tc dome and the pairing
energy simultaneously. It also provides a natural explanation for the critical doping points of the
phase diagram.

The model matches perfectly both the T ∗ and Tc experimental lines, with only one adjustable
parameter.

PACS numbers: 74.72.h,74.20.Mn,74.20.Fg

Introduction

Despite more than thirty years of intense research and
many advances, a general understanding of the physics of
cuprates is still lacking. Indeed, most of the key questions
remain to be answered or clarified :

i) What is the pairing mechanism ?

ii) What is the nature of the SC condensation ?

iii) What is the nature of the pseudogap phase and its
connection with the SC state ?

iv) What is the physical origin of the critical doping
points ?

Superconductivity emerges in cuprates from doping an
antiferromagnetic (AF) Mott insulator, leading to a com-
plex phase diagram as shown in Fig. 1. The latter displays
three important lines : the superconducting dome Tc(p),
the pseudogap line T ∗(p) and the characteristic tempe-
rature of magnetic correlations Tmax(p).

Despite the very large variety of compounds belonging
to the cuprate family, there is a striking universality in
the phase diagram. In addition, as already noted by Tahir
et al. [1], the doping values characterizing the Tc-dome
(pmin, the onset doping for superconductivity, popt the
top of the dome or optimal doping and pmax the end of
the dome) seem to be universal values, which are practi-
cally independent of the material.

All these experimental facts strongly suggest that su-
perconductivity in cuprates is essentially governed by to-
pological constraints imposed on the system of holes by
the 2d antiferromagnetic square lattice.

Figure 1. (Color online) Essential phase diagram of cuprates
(see [? ] for details) with the three characteristic temperature
lines : the critical temperature Tc(p), the pseudogap line T ∗(p)
and the characteristic temperature of magnetic correlations,
Tmax(p).

Magnetic properties

Contrary to conventional superconductors which are
mostly ‘good’ metals, parent compounds of SC cuprates
are antiferromagnetic Mott insulators, characterized by
the temperature of long-range magnetic ordering TNéel(p).
Electron or hole doping strongly modifies the electronic
and magnetic properties. First, the Néel temperature de-
creases rapidly with doping and finally vanishes for a
small value p ≈0.015 [5]. Then, above pmin =0.05, the
system becomes metallic and exhibits superconducting
properties below the critical temperature Tc.

Measurements of the magnetic susceptibility χ(T )
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Figure 2. (Color online) Phase diagram in the pairon-
simplon viewpoint. In the underdoped regime, a simple pic-
ture emerges : simplons (right panel, a) exist below the line
Tmax(p) while incoherent pairons (right panel, b) exist be-
low the pseudogap line T ∗(p). Finally, pairons condense be-
low Tc(p) in the coherent SC state. Three key doping points
are illustrated : pmin, the onset doping of superconductivity,
pmax, the end of the Tc-dome, and pc ∼0.2 the extrapolated
value of the line Tmax(p) at T = 0.

[6–10] have shown that the characteristic temperature of
magnetic correlations, Tmax(defined as the peak in the
magnetic susceptibility as a function of temperature) de-
creases with doping. In a recent work [2], we have shown
that a similar behavior is observed in the four different
compounds (La2−xSrxCuO4, Bi2Sr2Ca1−xYxCu2O8,
Bi2Sr2CaCu2O8+y, YBa2Cu3O6+y) : Tmax(p) decreases
linearly with p over a wide range and then saturates
in the overdoped regime [2], reflecting the persistence
of magnetism up to pmax and even beyond [3]. In
addition, the extrapolation of the linear behavior to zero
temperature gives a critical doping pc ∼0.2.

The linear behavior of Tmax(p) with hole density can
be qualitatively understood by considering that each hole
‘suppresses’ the four nearest neighbors spins [4]. We call
this dressed hole a ‘simplon’, which is an effective particle
defined as a hole with 4 associated neighboring sites, thus
giving 4+1 ‘spinless’ sites (see Fig. 2, right panel). A
simple density argument leads to the linear law

kBTmax ' J(1− 5p) (1)

where J is the magnetic exchange energy. The critical
doping value pc =0.2, where Tmax vanishes, corresponds
to the compact simplon lattice (Fig. 3), with a superlat-
tice constant d =

√
5. Interestingly, this doping value is

very close to the one which has been identified either as
the end of the pseudogap [11] or a quantum critical point
(QCP) [12, 13].

Figure 3. (Color online) The compact simplon lattice (yel-
low square) with superlattice constant d =

√
5, corresponds

to the ‘critical’ doping value pc =0.2. The two sublattices
of equivalent simplons (A or B, green square) have a lattice
constant d0 =

√
10, giving the doping value p =0.1. The do-

ping pmin =0.05 corresponds to a simplon on the corner of
the red (non-centered) square. We use a0 units throughout.

Two types of simplons, A and B, can be distinguished
depending on the spin state of the four electrons sur-
rounding a hole. The unit cell of the square sublattice of
equivalent simplons A (or B) has a side d =

√
10, corres-

ponding to a density p =0.1 (see Fig. 3). The percolation
point of equivalent simplons on such a sublattice is the
previous density divided by two, i.e. p =0.05. This is very
close to the experimental value of pmin, the onset doping
for superconductivity. Metallicity could arises preferen-
tially due to the coupling of equivalent simplons (A or
B), which can interact provided their distance is smaller
than d0 ≈

√
20.

Pairing in cuprates

In conventional superconductors, a bound state of elec-
trons can form in the electron sea as a result of phonon
exchange. Cooper pairs [14] are delocalized objects which
are well described in k-space as pairs of opposite wave

vectors and spins,
∣∣∣~k ↑ −~k ↓〉.

We proposed in Ref. [15] that the pairing mechanism
in cuprate belongs to a completely different class. The
magnetic ordering of the Néel state is destroyed by hole
doping but survives on the local scale. As shown by Bir-
geneau et al. by neutron measurements in Ref. [16], the
antiferromagnetic coherence length varies roughly as the
average distance between hole ξAF ∼ a/

√
p. In our model

[15, 17], below the characteristic temperature T ∗, two ad-
jacent holes tend to form a bound state due to this local
AF environment, with a binding energy on the order of
J , as confirmed by early numerical calculations with the
Hubbard or t-J hamiltonian [18–22]. Thus, a new kind
of pair exists in cuprates, pairs of holes or ‘pairons’ in
their local AF environment, in real space on a typical
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Figure 4. (Color online) Upper panel : Schematic of the pai-
ron lattice for three different doping values corresponding to
a) underdoped regime, b) optimal doping, c) maximum do-
ping (compact pairon lattice).

length ξAF . Furthermore, we assume a repulsive inter-
action between pairons, as found by Kaciras et al. [18]
in their simulations. Each pairon being surrounded by
an AF cloud of size ∼ ξAF , bringing two pairons close
to each other will cost an energy ∝ J . The existence of
pairons is supported by the detailed angular dependence
of the gap function [17] measured by Angular Resolved
Photoemission Spectroscopy (ARPES) [23, 24].

Electrons within the AF coherence length contribute
to the pairing energy of the two holes. As the doping in-
creases, the AF coherence length decreases as ∼ 1/

√
p. A

pairon can exist provided two adjacent holes are surroun-
ded by at least a ring of six electrons. The pairons thus
occupy a minimum of 8 sites (2 holes plus six electrons)
on the square lattice in the local AF environnement.

This topological constraint imposes a maximum do-
ping value corresponding to the compact pairon lattice
(see Fig. 4), which is obtained for p=1/4. This value is
remarkably close to the observed pmax =0.27 at the dome
limit. Actually, experimental facts indicate that pairons
can still exist for a slightly larger doping value 0.25+δ,
up to pmax =0.27. The reason for this small excess is
unknown and requires further thought, but the experi-
mental value corresponds to an additional 1/6 hole per
pairon ring (δ = x/8 = 1/48 ≈0.02). Nevertheless, the
compact pairon lattice provides a satisfactory topologi-
cal interpretation.

As previously mentioned, the distance between pairons
is of the order of the spin correlation length ξAF . The
hypothesis that only sites within the correlation length
contribute to the pairon binding energy implies that the
binding energy, or equivalently the temperature of pairon

formation T ∗, varies linearly as a function of doping [15] :

T ∗ ∝ (1− 4p). (2)

This linear law is accurately confirmed by ARPES [25, 26]
and tunneling measurements [27, 28].

Both the Tmax(p) and T ∗(p) lines are thus given by
similar topological arguments based on two fundamental
quantum objects, simplons and pairons.

Superconducting condensation

In conventional superconductors, the gap ∆(T ) is the
order parameter [29]. At finite temperature, the SC state
is gradually destroyed by means of quasiparticle fermio-
nic excitations : the pair-breaking mechanism. Conse-
quently, the gap ∆(T ) decreases with increasing tempera-
ture and finally vanishes at the critical temperature Tc.
These considerations are captured by the BCS relation
[29] : 1.7kBTc = ∆(0).

The situation must be different in cuprates since, as
well demonstrated unequivocally by tunneling spectro-
scopy [30, 31] and ARPES [26, 32] measurements, the gap
clearly does not vanish at Tc and a pseudogap remains
up to the higher temperature T ∗. The conventional BCS
relation is therefore no longer valid. What is then the
order parameter in cuprates ?

In several articles [15, 33], we have proposed that, un-
like conventional SC, condensation in cuprates arises be-
cause of pairon-pairon interactions. Moreover, the fun-
damental excitations of the condensate are pairon ex-
citations governed by Bose statistics [34, 35]. A simple
picture emerges (see Fig. 2) : Tmax corresponds to the
characteristic temperature of magnetic correlations be-
low which simplons are formed. Below T ∗ pairons are
formed, corresponding to the pseudogap state where they
remain incoherent. Finally, below Tc, pairons condense in
the coherent SC state.

Therefore, in our model, the total energy ESC of the
superconducting state (per pair) is unconventional and
reads [35] :

ESC = −∆p − βc (3)

where ∆p is the zero-temperature binding energy and βc
is the condensation energy responsible for long range or-
der. The latter can be precisely extracted from the expe-
rimental quasiparticle spectra [33, 36]. Contrary to BCS,
since ∆p is constant across Tc, it is βc that determines
the critical temperature and not the gap [33], with the
result :

βc = 2.2kBTc (4)

We now show that this condensation energy βc, i.e. the
energy difference between the non SC pseudogap state
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Figure 5. (Color online) Statistics of the number of pairons
Ni in a square of size d0 = 5 containing N0 =25 possible sites.
Left panel : Mean value 〈Ni〉 and variance σ2 =

〈
N2
i

〉
−〈Ni〉2.

plotted as a function of nominal pairon density p′. Middle
panel : Histogram H(Ni) of the number of pairons Ni for
p′ =0.22, chosen as an example. Right panel : Pairons ran-
domly distributed on the pairon lattice for p′ =0.22.

EPG = −∆p and the SC state ESC , results from quan-
tifying the amount of pairon disorder. In this view, the
characteristic disorder in the PG state is uniquely de-
termined by the topological constraints of the 2d square
lattice.

To proceed, akin to a lattice gas approach, let us consi-
der pairons on an equivalent square lattice of density p′ :
p′ =1 corresponds to the compact pairon lattice (p =0.27
on the Cu0 square lattice) and p′ =0 to the onset doping
at which the average distance between pairons is small
enough (d < d0) so that they interact (p =.05 on the
Cu0 square lattice). Pairons are then randomly distribu-
ted on this lattice (Fig. 5), under the hypothesis where
all sites are equivalent. We calculate the number of pai-
rons, Ni, inside a square of side d0 (with N0 = d0

2 sites)
, where d0 is the maximum interacting distance between
pairons. From the distribution of 〈Ni〉, we calculate the
statistical averages, the mean value 〈Ni〉 and the variance

σ2 =
〈
N2

i

〉
− 〈Ni〉2.

As expected for a problem depending only on the suc-
cess p′ or failure 1−p′ to find a pairon on a given site, we
obtain for Ni a binomial distribution. As a result, 〈Ni〉
follows a straight line as a function of p′, with some jit-
ter, while the variance σ2 = N0p

′(1−p′) displays a dome
shape. In fact, for a fixed N0 and a random distribution,
σ2 characterizes the maximum disorder of the localized
pairons on the square lattice.

The condensation energy can be understood using the
Following gendanken experiment. When the interaction
between pairons is switched off, we obtain the incoherent
PG state, the ‘pairon glass’, of energy EPG, where there
is by definition no correlation between pairons. In this
state, no long-range SC order exists and the disorder is
described by the above binomial distribution.

When the interaction is turned back on (provided their
typical distance d is smaller than d0), all pairons are in
the ordered SC ground state, with energy EPG − βc. In
this zero temperature transformation, the virtual work

Figure 6. (Color online) (a) Antinodal gap (in units of
∆/2.2kB) (b) pseudogap temperature T ∗, both measured by
ARPES [26, 37] and (c) experimental superconducting tem-
perature Tc (from Ref. [11]) , compared to the binomial law
(red lines) with only one adjustable parameter λ. From the
fit of the data we find the value λ =400K.

W needed to disorder the system is βc :

W = EPG − ESC = βc (5)

Since the disorder is characterised by the variance of the
distribution, one should have W ∝ σ2. Thus, we obtain

βc ∝ σ2/N0 = p′(1− p′). (6)

In this view, the condensation is a new type of disorder to
order transition, independent of the other degrees of free-
dom. In spite of the complex excitations, Bose excitations
and quasiparticle fermionic excitations, and magnetic de-
grees of freedom, the underlying topological constraints
define the fundamental mechanism.

Pseudogap and superconductivity

We now focus on the interplay between the pseudogap
and the superconducting phase in cuprate. The pseudo-
gap line is given by T ∗ ∝ (1 − 4p), which translates to
∼ (1−p′) in the pairon sublattice, and that the condensa-
tion energy is βc ∼ p′(1−p′). Furthermore, the statistical
calculation described above leads the two relations :

T ∗ = λ (1− p′)
Tc = λ p′(1− p′) (7)

where λ has the dimension of temperature. The true
doping value is given by the linear tranformation p =
pmin + (pmax − pmin)× p′.

To proceed, we now compare in Fig. 6 the calculated T ∗

and Tc to the experimental values, measured by ARPES
[37] and resistivity [11] respectively. With only one ad-
justable parameter λ, the agreement between theory and
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experiments is remarkable. We find the value λ =400K,
which is comparable to J/2, or the Néel temperature
when extrapolated to p = 0.

The binomial law provides a simple explanation for
the maximum Tc obtainable, which occurs at half-filling,
p′ = 1/2. Indeed, at this concentration the fluctuation
amplitude, measured by σ2, is a maximum. At this op-
timum concentration, we see the topological constraint
that T ∗ is exactly twice Tc.

These fundamental relations illustrate that the pseu-
dogap and superconductivity are completely linked and
arise from the same physical phenomenon, for the entire
doping range. The geometry of the dome and the tangent
line are not arbitrary but determined by the statistics of
pairons randomly distributed on a square lattice. A direct
consequence is that both T ∗ and Tc are proportional to
the same energy scale, which we identify as the magnetic
exchange energy J .

The equations relating Tc and T ∗ in the present letter
(Eq. 7) are pertinent to the T -p phase diagram in zero
magnetic field. In a strong magnetic field, the phase co-
herence is also destroyed revealing an incoherent state
of pairons with a finite T ∗ as seen in resistivity measure-
ments [12]. In this case, the condensation energy βc of the
disorder to order transition, described in Eqs. 5 and 6,
remains valid. While the resistivity measurements in high
field [12] suggest a critical density close to pc =0.2, a per-
iodic lattice (Fig. 3) of d =

√
5, deduced in this work from

the extrapolation of Tmax(p), has not yet been directly
observed so far to our knowledge. However, the simplon
concept provides a straightforward explanation, not only
for the AF correlation temperature Tmax(p) line, but also
for the metallicity onset doping value pmin=0.05.

The pairon-pairon repulsive interactions could lead to
additional effects which require further studies. Both Fig.
3 and 4 suggest the possibility of spin and/or charge or-
ders. In analogy with the phases found for repulsive par-
ticles on a square lattice [38], it is quite possible that
pairons order spatially, equivalent to pair density waves
[39].

In previous works, other topological effects have been
proposed such as stripes [40], local metallic plaquettes
[1] or RVB-gauge theory [41]. In the first case, the subtle
interplay between metallic and insulating stripes leads
to a high-Tc mechanism. In the second, many aspects of
the phase diagram are successfully described. Lastly, a
topological gauge theory is involved in the superconduc-
ting phase coherence. The possible connections with the
pairon model remains to be evaluated.

Conclusion

In this article, we propose that key aspects of the phase
diagram of cuprates are governed by the topological pro-
perties of the doped antiferromagnetic insulator on a

square lattice. Bound pairs of holes are formed due to
the local antiferromagnetic environnement and condense
in the superconducting state in a disorder to order tran-
sition. The condensation is driven by a new mechanism
and is directly related to the amount of disorder in the
non SC pseudogap state. Thus the simple binomial pairon
distribution explains the Tc-dome as well as the pseudo-
gap line. We show that the cuprate SC state, a spatially
correlated quantum state of pairons, is intimately connec-
ted to the disordered pseudogap state – in our view they
appear as indissociable phenomena.
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