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The etiology of aging-associated neurodegenerative diseases (NDs), such as
Parkinson’s disease (PD) and Alzheimer’s disease (AD), still remains elusive and no
curative treatment is available. Age is the major risk factor for PD and AD, but the
molecular link between aging and neurodegeneration is not fully understood. Aging is
defined by several hallmarks, some of which partially overlap with pathways implicated
in NDs. Recent evidence suggests that aging-associated epigenetic alterations can lead
to the derepression of the LINE-1 (Long Interspersed Element-1) family of transposable
elements (TEs) and that this derepression might have important implications in the
pathogenesis of NDs. Almost half of the human DNA is composed of repetitive
sequences derived from TEs and TE mobility participated in shaping the mammalian
genomes during evolution. Although most TEs are mutated and no longer mobile,
more than 100 LINE-1 elements have retained their full coding potential in humans
and are thus retrotransposition competent. Uncontrolled activation of TEs has now
been reported in various models of neurodegeneration and in diseased human brain
tissues. We will discuss in this review the potential contribution of LINE-1 elements
in inducing DNA damage and genomic instability, which are emerging pathological
features in NDs. TEs might represent an important molecular link between aging
and neurodegeneration, and a potential target for urgently needed novel therapeutic
disease-modifying interventions.

Keywords: transposable elements (TEs), genomic instability, LINE-1, DNA damage, neurodegenerative diseases,
Parkinson’s disease, Alzheimer’s disease, aging

INTRODUCTION

Age-associated neurodegenerative diseases (NDs) such as Parkinson’s disease (PD) and Alzheimer’s
disease (AD) have become a global burden due to the continued increase in life expectancy with
obvious socio-economic implications (Yang et al., 2020). The support and care of people with NDs,
for which age is the main known risk factor, poses a major challenge. Unfortunately, currently
available treatments only alleviate some of the symptoms and there is still no disease-modifying
treatment (Van Bulck et al., 2019).

Abbreviations: AD, Alzheimer’s disease; DSBs, DNA double-strand breaks; EN, endonuclease; En1, Engrailed-1; ERV,
endogenous retrovirus; HERV, human ERV; IN, integrase; LINE-1, long interspersed element-1; NDs, neurodegenerative
diseases; NRTI, nucleoside reverse transcriptase inhibitor; PD, Parkinson’s disease; RT, reverse transcriptase; SNpc, substantia
nigra pars compacta; TEs, transposable elements.
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Neurodegenerative diseases are clinically separated into
specific syndromes based on typical clinical manifestations.
For instance, the loss of dopaminergic neurons in the
substantia nigra pars compacta (SNpc) leads to the cardinal
motor symptoms in PD (Kalia and Lang, 2015), whereas the
degeneration of hippocampal and cortical neurons results in
memory impairment, cognitive dysfunction, and dementia in AD
(Oboudiyat et al., 2013). In spite of these clinical differences, NDs
present substantial neuropathological and genetic overlap (Naz
et al., 2017; Gan et al., 2018; Karch et al., 2018). Pathways altered
in various NDs include protein quality control, the autosomal-
lysosome pathway, mitochondrial homeostasis, protein seeding,
propagation of stress granules, synaptic toxicity, and network
dysfunction (Gan et al., 2018). Among genetic and environmental
factors, age remains the major risk factor for the development of
the most prevalent NDs like PD and AD, as well as for other NDs
like amyotrophic lateral sclerosis (ALS), multisystem atrophy
(MSA), Lewy body disease (LBD), frontotemporal dementia
(FTD), and Huntington’s disease (HD) (Kritsilis et al., 2018;
Hou et al., 2019).

This review will highlight some striking similarities between
the aging process and known pathways involved in the
pathogenesis of NDs, discuss how the failure of multiple
layers of LINE-1 repression, related to the pathogenesis of
NDs, could explain an age-related derepression of TEs and
particularly focus on LINE-1 as a source of genomic instability,
an emerging pathway triggering neurodegeneration. We will
also discuss a hypothetical role of LTR (long terminal repeat)
retrotransposons as a possible additional source of DNA damage
in the brain. Many other pathogenic mechanisms through which
TEs might act as pathogenic drivers in human diseases including
neurodegenerative diseases have been extensively reviewed
elsewhere (Gorbunova et al., 2021; Ravel-Godreuil et al., 2021b).

PARALLELS BETWEEN
NEURODEGENERATIVE DISEASES AND
THE AGING PROCESS

To date, despite enormous efforts and a tremendous increase
in knowledge about the fundamental nature of NDs, it remains
widely unknown how aging and NDs might be linked at
the molecular level. Aging is defined as a progressive loss
of physiological integrity, leading to impaired functions and
increased vulnerability to death (Gilbert, 2000; López-Otín et al.,
2013). Aging, as defined by the “disposable theory of aging”
put forward by Thomas Kirkwood in 1977, is due to a gradual,
life-long accumulation of faults (e.g., DNA damage) in human
cells and tissues, leading to organ dysfunction, disease, and
ultimately death. So far, nine hallmarks of aging have been
defined which comprise genomic instability, telomere attrition,
epigenetic alterations, loss of proteostasis, deregulated nutrient
sensing, mitochondrial dysfunction, cellular senescence, stem
cell exhaustion, and altered intracellular communication (López-
Otín et al., 2013). The first four hallmarks are considered
causative primary hallmarks, which initiate cellular damage.
Since age is the major risk factor for NDs, it is important to

understand whether and how aging-related processes participate
in the pathogenesis of NDs. Table 1 presents a compilation of
existing evidence that links NDs with what has been defined as
hallmarks of organismal aging. Evidence for the presence of all
the nine aging hallmarks has been documented either in brain
aging or in the context of NDs (Mattson and Arumugam, 2018;
Hou et al., 2019), but we will highlight here the two primary aging
hallmarks, namely, genomic instability and epigenetic alterations,
as these are most relevant to TE biology.

NEURODEGENERATION, AGING, AND
GENOMIC INSTABILITY

It is well documented that aging cells accumulate persistent DNA
damage throughout life (Sedelnikova et al., 2004) and DNA repair
activity declines in neurons with aging (Lu et al., 2004; Vyjayanti
and Rao, 2006). Post-mitotic neurons in the central nervous
system are particularly susceptible to this type of damage. This is
due mainly to two factors related to the specificities of neuronal
cell functioning. First, post-mitotic neurons do not dispose of the
full repertoire of DNA repair pathways to repair DNA double-
strand breaks (DSBs) (Chow and Herrup, 2015). Indeed, in
mammals, there are four main DNA repair pathways, namely,
nucleotide excision repair (NER) and base excision repair (BER)
to repair single-strand lesions and base alterations, respectively,
and homologous recombination (HR) and non-homologous end-
joining (NHEJ) to repair DSBs (Chatterjee and Walker, 2017). HR
requires DNA replication during cell division. However, neurons
are post-mitotic, hence non-dividing and therefore cannot rely
on the HR repair pathway but instead exclusively depend on
NHEJ known to be more error prone. The second main specificity
of neurons is the high metabolic rate which renders them prone
to metabolic stress, resulting in elevated oxidative stress through
the production of free radicals leading to DNA damage (Ismail
and Hendzel, 2008). DNA damage can also be exacerbated by
the defective functioning of topoisomerases in the context of
NDs. In a physiological context, topoisomerases release torsional
stress during DNA transcription, particularly on extremely long
genes enriched in neuronal functions (King et al., 2013) and
coordinate transcription from the promoter of immediate early
genes associated with learning and memory (Madabhushi et al.,
2015). These studies suggest that DNA strand breaks, if rapidly
repaired at steady-state levels, can participate in physiological
neuronal functions. However, when DNA repair becomes altered
during aging, the transcription-associated and topoisomerase-
linked DNA damage can accumulate and have indeed been
reported as elevated in the context of AD (Suberbielle et al.,
2013). This illustrates the importance of endogenous sources
of genomic instability. The particular vulnerability of neurons
to DNA damage is underscored by the fact that numerous
diseases, linked to mutations in DNA repair factors, manifest
with neurological symptoms (Katyal et al., 2014; Madabhushi
et al., 2014). Furthermore, each neuronal population, or
even subpopulation, carries cell-type-specific vulnerabilities. For
instance, dopaminergic neurons are particularly vulnerable to
oxidative stress due to their specific physiology and morphology
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TABLE 1 | Evidence for aging hallmarks in the healthy or diseased brain.

The nine hallmarks of aging
The hallmarks of aging
(López-Otín et al., 2013)

Evidence for aging hallmarks in the healthy or diseased brain

Genomic instability DNA damage and its links to neurodegeneration (Madabhushi et al., 2014)
Engrailed homeoprotein blocks degeneration in adult dopaminergic neurons through LINE-1 repression (Blaudin de Thé et al., 2018)
Deletion of topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration (Fragola et al., 2020)
Inefficient DNA repair is an aging-related modifier of Parkinson’s Disease (Sepe et al., 2016)

Telomere attrition Debated: Eitan et al. (2014) Telomere shortening in neurological disorders: an abundance of unanswered questions
Folic acid inhibits aging-induced telomere attrition and apoptosis in astrocytes in vivo and in vitro (Li et al., 2021)

Epigenetic alterations Epigenetic regulation in neurodegenerative diseases (Berson et al., 2018)
Epigenetic changes and its intervention in age-related neurodegenerative diseases (Mohd Murshid et al., 2020)

Loss of proteostasis Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes (Sin and Nollen, 2015)
Altered proteostasis in neurodegenerative tauopathies (Papanikolopoulou and Skoulakis, 2020)
Proteostasis disturbances and inflammation in neurodegenerative diseases (Sonninen et al., 2020)

Altered intercellular
communication

On the central role of brain connectivity in neurodegenerative disease progression (Iturria-Medina and Evans, 2015)
Extracellular vesicles and neurodegenerative diseases (Hill, 2019)

Stem cell exhaustion Nutrients, neurogenesis and brain aging: From disease mechanisms to therapeutic opportunities (Fidaleo et al., 2017)
Stem cell aging in lifespan and disease: A state-of-the-art review (Sameri et al., 2020)

Cellular senescence Aging, cellular senescence and neurodegenerative disease (Kritsilis et al., 2018)
Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives (Baker and Petersen, 2018)

Mitochondrial dysfunction Abnormalities of mitochondrial dynamics in neurodegenerative diseases (Gao et al., 2017)
Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure (Wang et al., 2019)
Mitochondrial dysfunction in the development and progression of neurodegenerative diseases (Johnson et al., 2021)

Deregulated nutrient sensing Dysregulation of nutrient sensing and CLEARance in presenilin deficiency (Reddy et al., 2016)

(Surmeier et al., 2017), especially in humans where dopaminergic
neurons increased in number and arborization throughout
evolution (Vernier, 2004; Bolam and Pissadaki, 2012).

DNA damage has been documented in experimental models
of NDs, and in PD and AD patients (Mullaart et al., 1990;
Adamec et al., 1999; Sepe et al., 2016; Mitra et al., 2019;
Shanbhag et al., 2019). Interestingly, mice deficient in the
serine/threonine kinase ataxia telangiectasia (ATM) show a
selective degeneration of dopaminergic neurons in the SNpc
(Eilam et al., 1998). Following rapid recruitment to DSBs, ATM
not only coordinates several aspects of the cellular DNA damage
response (Shiloh and Ziv, 2013) but also averts DNA damage by
preventing the accumulation of topoisomerase-dependent DNA
lesions (Katyal et al., 2014). This indicates that dopaminergic
neurons are particularly sensitive to defects in the DSB repair
pathway. The NER pathway is equally important in dopaminergic
neurons as NER-deficiency induces a PD-related pathology (Sepe
et al., 2016). More recently, DSBs were shown to precede all
pathological hallmarks in a mouse model of AD (CK-p25). DNA
damage in these mice coincided with a reduction in HDAC1
(histone deacetylase 1), and neuronal loss could be rescued by
HDAC1 (Kim et al., 2008) and the NAD+-dependent deacetylase
SIRT1 (Sirtuin 1) (Kim et al., 2007). A complex interplay
between HDAC1, SIRT1, and ATM was identified, suggesting that
unrepaired DSBs, due to a dysfunctional DNA repair pathway,
could underline neurodegeneration in AD (Dobbin et al., 2013).
DNA damage has also been shown to accumulate in other
NDs such as ALS (Kwiatkowski et al., 2009; Vance et al., 2009;
Wang et al., 2013).

Taken together, neurons seem particularly susceptible to DNA
damage due to neuron-specific features. Increasing experimental
evidence suggests that genomic instability is related to the aging

process in neurons and sufficient to trigger neurodegeneration.
The life-long accumulation of DNA damage together with a
decline in DNA repair mechanisms might be initiating or at
least contributing to neurodegeneration (Madabhushi et al., 2014;
Martínez-Cué and Rueda, 2020).

We discuss below the emerging concept that LINE-1 elements
might be an additional source of DNA damage and genomic
instability and that LINE-1 activation in the brain could be
part of the aging process as shown in somatic cells (Gasior
et al., 2006; Belancio et al., 2010; De Cecco et al., 2019; Simon
et al., 2019) and lead to DNA damage and neurodegeneration
(Blaudin de Thé et al., 2018). Through induction of genomic
instability and other recently discovered consequences of LINE-1
activation, e.g., neuroinflammation (reviewed in Saleh et al., 2019;
Gorbunova et al., 2021), LINE-1 represents a so far unsuspected
new pathogenic driver in NDs.

LIFE CYCLE OF LINE-1
RETROTRANSPOSONS

The complete human genome sequencing revealed that about
50% of human DNA consists of repetitive sequences (Lander
et al., 2001), most of which are remnants of an ancient activity of
TEs (Figures 1A,B and Table 2). These mobile elements comprise
DNA transposons, LTR-retrotransposons (mammalian apparent
LTR retrotransposon, MaLRs; endogenous retroviruses, ERVs),
and non-LTR retrotransposons (LINE-1; Short INterspersed
Elements, SINEs, and the composite element SINE/VNTR/Alu,
SVA). LINE-1 elements have massively expanded in mammalian
genomes and are the only autonomous retrotransposons in
humans that encode their own mobilization machinery to
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FIGURE 1 | Categories of TEs in the human genome and their coding potential. (A) TE classification. TEs in humans can be classified into four categories belonging
to two classes, retrotransposons (class 1) and DNA transposons (class 2). Retrotransposons include non-LTR retrotransposons (autonomous LINEs and
non-autonomous SINEs) and LTR retrotransposons. Examples of elements are written in italics and boxed families are represented in the pie chart (B) indicating
relative% abundance in the human genome. (B) The landscape of the human genome. The human genome consists of sequences derived from TEs (47%), coding
sequences (or exons; 2%), and “other” sequences (promoters, enhancers, introns, non-coding RNA, telomeres, centromeres, and pseudogenes; 51%). (C) Human
retrotransposons with coding potential. Non-LTR retrotransposons (approximately 6kB long) are composed of a 5′UTR (containing sense and antisense promoters),
two open reading frames (ORF1 and ORF2), and a 3′UTR containing a poly(A) site. ORF1 encodes for an RNA binding protein and ORF2p has EN and RT activities.
Human and primate LINE-1 also encode an antisense ORF, termed ORF0 present in the 5′UTR. LTR (HERV-K/HML-2) retrotransposons (approximately 10 kB long)
are flanked by two LTRs. They contain a 5′UTR promoter within the LTR, a primer binding site and four main ORFs (gag, pro, pol, and env) giving rise to Gag,
Gag-Pro-Pol, and Gag-Pro polypeptides (via ribosomal frameshift) and Env. Gag is cleaved by the encoded viral protease into the matrix, capsid and nucleocapsid
proteins, which have structural functions. The protease is autocleaved into the viral protease and a dUTPase. Gag-Pol polyprotein cleavage by the viral protease
gives rise to RT with polymerase activities, RNaseH, and IN. The Env protein is generated from a spliced mRNA and cleaved in the endoplasmatic reticulum by a
cellular protease into signal peptide, surface unit, and transmembrane unit. Alternative splicing of Env generates two other proteins depending on the
HERV-K/HML-2 type: rec or Env (type 2) or np9, but no Env (type 1, not shown).

move from one genomic location to another. As shown in
Figure 1C, a full-length LINE-1 contains two open reading
frames: ORF1 coding for ORF1p (an RNA binding protein) and
ORF2 encoding ORF2p (with endonuclease, EN, and reverse
transcriptase, RT, activity). The number of LINE-1 elements
that have retained their full coding potential in the human
genome is currently estimated to be 146 in the human reference
genome GRCh38/hg38 and 2811 in the mouse reference genome
GRCm38/mm10 (euL1db: L1Basev2 Mir et al., 2015; Penzkofer
et al., 2017). The mechanism of LINE-1 retrotransposition, the
“LINE-1 life cycle,” is depicted in Figure 2 and described in
more detail in the figure legend. TEs have self-amplified and
shaped mammalian genomes during evolution and possibly
conferred evolutionary benefit (Goodier and Kazazian, 2008).
A physiological role of LINE-1 retrotransposition in neuronal
mosaicism during adult neurogenesis has also been proposed;

this aspect is not discussed here and has been reviewed elsewhere
(Erwin et al., 2014; Richardson et al., 2014; Faulkner and Garcia-
Perez, 2017). Neverthless, LINE-1 mobilization at the level of
an individual represents a threat to genome integrity. As an
example, LINE-1 insertions account for 1 in every 250 pathogenic
mutations in human diseases (Kazazian, 1998; Kazazian and
Moran, 2017). In addition, LINE-1 unsilencing in culture can lead
to numerous DSBs in the genome of human cells (Belgnaoui et al.,
2006; Gasior et al., 2006), thereby decreasing cellular viability
by inducing a senescence-like state (Wallace et al., 2008) or
inducing apoptosis (Belgnaoui et al., 2006). ORF2p seems to
nick chromosomal DNA at hundreds of different loci before
each successful integration event (Gasior et al., 2006). Indeed,
mutations in the EN domain of the LINE-1 ORF2 resulted in
complete loss of γ-H2AX (phosphorylated histone H2A) foci,
a marker of DNA damage, in HeLa cells (Gasior et al., 2006),
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TABLE 2 | Summary of the frequency of retrotransposons and estimates about the number of open reading frames for their encoded proteins.

LTR LINE SINE References

% Human genome 9% 21% 14% Lander et al., 2001

Integration mechanism dsDNA + IN TPRT + EN TPRT + EN
(from L1)

# of potential coding loci Predicted in1:12779
Predicted in2

≈ 3000 Pol ORFs

Predicted in1:21187 0 1Nakagawa and Takahashi, 2016
2Seifarth et al., 2005

# of TEs with coding potential Predicted in3:42 HERVs regions
with 29 Env, 13 Pol, 17 Gag ORFs
Predicted in5:15 Env, 14 Pol, 25

Gag, 11 Rec, 12 Np94, 8 IN

Predicted in6:146 flL1 with
complete ORF1p and ORF2p

ORFs, 107 ORF2-only
Predicted in7:147 flL1, 80

ORF2-only

Not coding 3Villesen et al., 2004
4Garcia-Montojo et al., 2018, 2021

5Bray et al., 2016
6Penzkofer et al., 2017

7Mills et al., 2007

LINEs are the most represented subclass in the human genome covering 21% of the human genome with about 500,000 copies (Lander et al., 2001) of which only a small
fraction of the LINE-1 family is mobile. HERVs are thought to have lost mobility, but some HERV families still encode functional proteins. LINE-1 integration is mediated
by the LINE-1 encoded EN via a mechanism called targeted primed reverse transcription, TPRT. HERV elements integrate via a pre-integration complex formed by the IN
protein, viral dsDNA, and host proteins. Non-autonomous SINEs do not encode protein as they use the retrotransposition machinery and form an RNP with their RNA and
the LINE-1 encoded ORF1 and ORF2 for integration. Listed are predictions for the number of potential coding loci for HERV and LINE-1 elements using different sources.
Of note, TEs are polymorphic in populations and these predictions are mostly based on reference genomes.

indicating that DNA damage is mediated by the ORF2 encoded
EN activity. This was also experimentally demonstrated in mouse
fibroblasts (Belancio et al., 2010). Thus, all LINE-1 elements
that have retained coding potential for at least the ORF2p EN
are potential endogenous sources of genomic instability when
unsilenced. Based on the L1Basev2 annotation (Penzkofer et al.,
2017), there are about 253 individual LINE-1 elements with a
complete open reading frame for ORF2p in addition to the full-
length LINE-1 elements which, when activated, could constitute
an additional source of genome instability in somatic cells.

MULTIPLE LAYERS OF LINE-1
REPRESSION

Since LINE-1 activity represents a potential threat for genome
integrity, several cellular factors and pathways keep these
elements in check at almost every level of the LINE-1 life cycle
(Figure 2). These repressive mechanisms include regulation at
the epigenetic level by the binding of epigenetic modifiers to the
LINE-1 sequence, at the transcriptional level by sequence-specific
repressive transcription factors binding to the LINE-1 promoter
in the 5′UTR (5′ untranslated region), at the post-transcriptional
level by degradation mechanisms (splicing, RNA interference or
RNAi, autophagy, and stress granules), at the translational level
via RNA binding proteins, at the level of the nuclear import of
the RNA, and at the integration level by several factors belonging
to the DNA repair machinery (Pizarro and Cristofari, 2016).
Repression at the epigenetic level is mostly accomplished by the
addition of repressive histone marks, mainly trimethylation of
lysine 9 of histone H3 (H3K9me3) (Bulut-Karslioglu et al., 2014;
Liu et al., 2014; He et al., 2019), trimethylation of lysine 20 of
histone H4 (H4K20me3) (Ren et al., 2021), and histone H1 on
LINE-1 loci (Healton et al., 2020), and by DNA methylation
(Hata and Sakaki, 1997; Muotri et al., 2010). This is mediated by
several sequence-specific repressors that directly bind to TEs and
recruit epigenetic modulators. One example of a rather general
repressor of TEs is the Kruppel-associated box Zinc finger protein

family (KRAB-ZFPs) which repress LTR retrotransposons (Ecco
et al., 2017; Yang et al., 2017), but also LINE-1 and SVA elements
(Castro-Diaz et al., 2014; Jacobs et al., 2014). KRAB-ZFPs provide
a scaffold for the formation of heterochromatin on TEs. Another
example for a repressive transcription factor is the homeobox
protein Engrailed, which binds to the 5′UTR of LINE-1 elements
and represses their expression in midbrain dopaminergic neurons
(Blaudin de Thé et al., 2018). As Engrailed expression is regionally
restricted (Di Nardo et al., 2018), this provides an example of
region-specific TE control.

When TEs become derepressed and transcribed, the next
level of repression consists of small RNAs targeted against TE
transcripts. In the germline, where specific developmental states
require the relaxation of epigenetic repression, the PIWI (P-
element Induced WImpy testis in Drosophila)-piRNA (Piwi-
interacting RNA) pathway plays an important role in TE
control (Zamudio and Bourc’his, 2010). Outside of the germline,
piRNA expression has been documented in somatic tissues,
including the mouse brain (Lee et al., 2011), but so far the
role of piRNA expression in the brain has not yet been
identified. However, as a proof-of-principle, PIWIL1 (PIWI-
like protein 1) overexpression from a viral vector was sufficient
to repress LINE-1 induced neurodegeneration of midbrain
dopaminergic neurons during oxidative stress and in the En1±
heterozygous mouse model of PD (Blaudin de Thé et al.,
2018). In addition to the specific piRNA pathway, endogenous
siRNAs (small interfering RNAs) suppressing TE expression
have been identified in both gonadal and non-gonadal tissues.
They derive from bidirectional transcription of TE-containing
loci (Saito and Siomi, 2010). Other RNAi pathways, capable
of degrading LINE-1 mRNA directly via the microprocessor
complex (Drosha/DGCR8), have also been described (Heras
et al., 2013, 2014). Furthermore, several cellular proteins have
been identified that positively or negatively regulate LINE-1
activity through proteomic screens for cellular interactors of
ORF1p or ORF2p (Pizarro and Cristofari, 2016).

Several other cellular pathways alter LINE-1 activity. Among
these, autophagy is an important cellular mechanism used to

Frontiers in Aging Neuroscience | www.frontiersin.org 5 January 2022 | Volume 13 | Article 786897

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-786897 December 27, 2021 Time: 15:14 # 6

Peze-Heidsieck et al. Retrotransposons, Aging, and Neurodegeneration

FIGURE 2 | The LINE-1 retrotransposition life cycle as a source of DNA damage and the influence of the aging process on LINE-1 repressive mechanisms. The
LINE-1 life cycle is controlled by different cellular processes many of which are negatively impacted by aging (described in more detail in the main text). Aging might
thus contribute to a release of repression of LINE-1 by cellular control mechanisms including epigenetic repression, DNA repair, and autophagy. On the other hand,
other cellular processes impacted by aging favor either LINE-1 expression (oxidative stress) or possibly LINE-1 nuclear import (increase in nuclear pore permeability).
Aging-related inflammation might be amplified by LINE-1 expression through the generation of cytoplasmic nucleic acids via the LINE-1 RT and the generation of
ssDNA which is repressed by DNA sensing (i.e., via the exonuclease Trex1 or other proteins involved in the modulation of cytosolic nucleic acid species). When
cellular repressive mechanisms are alleviated, full-length LINE-1 elements become expressed, which initiates the LINE-1 life cycle starting with the transcription of a
full-length LINE-1 element from the endogenous promoter contained in the 5′UTR (Figure 1C) and the export of the polyA + LINE-1 mRNA into the cytoplasm. Once
translated, the LINE-1 encoded proteins ORF1p and ORF2p reassemble in “cis” with the LINE-1 mRNA to form a ribonucleoparticle (RNP). The LINE-1 RNP can
accumulate in the cytoplasm in stress granules. Through a widely unknown mechanism, the RNP enters the nucleus where the ORF2 EN creates DNA strand breaks
and a new LINE-1 copy (often 5′truncated) is reverse transcribed into the genome via target-primed reverse transcription (TPRT). ORF2p can also create DNA strand
breaks independent of retrotransposition. As a bystander of cytoplasmic RT activity and via an unknown primer, ORF2 RT can reverse transcribe RNA into ssDNA
which triggers the innate immune system and inflammation.

degrade LTR and non-LTR retrotransposon RNA and thereby
prevent retrotransposition events. Depending on the level of
expression, LINE-1 mRNA localizes either to RNA granules
(endogenously expressed LINE-1) or cytoplasmic stress granules
(exogenous overexpressed LINE-1 RNA), but in either case,
LINE-1 RNA can be degraded via autophagy (Guo et al., 2014).
ORF1p is located in distinct foci in the cytoplasm which have
been (in conditions of exogenous expression) identified as stress
granules (Goodier et al., 2007, 2013). It is noteworthy that
stress granules formed in the absence of an exogenous stress,
indicating that ORF1p overexpression itself is recognized as a
stress by the host cell. Based on their data, the authors suggest
that stress granules could sequester and possibly degrade LINE-1
RNPs (ribonucleoproteins consisting of ORF1p/ORF2p and the

LINE-1 mRNA) via P (processing)-bodies (Goodier et al., 2007),
consistent with what was found for LINE-1 RNA (Guo et al.,
2014). Within the stress granules, ORF1p interacts with a large
number of RNA-binding proteins but interestingly, the authors
also identified RNAi factors colocalizing with ORF1p, suggesting
an additional layer of repression within this membraneless
cytoplasmic compartment.

The proteomic screens for LINE-1 interactors also identified
proteins activated through the interferon response pathway by
the innate immune system. These findings are consistent with the
role of the innate immune response as one of the first cellular
responses activated upon viral infections (MacMicking, 2012)
and the parasitic nature of LINE-1 elements. Some of these
proteins colocalize with stress granules and degrade LINE-1 RNA

Frontiers in Aging Neuroscience | www.frontiersin.org 6 January 2022 | Volume 13 | Article 786897

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-13-786897 December 27, 2021 Time: 15:14 # 7

Peze-Heidsieck et al. Retrotransposons, Aging, and Neurodegeneration

(e.g., MOV10, Moloney leukemia virus 10 homolog). However,
the exact mechanism for LINE-1 repression remains unknown
for other proteins (e.g., cytidine deaminase APOBEC3) (Pizarro
and Cristofari, 2016). This inflammatory response, although
essential, can have pathological consequences if not regulated
(Kassiotis and Stoye, 2016). Mutations in TREX1 (three prime
repair exonuclease 1) or SAMHD1 (SAM domain and HD
domain-containing protein 1) (Hu et al., 2015), for instance, lead
to the same autoimmune disease, Aicardi-Goutières syndrome
(AGS). TREX1 detects and degrades cytoplasmic ssDNA (single-
stranded DNA) fragments arising from aberrant RT activity of
LINE-1 or ERV (Stetson et al., 2008; Thomas et al., 2017) and
possibly also released from mitochondrial damage (Sliter et al.,
2018). The loss of TREX1 activity results in the accumulation
of LINE-1-derived ssDNA in the cytoplasm of astrocytes,
initiating (through the cGAS-STING pathway) a neurotoxic
release of interferon in the extracellular medium, and leads to
neurodegeneration (Thomas et al., 2017).

Finally, at the level of LINE-1 insertions or EN-mediated
DSBs, the DNA repair pathway comes into play. However,
while some DNA repair pathway proteins restrict LINE-1
activity (e.g., DNA excision repair protein 1, ERCC1), others
such as poly(ADP-ribose) polymerase 2 (PARP2) bind to
LINE-1 integration sites leading to subsequent recruitment
of the replication protein A (RPA) complex to facilitate
retrotransposition (for review, Pizarro and Cristofari, 2016;
Miyoshi et al., 2019).

Taken together, this complex interplay of repressive
mechanisms controlling TE expression ensures genomic
integrity and has been shown to be of great importance in the
context of neuronal cell survival (Thomas et al., 2017; Blaudin
de Thé et al., 2018). However, these mechanisms seem to fail
over time. We will discuss below how the aging process weakens
this multi-layer cellular response (Figure 2), increasing genomic
instability in the host cell and igniting (neuro)inflammation.

LINE-1 DEREPRESSION WITH AGING

Somatic cells express low, basal levels of LINE-1 (Faulkner
et al., 2009; Belancio et al., 2010). The brain seems to provide a
particularly permissive environment for LINE-1 activity (Muotri
et al., 2005, 2010; Coufal et al., 2009; Macia et al., 2017)
and supports higher retrotransposition rates compared to other
tissues (Muotri et al., 2005; Coufal et al., 2009; Baillie et al.,
2011; Evrony et al., 2012; Goodier, 2014; Suarez et al., 2018).
While LINE-1 RNA expression is well documented in the human
brain (Guo et al., 2018; Pereira et al., 2018; Sun et al., 2018;
Savage et al., 2019), knowledge about the expression of LINE-
1 encoded proteins in the brain remains scarce. Although
limited by sample size, the only study, to our knowledge, using
immunohistochemistry to characterize ORF1p expression in
human post-mortem brain provides evidence of higher ORF1p
expression levels in the brain compared to peripheral tissues and
suggests that patterns of ORF1p expression might vary depending
on the age of the individual, notably with regard to the subcellular
localization of ORF1p (Sur et al., 2017). The mobility of TEs

increases with aging in several species [Saccharomyces cerevisiae
(Maxwell et al., 2011); Caenorhabditis elegans (Dennis et al.,
2012); human cells in culture (De Cecco et al., 2013); mice
(De Cecco et al., 2019) and mouse tissues including brain (Van
Meter et al., 2014)]. As discussed above, aging is characterized
by several hallmarks impacting normal cellular functions and
inducing a secretory phenotype affecting surrounding cells (Di
Micco et al., 2021). Aging alters repressive epigenetic modifiers,
leading to heterochromatin disorganization (Misteli, 2010; Lee
et al., 2020), induces autophagy inhibition (Barbosa et al.,
2019) and cytoplasmic stress granule dysfunction (Cao et al.,
2020), increases permeability of the nuclear membrane (Li
and Lagier-Tourenne, 2018), triggers a dysfunctional innate
immune response (Shaw et al., 2010) and a decline of DNA
repair (Maynard et al., 2015). As shown in Figure 2, aging
generally leads to a decrease in TE repressive factors (Van
Meter et al., 2014), which allows TE expression. Finally,
aging also favors certain environments which increase LINE-
1 expression, notably oxidative stress (Rockwood et al., 2004;
Blaudin de Thé et al., 2018).

The regulation of LINE-1 by SIRT6 (sirtuin 6) particularly
illustrates the failure of a major LINE-1 repressive mechanism
following cellular stress or aging and thus impacting cellular
fitness. Indeed, during aging or in response to DNA damage, the
heterochromatin-inducing protein SIRT6, a histone deacetylase,
becomes depleted from LINE-1 loci, leading to derepression of
LINE-1 elements (Van Meter et al., 2014). SIRT6 is a key regulator
of mammalian lifespan as illustrated by the severe premature
aging phenotype of Sirt6 knockout mice (Mostoslavsky et al.,
2006) and the increase in lifespan of mice overexpressing Sirt6
(Kanfi et al., 2012). Interestingly, of all organs tested, the brain
showed the highest upregulation of LINE-1 transcripts with
aging, together with a partial loss of Sirt6 binding to the LINE-1
5′UTR. This, combined with reports of higher retrotransposition
rates in the brain compared to other tissues (Coufal et al., 2009;
Baillie et al., 2011) and several neurological diseases associated
with a dysregulation of LINE-1 activity (Baillie et al., 2011;
Jakovcevski and Akbarian, 2012), suggests that the brain might
be a particularly susceptible organ to LINE-1 related aging.

Another sirtuin, Sirt7 (sirtuin 7), safeguards genome stability
and cell viability (Tang et al., 2021). Among its cellular functions,
Sirt7 also acts as a tethering factor, partly via acetylation of H3K18
(histone H3 lysine 18), between the nuclear lamina protein
laminA/C and young LINE-1 sequences in mice and human cells.
LINE-1 elements are thus enriched at lamin-associated domains
(LADs), which are heterochromatic regions at the nuclear
periphery (Zuo and Rocha, 2020), and this tethering by Sirt7
ensures LINE-1 transcriptional silencing (Vazquez et al., 2019).
However, Sirt7 is downregulated during aging in hematopoietic
stem cells (Mohrin et al., 2015), suggesting that this repressive
mechanism of LINE-1 could be altered. Furthermore, it has been
reported that aging is correlated with the decrease of LINE-1
retrotransposon promoter methylation in purified cell-free DNA
from human blood (Mahmood et al., 2020).

The visionary “LINEage” theory has been postulated more
than a decade ago (St. Laurent et al., 2010). It hypothesized that
L1 acts as an “endogenous clock” which slowly erodes genomic
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integrity by competing with DNA break repair mechanisms
and thereby negatively impacting longevity. Accumulating
experimental evidence since then only confirms that LINE-1
activation might not only be an important universal hallmark
of aging in various tissues, including the brain, but also a
mechanistic driver of aging.

LINE-1 AS A SOURCE OF DNA DAMAGE
IN NEURODEGENERATION

Overexpression of LINE-1 in human embryonic stem cells
differentiated into hippocampal neurons led to an increase in
DNA DSBs (marked by γ-H2AX) which was abolished when
the LINE-1 EN and RT domains were mutated (Erwin et al.,
2016). The fact that LINE-1 activation can lead to DSBs in
adult neurons in vivo and induce neurodegeneration was recently
established in a mouse model of PD carrying only one allele
of the homeodomain transcription factor Engrailed-1 (En1)
(Blaudin de Thé et al., 2018). The homeoprotein Engrailed
plays an important role in the development and survival of
dopaminergic neurons during development (Simon et al., 2001;
Di Nardo et al., 2007; Rekaik et al., 2015). En1 expression
persists in adult midbrain dopaminergic neurons and continues
to be required for the survival of these neurons. Indeed, En1±
mice lose dopaminergic neurons in the SNpc starting from
6 weeks of age (Sonnier et al., 2007). This loss is progressive
and mutant mice develop PD-like motor symptoms. These
mice also show early dysfunctions in nerve termini and the
autophagy-lysosome pathway, reminiscent of early perturbances
and retrograde degeneration patterns observed in PD. En1±
mice thus represent a valuable model for PD (Sgadò et al.,
2008), used for preclinical drug testing (Ghosh et al., 2016).
Further characterization of this model revealed that En1± mice
exhibit loss of repressive chromatin marks, increased LINE-1
expression, and DSBs accumulation in dopaminergic neurons
in the SNpc. Importantly, it was shown that part of these
DSBs result from LINE-1 activation (Blaudin de Thé et al.,
2018). In line with this, DNA damage and neuronal cell death
in either En1± mice or a toxicological model of PD (direct
injection of 6-hydroxydopamine in the SNpc) could be rescued
by anti-LINE-1 strategies such as overexpression of PIWIL1,
siRNAs targeting ORF2, or a reverse transcriptase (RT) inhibitor
developed in the context of HIV/AIDS treatment, but also active
against the RT enzyme encoded by ORF2p (Dai et al., 2011;
Banuelos-Sanchez et al., 2019). Altogether, these studies indicate
that LINE-1 activity contributes to neurodegeneration in En1±
mice and in an acute oxidative stress model of dopaminergic
neurodegeneration via the induction of DNA damage. These
studies also showed that LINE-1 retrotransposons are inducible
in postmitotic dopaminergic neurons under stress conditions and
stress-induced LINE-1 increase is associated with DNA damage
and linked to neurodegeneration. More recently, it was shown
that heterochromatin destructuration following changes in DNA
methylation in dopaminergic neurons in the SNpc also resulted
in LINE-1 derepression, DNA damage and neurodegeneration
(Ravel-Godreuil et al., 2021a).

The active expression of TEs, especially LINE-1
retrotransposons, has now been documented in other NDs
such as AD (Guo et al., 2018; Sun et al., 2018) or ALS
(Pereira et al., 2018; Savage et al., 2019). Although LINE-1
retrotransposition has been reported in healthy tissues (Muotri
et al., 2005, 2010; Coufal et al., 2009; Macia et al., 2017) and in
the context of a large spectrum of neurological diseases (Reilly
et al., 2013; Suarez et al., 2018), the question as to whether
retrotransposition events take place in postmitotic neurons is
still a matter of debate. In particular, the relative contribution of
LINE-1 retrotransposition events in inducing genomic instability
and neurodegeneration remains to be established. However, as
discussed above, even in the absence of LINE-1 mobilization, the
DNA strand breaks induced by LINE-1 activity can be sufficient
to jeopardize genome integrity in the brain and contribute to
neurodegeneration (Blaudin de Thé et al., 2018). In addition
to being a source of DNA damage and genomic instability,
LINE-1 could be pathogenic drivers for other pathological
features of NDs. Indeed, the activity of LINE-1 loci can modulate
host gene expression in various ways (Elbarbary et al., 2016;
Liu et al., 2018). In addition, TE-derived proteins can be
neurotoxic (Antony et al., 2004; Douville and Nath, 2017)
and an increase in TE encoded proteins can be an important
source of neuroinflammation. Both, gene dysregulation and
neuroinflammation are common hallmarks of NDs. These
aspects have recently been reviewed in depth elsewhere (Saleh
et al., 2019; Tam et al., 2019a; Gorbunova et al., 2021). Further,
exciting evidence suggests that some proteins linked to AD and
two other neurodegenerative diseases, namely, ALS and FTD,
control or interact with TEs at different levels. The protein Tau,
mutated in specific forms of FTD and aggregating in several
neurodegenerative diseases including AD (Orr et al., 2017)
is involved in epigenetic repression of TEs (Sun et al., 2018;
Ramirez et al., 2021) and TDP-43 binds TE sequences and TE
transcripts (Li et al., 2012; Tam et al., 2019b).

LINE-1, DNA DAMAGE, AND
SENESCENCE

Genomic DNA damage can also be associated with other types
of cellular response, such as cellular senescence. In recent years,
a role of senescent cells has been recognized in aging and aging-
related pathologies (Childs et al., 2017; Kritsilis et al., 2018). It
is well documented that persistent accumulation of unrepairable
DNA damage in dividing cells leads to either apoptosis or
senescence, characterized by permanent cell cycle arrest (d’Adda
di Fagagna, 2008; Herranz and Gil, 2018) and a senescence-
associated secretory phenotype (SASP). The secretion of various
factors such as pro-inflammatory cytokines or matrix remodeling
factors by senescent cells can promote the induction of the same
phenotype in surrounding cells and drive aging and aging-related
diseases. LINE-1 expression induces cellular senescence in MCF7
cells (Wallace et al., 2008), and in turn, senescence induces
LINE-1 expression which activates a type-I interferon (IFN-I)
response (De Cecco et al., 2019). Furthermore, several factors,
such as FOXA1 (Forkhead box protein A1), TREX1, and RB1
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(retinoblastoma 1), have altered expression during senescence
and are also LINE-1 regulators (De Cecco et al., 2019).

While neurons cannot divide, recent evidence suggests that
post-mitotic neurons could re-enter the cell cycle in the context
of neurodegeneration (Nandakumar et al., 2021). Since mature
neurons cannot fully terminate the cell cycle by cell division,
they might rapidly exit the cell cycle and acquire a senescent-
like phenotype (Jurk et al., 2012). The DNA damage resulting
from the activation of LINE-1 elements could contribute to the
accumulation of senescent-like neurons in various brain areas
during aging and neurodegeneration. Such cells might spread this
senescence-like state through SASP to neighboring neurons and
thereby contribute to the chronic neuroinflammation observed
in NDs. Selective ablation of senescent cells is thought to have
therapeutic potential in neuroprotection (Childs et al., 2017).

LTR RETROTRANSPOSONS – ANOTHER
POSSIBLE SOURCE OF GENOMIC
INSTABILITY?

As documented above, accumulating evidence suggests that
LINE-1 retrotransposons can be a source of genomic instability
through the activity of the encoded EN. As DNA cleavage
is an integral part of transposition, we will examine in the
following section whether other TEs in the human genome
could be accountable for genomic instability in specific cellular
contexts. While LINE-1 are the only currently mobile TEs
in the human genome, some copies of LTR retrotransposons,
which comprise 8 to 9% of the human genome (Figure 1B),
have retained transcriptional activity and coding potential
and have been associated with human diseases, including
neurodegenerative diseases. A comprehensive review on HERV
pathogenicity in neurodegenerative diseases was published
recently (Tam et al., 2019a).

Human LTR retrotransposons can be broadly divided into
the non-autonomous MaLR and human endogenous retroviruses
(HERVs), which originate from exogenous retroviruses that
have infected hominoid germline cells millions of years ago
(Boeke and Stoye, 1997). In contrast to endogenous retroviruses
in mice, HERVs are considered non-replicating, but HERV-
RNA and encoded proteins have been identified in various
tissues (Garcia-Montojo et al., 2018). Although differences in
structure and processing exist, ERVs follow globally the classical
life cycle of retroviruses, namely, transcription from the so-
called nuclear DNA provirus, a complex translation pattern of
the compact RNA which includes two frameshifts, assembly
of encoded proteins and RNA to envelope-mediated budding
from the plasma membrane, processing of polyproteins into
functional protein units by the encoded protease within the
capsid, entry into a new cell, and post capsid disassembly and
reverse transcription of the viral RNA into cDNA (dsDNA via
the activity of the polymerase, Pol). Finally, a pre-integration
complex containing an integrase (IN) processed from the Pol
polyprotein within the capsid, “viral” dsDNA, and host proteins,
enter the nucleus and, following DNA strand breaks, the viral
dsDNA integrates into the host genome. Different HERV families

arose through independent infections of the human germ line 10
millions of years ago (Tristem, 2000).

Very few complete HERV sequences with open reading frames
for all encoded proteins have been identified in current human
genomes so far (Turner et al., 2001; Belshaw et al., 2005a)
as most HERV sequences have been mutated or recombined
to solo-LTRs during hominoid evolution. It is clear, however,
that TEs are highly polymorphic in populations (including
humans) and polymorphic HERVs are linked to diseases (Wallace
et al., 2018). It cannot be excluded that complete HERV
sequences that are replication-competent might exist at low
frequency (Belshaw et al., 2005a). The release of virus-like
particles in the context of cancer has been documented (Brodsky
et al., 1993; Contreras-Galindo et al., 2015), but no human
HERV elements and very few mouse ERVs so far have been
shown to complete the integration process. However, several
loci show potential for coding for one or the other HERV
protein (Table 2; Seifarth et al., 2005; Nakagawa and Takahashi,
2016), which theoretically could recombine to form a functional
element or through a process combining recombination and
trans-complementation (Dewannieux et al., 2006). Indeed,
incomplete HERVs might retrotranspose through a process called
“complementation in trans” (Mager and Freeman, 1995; Belshaw
et al., 2005b), which requires the simultaneous expression of
HERV elements encoding a polyprotein with ORFs for both
Gag (group antigen) and Pol, complemented by another element
(or the same), encoding a functional Env (envelop) protein.
Trans complementation of HERVs has been experimentally
demonstrated by reconstituting a HRV-K(HML-2) element,
which was infectious and depended on a capsid-involving
infection of another cell and could led to the reintegration of
a new synthetic HERV copy in vitro (Dewannieux et al., 2006).
Capsid-independent mobilization and amplification through
retrotransposition has been suggested (Belshaw et al., 2005b),
but the mechanisms by which this could be possible remain
unknown. Retrotransposition in “cis” uses the proteins encoded
by a given HERV element (or several HERVs via trans
complementation) to “copy-and-paste” elsewhere in the genome,
which requires a functional Gag and Pol, but not Env protein (as
this process does not require infection). This is known for the
LTR retrotransposons Ty1 and Drosophila copia (Dewannieux
and Heidmann, 2005) as well as for mouse IAP elements (Ribet
et al., 2008), but has not been documented for HERVs and was
absent in the synthetic HERV-K Phoenix (Dewannieux et al.,
2006). Another described mechanism for HERV amplification
is the trans-mobilization of HERV-W elements by the LINE-
1 machinery (Costas, 2002; Pavlícek et al., 2002; Grandi and
Tramontano, 2017). Thus, although experimental evidence
in vivo is lacking, HERV retrotransposition (within the same
cell or via a capsid-involving infection of another cell) cannot
be completely excluded (Romanish et al., 2010; Xue et al.,
2020). Together, this theoretical framework of possible HERV
retrotransposition activity implies that IN-induced genomic
instability might be possible. The presence of a functional IN
protein, which has been demonstrated for HERV-K (Kitamura
et al., 1996) for instance, is dependent on the processing of
the Pol polyprotein. However, not much is known concerning
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this process and whether it is possible in the absence of an
infectious capsid. Some recent evidence in the context of another
Pol encoded RT protein suggests that protease cleavage of the
Pol polyprotein is possible in neurons and astrocytes, generating
full-length RT proteins (Manghera et al., 2015) and possibly
a functional IN protein. Supposing that IN is processed, it
can form a so-called pre-integration complex together with the
reverse transcribed dsDNA and host proteins. IN prepares the
linear dsDNA ends for integration and joins these ends to the
host DNA through a strand transfer reaction leaving behind
DNA lesions needing to be repaired by the host DNA repair
machinery (reviewed in Lesbats et al., 2016). During this process,
aberrant IN activity or a failure in DNA repair (as in aging)
renders the cell prone to the formation of DSB (Bray et al.,
2016), which can lead to the loss of cellular functionality and,
ultimately, when the cell is overwhelmed, to cell death (Hanahan
and Weinberg, 2011). It remains however unclear whether this
genomic instability stems from TE mobilization or the expression
of the IN protein alone.

Human ERVs are expressed at low levels in the brain (Kurth
and Bannert, 2010) and can be activated in several neurological
diseases (Küry et al., 2018; Gröger et al., 2021). One example is
ALS. HERV-K loci containing open reading frames for IN are
increasingly transcribed in ALS cortical tissues (Douville et al.,
2011) and RT (and Env) proteins are specifically expressed in ALS
cortical neurons (Douville et al., 2011; Li et al., 2015), suggesting
that IN might also be expressed. Genomic instability has been
observed in ALS (Deng et al., 2014; Maizels, 2015) as well as
in other neurological diseases (like schizophrenia) where HERV-
K expression is upregulated (Smith et al., 2010; Kushima et al.,
2017). While formal evidence of HERV-K IN-mediated DNA
damage is lacking, this evidence provides a fertile ground for
further studies in this direction.

RETROTRANSPOSONS AS NEW
THERAPEUTIC TARGETS IN
NEURODEGENERATION

As we have developed above, the activation of coding LINE-1 and
potentially HERV retrotransposons can permit the production of
functional DNA cleaving proteins like the LINE-1 encoded EN
or the HERV encoded IN, the presence and activity of which
endanger the host genome and might contribute to aging and
neurodegeneration. In the following section, we will discuss the
potential of targeting retrotransposons to prevent DNA damage
in the context of aging and age-related NDs.

Inhibition of retrotransposon activity can be achieved at
multiple levels (Figure 2), namely, transcription, mRNA stability,
translation, degradation, and enzymatic activities of the encoded
proteins. Modifying environmental regulators of TEs or specific
drugs intervening at various steps of the TE lifecycle are already
partly available and constitute attractive tools to explore as a
possible treatment of NDs.

A potentially interesting environmental regulator of RTs is
caloric restriction. The impact of dietary restriction on lifespan
and/or healthspan (length of life deprived of any age-related

disease) in various organisms, ranging from invertebrates
to non-human primates, is well documented (Fontana and
Partridge, 2015). This is thought to be mediated by a downturn in
the metabolic rate which, among many other effects (reviewed in
Martin et al., 2007), reduces the generation of reactive oxidative
species (Bianchi et al., 2016) and inflammation (Ma et al.,
2020) and increases DNA repair (Rao, 2003); pathways with
relevance for RT activation. Indeed, caloric restriction in mice
results in a drastic decrease in the expression of TEs in liver
and muscle, accompanied by an aging-related restructuration
of chromatin, suggesting that dietary restriction might also
modulate aging-induced chromatin remodeling and thereby
reduce the transcription of TEs (De Cecco et al., 2013). Many
sirtuins positively affect lifespan (Kanfi et al., 2012; Satoh et al.,
2013), and are positively regulated by caloric restriction (Wątroba
and Szukiewicz, 2016). The sirtuins might thus be one of the hubs
for the effects of caloric restrictions linking TE regulation and
aging-induced chromatin alterations.

Two sirtuins, Sirt1 and Sirt6, are of particular interest since
they act as NAD+-dependent deacetylases of H3K9, thereby
favoring the formation of H3K9me3 repressive chromatin
(Zhong et al., 2010; Poulose and Raju, 2015) on LINE-1 and
HERVs (Kato et al., 2018). In addition, Sirt1 activity regulates the
histone methyltransferase SUV39H1 (suppressor of variegation
3-9 homolog 1) (Vaquero et al., 2004, 2007), which is also known
to repress LINE-1 (Bulut-Karslioglu et al., 2014). A correlation
between Sirt1 expression and LINE-1 promoter methylation
levels has been identified in the human retina in the context of
age-related macular degeneration (AMD) (Maugeri et al., 2019).
As described above, Sirt6, in addition to being associated with
aging and neurodegeneration (Kaluski et al., 2017; Portillo et al.,
2021), negatively regulates LINE-1 in an age-dependent manner
(Van Meter et al., 2014; Simon et al., 2019) and promotes genomic
stability (Mostoslavsky et al., 2006).

Mice deficient for the DNA repair enzyme Ercc1 display an
accelerated aging phenotype. Caloric restriction in these mice
significantly decreases DNA damage, leads to increased lifespan
and shows a protective effect on neuronal function (Vermeij
et al., 2016). This is consistent with other studies showing that
caloric restriction and intermittent fasting protect from cognitive
decline in mouse models of AD (Halagappa et al., 2007; Stekovic
et al., 2019). It is thus tempting to speculate that some of the life
span-regulating effects of caloric restriction, namely, a reduction
in DNA damage and inflammation, could be partly due to a
decrease in RT activation upon caloric restriction via epigenetic
containment of TEs. First evidence for a beneficial effect of caloric
restriction in humans (Il’yasova et al., 2018; Redman et al., 2018)
suggests that dietary interventions, including caloric restriction,
could be a non-specific strategy to reduce RT expression, decrease
DNA damage and inflammation, and, in turn, in the context of
age-related diseases, prevent neurodegeneration.

On a transcriptional level, the homeodomain protein
Engrailed could be an interesting target for LINE-1 repression in
dopaminergic neurons. Engrailed is a conserved homeoprotein
transcription factor involved in ventral midbrain dopaminergic
neuron and cerebellum development and, in the adult ventral
midbrain, specifically expressed in dopaminergic neurons and
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FIGURE 3 | Schematic overview of the proposed link between aging, LINE-1
elements, and neurodegeneration. Aging, environment, and possibly genetic
predisposition lead to chromatin disorganization, which releases epigenetic
repression on LINE-1 elements. Some proteins relevant for neurodegenerative
diseases (i.e., Tau and TDP-43) control TEs, including LINE-1, at several levels.
LINE-1 transcriptional activation can lead to “cis” and “trans” effects. “Cis”
effects concern local effects on chromatin organization or gene expression.
Intronic LINE-1 might lead to local gene dysregulation by protein truncations
via premature polyA signaling, alterations in splicing of the hosting gene,
generation of antisense transcripts, etc., or, in the case of intergenic LINE-1,
to the demasking of enhancers, transcription factor binding sites, changes in
the 3D organization of the chromatin, etc. “Trans” effects can be mediated by
actual retrotransposition events or retrotransposition-independent
consequences of LINE-1 activation like DNA damage and neuroinflammation.
Other sources of DNA damage can add onto this, stemming from
environmental influences, the aging process, neurodegenerative processes,
and possibly other TEs, like ERVs, resulting in neurodegeneration.

important for their survival (Alvarez-Fischer et al., 2011).
Upon acute oxidative stress inflicted on midbrain dopaminergic
neurons in vivo, Engrailed blocks cell death and restores
epigenetic marks disrupted by oxidative stress (Rekaik et al.,
2015). Chromatin immunoprecipitation experiments showed
that Engrailed specifically binds to LINE-1 promoters and is
a transcriptional repressor of LINE-1 in mice in vivo. By
blocking LINE-1 expression, Engrailed prevented DNA damage
and neuronal death induced by oxidative stress in mouse
dopaminergic neurons (Blaudin de Thé et al., 2018). Importantly,
the Engrailed protein can be internalized into live cells, enabling
its use as a therapeutic protein (Di Nardo et al., 2018).

A more specific way to inhibit TE activity is using inhibitors
of one of their encoded functional protein subunits. The one
protein shared by LINE-1 and HERVs, and to which they owe
their name, is the RT. Several FDA-approved drugs used in
AIDS (acquired immunodeficiency syndrome) therapies that
target HIV (human immunodeficiency virus) RT also efficiently
inhibit the RT enzymes of LINE-1 (Dai et al., 2014; Krug
et al., 2017; Liu et al., 2019) and the RT of HERVs (Garcia-
Montojo et al., 2021). Blocking LINE-1 with the nucleoside
reverse transcriptase inhibitor (NRTI) stavudine in the context
of an acute oxidative stress, reduced DNA damage and mitigated
the neurodegeneration of dopaminergic neurons (Blaudin de
Thé et al., 2018). Lamivudine was shown to almost completely
block the synthesis of LINE-1 cDNA, leading to a reduction in
the expression of IFN-1 response genes and LINE-1 associated
neuroinflammation (De Cecco et al., 2019). Similarly, inhibition
of LINE-1 activity with NRTIs in Sirt-6-deficient mice (exhibiting
upregulation of LINE-1, see above) rescued DNA damage (Simon
et al., 2019). These results are surprising, as NRTIs are reverse-
transcriptase inhibitors and do not inhibit LINE-1 EN activity. It
is not clear how NRTIs can reduce EN-mediated DNA damage.
It was proposed that NRTIs could terminate an integration
attempt, thereby facilitating the access of the DNA damage
response (DDR) machinery to damaged sites, as NRTI treatments
result in less LINE-1 RNA bound to chromatin (Blaudin de
Thé et al., 2018). NRTIs have been shown to be efficient
in in vitro cell cultures or mouse models, but whether they
can confer protection against neurodegeneration in diseases
linked to RT activation is currently under investigation. Clinical
safety and tolerability in humans have been investigated in the
context of ALS in the “Lighthouse trial” (Gold et al., 2019).
In this trial, a combination of NRTIs, already used in the
context of AIDS, called Triumeq (abacavir, lamivudine, and
dolutegravir) was tested. Triumeq was safe and well tolerated
by patients and a phase 3 clinical trial has been scheduled
(Gold et al., 2019). The efficacy of NRTIs to treat other NDs
is currently ongoing in AD (Pizarro and Cristofari, 2016;
Salloway, 2021) and continuing in ALS (National Institute of
Neurological Disorders and Stroke [NINDS], 2021). Based on
the current data on LINE-1 as a source of genomic instability
in neurons, LINE-1 EN inhibitors would be of interest but are
unfortunately not available.

In addition to RT inhibitors, efficient inhibitors of HIV IN
were developed to treat AIDS. Although with lower efficacy,
these inhibitors are also effective against the HERV-K/HML-2
IN in vitro (Contreras-Galindo et al., 2017; Tyagi et al., 2017).
As discussed above, based on the scarcity of evidence for HERV-
mediated genomic instability, the use of IN inhibitors is of less
interest in the context of NDs.

CONCLUSION

In view of the evidence discussed in this review, a
novel pathogenic axis for NDs emerges, linking age and
neurodegeneration based on the aging-induced alteration
of heterochromatin organization, subsequent LINE-1
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derepression, and LINE-1-related genomic instability leading to
neurodegeneration. This hypothesis reconciles the transposon
theory (Driver and McKechnie, 1992), extended by the LINEage
theory stipulating the importance of non-retrotransposition
dependent DNA damage in the aging process (St. Laurent et al.,
2010), with the heterochromatin theory of aging (Villeponteau,
1997) and provides a molecular basis to explain why age is the
major risk factor for NDs. Derepression of transposable elements
including LINE-1 can have multiple consequences on cellular
functions of which genomic instability appears to be of major
importance. Examples of neurodegenerative processes favoring
TE derepression are emerging (Guo et al., 2018; Sun et al., 2018)
and suggest that genetic risk together with environmental factors
and age in combination might determine the individual risk to
develop a neurodegenerative disease (Figure 3). As such, this
pathogenic axis could be shared by many age-related NDs and
regional susceptibility could be determined by the combination
of TE regulatory factors specific for certain neuronal populations
or brain regions. Of specific interest is the potential of this
emerging axis not only to foster the understanding of the
pathogenesis of NDs but also to provide a point of attack for the
development of urgently needed disease-modifying treatments.
Much is still to learn and the coming years will likely increase
our understanding of the role that TEs play in the physiology and
pathophysiology of the brain.
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