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Abstract
This paper is devoted to the investigation of three-dimensional models of thermo-electro-magneto-elastic solids made of 
a multidomain inhomogeneous anisotropic material. General boundary and initial boundary value problems correspond-
ing to the static and dynamic models are studied where, on certain parts of the boundary, mechanical displacement, 
electric and magnetic potentials and temperature vanish and, on the corresponding remaining parts of the boundary, the 
mechanical stress vector and components of the electric displacement, magnetic induction and heat flux along the 
outward normal vector of the boundary are given. Variational formulations of the boundary and initial boundary value 
problems are obtained and, applying them, existence and uniqueness results and the continuous dependence of solutions 
on given data, in suitable factor spaces of Sobolev spaces or spaces of vector-valued distributions, are proved.
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1. Introduction

Modern complex engineering constructions and technological processes are controlled by using sensors and
actuators, which gather information and facilitate the adequate adjustment of constructions or processes. The
need to construct sensors and actuators with the appropriate physical characteristics stimulates the analysis
of interactions between various physical fields, such as elastic, thermal, electric and magnetic. Piezoelectric
materials are the most popular materials currently being used in smart structures, owing to their direct and
converse piezoelectric effects, which permit them to be utilized as both actuators and sensors. A wide area of
their application is aerospace engineering, where most structures operate in changing thermal environments.
Therefore, the investigation of multifield problems in continuum mechanics is important from a practical as
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well as a theoretical point of view; hence, owing to their numerous applications, the study of the mechanics of
thermo-electro-magneto-elastic materials has attracted increasing attention in recent years.

One of the first rigorous theoretical models of piezoelectricity, describing the interaction between elas-
tic, electric and thermal properties of a thermoelastic body, was constructed by Voigt [1]. Later on, Cady
[2] treated the physical properties of piezoelectric crystals as well as their practical applications. A three-
dimensional model accounting for the coupling of elastic, electric and thermal fields was derived by Mindlin
[3], who applied a variational principle. Nowacki [4, 5] developed uniqueness and reciprocity theorems for
thermo-piezoelectricity. Dhaliwal and Wang [6] proved a uniqueness theorem for linear three-dimensional
thermo-piezoelectricity without restriction on the coupling constant between temperature and electric field,
and positive definiteness of the elasticity tensor, which were used in [5]. Li [7] considered the coupling effects
between elastic, electric, magnetic and thermal fields, and generalized the uniqueness result obtained in [6]
and the reciprocity theorem of Nowacki [4], which were further strengthened by Aouadi [8], and the results
were proved without positive definiteness assumptions on the conductivity tensor used in [7]. The existence,
uniqueness and continuous dependence on the given data of a solution of an initial boundary value prob-
lem with the mixed boundary conditions for mechanical displacement, mechanical stress, electric potential
and electric displacement corresponding to the three-dimensional model of an anisotropic inhomogeneous
piezoelectric material with quasi-static equations for the electric field were proved in Sobolev spaces by
Akamatsu and Nakamura [9]. Well-posedness results in specific function spaces for the three-dimensional
model of thermo-piezoelectricity with inhomogeneous material parameters in the cases of homogeneous pure
Dirichlet- or Neumann-type boundary conditions given on the entire boundary were obtained by Mulholland
et al. [10]. Applying the potential method and theory of pseudodifferential equations, Natroshvili [11] studied
static and pseudo-oscillation problems with basic, mixed and crack-type boundary conditions for homogeneous
anisotropic thermo-electro-magneto-elasticity. For various classical and nonclassical models of piezoelectric
solids, problems of propagation of waves, methods of solutions of corresponding initial and initial boundary
value problems, applications of the obtained results and related topics are considered by many researchers (see
[8–21] and the references given therein).

To the authors’ knowledge, three-dimensional initial boundary value problems with general mixed bound-
ary conditions for mechanical displacement, temperature, electric and magnetic potentials corresponding to the
linear dynamic model with quasi-static equations for electric and magnetic fields for a multidomain inhomoge-
neous anisotropic thermo-electro-magneto-elastic body have not yet been investigated in Sobolev spaces. Only
the boundary value problem with general mixed boundary conditions corresponding to the static model has
been studied [22].

In this paper, we investigate static and dynamic models with quasi-static equations for electric and magnetic
fields of a multidomain thermo-electro-magneto-elastic body, where each subdomain consists of an anisotropic
inhomogeneous material, and obtain new existence, uniqueness and continuous dependence results in the corre-
sponding function spaces. The dynamic model is studied by applying the variational approach and the method of
successive approximations, which permits one to construct the algorithm for the numerical solution of the prob-
lem. One of the aims of the paper is to obtain a new well-posedness result in ordinary Sobolev spaces, which are
widely used for the investigation of the initial boundary value problems corresponding to the dynamic models
of the classical linear elasticity, without any additional structures of function spaces.

In Section 2, we consider the differential formulation of the initial boundary and boundary value problems
corresponding to the linear dynamic and static three-dimensional models for a multidomain inhomogeneous
anisotropic thermo-electro-magneto-elastic body with general mixed boundary conditions, where, on certain
parts of the boundary, the surface force and components of the electric displacement, magnetic induction and
heat flux along the outward normal vector are prescribed, and, on the remaining parts, the mechanical dis-
placement, electric and magnetic potentials and temperature vanish. We obtain integral relations that require
less regularity of the unknown functions than in the original problem and show that, in the space of twice
continuously differentiable functions, the obtained integral relations are equivalent to the original differential
equations.

In Section 3, on the basis of the integral relations obtained in Section 2, we consider the variational formu-
lation in suitable Sobolev spaces of the boundary value problem corresponding to the static three-dimensional
model of thermo-electro-magneto-elastic solids considered in Section 2. We define the structure of the set of
solutions of the homogeneous boundary value problem and, applying it, we formulate results regarding the exis-
tence, uniqueness and continuous dependence of a solution of the three-dimensional boundary value problem
on given data in suitable function spaces.
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In Section 4, applying the integral relations obtained in Section 2, we obtain the variational formulation in
suitable spaces of vector-valued distributions with respect to the time variable with values in Sobolev spaces of
the initial boundary value problem corresponding to the dynamic three-dimensional model of thermo-electro-
magneto-elastic solids considered in Section 2. We introduce suitable factor spaces and prove the existence
and uniqueness theorem. The existence of a solution of the three-dimensional initial boundary value problem
is proved by applying new a priori estimates and compactness arguments. Furthermore, an energy equality is
obtained, which permits us to prove the uniqueness result and continuous dependence of a solution on given data
in suitable function spaces. At the end of Section 4, we analyse the conditions of the theorem and obtain effective
sufficient conditions for existence of a solution of the three-dimensional initial boundary value problem.

2. Formulation of the static and dynamic three-dimensional models

Throughout this paper, the indices i, j, p, q range in the set {1, 2, 3} and the summation convention with respect

to repeated indices is used; the indices or exponents k, k vary in the set {1, . . . , K}, save when they are used for
indexing sequences, where K is a natural number, and we do not use the summation convention with respect

to k, k. For any vectors x, y from the three-dimensional Euclidean space R
3, let x · y and x × y denote the

Euclidean inner product and the vector product of vectors x, y in the space R
3, respectively, and we denote by

|x| = √
x · x the Euclidean norm of x ∈ R

3. The Cartesian coordinates of a point x ∈ R
3 are denoted xi, and

we let ∂i = ∂/∂xi. The space of real 3 × 3 matrices we designate by M
3 equipped with the matrix inner product

F : F = FijFij, for all F, F ∈ M
3. We denote by H ∗ F ∈ M

3, R ∗ F ∈ R
3 and R ∗ x ∈ M

3 the products

of any fourth-order tensor H = (Hijpq), third-order tensor R = (Ripq), matrix F = (Fpq) ∈ M
3 and vector

x = (xi) ∈ R
3, which are defined by (H ∗ F)ij = HijpqFpq, (R ∗ F)i = RipqFpq and (R ∗ x)pq = Ripqxi. Given

a smooth enough vector field v = (vi) : � → R
3 and matrix field σ = (σij) : � → M

3, their divergences

divv : � → R and div σ = ((div σ )i) : � → R
3 are defined by divv = ∂ivi and (div σ )i = ∂jσij, where � ⊂ R

3

is an open set. The gradients of a smooth enough scalar field v : � → R and vector field v = (vi) : � → R
3

are defined by grad v = ((grad v)i) : � → R
3, (grad v)i = ∂iv and ∇v = ((∇v)ij) : � → M

3, (∇v)ij = ∂jvi. We

denote by n = (ni), nk = (nk
i ) the unit outward normal vectors of the corresponding surfaces.

Let us consider a multidomain thermo-electro-magneto-elastic body with initial configuration � = ∪K
k=1�k ,

where each subdomain �k consists of a general inhomogeneous anisotropic material that is characterized
by consistent spatially dependent parameters. The governing field equations of the dynamic linear three-
dimensional model of the stress–strain state of each subdomain �k of the thermo-electro-magneto-elastic body
� in differential form with quasi-static equations for electric and magnetic fields, where the rate of the magnetic
field is small, i.e., the electric field is curl free, and there is no electric current, i.e., the magnetic field is curl
free, are of the following form [7, 11]:

ρk ∂2uk

∂t2
− div σ k = f k in �k × (0, T), (1)

divDk = f ϕ,k in �k × (0, T), (2)

divBk = 0 in �k × (0, T), (3)

κ
k ∂θ k

∂t
− div

(
ηk ∗ grad θ k

)
+ �0

∂

∂t

(
λk : e

(
uk

))
− �0

∂

∂t

(
µk · grad ϕk

)
− �0

∂

∂t

(
mk · grad ψk

)
= f θ ,k

in �k × (0, T), (4)

where σ k = (σ k
ij ) is the mechanical stress tensor in the subdomain �k , which is given by the following linear

constitutive equation for a thermo-electro-magneto-elastic solid:

σ k = ck ∗ e
(
uk

)
+ εk ∗ grad ϕk + bk ∗ grad ψk − λkθ k , (5)

where uk = (uk
i ) : �k × [0, T] → R

3 is the mechanical displacement vector-function; ϕk : �k × [0, T] → R

and ψk : �k × [0, T] → R stand for the electric and magnetic potentials, such that electric and magnetic fields

are Ek = −grad ϕk and Hk = −grad ψk and θ k : �k × [0, T] → R is the temperature distribution. For
smooth enough vector field, v = (vi) : � → R

3, e(v) = (eij(v)), eij(v) = 1/2
(
∂jvi + ∂ivj

)
is the strain tensor;

ck = (ck
ijpq(x)) is the elasticity tensor; εk = (εk

ipq(x)) and bk = (bk
ipq(x)) are the piezoelectric and piezomagnetic
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coefficients; λk = (λk
ij(x)) is the stress–temperature tensor; ρk is the mass density in the reference configuration;

f k = (f k
i ) : �k × (0, T) → R

3 is the density of the applied body force; Dk = (Dk
i ) is the electric displacement

vector and Bk = (Bk
i ) is the magnetic induction vector. The latter are given, respectively, by the following linear

constitutive equations:

Dk = εk ∗ e
(
uk

)
− dkgrad ϕk − akgrad ψk + µkθ k , (6)

Bk = bk ∗ e
(
uk

)
− akgrad ϕk − ζ kgrad ψk + mkθ k , (7)

where dk = (dk
ij(x)) and ζ k = (ζ k

ij (x)) are the permittivity and permeability tensors; ak = (ak
ij(x)) are the coupling

coefficients connecting electric and magnetic fields; µk = (μk
i (x)) and mk = (mk

i (x)) are coefficients character-
izing the relations between thermal and electric fields and between thermal and magnetic fields, respectively;
f ϕ,k : �k × (0, T) → R is the density of electric charges; κ

k is the thermal capacity; ηk = (ηk
ij(x)) is the

thermal conductivity tensor; �0 > 0 is the temperature of the thermo-electro-magneto-elastic body in the
natural state of no deformation and electromagnetic fields, which is considered a reference temperature, and
f θ ,k : �k × (0, T) → R is the density of heat sources. Note that the mechanical displacement vector u of the

entire thermo-electro-magneto-elastic body � is equal to uk on �k , the electric potential ϕ of � is equal to ϕk

on �k , the magnetic potential ψ of � is equal to ψk on �k and the temperature θ of � is equal to θ k on �k .
We consider classical boundary conditions on the boundary of the body � and on the interfaces between

the subdomains �k , which are widely used in applications. More precisely, we assume that the entire thermo-
electro-magneto-elastic body � is clamped along a part Ŵ0 ⊂ Ŵ = ∂� of the Lipschitz boundary Ŵ, and, on the
remaining part Ŵ1 = Ŵ\Ŵ0, an applied surface force vector, with density g = (gi) : Ŵ1 × (0, T) → R

3, is given,
where Ŵ = Ŵ0 ∪ Ŵ1 is a Lipschitz dissection [23] of Ŵ:

uk = 0 on Ŵ0,k = Ŵ0 ∩ ∂�k , σ knk = g on Ŵ1,k = Ŵk\Ŵ0,k , Ŵk = ∂�k . (8)

Along a part Ŵ
ϕ

0 ⊂ Ŵ of the boundary, the electric potential vanishes and, on the remaining part Ŵ
ϕ

1 = Ŵ\Ŵϕ

0 , the

normal component of the electric displacement, with density gϕ : Ŵ
ϕ

1 ×(0, T) → R, is given, where Ŵ = Ŵ
ϕ

0 ∪Ŵ
ϕ

1

is a Lipschitz dissection of Ŵ:

ϕk = 0 on Ŵ
ϕ

0,k = Ŵ
ϕ

0 ∩ ∂�k , Dk · nk = gϕ on Ŵ
ϕ

1,k = Ŵk\Ŵϕ

0,k . (9)

Along a part Ŵ
ψ

0 ⊂ Ŵ, the magnetic potential vanishes and, on the remaining part Ŵ
ψ

1 = Ŵ\Ŵψ

0 , the normal

component of the magnetic induction, with density gψ : Ŵ
ψ

1 × (0, T) → R, is given, where Ŵ = Ŵ
ψ

0 ∪ Ŵ
ψ

1 is a
Lipschitz dissection of Ŵ:

ψk = 0 on Ŵ
ψ

0,k = Ŵ
ψ

0 ∩ ∂�k , Bk · nk = gψ on Ŵ
ψ

1,k = Ŵk\Ŵψ

0,k . (10)

The temperature vanishes along a part Ŵθ
0 ⊂ Ŵ of the boundary and the heat flux along the outward normal of

Ŵ, with density gθ : Ŵθ
1 × (0, T) → R, is given on Ŵθ

1 = Ŵ\Ŵθ
0 , where Ŵ = Ŵθ

0 ∪ Ŵθ
1 is a Lipschitz dissection of

Ŵ:

θ k = 0 on Ŵθ
0,k = Ŵθ

0 ∩ ∂�k , −
(
ηkgrad θ k

)
· nk = gθ on Ŵθ

1,k = Ŵk\Ŵθ
0,k . (11)

On the common interfaces Ŵk ∩Ŵk , of the subdomains �k and �k , rigid contact conditions are assumed; i.e.,
the mechanical displacement vector, temperature, electric and magnetic potentials, mechanical stress vector and
normal components of the heat flux, electric displacement and magnetic induction are continuous:

uk = uk , σ kn = σ kn on Ŵk ∩ Ŵk , (12)

ϕk = ϕk , Dk · n = Dk · n on Ŵk ∩ Ŵk , (13)

ψk = ψk , Bk · n = Bk · n on Ŵk ∩ Ŵk , (14)

θ k = θ k ,
(
ηkgrad θ k

)
· n =

(
ηkgrad θ k

)
· n on Ŵk ∩ Ŵk . (15)
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At the initial moment of time, we have the following initial conditions for the mechanical displacement vector-
function and temperature:

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), θ(x, 0) = θ0(x), x ∈ �, (16)

where u0 = (u0i) and u1 = (u1i) are the initial mechanical displacement and velocity vector-functions,
respectively, and θ0 is the initial distribution of temperature.

We assume that the elasticity tensors (ck
ijpq), stress–temperature tensor (λk

ij), piezoelectric tensor (εk
pij) and

piezomagnetic tensor (bk
pij) satisfy the following symmetry conditions:

ck
ijpq = ck

ijqp = ck
jipq, λk

ij = λk
ji, εk

pij = εk
pji, bk

pij = bk
pji. (17)

If uk , ϕk , ψk and θ k are twice continuously differentiable, then by multiplying equation (1) by an arbitrary

continuously differentiable function vk : �k → R
3, which vanishes on Ŵ0,k and vk = vk on Ŵk ∩Ŵk , multiplying

equation (2) by a continuously differentiable function ϕk : �k → R, such that ϕk = 0 on Ŵ
ϕ

0,k and ϕk = ϕk on

Ŵk∩Ŵk , multiplying equation (3) by a continuously differentiable function ψ
k

: �k → R, which vanishes on Ŵ
ψ

0,k

and ψ
k = ψ

k
on Ŵk ∩ Ŵk , and multiplying equation (4) by a continuously differentiable function θ

k
: �k → R,

such that θ
k = 0 on Ŵθ

0,k and θ
k = θ

k
on Ŵk ∩ Ŵk , by integrating on �k and by using Green’s formula, we obtain

the following integral relations for a subdomain �k:

∫

�k

ρk ∂2uk

∂t2
· vkdx −

∫

Ŵk

σ knk · vkdŴk +
∫

�k

σ k : ∇vkdx =
∫

�k

f k · vkdx, (18)

∫

Ŵk

Dk · nkϕkdŴk −
∫

�k

Dk · grad ϕkdx =
∫

�k

f ϕϕkdx, (19)

∫

Ŵk

Bk · nkψ
k
dŴk −

∫

�k

Bk · grad ψ
k
dx = 0, (20)

∫

�k

κ
k ∂θ k

∂t
θ

k
dx −

∫

Ŵk

(
ηkgrad θ k

)
· nkθ

k
dŴ +

∫

�k

(
ηkgrad θ k

)
· grad θ

k
dx + �0

∫

�k

λk : e

(
∂uk

∂t

)
θ

k
dx

−�0

∫

�k

(
µk · grad

∂ϕk

∂t

)
θ

k
dx − �0

∫

�k

(
mk · grad

∂ψk

∂t

)
θ

k
dx =

∫

�k

f θ ,kθdx. (21)

On the common interfaces Ŵk ∩ Ŵk , we have vk = vk , ϕk = ϕk , ψ
k = ψ

k
, θ

k = θ
k

and nk = −nk . Therefore,
from the rigid contact conditions (12) to (15), after summation of equations (18) to (21) with respect to k, by
applying the boundary conditions (8) to (11) and the constitutive equations (5) to (7), and taking into account
the symmetry conditions (17), we obtain:

K∑

k=1

∫

�k

ρk ∂2uk

∂t2
· vkdx +

K∑

k=1

∫

�k

(
ck ∗ e

(
uk

))
: e

(
vk

)
dx +

K∑

k=1

∫

�k

(
εk ∗ grad ϕk

)
: e

(
vk

)
dx

+
K∑

k=1

∫

�k

(
bk ∗ grad ψk

)
: e

(
vk

)
dx −

K∑

k=1

∫

�k

λk : e
(
vk

)
θ kdx =

∫

�

f · vdx +
∫

Ŵ1

g · vdŴ, (22)
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−
K∑

k=1

∫

�k

(
εk ∗ e

(
uk

))
· grad ϕkdx +

K∑

k=1

∫

�k

(
dkgrad ϕk

)
· grad ϕkdx +

K∑

k=1

∫

�k

(
akgrad ψk

)
· grad ϕkdx

−
K∑

k=1

∫

�k

µk · grad ϕkθ kdx =
∫

�

f ϕϕdx −
∫

Ŵ
ϕ
1

gϕϕdŴ, (23)

−
K∑

k=1

∫

�k

(
bk ∗ e

(
uk

))
· grad ψ

k
dx +

K∑

k=1

∫

�k

(
akgrad ϕk

)
· grad ψ

k
dx +

K∑

k=1

∫

�k

(
ζ kgrad ψk

)
· grad ψ

k
dx

−
K∑

k=1

∫

�k

(
mk · grad ψ

k
)

θ kdx = −
∫

Ŵ
ψ
1

gψψdŴ, (24)

K∑

k=1

∫

�k

κ
k ∂θ k

∂t
θ

k
dx +

K∑

k=1

∫

�k

(
ηkgrad θ k

)
· grad θ

k
dx + �0

K∑

k=1

∫

�k

λk : e

(
∂uk

∂t

)
θ

k
dx

−�0

K∑

k=1

∫

�k

(
µk · grad

∂ϕk

∂t

)
θ

k
dx − �0

K∑

k=1

∫

�k

(
mk · grad

∂ψk

∂t

)
θ

k
dx =

∫

�

f θθdx −
∫

Ŵθ
1

gθθdŴ, (25)

where f = f k , f ϕ = f ϕ,k and f θ = f θ ,k in �k and v = vk , ϕ = ϕk , ψ = ψ
k

and θ = θ
k

on �k .

Therefore, if uk , ϕk , ψk and θ k are solutions of equations (1) to (4) and satisfy the boundary conditions (8)
to (11) and the rigid contact conditions (12) to (15), then uk , ϕk , ψk and θ k are solutions of equations (22) to
(25). Conversely, if uk , ϕk , ψk and θ k are twice continuously differentiable solutions of equations (22) to (25),
then by using Green’s formula we obtain:

K∑

k=1

∫

�k

ρk ∂2uk

∂t2
· vkdx+

K∑

k=1

∫

Ŵk

σ knk · vkdŴ−
K∑

k=1

∫

�k

div
(
ck ∗ e

(
uk

)
+εk ∗ grad ϕk +bk ∗ grad ψk −λkθ k

)
· vkdx

=
∫

�

f · vdx +
∫

Ŵ1

g · vdŴ, (26)

−
K∑

k=1

∫

Ŵk

(Dk · nk)ϕkdŴk +
K∑

k=1

∫

�k

div
(
εk ∗ e

(
uk

)
−dkgrad ϕk −akgrad ψk + µkθ k

)
ϕkdx

=
∫

�

f ϕϕdx−
∫

Ŵ
ϕ
1

gϕϕdŴ, (27)

−
K∑

k=1

∫

Ŵk

(
Bk · nk

)
ψ

k
dŴ+

K∑

k=1

∫

�k

div
(
bk ∗ e

(
uk

)
−akgrad ϕk −ζ kgrad ψk + mkθ k

)
ψ

k
dx=−

∫

Ŵ
ψ
1

gψψdŴ, (28)

K∑

k=1

∫

�k

κ
k ∂θ k

∂t
θ

k
dx +

K∑

k=1

∫

Ŵk

(
ηkgrad θ k · nk

)
θ

k
dŴ−

K∑

k=1

∫

�k

div
(
ηkgrad θ k

)
θ

k
dx + �0

K∑

k=1

∫

�k

λk : e

(
∂uk

∂t

)
θ

k
dx

−�0

K∑

k=1

∫

�k

(
µk · grad

∂ϕk

∂t

)
θ

k
dx − �0

K∑

k=1

∫

�k

(
mk · grad

∂ψk

∂t

)
θ

k
dx =

∫

�

f θθdx −
∫

Ŵθ
1

gθθdŴ, (29)

where vk , ϕk , ψ
k

and θ
k

are continuously differentiable functions on �k , such that vk = 0 on Ŵ0,k , ϕk = 0 on

Ŵ
ϕ

0,k , ψ
k = 0 on Ŵ

ψ

0,k , θ
k = 0 on Ŵθ

0,k and vk = vk , ϕk = ϕk , ψ
k = ψ

k
and θ

k = θ
k

on Ŵk ∩ Ŵk . By letting
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vk ∈ (C1
0(�k))3, C1

0(�k) = {v ∈ C1(�k) |v = 0 on Ŵk}, ϕk ∈ C1
0(�k), ψ

k ∈ C1
0(�k) and θ

k ∈ C1
0(�k), and

by taking into account the density of C1
0(�) in L2(�), we obtain, from equations (26) to (29), that uk , ϕk , ψk

and θ k , k = 1, . . . , K, satisfy equations (1) to (4). Now, if functions vk , ϕk , ψ
k

and θ
k

are arbitrary continuous

functions on the surfaces Ŵ1,k , Ŵ
ϕ

1,k , Ŵ
ψ

1,k and Ŵθ
1,k and vanish on the remaining parts of the boundary Ŵk , then

by applying equations (1) to (4) and the density of the sets of continuous functions on Ŵ1,k , Ŵ
ϕ

1,k , Ŵ
ψ

1,k and Ŵθ
1,k ,

vanishing on the boundaries of the corresponding surfaces in spaces L2(Ŵ1,k), L2(Ŵ
ϕ

1,k), L2(Ŵ
ψ

1,k) and L2(Ŵθ
1,k), we

infer, from equations (26) to (29), that uk , ϕk , ψk and θ k satisfy the boundary conditions (8) to (11). Similarly,

if the functions vk , ϕk , ψ
k

and θ
k

are arbitrary continuous functions on the interfaces Ŵk ∩ Ŵk and vanish on the
remaining parts of the boundaries Ŵk and Ŵk , then, from equations (26) to (29), taking into account equations
(1) to (4) and the density of the sets of continuous functions on Ŵk ∩ Ŵk , vanishing on the boundaries of the

corresponding surfaces in space L2(Ŵk ∩Ŵk), we obtain that uk , ϕk , ψk and θ k satisfy the rigid contact conditions
(12) to (15).

Note that the differential linear three-dimensional model of the static equilibrium [22] of the thermo-electro-
magneto-elastic body � is given by the system of equations (1) to (4), together with the boundary conditions

(8) to (11) and rigid contact conditions (12) to (15), where the functions uk , ϕk , ψk , θ k , f k , f ϕ,k , f θ ,k , g, gϕ , gψ

and gθ do not depend on the time variable t and the corresponding equations are fulfilled in �. Hence, in the
static model, instead of equations (1) and (4), we have:

−div σ k = f k in �k , (30)

−div
(
ηkgrad θ k

)
= f θ ,k in �k , (31)

and, instead of equations (22) and (25), we have:

K∑

k=1

∫

�k

(
ck ∗ e

(
uk

))
: e(vk)dx +

K∑

k=1

∫

�k

(
εk ∗ grad ϕk

)
: e

(
vk

)
dx

+
K∑

k=1

∫

�k

(
bk ∗ grad ψk

)
: e

(
vk

)
dx −

K∑

k=1

∫

�k

(
λk : e

(
vk

))
θ kdx =

∫

�

f · vdx +
∫

Ŵ1

g · vdŴ, (32)

K∑

k=1

∫

�k

ηkgrad θ k · grad θ
k
dx =

∫

�

f θθdx −
∫

Ŵθ
1

gθθdŴ. (33)

Thus, the initial boundary value problem (1) to (4) and (8) to (16) corresponding to the dynamic three-
dimensional model of a multidomain anisotropic inhomogeneous thermo-electro-magneto-elastic solid is equiv-
alent to equations (22) to (25), together with the initial conditions (16) in spaces of twice continuously differ-
entiable functions. The boundary value problem (2), (3), (8) to (15), (30) and (31) corresponding to the static
three-dimensional model of the thermo-electro-magneto-elastic solid � is equivalent to equations (23), (24),
(32) and (33) in spaces of twice continuously differentiable functions. On the basis of the latter, in the next
sections we obtain the so-called weak or variational formulations of the static problem (2), (3), (8) to (15), (30)
and (31) and the dynamic problem (1) to (4) and (8) to (16), and investigate the existence and uniqueness of the
corresponding solutions in suitable function spaces.

3. Analysis of the static problem

Hereafter, for each real s ≥ 0, 0 ≤ š ≤ 1, we denote by H s(D) and H š(Ŵ̌) the Sobolev spaces of real-valued

functions based on H0(D) = L2(D) and H0(Ŵ̌) = L2(Ŵ̌), respectively, where D ⊂ R
n, n ∈ N, is a bounded

Lipschitz domain and Ŵ̌ is an element of a Lipschitz dissection of the boundary ∂D [23]; H s
0(D) denotes the

closure of the set D(D) of infinitely differentiable functions with compact support in D in the space H s(D). We
denote the corresponding spaces of vector-valued functions by Hs(D) = [H s(D)]3, Hs

0(D) = [H s
0(D)]3, s ≥ 0,

Hš(Ŵ̌) = [H š(Ŵ̌)]3, 0 ≤ š ≤ 1, Ls1(Ŵ̌) = [Ls1(Ŵ̌)]3 and s1 ≥ 1 and the trace operators by trŴ̌ : H1(D) → H1/2(Ŵ̌)
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and trŴ̌ : H1(D) → H1/2(Ŵ̌). For any measurable set D ⊂ R
n, n ∈ N, (., .)L2(D) and (., .)L2(D) are the classical

scalar products in L2(D) and L2(D), respectively.
Note that if functions vk belong to H1(�k), and on the common interfaces Ŵk ∩ Ŵk we have trŴk∩Ŵk

(vk) =
trŴk∩Ŵk

(vk), then there exists the function v ∈ H1(�) such that v = vk in �k . Therefore, from equations (23),

(24), (32) and (33), we obtain the following variational formulation of the boundary value problem (2), (3), (8)
to (15), (30) and (31):

Find u ∈ V(�) = {v ∈ H1(�); trŴ(v) = 0 on Ŵ0}, ϕ ∈ Vϕ(�) = {ϕ ∈ H1(�); trŴ(ϕ) = 0 on Ŵ
ϕ

0 }, ψ ∈
Vψ (�) = {ψ ∈ H1(�); trŴ(ψ) = 0 on Ŵ

ψ

0 }, θ ∈ V θ (�) = {θ ∈ H1(�); trŴ(θ) = 0 on Ŵθ
0 } such that

c(u, v) + ε(ϕ, v) + b(ψ , v) − λ(θ , v) = Lu(v), ∀v ∈ V(�), (34)

−ε(ϕ, u) + d(ϕ, ϕ) + a(ψ , ϕ) − μ(θ , ϕ) = Lϕ(ϕ), ∀ϕ ∈ Vϕ(�), (35)

−b(ψ , u) + a(ϕ, ψ) + ζ (ψ , ψ) − m(θ , ψ) = Lψ (ψ), ∀ψ ∈ Vψ (�), (36)

η(θ , θ ) = Lθ (θ), ∀θ ∈ V θ (�), (37)

where

c(u, v) =
∫

�

(c ∗ e(u)) : e(v)dx, ε(ϕ, v) =
∫

�

(ε ∗ grad ϕ) : e(v)dx,

b(ψ , v) =
∫

�

(b ∗ grad ψ) : e(v)dx, d(ϕ, ϕ) =
∫

�

(d grad ϕ) · grad ϕdx,

a(ψ , ϕ) =
∫

�

(a grad ψ) · grad ϕdx, ζ (ψ , ψ) =
∫

�

(ζ grad ψ) · grad ψdx,

λ(θ , v) =
∫

�

(λ : e(v)) θdx, μ(θ , ϕ) =
∫

�

(µ · grad ϕ) θdx,

m(θ , ψ) =
∫

�

(
m · grad ψ

)
θdx, η(θ , θ ) =

∫

�

(η grad θ ) · grad θdx,

Lu(v) =
∫

�

f · vdx +
∫

Ŵ1

g · trŴ1
(v)dŴ, Lϕ(ϕ) =

∫

�

f ϕϕdx −
∫

Ŵ
ϕ
1

gϕtrŴϕ
1
(ϕ)dŴ,

Lψ (ψ) = −
∫

Ŵ
ψ
1

gψ tr
Ŵ

ψ
1

(ψ)dŴ, Lθ (θ) =
∫

�

f θθdx −
∫

Ŵθ
1

gθ trŴθ
1
(θ)dŴ,

and u = uk , ϕ = ϕk , ψ = ψk , θ = θ k , c = ck , ε = εk , b = bk , λ = λk , d = dk , a = ak , µ = µk , ζ = ζ k ,

m = mk and η = ηk in �k .

Note that if the parts Ŵ0, Ŵ
ϕ

0 , Ŵ
ψ

0 and Ŵθ
0 of the boundary of � are empty sets, then the homogeneous problem

(34) to (37), where f ≡ 0, g ≡ 0, f ϕ ≡ 0, gϕ ≡ 0, gψ ≡ 0, f θ ≡ 0 and gθ ≡ 0, has non-trivial solutions.
Hence, the solution of the problem (34) to (37) is not unique in the first-order Sobolev spaces mentioned in the
variational formulation and it is necessary to introduce suitable factor spaces, where the solution of the problem
(34) to (37) is unique.

As in the case of most practical applications, we assume that cijpq, εpij, bpij, dij, ζij, aij, λij, μi, mi and ηij ∈
L∞(�) satisfy the following positive definiteness conditions:

(c(x) ∗ F) : F ≥ αcF : F, η(x)ξ · ξ ≥ αη|ξ |2, (38)

d(x)ξ · ξ + a(x)ξ · ξ + a(x)ξ · ξ + ζ (x)ξ · ξ ≥ α(|ξ |2 + |ξ |2), (39)

for all F ∈ S
3, ξ , ξ ∈ R

3 and almost all x ∈ �, where αc, αη and α are positive constants and S
3 designates the

set of all symmetric 3 × 3 matrices.
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Let us denote by R the set of solutions of the homogeneous problem (34) to (37), where Lu(v) = 0, Lϕ(ϕ) =
0, Lψ (ψ) = 0 and Lθ (θ) = 0, for all v ∈ V(�), ϕ ∈ Vϕ(�), ψ ∈ Vψ (�) and θ ∈ V θ (�). The structure of the
set R is determined in [22] and R is of the following form:

R =
{ (

vrθ r

, ϕrθ r

, ψ
rθ r

, θ r
)

∈ V(�) × Vϕ(�) × Vψ (�) × V θ (�); vrθ r = vr + urθ r

,

ϕrθ r = ϕr + ϕrθ r

, ψ
rθ r

= ψ
r + ψ rθ r

,
(

vr, ϕr, ψ
r
)

∈ RV , θ r ∈ Rθ

}
,

where

RV =
{ (

vr, ϕr, ψ
r
)

∈ V(�) × Vϕ(�) × Vψ (�); vr(x) = α + β × Ox, α, β ∈ R
3 , Ox = (xi) , ϕr = αϕ ,

αϕ ∈ R , ψ
r = αψ , αψ ∈ R

}
,

Rθ =
{
θ r ∈ V θ (�); θ r = αθ , αθ ∈ R

}

and (
urθ r

, ϕrθ r

, ψ rθ r) ∈ V(�) × Vϕ(�) × Vψ (�)

is a solution of the homogeneous equations (34) to (36), when θ = θ r.
Applying the set R, we can define the factor space (V(�) × Vϕ(�) × Vψ (�) × V θ (�))/R, which consists

of the following elements:

(
v, ϕ, ψ , θ

)R =
{(

v, ϕ, ψ , θ
)
+

(
vrθ r

, ϕrθ r

, ψ
rθ r

, θ r
)

;
(

vrθ r

, ϕrθ r

, ψ
rθ r

, θ r
)

∈ R

}
,

for each (v, ϕ, ψ , θ) ∈ V(�)×Vϕ(�)×Vψ (�)×V θ (�), which is the Hilbert space equipped with the following
norm:

∥∥∥
(
v, ϕ, ψ , θ

)R
∥∥∥

∗
= inf

{∥∥∥
(
v, ϕ, ψ , θ

)
+

(
vrθ r

, ϕrθ r

, ψ
rθ r

, θ r
)∥∥∥

(H1(�))6
;
(

vrθ r

, ϕrθ r

, ψ
rθ r

, θ r
)

∈ R

}
.

By applying the set R, we can define the solution of the problem (34) to (37) in the factor space (V(�) ×
Vϕ(�) × Vψ (�) × V θ (�))/R. Indeed, for each solution (u, ϕ, ψ , θ) of the problem (34) to (37), any vector-

function (u, ϕ, ψ , θ) + (vrθ r

, ϕrθ r

, ψ
rθ r

, θ r), where (vrθ r

, ϕrθ r

, ψ
rθ r

, θ r) ∈ R is also a solution of equations (34) to
(37). Therefore, we say that (u, ϕ, ψ , θ)R ∈ (V(�) × Vϕ(�) × Vψ (�) × V θ (�))/R is a solution of the problem
(34) to (37), if any function from the equivalence class (u, ϕ, ψ , θ)R is a solution of the problem (34) to (37).

For the problem (34) to (37), which is equivalent to the boundary value problem (1) to (4) and (8) to (15)
in the spaces of classical twice continuously differentiable functions, the following existence, uniqueness and
continuous dependence theorem was proved in [22].

Theorem 1. Suppose that � ⊂ R
3 is a bounded Lipschitz domain; the parameters cijpq, εpij, bpij, dij , ζij, aij,

λij, μi, mi and ηij ∈ L∞(�) satisfy the symmetry and positive definiteness conditions (17), (38) and (39). If

f ∈ L6/5(�), g ∈ L4/3(Ŵ1), f ϕ ∈ L6/5(�), gϕ ∈ L4/3(Ŵ
ϕ

1 ), gψ ∈ L4/3(Ŵ
ψ

1 ) , f θ ∈ L6/5(�), gθ ∈ L4/3(Ŵθ
1 ),

Lθ (θ r) = 0 and Lu(vr) + Lϕ(ϕr) + Lψ (ψ
r
) = 0, for all ( vr, ϕr, ψ

r
) ∈ RV , θ r ∈ Rθ , then the problem (34) to

(37) possesses a unique solution (u, ϕ, ψ , θ)R ∈ (V (�) × Vϕ(�) × Vψ (�) × V θ (�))/R , which continuously
depends on the given data, i.e., the mapping (f, g, f ϕ , gϕ , gψ , f θ , gθ ) → (u, ϕ, ψ , θ)R is linear and continuous

from the space L6/5(�) × L4/3(Ŵ1) × L6/5(�) × L4/3(Ŵ
ϕ

1 ) × L4/3(Ŵ
ψ

1 ) × L6/5(�) × L4/3(Ŵθ
1 ) to the space (V(�) ×

Vϕ(�) × Vψ (�) × V θ (�))/R.

Note that, if the areas of the surfaces Ŵ0, Ŵ
ϕ

0 , Ŵ
ψ

0 , Ŵθ
0 are positive, then the homogeneous equations (34)

to (37) have only a trivial solution. Hence, RV = {(0, 0, 0)}, Rθ = {0}, R = {(0, 0, 0, 0)}, the factor space
(V(�) × Vϕ(�) × Vψ (�) × V θ (�))/R coincides with V(�) × Vϕ(�) × Vψ (�) × V θ (�) and, from Theorem 1,
we have the following theorem.
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Theorem 2. Suppose that � ⊂ R
3 is a bounded Lipschitz domain, the parameters cijpq, εpij, bpij, dij, ζij, aij, λij,

μi, mi, ηij ∈ L∞(�) satisfy the symmetry and positive definiteness conditions (17), (38) and (39). If Ŵ0 �= ∅,

Ŵ
ϕ

0 �= ∅, Ŵ
ψ

0 �= ∅, Ŵθ
0 �= ∅ and f ∈ L6/5(�), g ∈ L4/3(Ŵ1), f ϕ ∈ L6/5(�), gϕ ∈ L4/3(Ŵ

ϕ

1 ), gψ ∈ L4/3(Ŵ
ψ

1 ),

f θ ∈ L6/5(�), gθ ∈ L4/3(Ŵθ
1 ), then the problem (34) to (37) possesses a unique solution (u, ϕ, ψ , θ) ∈ V(�) ×

Vϕ(�) × Vψ (�) × V θ (�), and the mapping (f, g, f ϕ , gϕ , gψ , f θ , gθ ) → (u, ϕ, ψ , θ) is linear and continuous

from the space L6/5(�) × L4/3(Ŵ1) × L6/5(�) × L4/3(Ŵ
ϕ

1 ) × L4/3(Ŵ
ψ

1 ) × L6/5(�) × L4/3(Ŵθ
1 ) to the space V(�) ×

Vϕ(�) × Vψ (�) × V θ (�).

4. Analysis of the dynamic problem

In addition to the notation used in the previous section, we denote, here, by C0,1(D) the space of the Lipschitz

continuous function on D, where D ⊂ R
n, n ∈ N, is a bounded Lipschitz domain. For a Banach space X ,

we denote by C([0, T]; X ) the space of continuous vector-functions on [0, T] with values in X ; Ls1(0, T ; X ),
1 ≤ s1 ≤ ∞, is the space of such measurable vector-functions g : (0, T) → X , so that ‖g‖X ∈ Ls1(0, T) and the
generalized derivative of g is denoted by g′ = dg/dt ∈ D

′(0, T ; X ) [24]. If g ∈ L1(0, T ; X ) and X is a space of
functions of variable x ∈ D ⊂ R

n, n ∈ N, we identify g with a function g(x, t), and g(t) denotes the function
g(t) : x → g(x, t), for almost all t ∈ (0, T). We identify the distributional derivative dg/dt with the derivative
∂g/∂t of g in D

′(D × (0, T)). Hereafter, we use c1, c2, to denote generic constants that are independent of the
main parameters involved, but whose values may differ from line to line and may change even within a single
chain of estimates.

We identify the unknown vector-function u and the functions ϕ, ψ , θ with vector-functions defined on [0, T]
with values in suitable spaces of functions defined on �; by applying equations (22) to (25), we obtain the
following variational formulation of the initial boundary value problem (1) to (4) and (8) to (16) in the spaces
of vector-valued distributions:

Find u ∈ C([0, T]; V(�)) , u′ ∈ L∞(0, T ; V(�)), u′′ ∈ L∞(0, T ; L2(�)), ϕ ∈ C([0, T]; Vϕ(�)), ϕ′ ∈
L∞(0, T ; Vϕ(�)), ψ ∈ C([0, T]; Vψ (�)), ψ ′ ∈ L∞(0, T ; Vψ (�)), θ ∈ C([0, T]; V θ (�)), θ ′ ∈ L∞(0, T ; L2(�)) ∩
L2(0, T ; V θ (�)), which satisfy the following equations in the sense of distributions on (0, T):

(
ρu′′, v

)
L2(�)

+ c(u, v) + ε(ϕ, v) + b(ψ , v) − λ(θ , v) = Lu(v), ∀v ∈ V(�), (40)

−ε (ϕ, u) + d (ϕ, ϕ) + a (ψ , ϕ) − μ (θ , ϕ) = Lϕ (ϕ) , ∀ϕ ∈ Vϕ(�), (41)

−b
(
ψ , u

)
+ a

(
ϕ, ψ

)
+ ζ

(
ψ , ψ

)
− m

(
θ , ψ

)
= Lψ

(
ψ

)
, ∀ψ ∈ Vψ (�), (42)

(
κθ ′, θ

)
L2(�)

+ η
(
θ , θ

)
+ �0λ

(
θ , u′) − �0μ

(
θ , ϕ′) − �0m

(
θ , ψ ′) = Lθ

(
θ

)
, ∀θ ∈ V θ (�), (43)

together with the initial conditions

u(0) = u0, u′(0) = u1, θ(0) = θ0, (44)

where ρ = ρk , κ = κ
k in �k .

Note that if the parts Ŵ
ϕ

0 and Ŵ
ψ

0 of the boundary of � are empty sets, then the homogeneous problem (40)
to (44) has non-trivial solutions. Indeed, if the tensors (dij(x)), (aij(x)) and (ζij(x)) characterizing electric and

magnetic fields satisfy the positive definiteness conditions (39) and u ≡ 0, θ ≡ 0, f ϕ ≡ 0, gϕ ≡ 0, gψ ≡ 0, then
the solutions ϕ and ψ are constants. Consequently, the solution of the problem (40) to (44) is not unique in the
spaces mentioned in the variational formulation and it is necessary to introduce suitable factor spaces, where
the solution of the problem (40) to (44) is unique.

Let us denote by Rϕ = {ϕr ∈ Vϕ(�); ϕr = αϕ , αϕ ∈ R} and Rψ = {ψ r ∈ Vψ (�); ψ
r = αψ , αψ ∈ R} the

sets of solutions ϕ and ψ of the homogeneous equations (41) and (42), when u ≡ 0, θ ≡ 0 and f ϕ ≡ 0, gϕ ≡ 0,

gψ ≡ 0. Applying them, we introduce the factor spaces V
ϕ

Rϕ
(�) = Vϕ(�)/Rϕ and V

ψ

Rψ
(�) = Vψ (�)/Rψ ,

which consist of equivalence classes ϕRϕ = {ϕ+ϕr; ϕr ∈ Rϕ}, for each ϕ ∈ Vϕ(�), and ψ
Rψ = {ψ +ψ

r
; ψ

r ∈
Rψ}, for each ψ ∈ Vψ (�), respectively. The factor spaces V

ϕ

Rϕ
(�) and V

ψ

Rψ
(�) are the Hilbert spaces with

respect to the norms ‖ϕRϕ‖V
ϕ

Rϕ
(�) = inf{||ϕ+ϕr||H1(�); ϕ

r ∈ Rϕ} and ‖ψRψ ‖
V

ψ

Rψ
(�)

= inf{||ψ+ψ
r||H1(�); ψ

r ∈
Rψ}.
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The sets Rϕ and Rψ permit one to define a solution of the problem (40) to (44) in the spaces mentioned in

the variational formulation, where Vϕ(�) is replaced by V
ϕ

Rϕ
(�) and Vψ (�) is replaced by V

ψ

Rψ
(�). Indeed, if

(u, ϕ, ψ , θ) is a solution of the problem (40) to (44), then for any ϕr ∈ Rϕ and ψ
r ∈ Rψ , the vector-function

(u, ϕ, ψ , θ)+(0, ϕr, ψ
r
, 0) is also a solution of 40 to (44). Therefore, we say that (u, ϕRϕ , ψRψ , θ) is a solution of

the problem (40) to (44), if any vector-function (u, ϕ, ψ , θ), where ϕ and ψ are functions from the equivalence
classes ϕRϕ and ψRψ , respectively, is a solution of the problem (40) to (44).

Note that if, in equations (41) and (42), ϕ = ϕr ∈ Rϕ and ψ = ψ
r ∈ Rψ , then the left-hand sides vanish;

hence, we obtain the following necessary conditions for the existence of a solution of the problem (40) to (44):

Lϕ(ϕr) = 0, Lψ (ψ
r
) = 0, ∀ϕr ∈ Rϕ , ψ

r ∈ Rψ . (45)

Hereafter, we assume that the bilinear forms d, a, ζ , ε, b, μ, m are defined on the factor spaces V
ϕ

Rϕ
(�) and

V
ψ

Rψ
(�),

d
(
ϕ̂Rϕ , ϕRϕ

)
= d (ϕ̂, ϕ) , a

(
ϕRϕ , ψ

Rψ
)

= a
(
ϕ, ψ

)
, ζ

(
ψ̂Rψ , ψ

Rψ
)

= ζ
(
ψ̂ , ψ

)
,

ε
(
ϕRϕ , v

)
= ε (ϕ, v) , b

(
ψ

Rψ
, v

)
= b

(
ψ , v

)
, μ

(
θ , ϕRϕ

)
= μ

(
θ , ϕ

)
, m

(
θ , ψ

Rψ
)

= m
(
θ , ψ

)
,

and, taking into account the compatibility conditions (45), we also define the linear forms Lϕ and Lψ on the
factor spaces

Lϕ
(
ϕRϕ

)
=

(
f ϕ , ϕRϕ

)
L2(�)

−
(

gϕ , trŴϕ
1

(
ϕRϕ

))
L2(Ŵϕ

1 )
= (f ϕ , ϕ)L2(�) −

(
gϕ , trŴϕ

1
(ϕ)

)
L2(Ŵϕ

1 )
,

Lψ
(
ψ

Rψ
)

= −
(

gψ , tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2
(
Ŵ

ψ
1

) = −
(

gψ , tr
Ŵ

ψ
1

(
ψ

))
L2

(
Ŵ

ψ
1

) ,

where ϕ̂, ϕ ∈ Vϕ(�) and ψ̂ , ψ ∈ Vψ (�) are arbitrary elements of the equivalence classes ϕ̂Rϕ , ϕRϕ ∈ V
ϕ

Rϕ
(�)

and ψ̂Rψ , ψ
Rψ ∈ V

ψ

Rψ
(�), respectively, and v ∈ V(�), θ ∈ V θ (�).

For the problem (40) to (44), which is equivalent to the initial boundary value problem (1) to (4) and (8)
to (16) in the spaces of classical twice continuously differentiable functions, we prove the following existence,
uniqueness and continuous dependence theorem.

Theorem 3. Suppose that �, �1, . . . , �K ⊂ R
3 are bounded Lipschitz domains, the parameters ρ, κ, cijpq, εpij,

bpij,dij, ζij, aij, λij, μi, mi ∈ L∞(�), ηk
ij ∈ C0,1(�k), for almost all x ∈ �, satisfy the symmetry conditions (17)

and
dij(x) = dji(x), ζij(x) = ζji(x), aij(x) = aji(x), (46)

and positive definiteness conditions (38) and

ρ(x) > αρ = const > 0, κ(x) > ακ = const > 0, (47)

d(x)ξ · ξ + a(x)ξ · ξ + a(x)ξ · ξ + ζ (x)ξ · ξ + 1

�0

κ(x)ξξ − 2ξµ(x) · ξ − 2ξm(x) · ξ ≥ α̃(|ξ |2 + |ξ |2+ξ 2),

(48)

for all ξ , ξ ∈ R
3 , ξ ∈ R and for almost all x ∈ �, where α̃ is a positive constant. If f, f′ ∈ L2(0, T ; L2(�)),

g, g′, g′′ ∈ L2(0, T ; L4/3(Ŵ1)), f ϕ , (f ϕ)′, (f ϕ)′′ ∈ L2(0, T ; L6/5(�)), gϕ , (gϕ)′, (gϕ)′′ ∈ L2(0, T ; L4/3(Ŵ
ϕ

1 )),

gψ , (gψ )′, (gψ )′′ ∈ L2(0, T ; L4/3(Ŵ
ψ

1 )), f θ , (f θ )′ ∈ L2(0, T ; L2(�)), gθ , (gθ )′ ∈ L2(0, T ; L4/3(Ŵθ
1 )) and the ini-

tial conditions u0 ∈ V(�), u1 ∈ V(�), θ0 ∈ V θ (�), θ0 = θ k
0 in �k , θ k

0 ∈ H2(�k), satisfy the compatibility
conditions (45) and

gθ (0) = −trŴθ
1,k

(
ηkgrad θ k

0

)
· nk on Ŵθ

1,k , (49)

trŴk∩Ŵk

(
ηkgrad θ k

0

)
· n = trŴk∩Ŵk

(
ηkgrad θ k

0

)
· n on Ŵk ∩ Ŵk , (50)
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and there exist u2 ∈ L2(�), ϕ0 ∈ Vϕ(�), ψ0 ∈ Vψ (�), such that

(ρu2, v)L2(�) + c(u0, v + ε(ϕ0, v)+b(ψ0, v)−λ(θ0, v)= (f(0), v)L2(�)+(g(0), trŴ1
(v))L2(Ŵ1), ∀v ∈ V(�), (51)

−ε(ϕ, u0)+d(ϕ0, ϕ)+a(ψ0, ϕ)−μ(θ0, ϕ)= (f ϕ(0), ϕ)L2(�)−(gϕ(0), trŴϕ
1
(ϕ))Ŵϕ

1
, ∀ϕ∈Vϕ(�), (52)

−b
(
ψ , u0

)
+a

(
ϕ0, ψ

)
+ζ

(
ψ0, ψ

)
−m

(
θ0, ψ

)
=−

(
gψ (0), tr

Ŵ
ψ
1

(
ψ

))
Ŵ

ψ
1

, ∀ψ ∈Vψ (�), (53)

then the problem (40) to (44) possesses a unique solution (u, ϕRϕ , ψRψ , θ), where ϕRϕ ∈ C([0, T]; V
ϕ

Rϕ
(�)),

(ϕRϕ )′ ∈ L∞(0, T ; V
ϕ

Rϕ
(�)), ψRψ ∈ C([0, T]; V

ψ

Rψ
(�)), (ψRψ )′ ∈ L∞(0, T ; V

ψ

Rψ
(�)) , which continuously

depends on the given data, i.e., the mapping

(
u0, u1, θ0, f, g, g′, f ϕ , (f ϕ)′ , gϕ , (gϕ)′ , gψ ,

(
gψ

)′
, f θ , gθ

)
→

(
u, u′, ϕRϕ , ψRψ , θ

)

is linear and continuous from space

V(�) × L2(�) × L2(�) × L2(0, T ; L2(�)) × L2(0, T ; L4/3(Ŵ1)) × L2(0, T ; L4/3(Ŵ1))

× L2(0, T ; L6/5(�)) × L2(0, T ; L6/5(�)) × L2(0, T ; L4/3(Ŵ
ϕ

1 )) × L2(0, T ; L4/3(Ŵ
ϕ

1 ))

× L2(0, T ; L4/3(Ŵ
ψ

1 )) × L2(0, T ; L4/3(Ŵ
ψ

1 )) × L2(0, T ; L2(�)) × L2(0, T ; L4/3(Ŵθ
1 ))

to space

C([0, T]; V(�)) × C([0, T]; L2(�)) × C([0, T]; V
ϕ

Rϕ
(�)) × C([0, T]; V

ψ

Rψ
(�))

×
(
C([0, T]; L2(�)) ∩ L2(0, T ; V θ (�))

)
,

and the following energy equality is valid:

E(t) = E(0) + L(t), ∀t ∈ [0, T], (54)

where

E(t) =
(
ρu′(t), u′(t)

)
L2(�)

+ c(u(t), u(t)) + 1

�0

(κθ(t), θ(t))L2(�) + 2

�0

t∫

0

η(θ , θ)dτ + d(ϕ(t), ϕ(t))

+ 2a(ϕ(t), ψ(t)) + ζ (ψ(t), ψ(t)) − 2μ(θ (t), ϕ(t)) − 2m(θ (t), ψ(t)),

L(t) = 2

t∫

0

(
f(τ ), u′(τ )

)
L2(�)

dτ + 2(g(t), trŴ1
(u(t)))L2(Ŵ1) − 2(g(0), trŴ1

(u(0)))L2(Ŵ1)

− 2

t∫

0

(
g′(τ ), trŴ1

(u(τ ))
)

L2(Ŵ1)
dτ + 2

t∫

0

((f ϕ)′(τ ), ϕ(τ ))L2(�)dτ − 2

t∫

0

((gϕ)′(τ ), trŴϕ
1
(ϕ(τ )))L2(Ŵ

ϕ
1 )dτ

− 2

t∫

0

((gψ )′(τ ), tr
Ŵ

ψ
1

(ψ(τ )))
L2(Ŵ

ψ
1 )

dτ + 2

�0

t∫

0

(
f θ (τ ), θ(τ )

)
L2(�)

dτ − 2

�0

t∫

0

(gθ (τ ), trŴθ
1
(θ (τ )))L2(Ŵθ

1 )dτ ,

ϕ and ψ are any functions from the equivalence classes ϕRϕ and ψRψ , respectively.

Proof. First, let us prove the existence of a solution of the problem (40) to (44). Since f θ , f θ ′ ∈ L2(0, T ; L2(�))
and gθ , gθ ′ ∈ L2(0, T ; L4/3(Ŵθ

1 )), it follows, from the embedding theorem [24], that f θ ∈ C([0, T]; L2(�)) and
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gθ ∈ C([0, T]; L4/3(Ŵθ
1 )). By applying Green’s formula and by taking into account the compatibility conditions

(49) and (50), we obtain:

η(θ0, θ ) +
(
gθ (0), θ

)
L2(Ŵθ

1 )
=

K∑

k=1

∫

Ŵk

trŴk

(
ηkgrad θ k

)
· nktrŴk

(
θ

k
)

dŴk −
K∑

k=1

∫

�k

div
(
ηkgrad θ k

0

)
θ

k
dx

+
K∑

k=1

∫

Ŵθ
1,k

gθ (0)trŴk

(
θ

k
)

dŴk =−
(
θ̃0, θ

)
L2(�)

, ∀θ ∈ V θ (�),

where θ̃0 = div
(
ηkgrad θ k

0

)
in �k . Since the functions ηk

ij are Lipschitz continuous in bounded domains �k ,

we have that ηk
ij ∈ L∞(�k), and it follows from Rademacher’s theorem [25] that they are differentiable almost

everywhere in �k and that their derivatives belong to L∞(�k). Hence, by taking into account the fact that
θ k

0 ∈ H2(�k), we have θ̃0 ∈ L2(�).

Since f ϕ , (f ϕ)′, (f ϕ)′′ ∈ L2(0, T ; L6/5(�)), gϕ , (gϕ)′, (gϕ)′′ ∈ L2(0, T ; L4/3(Ŵ
ϕ

1 )), and gψ , (gψ )′, (gψ )′′ ∈
L2(0, T ; L4/3(Ŵ

ψ

1 )), it follows from the embedding theorem [24] that f ϕ , (f ϕ)′ ∈ C([0, T]; L6/5(�)), gϕ , (gϕ)′ ∈
C([0, T]; L4/3(Ŵ

ϕ

1 )) and gψ , (gψ )′ ∈ C([0, T]; L4/3(Ŵ
ψ

1 )), and

||w||C([0,T];L6/5(�)) ≤ c1

(
||w||L2(0,T ;L6/5(�)) + ||w′||L2(0,T ;L6/5(�))

)
, (55)

||ŵ||C([0,T];L4/3(Ŵ̂)) ≤ c2

(
||ŵ||L2(0,T ;L4/3(Ŵ̂)) + ||ŵ′||L2(0,T ;L4/3(Ŵ̂))

)
, (56)

where w = f ϕ or w = (f ϕ)′, Ŵ̂ = Ŵ
ϕ

1 when ŵ = gϕ or ŵ = (gϕ)′ and Ŵ̂ = Ŵ
ψ

1 when ŵ = gψ or ŵ = (gψ )′.
Therefore, we can consider the following problem:

Find θ1 ∈ L2(�), ϕ
Rϕ

1 ∈ V
ϕ

Rϕ
(�), ψ

Rψ

1 ∈ V
ψ

Rψ
(�) such that

−ε
(
ϕRϕ , u1

)
+d

(
ϕ

Rϕ

1 , ϕRϕ

)
+a

(
ψ

Rψ

1 , ϕRϕ

)
−μ

(
θ1, ϕRϕ

)
=

(
(f ϕ)′(0), ϕRϕ

)
L2(�)

−
(

(gϕ)′(0), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

, ∀ϕRϕ ∈ V
ϕ

Rϕ
(�),

(57)

−b
(
ψ

Rψ
, u1

)
+ a

(
ϕ

Rϕ

1 , ψ
Rψ

)
+ ζ

(
ψ

Rψ

1 , ψ
Rψ

)
− m

(
θ1, ψ

Rψ
)

= −
(

(gψ )′(0), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

,

∀ψ
Rψ ∈ V

ψ

Rψ
(�), (58)

(κθ1, θ )L2(�) + �0λ(θ , u1) − �0μ
(
θ , ϕ

Rϕ

1

)
− �0m

(
θ , ψ

Rψ

1

)
=

(
f θ (0), θ

)
L2(�)

+
(
θ̃0, θ

)
L2(�)

,

∀θ ∈ V θ (�). (59)

Since ϕRϕ , ψ
Rψ

and θ are independent of each other, the problem (57) to (59) is equivalent to the following
one:

Find
(
ϕ

Rϕ

1 , ψ
Rψ

1 , θ1

)
∈ W (�) = V

ϕ

Rϕ
(�) × V

ψ

Rψ
(�) × L2(�)

such that

B
((

ϕ
Rϕ

1 , ψ
Rψ

1 , θ1

)
,
(
ϕRϕ , ψ

Rψ
, θ

))
= F

(
ϕRϕ , ψ

Rψ
, θ

)
, ∀

(
ϕRϕ , ψ

Rψ
, θ

)
∈ W (�), (60)
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where

B
((

ϕ
Rϕ

1 , ψ
Rψ

1 , θ1

)
,
(
ϕRϕ , ψ

Rψ
, θ

))
= d

(
ϕ

Rϕ

1 , ϕRϕ

)
+ a

(
ψ

Rψ

1 , ϕRϕ

)
− μ

(
θ1, ϕRϕ

)
+ a

(
ϕ

Rϕ

1 , ψ
Rψ

)

+ ζ
(
ψ

Rψ

1 , ψ
Rψ

)
− m

(
θ1, ψ

Rψ
)

+ 1

�0

(
κθ1, θ

)
L2(�)

− μ
(
θ , ϕ

Rϕ

1

)

− m
(
θ , ψ

Rψ

1

)
, ∀

(
ϕ

Rϕ

1 , ψ
Rψ

1 , θ1

)
,
(
ϕRϕ , ψ

Rψ
, θ

)
∈ W (�),

F
(
ϕRϕ , ψ

Rψ
, θ

)
= ε

(
ϕRϕ , u1

)
+

(
(f ϕ)′ (0), ϕRϕ

)
L2(�)

−
(

(gϕ)′(0), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

+ b
(
ψ

Rψ
, u1

)
−

(
(gψ )′(0), tr

Ŵ
ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

− λ(θ , u1)

+ 1

�0

(
f θ (0), θ

)
L2(�)

+ 1

�0

(
θ̃0, θ

)
L2(�)

, ∀
(
ϕRϕ , ψ

Rψ
, θ

)
∈ W (�).

Since dij, aij, ζij, μi, mi, εpij, bpij, λij, κ ∈ L∞(�), i, j, p, q = 1, 2, 3, we obtain, by applying the Cauchy–Schwarz
inequality, the following estimates:

∣∣∣d
(
ϕ

Rϕ

1 , ϕRϕ

)∣∣∣ ≤
∫

�

|(d grad ϕ1) · grad ϕ| dx

≤ max
1≤i,j≤3

∥∥dij

∥∥
L∞(�)

∥∥∥∥∥∥

3∑

j=1

∣∣∣∣
∂ϕ1

∂xj

∣∣∣∣

∥∥∥∥∥∥
L2(�)

∥∥∥∥∥

3∑

i=1

∣∣∣∣
∂ϕ

∂xi

∣∣∣∣

∥∥∥∥∥
L2(�)

≤ 3 max
1≤i,j≤3

∥∥dij

∥∥
L∞(�)

∥∥∥ϕ
Rϕ

1

∥∥∥
V

ϕ

Rϕ
(�)

∥∥∥ϕRϕ

∥∥∥
V

ϕ

Rϕ
(�)

, (61)

∣∣∣a
(
ϕ

Rϕ

1 , ψ
Rψ

)∣∣∣ ≤ 3 max
1≤i,j≤3

∥∥aij

∥∥
L∞(�)

∥∥∥ϕ
Rϕ

1

∥∥∥
V

ϕ

Rϕ
(�)

∥∥∥ψ
Rψ

∥∥∥
V

ψ

Rψ
(�)

, (62)

∣∣∣ζ
(
ψ

Rψ

1 , ψ
Rψ

)∣∣∣ ≤ 3 max
1≤i,j≤3

∥∥ζij

∥∥
L∞(�)

∥∥∥ψ
Rψ

1

∥∥∥
V

ψ

Rψ
(�)

∥∥∥ψ
Rψ

∥∥∥
V

ψ

Rψ
(�)

, (63)

∣∣∣μ
(
θ , ϕ

Rϕ

1

)∣∣∣ ≤
∫

�

∣∣(µ · grad ϕ1) θ
∣∣ dx

≤
√

3 max
1≤i≤3

‖μi‖L∞(�)

∥∥θ
∥∥

L2(�)

∥∥∥ϕ
Rϕ

1

∥∥∥
V

ϕ

Rϕ
(�)

, (64)

∣∣∣m
(
θ , ψ

Rψ

1

)∣∣∣ ≤
∫

�

∣∣(m · grad ψ1) θ
∣∣ dx

≤
√

3 max
1≤i≤3

‖mi‖L∞(�)

∥∥θ
∥∥

L2(�)

∥∥∥ψ
Rψ

1

∥∥∥
V

ψ

Rψ
(�)

, (65)

∣∣∣ε
(
ϕRϕ , v

)∣∣∣ ≤
∫

�

|(ε ∗ grad ϕ) : e(v)| dx

≤ max
1≤p,i,j≤3

∥∥εpij

∥∥
L∞(�)

∥∥∥∥∥∥

3∑

p=1

∣∣∣∣
∂ϕ

∂xp

∣∣∣∣

∥∥∥∥∥∥
L2(�)

∥∥∥∥∥∥

3∑

i,j=1

∣∣eij(v)
∣∣
∥∥∥∥∥∥

L2(�)

≤ 3
√

3 max
1≤p,i,j≤3

∥∥εpij

∥∥
L∞(�)

∥∥∥ϕRϕ

∥∥∥
V

ϕ

Rϕ
(�)

‖v‖
H1(�)

, (66)
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∣∣∣b
(
ψ

Rψ
, v

)∣∣∣ ≤ 3
√

3 max
1≤p,i,j≤3

∥∥bpij

∥∥
L∞(�)

∥∥∥ψ
Rψ

∥∥∥
V

ψ

Rψ
(�)

‖v‖
H1(�)

, (67)

∣∣λ
(
θ , v

)∣∣ ≤
∫

�

∣∣λ : e(v)θ
∣∣ dx

≤ 3 max
1≤i,j≤3

∥∥λij

∥∥
L∞(�)

∥∥θ
∥∥

L2(�)
‖v‖

H1(�)
, (68)

for all ϕ
Rϕ

1 , ϕRϕ ∈ V
ϕ

Rϕ
(�) , ψ

Rψ

1 , ψ
Rψ ∈ V

ψ

Rψ
(�), θ ∈ L2(�), v ∈ H1(�), where ϕ1, ϕ, ψ1 are arbitrary

elements of the equivalence classes ϕ
Rϕ

1 , ϕRϕ , ψ
Rψ

1 , respectively. Hence, from estimates (61) to (65), we have
that the bilinear form B : W (�) × W (�) → R is continuous.

Because (f ϕ)′(0) ∈ L6/5(�), (gϕ)′(0) ∈ L4/3(Ŵ
ϕ

1 ) and (gψ )′(0) ∈ L4/3(Ŵ
ψ

1 ), and by applying Hölder’s inequal-

ity, the compatibility conditions (45), estimates (55), (56) for w = (f ϕ)′, ŵ = (gϕ)′ and ŵ = (gψ )′, and continuity
of the embedding H1(�) →֒ L6(�) and the trace operator tr : H1(�) → L4(Ŵ) [26], we have:

∣∣∣∣
(

(f ϕ)′(0), ϕRϕ

)
L2(�)

−
(

(gϕ)′(0), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

−
(

(gψ )′(0), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

∣∣∣∣

≤ inf
ϕr∈Rϕ

∣∣((f ϕ)′(0), ϕ + ϕr)L2(�)

∣∣ + inf
ϕr∈Rϕ

∣∣∣((gϕ)′(0), trŴϕ
1
(ϕ + ϕr))L2(Ŵ

ϕ
1 )

∣∣∣

+ inf
ψ

r∈Rψ

∣∣∣((gψ )′(0), tr
Ŵ

ψ
1

(ψ + ψ
r
))

L2(Ŵ
ψ
1 )

∣∣∣

≤ ||(f ϕ)′(0)||L6/5(�) inf
ϕr∈Rϕ

||ϕ + ϕr||L6(�) + ||(gϕ)′(0)||L4/3(Ŵ
ϕ
1 ) inf

ϕr∈Rϕ

||trŴϕ
1
(ϕ + ϕr)||L4(Ŵ

ϕ
1 )

+ ||(gψ )′(0)||
L4/3(Ŵ

ψ
1 )

inf
ψ

r∈Rψ

∥∥∥tr
Ŵ

ψ
1

(
ψ + ψ

r
)∥∥∥

L4(Ŵ
ψ
1 )

≤ c1

(
inf

ϕr∈Rϕ

||ϕ + ϕr||H1(�) + inf
ψ

r∈Rψ

∥∥∥ψ + ψ
r
∥∥∥

H1(�)

)

= c1

(∥∥∥ϕRϕ

∥∥∥
V

ϕ

Rϕ
(�)

+
∥∥∥ψ

Rψ

∥∥∥
V

ψ

Rψ
(�)

)
,

where ϕ ∈ Vϕ(�) and ψ ∈ Vψ (�) are arbitrary elements of the equivalence classes ϕRϕ ∈ V
ϕ

Rϕ
(�) and

ψ
Rψ ∈ V

ψ

Rψ
(�), respectively. Therefore, since f θ (0) ∈ L2(�), θ̃0 ∈ L2(�), and taking into account estimates

(66) to (68) and u1 ∈ V(�), we infer that the linear form F : W (�) → R is continuous.
From the positive definiteness conditions (47) and (48), we obtain:

B
((

ϕRϕ , ψ
Rψ

, θ
)

,
(
ϕRϕ , ψ

Rψ
, θ

))
= d(ϕ, ϕ) + a

(
ψ , ϕ

)
+ a

(
ϕ, ψ

)
+ ζ

(
ψ , ψ

)
+ 1

�0

(
κθ , θ

)
L2(�)

− 2μ
(
θ , ϕ

)
− 2m

(
θ , ψ

)

≥ min

{
α̃,

ακ

�0

} ∫

�

(
|grad ϕ|2 + |grad ψ |2 +

(
θ

)2
)

dx, (69)

where ϕ ∈ Vϕ(�) and ψ ∈ Vψ (�) are arbitrary elements of the equivalence classes ϕRϕ ∈ V
ϕ

Rϕ
(�) and

ψ
Rψ ∈ V

ψ

Rψ
(�).

Applying the generalized Poincaré inequality [26], we have:

∫

�

|grad v|2dx ≥ c1

⎛
⎜⎝

∫

�

v2dx −

∣∣∣∣∣∣

∫

�

vdx

∣∣∣∣∣∣

2
⎞
⎟⎠ = c1 inf

c2∈R

‖v + c2‖2
L2(�)

,
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for all v ∈ H1(�). Consequently, from (69), we infer that the bilinear form B : W (�) × W (�) → R satisfies the
following inequality:

B
((

ϕRϕ , ψ
Rψ

, θ
)

,
(
ϕRϕ , ψ

Rψ
, θ

))
≥ c1

∥∥∥
(
ϕRϕ , ψ

Rψ
, θ

)∥∥∥
2

W (�)
, (70)

for all (ϕRϕ , ψ
Rψ

, θ) ∈ W (�). Thus, the bilinear form B is continuous and bounded below, and the linear form
F is continuous, and from the Lax–Milgram theorem [23], we have that the problem (57) to (59) possesses a
unique solution and

∥∥∥
(
ϕ

Rϕ

1 , ψ
Rψ

1 , θ1

)∥∥∥
W (�)

≤ c1

(
||(f ϕ)′(0)||L6/5(�) + ||(gϕ)′(0)||L4/3(Ŵ

ϕ
1 ) + ||(gψ )′(0)||

L4/3(Ŵ
ψ
1 )

)
.

To prove the existence of the solution, let us consider complete systems of linearly independent elements

{vk}∞k=1 in the space V(�), {ϕRϕ

k }∞k=1 in the space V
ϕ

Rϕ
(�), {ψRψ

k }∞k=1 in the space V
ψ

Rψ
(�) and {θ k}∞k=1 in the

space V θ (�). For each n ∈ N, we denote by Vn(�) the linear subspace of V(�) defined by {v1, v2, v3, . . . , vn}, by

V
ϕ

Rϕn
(�) the linear subspace of V

ϕ

Rϕ
(�) defined by {ϕRϕ

1 , ϕ
Rϕ

2 , ϕ
Rϕ

3 , . . . , ϕ
Rϕ
n }, by V

ψ

Rψ n
(�) the linear subspace

of V
ψ

Rψ
(�) defined by {ψRψ

1 , ψ
Rψ

2 , ψ
Rψ

3 , . . . , ψ
Rψ

n } and by V θ
n (�) the linear subspace of V θ (�) defined by

{θ1, θ2, θ3, . . . , θn}. We consider a sequence of approximate solutions of the problem (40) to (44) given by

ũn =
n∑

k=1

unk(t)vk , ϕ̃
Rϕ
n =

n∑

k=1

ϕnk(t)ϕ
Rϕ

k , ψ̃
Rψ
n =

n∑

k=1

ψnk(t)ψ
Rψ

k , θ̃n =
n∑

k=1

θnk(t)θ k ,

which are solutions of the following problem:

Find ũn, ũ′
n, ũ′′

n ∈ C([0, T]; Vn(�)), ũ′′′
n ∈ L2(0, T ; Vn(�)), ϕ̃

Rϕ
n , (ϕ̃

Rϕ
n )′ ∈ C([0, T]; V

ϕ

Rϕn
(�)), (ϕ̃

Rϕ
n )′′ ∈

L2(0, T ; V
ϕ

Rϕn
(�)), ψ̃

Rψ
n , (ψ̃

Rψ
n )′ ∈ C([0, T]; V

ψ

Rψ n
(�)), (ψ̃

Rψ
n )′′ ∈ L2(0, T ; V

ψ

Rψ n
(�)), θ̃n, θ̃ ′

n ∈ C([0, T]; V θ
n (�)),

θ̃ ′′
n ∈ L2(0, T ; V θ

n (�)), which satisfy the following equations in the sense of distributions on (0, T):

(
ρũ′′′

n , vn

)
L2(�)

+ c
(
ũ′

n, vn

)
+ ε

(
ϕ̃′

n, vn

)
+ b

(
ψ̃ ′

n, vn

)
− λ

(
θ̃ ′

n, vn

)
= (f ′, vn)L2(�) +

(
g′, trŴ1

(vn)
)

L2(Ŵ1)
,

∀vn ∈ Vn(�), (71)

− ε
(
ϕ

Rϕ
n , ũ′′

n

)
+ d

((
ϕ̃

Rϕ
n

)′′
, ϕ

Rϕ
n

)
+ a

((
ψ̃

Rψ
n

)′′
, ϕ

Rϕ
n

)
− μ

(
θ̃ ′′

n , ϕ
Rϕ
n

)

=
(

(f ϕ)′′ , ϕ
Rϕ
n

)
L2(�)

−
(

(gϕ)′′, trŴϕ
1

(
ϕ

Rϕ
n

))
L2(Ŵ

ϕ
1 )

, ∀ϕ
Rϕ
n ∈ V

ϕ

Rϕn
(�), (72)

−b
(
ψ

Rψ

n , ũ′′
n

)
+a

((
ϕ̃

Rϕ
n

)′′
, ψ

Rψ

n

)
+ζ

((
ψ̃

Rψ
n

)′′
, ψ

Rψ

n

)
−m

(
θ̃ ′′

n , ψ
Rψ

n

)
= −

(
(gψ )′′, tr

Ŵ
ψ
1

(
ψ

Rψ

n

))
L2(Ŵ

ψ
1 )

,

∀ψ
Rψ

n ∈ V
ψ

Rψ n
(�), (73)

(
κθ̃ ′′

n , θn

)
L2(�)

+ η
(
θ̃ ′

n, θn

)
+ �0λ

(
θn, ũ′′

n

)
− �0μ

(
θn,

(
ϕ̃

Rϕ
n

)′′
)

− �0m

(
θn,

(
ψ̃

Rψ
n

)′′
)

=
(
f θ ′, θn

)
L2(�)

−
(

gθ ′, trŴθ
1
(θn)

)
L2(Ŵθ

1 )
, ∀θn ∈ V θ

n (�), (74)
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together with the initial conditions

ũn(0) = ũ0n, ũ′
n(0) = ũ1n, ũ′′

n(0) = ũ2n, ϕ̃
Rϕ
n (0) = ϕ̃

Rϕ

0n , (ϕ̃
Rϕ
n )′(0) = ϕ̃

Rϕ

1n ,
(75)

ψ̃
Rψ
n (0) = ψ̃

Rψ

0n ,
(
ψ̃

Rψ
n

)′
(0) = ψ̃

Rψ

1n , θ̃n(0) = θ̃0n, θ̃ ′
n(0) = θ̃1n,

where ũ0n, ũ1n, ũ2n ∈ Vn(�), ϕ̃
Rϕ

0n , ϕ̃
Rϕ

1n ∈ V
ϕ

Rϕn
(�), ψ̃

Rψ

0n , ψ̃
Rψ

1n ∈ V
ψ

Rψ n
(�), θ̃0n, θ̃1n ∈ V θ

n (�). Note that, for each

n ∈ N, the problem (71) to (75) is an initial value one for a linear system of ordinary differential equations with
respect to (unk)n

k=1, (ϕnk)n
k=1, (ψnk)n

k=1 and (θnk)n
k=1, where the right-hand parts of the corresponding equations

belong to L2(0, T). From the estimate (70) for θ = 0, we infer that ((ϕnk)′′)n
k=1, ((ψnk)′′)n

k=1 can be expressed
by invertible linear mapping of ((unk)′′)n

k=1 and ((θnk)′′)n
k=1 from equations (72) and (73). Since the initial value

problem for the system of ordinary differential equations possesses a unique solution, we have that the problem
(71) to (75) has a unique solution.

Since the systems {vk}∞k=1, {ϕRϕ

k }∞k=1, {ψRψ

k }∞k=1 and {θ k}∞k=1 are complete in the spaces V(�), V
ϕ

Rϕ
(�),

V
ψ

Rψ
(�) and V θ (�), respectively, the union of subspaces

⋃
n≥1 Vn(�) is dense in V(�), the union

⋃
n≥1 V

ϕ

Rϕn
(�)

is dense in V
ϕ

Rϕ
(�), the union

⋃
n≥1 V

ψ

Rψ n
(�) is dense in V

ψ

Rψ
(�) and the union

⋃
n≥1 V θ

n (�) is dense in V θ (�).

Therefore, we can take ũ0n, ũ1n, ũ2n, ϕ̃
Rϕ

0n , ϕ̃
Rϕ

1n , ψ̃
Rψ

0n , ψ̃
Rψ

1n , θ̃0n and θ̃1n such that

ũ0n → u0 in V(�), ũ1n → u1 in V(�), ũ2n → u2 in L2(�), as n → ∞, (76)

ϕ̃
Rϕ

0n → ϕ
Rϕ

0 in V
ϕ

Rϕ
(�), ϕ̃

Rϕ

1n → ϕ
Rϕ

1 in V
ϕ

Rϕ
(�), as n → ∞, (77)

ψ̃
Rψ

0n → ψ
Rψ

0 in V
ψ

Rψ
(�), ψ̃

Rψ

1n → ψ
Rψ

1 in V
ψ

Rψ
(�), as n → ∞, (78)

θ̃0n → θ0 in V θ (�), θ̃1n → θ1 in L2(�), as n → ∞, (79)

where ϕ
Rϕ

0 =
{
ϕ0 + ϕr; ϕr ∈ Rϕ

}
∈ V

ϕ

Rϕ
(�), ψ

Rψ

0 =
{
ψ0 + ψ

r
; ψ

r ∈ Rψ

}
∈ V

ψ

Rψ
(�).

By letting vn = ũ′′
n in equation (71), ϕ

Rϕ
n = (ϕ̃

Rϕ
n )′ in equation (72), ψ

Rψ

n = (ψ̃
Rψ
n )′ in equation (73) and

θn = θ̃ ′
n/�0 in equation (74), adding and integrating them on (0, t), taking into account the symmetry conditions

(46) and using the formula for integration by parts, we obtain:

(
ρũ′′

n(t), ũ′′
n(t)

)
L2(�)

+ c
(
ũ′

n(t), ũ′
n(t)

)
+ d

((
ϕ̃

Rϕ
n

)′
(t),

(
ϕ̃

Rϕ
n

)′
(t)

)
+ 2a

((
ϕ̃

Rϕ
n

)′
(t),

(
ψ̃

Rψ
n

)′
(t)

)

+ ζ

((
ψ̃

Rψ
n

)′
(t),

(
ψ̃

Rψ
n

)′
(t)

)
+ 1

�0

(
κθ̃ ′

n(t), θ̃ ′
n(t)

)
L2(�)

+ 2

�0

t∫

0

η
(
θ̃ ′

n, θ̃ ′
n

)
dτ − 2μ

(
θ̃ ′

n(t),
(
ϕ̃

Rϕ
n

)′
(t)

)

− 2m

(
θ̃ ′

n(t),
(
ψ̃

Rψ
n

)′
(t)

)
= (ρũ2n, ũ2n)L2(�) + c(̃u1n, ũ1n) + d

(
ϕ̃

Rϕ

1n , ϕ̃
Rϕ

1n

)
+ 2a

(
ϕ̃

Rϕ

1n , ψ̃
Rψ

1n

)

+ ζ
(
ψ̃

Rψ

1n , ψ̃
Rψ

1n

)
+ 1

�0

(
κθ̃1n, θ̃1n

)
L2(�)
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− 2μ
(
θ̃1n, ϕ̃

Rϕ

1n

)
− 2m

(
θ̃1n, ψ̃

Rψ

1n

)
+ 2

t∫

0

(f ′(τ ), ũ′′
n(τ ))L2(�)dτ + 2

(
g′(t), trŴ1

(
ũ′

n(t)
))

L2(Ŵ1)

− 2
(
g′(0), trŴ1

(̃u1n)
)

L2(Ŵ1)
− 2

t∫

0

(
g′′(τ ), trŴ1

(
ũ′

n(τ )
))

L2(Ŵ1)
dτ + 2

t∫

0

(
(f ϕ)′′(τ ),

(
ϕ̃

Rϕ
n

)′
(τ )

)

L2(�)

dτ

− 2

t∫

0

(
(gϕ)′′(τ ), trŴϕ

1

((
ϕ̃

Rϕ
n

)′
(τ )

))

L2(Ŵ
ϕ
1 )

dτ + 2

�0

t∫

0

((
f θ

)′
(τ ), θ̃ ′

n(τ )
)

L2(�)
dτ

− 2

t∫

0

(
(gψ )′′(τ ), tr

Ŵ
ψ
1

((
ψ̃

Rψ
n

)′
(τ )

))

L2(Ŵ
ψ
1 )

dτ − 2

�0

t∫

0

((
gθ

)′
(τ ), trŴθ

1

(
θ̃ ′

n(τ )
))

L2(Ŵθ
1 )

dτ , ∀t ∈ [0, T]. (80)

From the positive definiteness conditions (38) for tensors cijpq and ηij, and by applying Korn’s inequality [26],

we have that the bilinear forms c(., .) and η(., .) are coercive; i.e., there exist positive constants α̃c, α̂c and α̃η, α̂η

such that

c(v, v) ≥ αce(v) : e(v) ≥ α̃c ‖v‖2
H1(�)

− α̂c ‖v‖2
L2(�)

, ∀v ∈ H1(�), (81)

η(θ , θ ) ≥ αη

∫

�

|grad θ |2dx ≥ α̃η

∥∥θ
∥∥2

H1(�)
− α̂η

∥∥θ
∥∥2

L2(�)
, ∀θ ∈ H1(�). (82)

Because cijpq ∈ L∞(�), and by applying the Cauchy–Schwarz inequality, we obtain:

c(v, v) ≤ max
1≤i,j,p,q≤3

∥∥cijpq

∥∥
L∞(�)

∥∥∥∥∥∥

3∑

i,j=1

∣∣eij(v)
∣∣
∥∥∥∥∥∥

L2(�)

∥∥∥∥∥∥

3∑

p,q=1

∣∣epq(v)
∣∣
∥∥∥∥∥∥

L2(�)

≤ 9 max
1≤i,j,p,q≤3

∥∥cijpq

∥∥
L∞(�)

3∑

i,j=1

∥∥∥∥
∂vi

∂xj

∥∥∥∥
L2(�)

3∑

p,q=1

∥∥∥∥
∂vp

∂xq

∥∥∥∥
L2(�)

≤ c1 ‖v‖
H1(�)

‖v‖
H1(�)

, (83)

where v, v ∈ H1(�). Since g, g′, g′′ ∈ L2(0, T ; L4/3(Ŵ1)), it follows from the embedding theorem [24] that
g, g′ ∈ C([0, T]; L4/3(Ŵ1)). By applying Hölder’s inequality, conditions (45), the continuity of the embedding
H1(�) →֒ L6(�) and the trace operator tr : H1(�) → L4(Ŵ) [26] and the ε-inequality

|a1b1| ≤ 1

2ε1

a2
1 + ε1

2
b2

1 ,

for all a1, b1 ∈ R, ε1 > 0, we have:

∣∣(g′(t), trŴ1
(v))L2(Ŵ1)

∣∣ ≤
∥∥g′(t)

∥∥
C([0,T];L4/3(Ŵ1))

∥∥trŴ1
(v)

∥∥
L4(Ŵ1)

≤ c1

∥∥g′(t)
∥∥

C([0,T];L4/3(Ŵ1))
‖v‖

H1(�)

≤ c1

(
1

2ε1

∥∥g′(t)
∥∥2

C([0,T];L4/3(Ŵ1))
+ ε1

2
‖v‖2

H1(�)

)

≤ c2

ε1

(∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))
+

∥∥g′′∥∥2

L2(0,T ;L4/3(Ŵ1))

)
+ c1ε1

2
‖v‖2

H1(�)
,

∀v ∈ H1(�), t ∈ [0, T], ε1 > 0, (84)
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∣∣∣∣
(

(f ϕ)′′(τ ), ϕRϕ

)
L2(�)

−
(

(gϕ)′′(τ ), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

∣∣∣∣
≤

∥∥(f ϕ)′′(τ )
∥∥

L6/5(�)
inf

ϕr∈Rϕ

||ϕ + ϕr||L6(�) + ||(gϕ)′′(τ )||L4/3(Ŵ
ϕ
1 ) inf

ϕr∈Rϕ

||trŴϕ
1
(ϕ + ϕr)||L4(Ŵ

ϕ
1 )

≤ 1

2

∥∥(f ϕ)′′(τ )
∥∥2

L6/5(�)
+ 1

2

∥∥(gϕ)′′(τ )
∥∥2

L4/3(Ŵ
ϕ
1 )

+ c1

∥∥∥ϕRϕ

∥∥∥
2

V
ϕ

Rϕ
(�)

, ∀ϕRϕ ∈ V
ϕ

Rϕ
(�), (85)

∣∣∣∣
(

(gψ )′′(τ ), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

∣∣∣∣ ≤ 1

2

∥∥(gψ )′′(τ )
∥∥2

L4/3(Ŵ
ψ
1 )

+ c1

2

∥∥∥ψ
Rψ

∥∥∥
2

V
ψ

Rψ
(�)

, ∀ψ
Rψ ∈ V

ψ

Rψ
(�), (86)

for almost all τ ∈ (0, T), where ϕ ∈ Vϕ(�) and ψ ∈ Vψ (�) are arbitrary elements of the equivalence classes

ϕRϕ ∈ V
ϕ

Rϕ
(�) and ψ

Rψ ∈ V
ψ

Rψ
(�), respectively.

Similarly,

∣∣∣∣∣∣

t∫

0

(
g′′(τ ), trŴ1

(
ũ′

n(τ )
))

L2(Ŵ1)
dτ

∣∣∣∣∣∣
≤

t∫

0

∥∥g′′(τ )
∥∥

L4/3(Ŵ1)

∥∥trŴ1

(
ũ′

n(τ )
)∥∥

L4(Ŵ1)
dτ

≤ 1

2

∥∥g′′∥∥2

L2(0,T ;L4/3(Ŵ1))
+ c1

2

t∫

0

∥∥̃u′
n(τ )

∥∥2

H1(�)
dτ , (87)

∣∣∣∣∣∣

t∫

0

((
gθ

)′
(τ ), trŴθ

1

(
θ̃ ′

n(τ )
))

L2(Ŵθ
1 )

dτ

∣∣∣∣∣∣
≤

t∫

0

∥∥∥
(
gθ

)′
(τ )

∥∥∥
L4/3(Ŵθ

1 )

∥∥∥trŴθ
1

(
θ̃ ′

n(τ )
)∥∥∥

L4(Ŵθ
1 )

dτ

≤ 1

2ε1

∥∥∥
(
gθ

)′
∥∥∥

2

L2(0,T ;L4/3(Ŵθ
1 ))

+ c1ε1

2

t∫

0

∥∥θ̃ ′
n(τ )

∥∥2

H1(�)
dτ ,

∀t ∈ [0, T], ε1 > 0. (88)

Hence, by using the conditions (47), the inequalities (61) to (65), (70) and (81) to (88) for small enough
ε1 > 0, and the Cauchy–Schwarz inequality, and from the equality (80), we obtain:

∥∥̃u′
n(t)

∥∥2

H1(�)
+

∥∥̃u′′
n(t)

∥∥2

L2(�)
+

∥∥∥∥
(
ϕ̃

Rϕ
n

)′
(t)

∥∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥∥

(
ψ̃

Rψ
n

)′
(t)

∥∥∥∥
2

V
ψ

Rψ
(�)

+
∥∥θ̃ ′

n(t)
∥∥2

L2(�)
+

t∫

0

∥∥θ̃ ′
n(τ )

∥∥2

H1(�)
dτ

≤ c1

⎛
⎝∥∥̃u′

n(t)
∥∥2

L2(�)
+

t∫

0

∥∥̃u′
n(τ )

∥∥2

H1(�)
dτ +

t∫

0

∥∥̃u′′
n(τ )

∥∥
L2(�)

dτ +
t∫

0

∥∥∥∥
(
ϕ̃

Rϕ
n

)′
(τ )

∥∥∥∥
2

V
ϕ

Rϕ
(�)

dτ

+
t∫

0

∥∥∥∥
(
ψ̃

Rψ
n

)′
(τ )

∥∥∥∥
2

V
ψ

Rψ
(�)

dτ +
t∫

0

∥∥θ̃ ′
n(τ )

∥∥2

L2(�)
dτ

⎞
⎠

+ c2

(
‖̃u1n‖2

H1(�)
+ ‖̃u2n‖2

L2(�)
+

∥∥∥ϕ̃
Rϕ

1n

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψ̃

Rψ

1n

∥∥∥
2

V
ψ

Rψ
(�)

+
∥∥θ̃1n

∥∥2

H1(�)
+

∥∥f ′∥∥2

L2(0,T ;L2(�))

+
∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))
+

∥∥g′′∥∥2

L2(0,T ;L4/3(Ŵ1))
+

∥∥(f ϕ)′′
∥∥2

L2(0,T ;L6/5(�))
+

∥∥(gϕ)′′
∥∥2

L2(0,T ;L4/3(Ŵ
ϕ
1 ))

+
∥∥(gψ )′′

∥∥2

L2(0,T ;L4/3(Ŵ
ψ
1 ))

+
∥∥f θ ′∥∥2

L2(0,T ;L2(�))
+

∥∥gθ ′∥∥2

L2(0,T ;L4/3(Ŵθ
1 ))

)
, ∀t ∈ [0, T]. (89)
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Since ũ′
n, ũ′′

n ∈ C([0, T]; Vn(�)), we have:

∥∥̃u′
n(t)

∥∥2

L2(�)
≤ 2 ‖̃u1n‖2

L2(�)
+ 2t

t∫

0

∥∥̃u′′
n(τ )

∥∥2

L2(�)
dτ , ∀t ∈ [0, T]. (90)

From the convergence properties of the sequences (̃u1n)n≥1, (̃u2n)n≥1, (ϕ̃
Rϕ

1n )n≥1, (ψ̃
Rψ

1n )n≥1 and (θ̃1n)n≥1, we infer

that they are bounded in the spaces H1(�), L2(�), V
ϕ

Rϕ
(�), V

ψ

Rψ
(�) and L2(�), respectively, and from the

estimates (89) and (90), we have, for all t ∈ [0, T],

∥∥̃u′
n(t)

∥∥2

H1(�)
+

∥∥̃u′′
n(t)

∥∥2

L2(�)
+

∥∥∥∥
(
ϕ̃

Rϕ
n

)′
(t)

∥∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥∥

(
ψ̃

Rψ
n

)′
(t)

∥∥∥∥
2

V
ψ

Rψ
(�)

+
∥∥θ̃ ′

n(t)
∥∥2

L2(�)
+

t∫

0

∥∥θ̃ ′
n(τ )

∥∥2

H1(�)
dτ

≤ c1

⎛
⎝

t∫

0

∥∥̃u′
n(τ )

∥∥2

H1(�)
dτ +

t∫

0

∥∥̃u′′
n(τ )

∥∥
L2(�)

dτ +
t∫

0

∥∥∥∥
(
ϕ̃

Rϕ
n

)′
(τ )

∥∥∥∥
2

V
ϕ

Rϕ
(�)

dτ +
t∫

0

∥∥∥∥
(
ψ̃

Rψ
n

)′
(τ )

∥∥∥∥
2

V
ψ

Rψ
(�)

dτ

+
t∫

0

∥∥θ̃ ′
n(τ )

∥∥2

L2(�)
dτ

⎞
⎠ + c2, (91)

where c1, c2 are positive constants that do not depend on ũn, ϕ̃
Rϕ
n , ψ̃

Rψ
n or θ̃n. By applying Gronwall’s lemma

[24], we obtain:

∥∥̃u′
n(t)

∥∥2

H1(�)
+

∥∥̃u′′
n(t)

∥∥2

L2(�)
+

∥∥∥∥
(
ϕ̃

Rϕ
n

)′
(t)

∥∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥∥

(
ψ̃

Rψ
n

)′
(t)

∥∥∥∥
2

V
ψ

Rψ
(�)

+
∥∥θ̃ ′

n(t)
∥∥2

L2(�)
+

t∫

0

∥∥θ̃ ′
n(τ )

∥∥2

H1(�)
dτ

≤ c1, ∀t ∈ [0, T].

Consequently, ũ′
n is bounded in L∞(0, T ; V(�)), ũ′′

n is bounded in L∞(0, T ; L2(�)), (ϕ̃
Rϕ
n )′ is bounded

in L∞(0, T ; V
ϕ

Rϕ
(�)), (ψ̃

Rψ
n )′ is bounded in L∞(0, T ; V

ψ

Rψ
(�)), and θ̃ ′

n is bounded in L∞(0, T ; L2(�)) and

L2(0, T ; V θ (�)). Because

ũn(t) = ũ0n +
t∫

0

ũ′
n(τ )dτ , θ̃n(t) = θ̃0n +

t∫

0

θ̃ ′
n(τ )dτ , ∀t ∈ [0, T],

ϕ̃
Rϕ
n (t) = ϕ̃

Rϕ

0n +
t∫

0

(
ϕ̃

Rϕ
n

)′
(τ )dτ , ψ̃

Rψ
n (t) = ψ̃

Rψ

0n +
t∫

0

(
ψ̃

Rψ
n

)′
(τ )dτ , ∀t ∈ [0, T],

we deduce that ũn is bounded in L∞(0, T ; V(�)), ϕ̃
Rϕ
n is bounded in L∞(0, T ; V

ϕ

Rϕ
(�)), ψ̃

Rψ
n is bounded in

L∞(0, T ; V
ψ

Rψ
(�)) and θ̃n is bounded in L∞(0, T ; V θ (�)). Hence, by the weak-* compactness of a bounded set

in non-reflexive Banach space and weak compactness of a bounded set in reflexive Banach space, there exists

a subsequence (̃unk
)k≥1 of sequence (̃un)n≥1, a subsequence (ϕ̃

Rϕ
nk )k≥1 of (ϕ̃

Rϕ
n )n≥1, a subsequence (ψ̃

Rψ
nk )k≥1 of
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(ψ̃
Rψ
n )n≥1 and a subsequence (θ̃nk

)k≥1 of (θ̃n)n≥1, which possess the following properties:

ũnk
→ u, ũ′

nk
→ u′ weakly-* in L∞(0, T ; V(�)),

ũ′′
nk

→ u′′ weakly-* in L∞(0, T ; L2(�)),

ϕ̃
Rϕ
nk → ϕRϕ , (ϕ̃

Rϕ
nk )′ → (ϕRϕ )′ weakly-* in L∞(0, T ; V

ϕ

Rϕ
(�)), (92)

ψ̃
Rψ
nk → ψRψ , (ψ̃

Rψ
nk )′ → (ψRψ )′ weakly-* in L∞(0, T ; V

ψ

Rψ
(�)),

θ̃nk
→ θ weakly-* in L∞(0, T ; V θ (�)),

θ̃ ′
nk

→ θ ′ weakly-* in L∞(0, T ; L2(�)), θ̃ ′
nk

→ θ ′ weakly in L2(0, T ; V θ (�)), as k → ∞.

By integrating equations (71) and (74) from 0 to t, and by integrating equations (72) and (73) twice from 0 to t,

for all t ∈ [0, T] and for vn ∈ Vn(�), ϕ
Rϕ
n ∈ V

ϕ

Rϕn
(�), ψ

Rψ

n ∈ V
ψ

Rψ n
(�) and θn ∈ V θ

n (�), we obtain:

(
ρũ′′

n(t), vn

)
L2(�) + c

(
ũn(t), vn

)
+ ε(ϕ̃n(t), vn) + b

(
ψ̃n(t), vn

)
− λ

(
θ̃n(t), vn

)

−
((

ρũ2n(t), vn

)
L2(�)

+ c(̃u0n, vn) + ε(ϕ̃0n, vn) + b
(
ψ̃0n, vn

)
− λ

(
θ̃0n, vn

))

= (f (t), vn)L2(�) + (g(t), trŴ1
(vn))L2(Ŵ1) − (f (0), vn)L2(�) − (g(0), trŴ1

(vn))L2(Ŵ1), (93)

− ε
(
ϕ

Rϕ
n , ũn(t)

)
+ d

(
ϕ̃

Rϕ
n (t), ϕ

Rϕ
n

)
+ a

(
ψ̃

Rψ
n (t), ϕ

Rϕ
n

)
− μ

(
θ̃n(t), ϕ

Rϕ
n

)

−
(
−ε

(
ϕ

Rϕ
n , ũ1n

)
+ d

(
ϕ̃

Rϕ

1n , ϕ
Rϕ
n

)
+ a

(
ψ̃

Rψ

1n , ϕ
Rϕ
n

)
− μ

(
θ̃1n, ϕ

Rϕ
n

))
t

−
(
−ε

(
ϕ

Rϕ
n , ũ0n

)
+ d

(
ϕ̃

Rϕ

0n , ϕ
Rϕ
n

)
+ a

(
ψ̃

Rψ

0n , ϕ
Rϕ
n

)
− μ

(
θ̃0n, ϕ

Rϕ
n

))

=
(

f ϕ(t), ϕ
Rϕ
n

)
L2(�)

−
(

gϕ(t), trŴϕ
1

(
ϕ

Rϕ
n

))
L2(Ŵ

ϕ
1 )

−
((

(f ϕ)′(0), ϕ
Rϕ
n

)
L2(�)

−
(

(gϕ)′(0), trŴϕ
1

(
ϕ

Rϕ
n

))
L2(Ŵ

ϕ
1 )

)
t−

((
f ϕ(0), ϕ

Rϕ
n

)
L2(�)

−
(

gϕ(0), trŴϕ
1

(
ϕ

Rϕ
n

))
L2(Ŵ

ϕ
1 )

)
,

(94)

− b
(
ψ

Rψ

n , ũn(t)
)

+ a
(
ϕ̃

Rϕ
n (t), ψ

Rψ

n

)
+ ζ

(
ψ̃

Rψ
n (t), ψ

Rψ

n

)
− m

(
θ̃n(t), ψ

Rψ

n

)

−
(
−b

(
ψ

Rψ

n , ũ1n

)
+ a

(
ϕ̃

Rϕ

1n , ψ
Rψ

n

)
+ ζ

(
ψ̃

Rψ

1n , ψ
Rψ

n

)
− m

(
θ̃1n, ψ

Rψ

n

))
t

−
(
−b

(
ψ

Rψ

n , ũ0n

)
+ a

(
ϕ̃

Rϕ

0n , ψ
Rψ

n

)
+ ζ

(
ψ̃

Rψ

0n , ψ
Rψ

n

)
− m

(
θ̃0n, ψ

Rψ

n

))

= −
(

gψ (t), tr
Ŵ

ψ
1

(
ψ

Rψ

n

))
L2(Ŵ

ψ
1 )

+
((

gψ
)′

(0), tr
Ŵ

ψ
1

(
ψ

Rψ

n

))
L2(Ŵ

ψ
1 )

t +
(

gψ (0), tr
Ŵ

ψ
1

(
ψ

Rψ

n

))
L2(Ŵ

ψ
1 )

, (95)

(
κθ̃ ′

n(t), θn

)
L2(�)

+ η
(
θ̃n(t), θn

)
+ �0λ

(
θn, ũ′

n(t)
)
− �0μ

(
θn,

(
ϕ̃

Rϕ
n

)′
(t)

)
− �0m

(
θn,

(
ψ̃

Rψ
n

)′
(t)

)

−
((

κθ̃1n, θn

)
L2(�)

+ η
(
θ̃0n, θn

)
+ �0λ

(
θn, ũ1n

)
− �0μ

(
θn, ϕ̃

Rϕ

1n

)
− �0m

(
θn, ψ̃

Rψ

1n

))

=
(
f θ (t), θn

)
L2(�)

−
(

gθ (t), trŴθ
1
(θn)

)
L2(Ŵθ

1 )
−

((
f θ (0), θn

)
L2(�)

−
(

gθ (0), trŴθ
1

(
θn

))
L2(Ŵθ

1 )

)
. (96)

From the density of the unions
⋃

n≥1 Vn(�),
⋃

n≥1 V
ϕ

Rϕn
(�),

⋃
n≥1 V

ψ

Rψ n
(�) and

⋃
n≥1 V θ

n (�) in V(�), V
ϕ

Rϕ
(�),

V
ψ

Rψ
(�) and V θ (�), respectively, there exist sequences (̂vn)n≥1, (ϕ̂

Rϕ
n )n≥1, (ψ̂

Rψ
n )n≥1 and (θ̂n)n≥1 such that v̂n → v

in V(�), ϕ̂
Rϕ
n → ϕRϕ in V

ϕ

Rϕ
(�), ψ̂

Rψ
n → ψ

Rψ
in V

ψ

Rψ
(�) and θ̂n → θ in V θ (�), as n → ∞. By taking n = nk ,

vnk
= v̂nk

ξ (t), ξ ∈ D(0, T), ϕ
Rϕ
nk = ϕ̂

Rϕ
nk ξ (t), ψ

Rψ

nk
= ψ̂

Rψ
nk ξ (t) and θnk

= θ̂nk
ξ (t) in equations (93) to (96), by
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integrating them on (0, T) and passing to the limit as k → ∞, and from the convergence properties (92), we
infer:

T∫

0

(
(ρu′′(t), v)L2(�)+c(u(t), v)+ε(ϕ(t), v)+b(ψ(t), v)−λ(θ (t), v)−(f (t), v)L2(�)−(g(t), trŴ1

(v))L2(Ŵ1)

)
ξ (t)dt

=
T∫

0

(
(ρu2(t), v)L2(�) + c(u0, v) + ε(ϕ0, v) + b(ψ0, v) − λ(θ0, v) − (f (0), v)L2(�) − (g(0), trŴ1

(v))L2(Ŵ1)

)
ξ (t)dt,

∀v ∈ V(�), (97)

T∫

0

(
−ε

(
ϕRϕ , u(t)

)
+ d

(
ϕRϕ (t), ϕRϕ

)
+ a

(
ψRψ (t), ϕRϕ

)
− μ

(
θ(t), ϕRϕ

)
−

(
f ϕ(t), ϕRϕ

)
L2(�)

+
(

gϕ(t), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

)
ξ (t)dt

=
T∫

0

(
−ε

(
ϕRϕ , u1

)
+ d

(
ϕ

Rϕ

1 , ϕRϕ

)
+ a

(
ψ

Rψ

1 , ϕRϕ

)
− μ

(
θ1, ϕRϕ

)
−

(
(f ϕ)′(0), ϕRϕ

)
L2(�)

+
(

(gϕ)′(0), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

)
tξ (t)dt

+
T∫

0

(−ε(ϕRϕ , u0) + d(ϕ
Rϕ

0 , ϕRϕ ) + a(ψ
Rψ

0 , ϕRϕ ) − μ(θ0, ϕRϕ )

− (f ϕ(0), ϕRϕ )L2(�) + (gϕ(0), trŴϕ
1
(ϕRϕ ))L2(Ŵ

ϕ
1 ))ξ (t)dt, ∀ϕRϕ ∈ V

ϕ

Rϕ
(�), (98)

T∫

0

(
− b

(
ψ

Rψ
, u(t)

)
+ a

(
ϕRϕ (t), ψ

Rψ
)

+ ζ
(
ψRψ (t), ψ

Rψ
)

− m
(
θ(t), ψ

Rψ
)

+
(

gψ (t), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

)
ξ (t)dt

=
T∫

0

(
− b

(
ψ

Rψ
, u1

)
+ a

(
ϕ

Rϕ

1 , ψ
Rψ

)
+ ζ

(
ψ

Rψ

1 , ψ
Rψ

)
− m

(
θ1, ψ

Rψ
)

+
(

(gψ )′(0), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

)
tξ (t)dt

+
T∫

0

(
− b

(
ψ

Rψ
, u0

)
+ a

(
ϕ

Rϕ

0 , ψ
Rψ

)
+ ζ

(
ψ

Rψ

0 , ψ
Rψ

)
− m

(
θ0, ψ

Rψ
)

+
(

gψ (0), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

)
ξ (t)dt, ∀ψ

Rψ ∈ V
ψ

Rψ
(�), (99)
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T∫

0

((
κθ ′(t), θ

)
L2(�)

+ η
(
θ(t), θ

)
+ �0λ

(
θ , u′(t)

)
− �0μ

(
θ ,

(
ϕRϕ

)′
(t)

)

−�0m

(
θ ,

(
ψRψ

)′
(t)

)
−

(
f θ (t), θ

)
L2(�)

+
(

gθ (t), trŴθ
1
(θ )

)
L2(Ŵθ

1 )

)
ξ (t)dt

=
T∫

0

(
(κθ1, θ)L2(�) + η(θ0, θ ) + �0λ(θ , u1) − �0μ

(
θ , ϕ

Rϕ

1

)

−�0m
(
θ , ψ

Rψ

1

)
− (f θ (0), θ)L2(�) +

(
gθ (0), trŴθ

1
(θ )

)
L2(Ŵθ

1 )

)
ξ (t)dt, ∀θ ∈ V θ (�). (100)

By taking into account equations (51) to (53) and equations (57) to (59), we deduce from equations (97) to (100)
that u, ϕRϕ , ψRψ and θ satisfy equations (40) to (43) in the sense of distributions on (0, T).

Furthermore, the limit functions u and θ satisfy the initial conditions (44). Indeed, for any continuously
differentiable function ξ ∈ C1([0, T]), such that ξ (T) = 0, ξ (0) �= 0 and wnk

, w′
nk

∈ L2(0, T ; H), φnk
∈ H , we

have [24]: ∫ T

0

(
w′

nk
(t), φnk

ξ (t)
)

H
dt = −(wnk

(0), φnk
ξ (0))H −

∫ T

0

(
wnk

(t), φnk
ξ ′(t)

)
H

dt, (101)

where H is a Hilbert space and (., .)H denotes the scalar product in H . We use equation (101) in three cases:

(a) wnk
= ũnk

, φnk
= ṽnk

and H = L2(�);

(b) wnk
= ũ′

nk
, φnk

= ṽnk
and H = L2(�);

(c) wnk
= θnk

, φnk
= θ̃nk

and H = L2(�).

From the convergence properties (76), (79) and (92), and by passing to the limit in equation (101) as k → ∞,
we obtain: ∫ T

0

(
w′(t), φξ (t)

)
H

dt = −(w0, φξ (0))H −
∫ T

0

(
w(t), φξ ′(t)

)
H

dt, (102)

where w = u, w0 = u0 and φ = v ∈ V(�) in case (a); w = u′, w0 = u1 and φ = v ∈ V(�) in case (b); w = θ ,

w0 = θ0 and φ = θ ∈ V θ (�) in case (c). On the other hand, by applying the formula for integration by parts for
w, w′ ∈ L2(0, T ; H), φ ∈ H , we have:

∫ T

0

(
w′(t), φξ (t)

)
H

dt = −(w(0), φξ (0))H −
∫ T

0

(
w(t), φξ ′(t)

)
H

dt. (103)

Hence, from equations (102) and (103), we deduce that (w0, φ)H = (w(0), φ)H for all φ = v ∈ V(�) or

φ = θ ∈ V θ (�). Note that, by the embedding theorem [24], u ∈ C([0, T]; V(�)), u′ ∈ C([0, T]; L2(�)) and
θ ∈ C([0, T]; V θ (�)), and we can let w = u, w = u′, or w = θ in equation (103). Consequently, by the density
of D(�) in L2(�), we get that w(0) = w0, which is equivalent to the initial conditions (44). So, the problem (40)
to (44) possesses a solution.

Now, let us prove the energy equality (54), uniqueness of the solution and continuous dependence of the
solution on the given data. From the conditions ηk

ij ∈ C0,1(�k), we have ηij ∈ L∞(�); hence, the following

estimate is valid:

∣∣η
(
θ̂ , θ

)∣∣ =
∫

�

∣∣(η grad θ̂
)
· grad θ

∣∣ dx

≤ max
1≤i,j≤3

∥∥ηij

∥∥
L∞(�)

∥∥∥∥∥∥

3∑

j=1

∣∣∣∣
∂θ̂

∂xj

∣∣∣∣

∥∥∥∥∥∥
L2(�)

∥∥∥∥∥

3∑

i=1

∣∣∣∣∣
∂θ

∂xi

∣∣∣∣∣

∥∥∥∥∥
L2(�)

≤ 3 max
1≤i,j≤3

∥∥ηij

∥∥
L∞(�)

∥∥θ̂
∥∥

V θ (�)

∥∥θ
∥∥

V θ (�)
, ∀θ̂ , θ ∈ V θ (�). (104)
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It follows from the estimates (61) to (68), (83) and (104) that [23] there exist linear continuous opera-

tors C : V(�) → V′(�), E : V
ϕ

Rϕ
(�) → V′(�), E : V(�) → (V

ϕ

Rϕ
(�))′, B : V

ψ

Rψ
(�) → V′(�),

B : V(�) → (V
ψ

Rψ
(�))′, � : L2(�) → V′(�), � : V(�) → L2(�), D : V

ϕ

Rϕ
(�) → (V

ϕ

Rϕ
(�))′,

A : V
ϕ

Rϕ
(�) → (V

ψ

Rψ
(�))′, A : V

ψ

Rψ
(�) → (V

ϕ

Rϕ
(�))′, Z : V

ψ

Rψ
(�) → (V

ψ

Rψ
(�))′, M : L2(�) → (V

ϕ

Rϕ
(�))′,

M : V
ϕ

Rϕ
(�) → L2(�), M : L2(�) → (V

ψ

Rψ
(�))′, M : V

ψ

Rψ
(�) → L2(�) and � : V θ (�) → (V θ (�))′, such

that 〈Ĉv, v〉 = c(̂v, v), 〈EϕRϕ , v〉 = ε(ϕRϕ , v), 〈Ev, ϕRϕ 〉ϕ = ε(ϕRϕ , v), 〈Bψ
Rψ

, v〉 = b(ψ
Rψ

, v), 〈Bv, ψ
Rψ 〉ψ =

b(ψ
Rψ

, v), 〈�θ̃ , v〉 = λ(θ̃ , v), (�v, θ̃ )L2(�) = λ(θ̃ , v), 〈Dϕ̂Rϕ , ϕRϕ 〉ϕ = d(ϕ̂Rϕ , ϕRϕ ), 〈AϕRϕ , ψ
Rψ 〉ψ =

a(ϕRϕ , ψ
Rψ

), 〈Aψ
Rψ

, ϕRϕ 〉ϕ = a(ϕRϕ , ψ
Rψ

), 〈Zψ̂Rψ , ψ
Rψ 〉ψ = ζ (ψ̂Rψ , ψ

Rψ
), 〈Mθ̃ , ϕRϕ 〉ϕ = μ(θ̃ , ϕRϕ ),

(MϕRϕ , θ̃)L2(�) = μ(θ̃ , ϕRϕ ), 〈Mθ̃ , ψ
Rψ 〉ψ = m(θ̃ , ψ

Rψ
), (Mψ

Rψ
, θ̃ )L2(�) = m(θ̃ , ψ

Rψ
) and 〈�θ̂ , θ〉θ =

η(θ̂ , θ ), for all v, v̂ ∈ V(�), θ̃ ∈ L2(�), ϕ̂Rϕ , ϕRϕ ∈ V
ϕ

Rϕ
(�), ψ̂Rψ , ψ

Rψ ∈ V
ψ

Rψ
(�), θ̂ , θ ∈ V θ (�), where

〈., .〉, 〈., .〉ϕ , 〈., .〉ψ and 〈., .〉θ denote the duality relations between the spaces V(�), V
ϕ

Rϕ
(�), V

ψ

Rψ
(�), V θ (�) and

their duals V′(�), (V
ϕ

Rϕ
(�))′, (V

ψ

Rψ
(�))′, (V θ (�))′, respectively. Since the linear combinations of products ξv,

ξϕRϕ , ξψ
Rψ

and ξθ , where ξ ∈ D(�), v ∈ V(�), ϕRϕ ∈ V
ϕ

Rϕ
(�), ψ

Rψ ∈ V
ψ

Rψ
(�) and θ ∈ V θ (�), are dense

in L2(0, T ; V(�)), L2(0, T ; V
ϕ

Rϕ
(�)), L2(0, T ; V

ψ

Rψ
(�)) and L2(0, T ; V θ (�)), respectively, we infer that equations

(40) to (43) are equivalent to the following ones:

ρ
d2u

dt2
+ Cu + EϕRϕ + BψRψ − �θ = f + G in L2

(
0, T ; V′(�)

)
, (105)

−Eu + DϕRϕ + AψRψ − Mθ = Fϕ − Gϕ in L2

(
0, T ;

(
V

ϕ

Rϕ
(�)

)′
)

, (106)

−Bu + AϕRϕ + ZψRψ − Mθ = −Gψ in L2

(
0, T ;

(
V

ψ

Rψ
(�)

)′
)

, (107)

κ
dθ

dt
+ �θ + �0�

du

dt
− �0M

dϕRϕ

dt
− �0M

dψRψ

dt
= f θ − Gθ in L2

(
0, T ;

(
V θ (�)

)′)
, (108)

where

〈G, v〉 = (g, trŴ1
(v))L2(Ŵ1) ,

〈
Fϕ − Gϕ , ϕRϕ

〉
ϕ

=
(

f ϕ , ϕRϕ

)
L2(�)

−
(

gϕ , trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

,

〈Gψ , ψ
Rψ 〉ψ =

(
gψ , tr

Ŵ
ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

,
〈
Gθ , θ

〉
θ

=
(

gθ , trŴθ
1

(
θ

))
L2(Ŵθ

1 )
,

for all v ∈ V(�), ϕRϕ ∈ V
ϕ

Rϕ
(�), ψ

Rψ ∈ V
ψ

Rψ
(�) and θ ∈ V θ (�). By applying continuity of the embedding

H1(�) →֒ L6(�) and the trace operator tr : H1(�) → L4(Ŵ), and taking into account condition (45), we have:

∣∣∣∣∣

(
dαg

dtα
(t), trŴ1

(v)

)

L2(Ŵ1)

∣∣∣∣∣ ≤
∥∥∥∥

dαg

dtα
(t)

∥∥∥∥
L4/3(Ŵ1)

∥∥trŴ1
(v)

∥∥
L4(Ŵ1)

≤ c1

∥∥∥∥
dαg

dtα
(t)

∥∥∥∥
L4/3(Ŵ1)

‖v‖
H1(�)

, ∀v ∈ V(�),
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∣∣∣∣∣

(
dαf ϕ

dtα
(t), ϕRϕ

)

L2(�)

−
(

dαgϕ

dtα
(t), trŴϕ

1

(
ϕRϕ

))

L2(Ŵ
ϕ
1 )

∣∣∣∣∣ ≤
∥∥∥∥

dαf ϕ

dtα
(t)

∥∥∥∥
L6/5(�)

inf
ϕr∈Rϕ

||ϕ + ϕr||L6(�)

+
∥∥∥∥

dαgϕ

dtα
(t)

∥∥∥∥
L4/3(Ŵ

ϕ
1 )

inf
ϕr∈Rϕ

||trŴϕ
1
(ϕ + ϕr)||L4(Ŵ

ϕ
1 )

≤ c1

(∥∥∥∥
dαf ϕ

dtα
(t)

∥∥∥∥
L6/5(�)

+
∥∥∥∥

dαgϕ

dtα
(t)

∥∥∥∥
L4/3(Ŵ

ϕ
1 )

) ∥∥∥ϕ
Rϕ
n

∥∥∥
V

ϕ

Rϕ
(�)

, ∀ϕRϕ ∈ V
ϕ

Rϕ
(�),

∣∣∣∣∣

(
dαgψ

dtα
(t), tr

Ŵ
ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

∣∣∣∣∣ ≤
∥∥∥∥

dαgψ

dtα
(t)

∥∥∥∥
L4/3(Ŵ

ψ
1 )

inf
ψ

r∈Rψ

∥∥∥tr
Ŵ

ψ
1

(
ψ + ψ

r
)∥∥∥

L4(Ŵ
ψ
1 )

≤ c1

∥∥∥∥
dαgψ

dtα
(t)

∥∥∥∥
L4/3(Ŵ

ψ
1 )

∥∥∥ψ
Rψ

∥∥∥
V

ψ

Rψ
(�)

, ∀ψ
Rψ ∈ V

ψ

Rψ
(�),

∣∣∣∣∣

(
dβgθ

dtβ
(t), trŴθ

1
(θ)

)

L2(Ŵθ
1 )

∣∣∣∣∣ ≤
∥∥∥∥

dβgθ

dtβ
(t)

∥∥∥∥
L4/3(Ŵθ

1 )

∥∥∥trŴθ
1
(θ)

∥∥∥
L4(Ŵθ

1 )

≤ c1

∥∥∥∥
dβgθ

dtβ
(t)

∥∥∥∥
L4/3(Ŵθ

1 )

∥∥θ
∥∥

H1(�)
, ∀θ ∈ V θ (�),

for almost all t ∈ (0, T), and, consequently, dαG/dtα ∈ L2(0, T ; V′(�)), dα(Fϕ − Gϕ)/dtα ∈ L2(0, T ; (V
ϕ

Rϕ
(�))′),

dαGψ/dtα ∈ L2(0, T ; (V
ψ

Rψ
(�))′) and dβGθ/dtβ ∈ L2(0, T ; (V θ (�))′), α = 0, 1, 2, β = 0, 1. From the embedding

theorem [24], we have that G, G′ ∈ C([0, T]; V′(�)), Fϕ − Gϕ , (Fϕ − Gϕ)′ ∈ C([0, T]; (V
ϕ

Rϕ
(�))′), Gψ , (Gψ )′ ∈

C([0, T]; (V
ψ

Rψ
(�))′) and Gθ ∈ C([0, T]; (V θ (�))′).

Multiplying equation (105) by du/dt in the space L2(0, T ; V′(�)), differentiating equations (106) and (107)

and multiplying them by ϕ and ψ in the spaces L2(0, T ; (V
ϕ

Rϕ
(�))′) and L2(0, T ; (V

ψ

Rψ
(�))′), respectively, and

multiplying equation (108) by θ/�0 in the space L2(0, T ; (V θ (�))′), integrating them on (0, t), using the for-
mula for integration by parts [24], and taking into account symmetry conditions (46), and adding the obtained
equations, we get the energy equality (54).

By similar arguments, which have been used to obtain estimates (84) to (88), we infer:

∣∣(g(t), trŴ1
(v))L2(Ŵ1)

∣∣ ≤ c1

ε1

(
‖g‖2

L2(0,T ;L4/3(Ŵ1))
+

∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))

)
+ c2ε1

2
‖v‖2

H1(�)
, (109)

∣∣∣∣∣∣

t∫

0

(g′(τ ), trŴ1
(u(τ )))L2(Ŵ1)dτ

∣∣∣∣∣∣
≤ 1

2

∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))
+ c1

2

t∫

0

‖u(τ )‖2
H1(�)

dτ , (110)

∣∣∣∣∣∣

t∫

0

((
(f ϕ)′(τ ), ϕRϕ (τ )

)
L2(�)

−
(

(gϕ)′(τ ), trŴϕ
1

(
ϕRϕ (τ )

))
L2(Ŵ

ϕ
1 )

)
dτ

∣∣∣∣∣∣

≤ 1

2

∥∥(f ϕ)′(τ )
∥∥2

L2(0,T ;L6/5(�))
+ 1

2

∥∥(gϕ)′
∥∥2

L2(0,T ;L4/3(Ŵ
ϕ
1 )

+ c1

t∫

0

∥∥∥ϕRϕ (τ )

∥∥∥
2

V
ϕ

Rϕ
(�)

dτ , (111)
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∣∣∣∣∣∣

t∫

0

(
(gψ )′(τ ), tr

Ŵ
ψ
1

(
ψRψ

)
(τ )

)
L2(Ŵ

ψ
1 )

dτ

∣∣∣∣∣∣
≤ 1

2

∥∥(gψ )′
∥∥2

L2(0,T ;L4/3(Ŵ
ψ
1 )

+ c1

2

t∫

0

∥∥∥∥
(
ψRψ

)′
(τ )

∥∥∥∥
2

V
ψ

Rψ
(�)

dτ , (112)

∣∣∣∣∣∣

t∫

0

(
gθ (τ ), trŴθ

1
(θ (τ ))

)
L2(Ŵθ

1 )
dτ

∣∣∣∣∣∣
≤ 1

2ε1

∥∥gθ
∥∥2

L2(0,T ;L4/3(Ŵθ
1 ))

+ c1ε1

2

t∫

0

‖θ(τ )‖2
H1(�)

dτ , (113)

for all t ∈ [0, T], ε1 > 0, v ∈ H1(�). By using the conditions (47), the inequalities (61) to (65), (70), (81), (82)
and (109) to (113) for small enough ε1 > 0, and the Cauchy–Schwarz inequality, and from the energy equality
(54), we obtain:

‖u(t)‖2
H1(�)

+
∥∥u′(t)

∥∥2

L2(�)
+

∥∥∥ϕRϕ (t)

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψRψ (t)

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ(t)‖2
L2(�)

+
t∫

0

‖θ(τ )‖2
H1(�)

dτ

≤ c1

⎛
⎝‖u(t)‖2

L2(�)
+

t∫

0

‖u(τ )‖2
H1(�)

dτ +
t∫

0

∥∥u′(τ )
∥∥

L2(�)
dτ +

t∫

0

∥∥∥ϕRϕ (τ )

∥∥∥
2

V
ϕ

Rϕ
(�)

dτ

+
t∫

0

∥∥∥ψRψ (τ )

∥∥∥
2

V
ψ

Rψ
(�)

dτ +
t∫

0

‖θ(τ )‖2
L2(�)

dτ

⎞
⎠

+ c2

(
‖u0‖2

H1(�)
+ ‖u1‖2

L2(�)
+

∥∥∥ϕ
Rϕ

0

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψ

Rψ

0

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ0‖2
L2(�)

+ ‖f ‖2
L2(0,T ;L2(�))

+ ‖g‖2
L2(0,T ;L4/3(Ŵ1))

+
∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))
+

∥∥(f ϕ)′
∥∥2

L2(0,T ;L6/5(�))
+

∥∥(gϕ)′
∥∥2

L2(0,T ;L4/3(Ŵ
ϕ
1 ))

+
∥∥(gψ )′

∥∥2

L2(0,T ;L4/3(Ŵ
ψ
1 ))

+
∥∥f θ

∥∥2

L2(0,T ;L2(�))
+

∥∥gθ
∥∥2

L2(0,T ;L4/3(Ŵθ
1 ))

)
, ∀t ∈ [0, T]. (114)

Since u ∈ C([0, T]; V(�)) and u′ ∈ L∞(0, T ; V(�)), we have:

‖u(t)‖2
L2(�)

≤ 2 ‖u0‖2
L2(�)

+ 2t

t∫

0

∥∥u′(τ )
∥∥2

L2(�)
dτ , ∀t ∈ [0, T]. (115)

From inequalities (114) and (115), we obtain:

‖u(t)‖2
H1(�)

+
∥∥u′(t)

∥∥2

L2(�)
+

∥∥∥ϕRϕ (t)

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψRψ (t)

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ(t)‖2
L2(�)

+
t∫

0

‖θ(τ )‖2
H1(�)

dτ

≤ c1

⎛
⎝

t∫

0

‖u(τ )‖2
H1(�)

dτ+
t∫

0

∥∥u′(τ )
∥∥

L2(�)
dτ+

t∫

0

∥∥∥ϕRϕ (τ )

∥∥∥
2

V
ϕ

Rϕ
(�)

dτ+
t∫

0

∥∥∥ψRψ (τ )

∥∥∥
2

V
ψ

Rψ
(�)

dτ+
t∫

0

‖θ(τ )‖2
L2(�)

dτ

⎞
⎠

+ c2

(
‖u0‖2

H1(�)
+ ‖u1‖2

L2(�)
+

∥∥∥ϕ
Rϕ

0

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψ

Rψ

0

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ0‖2
L2(�)

+ ‖f ‖2
L2(0,T ;L2(�))

+ ‖g‖2
L2(0,T ;L4/3(Ŵ1))

+
∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))
+

∥∥(f ϕ)′
∥∥2

L2(0,T ;L6/5(�))
+

∥∥(gϕ)′
∥∥2

L2(0,T ;L4/3(Ŵ
ϕ
1 ))

+
∥∥(gψ )′

∥∥2

L2(0,T ;L4/3(Ŵ
ψ
1 ))

+
∥∥f θ

∥∥2

L2(0,T ;L2(�))
+

∥∥gθ
∥∥2

L2(0,T ;L4/3(Ŵθ
1 ))

)
, ∀t ∈ [0, T], (116)
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where c1 and c2 are positive constants that do not depend on u, ϕRϕ , ψRψ or θ . By applying Gronwall’s lemma
[24], and from inequality (116), we have:

‖u(t)‖2
H1(�)

+
∥∥u′(t)

∥∥2

L2(�)
+

∥∥∥ϕRϕ (t)

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψRψ (t)

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ(t)‖2
L2(�)

+
t∫

0

‖θ(τ )‖2
H1(�)

dτ

≤ Tec1T c2

(
‖u0‖2

H1(�)
+ ‖u1‖2

L2(�)
+

∥∥∥ϕ
Rϕ

0

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψ

Rψ

0

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ0‖2
L2(�)

+ ‖f ‖2
L2(0,T ;L2(�))

+ ‖g‖2
L2(0,T ;L4/3(Ŵ1))

+
∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))
+

∥∥(f ϕ)′
∥∥2

L2(0,T ;L6/5(�))
+

∥∥(gϕ)′
∥∥2

L2(0,T ;L4/3(Ŵ
ϕ
1 ))

+
∥∥(gψ )′

∥∥2

L2(0,T ;L4/3(Ŵ
ψ
1 ))

+
∥∥f θ

∥∥2

L2(0,T ;L2(�))
+

∥∥gθ
∥∥2

L2(0,T ;L4/3(Ŵθ
1 ))

)
, ∀t ∈ [0, T]. (117)

To obtain estimate for ϕ
Rϕ

0 and ψ
Rψ

0 , note that, since ϕRϕ and ψ
Rψ

are independent of each other, the system
of equations (52) and (53) can be written as follows:

B̃
((

ϕ
Rϕ

0 , ψ
Rψ

0

)
,
(
ϕRϕ , ψ

Rψ
))

= F̃
(
ϕRϕ , ψ

Rψ
)

, ∀
(
ϕRϕ , ψ

Rψ
)

∈ W̃ (�), (118)

where W̃ (�) = V
ϕ

Rϕ
(�) × V

ψ

Rψ
(�) and ϕ

Rϕ

0 and ψ
Rψ

0 are equivalence classes of ϕ0 and ψ0, respectively,

B̃
((

ϕ
Rϕ

0 , ψ
Rψ

0

)
,
(
ϕRϕ , ψ

Rψ
))

= d
(
ϕ

Rϕ

0 , ϕRϕ

)
+ a

(
ψ

Rψ

0 , ϕRϕ

)
+ a

(
ϕ

Rϕ

0 , ψ
Rψ

)
+ ζ

(
ψ

Rψ

0 , ψ
Rψ

)
,

∀(ϕRϕ , ψ
Rψ

) ∈ W̃ (�),

F̃
(
ϕRϕ , ψ

Rψ
)

= ε
(
ϕRϕ , u0

)
+ μ

(
θ0, ϕRϕ

)
+

(
f ϕ(0), ϕRϕ

)
L2(�)

−
(

gϕ(0), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

+ b
(
ψ

Rψ
, u0

)
+ m

(
θ0, ψ

Rψ
)

−
(

gψ (0), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

, ∀
(
ϕRϕ , ψ

Rψ
)

∈ W̃ (�).

Since f ϕ(0) ∈ L6/5(�), gϕ(0) ∈ L4/3(Ŵ
ϕ

1 ) and gψ (0) ∈ L4/3(Ŵ
ψ

1 ), and by applying Hölder’s inequality, the

compatibility conditions (45), estimates (55) and (56) for w = f ϕ , ŵ = gϕ and ŵ = gψ , and the continuity of
the embedding H1(�) →֒ L6(�) and the trace operator tr : H1(�) → L4(Ŵ) [26], we have:

∣∣∣∣
(

f ϕ(0), ϕRϕ

)
L2(�)

−
(

gϕ(0), trŴϕ
1

(
ϕRϕ

))
L2(Ŵ

ϕ
1 )

−
(

gψ (0), tr
Ŵ

ψ
1

(
ψ

Rψ
))

L2(Ŵ
ψ
1 )

∣∣∣∣
≤ ||f ϕ(0)||L6/5(�) inf

ϕr∈Rϕ

||ϕ + ϕr||L6(�) + ||gϕ(0)||L4/3(Ŵ
ϕ
1 ) inf

ϕr∈Rϕ

||trŴϕ
1
(ϕ + ϕr)||L4(Ŵ

ϕ
1 )

+ ||gψ (0)||
L4/3(Ŵ

ψ
1 )

inf
ψ

r∈Rψ

∥∥∥tr
Ŵ

ψ
1

(
ψ + ψ

r
)∥∥∥

L4(Ŵ
ψ
1 )

≤ c1

(
||f ϕ||L2(0,T ;L6/5(�)) + ||(f ϕ)′||L2(0,T ;L6/5(�)) + ||gϕ||L2(0,T ;L4/3(Ŵ

ϕ
1 )) + ||(gϕ)′||L2(0,T ;L4/3(Ŵ

ϕ
1 ))

+ ||gψ ||
L2(0,T ;L4/3(Ŵ

ψ
1 ))

+ ||(gψ )′||
L2(0,T ;L4/3(Ŵ

ψ
1 ))

) (∥∥∥ϕRϕ

∥∥∥
V

ϕ

Rϕ
(�)

+
∥∥∥ψ

Rψ

∥∥∥
V

ψ

Rψ
(�)

)
,

where ϕ ∈ Vϕ(�) and ψ ∈ Vψ (�) are arbitrary elements of the equivalence classes ϕRϕ ∈ V
ϕ

Rϕ
(�) and

ψ
Rψ ∈ V

ψ

Rψ
(�). Therefore, by using estimates (64) to (67) for θ = θ0, v = u0, the inequality |a1| + |b1| ≤√

2(a2
1 + b2

1)1/2, a1, b1 ∈ R, and taking into account that θ0 ∈ V θ (�) ⊂ L2(�), we infer that the linear form
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F̃ : W̃ (�) → R is continuous and

∣∣∣F̃
(
ϕRϕ , ψ

Rψ
)∣∣∣ ≤

√
2c2

(
‖u0‖H1(�)

+‖θ0‖L2(�)
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,

∀
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ϕRϕ , ψ

Rψ
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∈ W̃ (�). (119)

Note that
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0

)
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Rψ
))

= B
((
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0 , ψ
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0 , 0
)

,
(
ϕRϕ , ψ

Rψ
, 0

))
.

Hence, applying inequality (70), we have:

B
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+
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Rψ

0

∥∥∥
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V
ψ
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,

and, from equation (118) and inequality (119), for (ϕRϕ , ψ
Rψ

) = (ϕ
Rϕ

0 , ψ
Rψ

0 ), using the inequality

|a1| + · · · + |an| ≤
√

n
(
a2

1 + · · · + a2
n

)1/2
, a1, . . . , an ∈ R , n ∈ N ,

we obtain:
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.

Consequently, from inequality (117), we infer the following estimate:

‖u(t)‖2
H1(�)

+
∥∥u′(t)

∥∥2

L2(�)
+

∥∥∥ϕRϕ (t)

∥∥∥
2

V
ϕ

Rϕ
(�)

+
∥∥∥ψRψ (t)

∥∥∥
2

V
ψ

Rψ
(�)

+ ‖θ(t)‖2
L2(�)

+
t∫

0

‖θ(τ )‖2
H1(�)

dτ

≤ c1

(
‖u0‖2

H1(�)
+ ‖u1‖2

L2(�)
+ ‖θ0‖2

L2(�)
+ ‖f ‖2

L2(0,T ;L2(�))
+ ‖g‖2

L2(0,T ;L4/3(Ŵ1))
+

∥∥g′∥∥2

L2(0,T ;L4/3(Ŵ1))

+ ||f ϕ||2
L2(0,T ;L6/5(�))

+
∥∥(f ϕ)′

∥∥2

L2(0,T ;L6/5(�))
+ ||gϕ||2

L2(0,T ;L4/3(Ŵ
ϕ
1 ))

+
∥∥(gϕ)′

∥∥2

L2(0,T ;L4/3(Ŵ
ϕ
1 ))

+ ||gψ ||2
L2(0,T ;L4/3(Ŵ

ψ
1 ))

+
∥∥(gψ )′

∥∥2

L2(0,T ;L4/3(Ŵ
ψ
1 ))

+
∥∥f θ

∥∥2

L2(0,T ;L2(�))
+

∥∥gθ
∥∥2

L2(0,T ;L4/3(Ŵθ
1 ))

)
, ∀t ∈ [0, T],

which implies the uniqueness of the solution and continuous dependence on the given data.

Remark 1. If Ŵ
ϕ

0 and Ŵ
ψ

0 are not empty sets, then the homogeneous equations (41) and (42), when u ≡ 0,

θ ≡ 0 and f ϕ ≡ 0, gϕ ≡ 0, gψ ≡ 0, have only trivial solutions. Therefore, Rϕ = Rψ = {0}, the factor spaces

V
ϕ

Rϕ
(�) and V

ψ

Rψ
(�) coincide with Vϕ(�) and Vψ (�), respectively, and Theorem 3 is valid, when V

ϕ

Rϕ
(�) is

replaced by Vϕ(�) and V
ψ

Rψ
(�) is replaced by Vψ (�).
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Remark 2. The conditions (51) and (53) of Theorem 3 for given u2 ∈ L2(�) and θ0 ∈ V θ (�) constitute
a system of variational equations with respect to u0, ϕ0, ψ0. By subtracting (ρu2, v)L2(�) from both sides of
equation (51), we infer that the system (51) to (53) coincides with equations (34) to (36) of the static problem,
where instead of f we have f (0) − ρu2. Consequently, it follows from the results of the analysis of the static
problem [22] that, for solvability of equations (51) to (53), u2 ∈ L2(�) should satisfy the following condition:

(f (0) − ρu2, vr)L2(�) + (g(0), trŴ1
( vr))L2(Ŵ1) = 0, (120)

for all vr ∈ V(�), vr(x) = α + β × Ox, α, β ∈ R
3, Ox = (xi), and then there exist u0 ∈ V(�), ϕ0 ∈ Vϕ(�),

ψ0 ∈ Vψ (�) satisfying equations (51) to (53). Note that, if Ŵ0 is not an empty set, then α = β = 0; hence, for

any u2 ∈ L2(�), there exists a unique (u0, ϕ0, ψ0) ∈ V(�)× Vϕ(�) × Vψ (�) that satisfies equations (51) to
(53).

Remark 3. Sufficient conditions for the existence of u2 ∈ L2(�), ϕ0 ∈ Vϕ(�) and ψ0 ∈ Vψ (�) satisfying
equations (51) to (53) can be obtained by applying regularity results for strongly elliptic systems. To simplify
the notations, we assume that the thermo-electro-magneto-elastic solid consists of a single domain, i.e., K = 1.

In addition to the conditions of Theorem 3, let us assume that � is a bounded C1,1 domain [23], Ŵ
ϕ

0 ∩ Ŵ
ϕ

1 = ∅,

Ŵ
ψ

0 ∩ Ŵ
ψ

1 = ∅ and the given functions satisfy the following additional regularity properties: cijpq, εpij, bpij, dij,

ζij, aij, λij, μi, mi ∈ C0,1(�), u0 ∈ V(�) ∩ H2(�), f ϕ(0) ∈ L2(�), gϕ(0) ∈ H1/2(Ŵ
ϕ

1 ) and gψ (0) ∈ H1/2(Ŵ
ψ

1 ).
Hence, from Rademacher’s theorem [25], we have that the functions cijpq, εpij , bpij, dij, ζij, aij, λij, μi, mi are
differentiable almost everywhere in � and that their derivatives belong to L∞(�). Applying Green’s formula,
equations (52) and (53) can be written as

d(ϕ0, ϕ) + a(ψ0, ϕ) =
∫

Ŵ
ϕ
1

trŴϕ
1
(ϕ)trŴϕ

1
(ε ∗ e(u0)) · ndŴ

ϕ

1 −
∫

�

ϕdiv (ε ∗ e(u0)) dx

+
∫

Ŵ
ϕ
1

trŴϕ
1
(ϕ)trŴϕ

1
(µθ0) · ndŴ

ϕ

1 −
∫

�

ϕdiv(µθ0)dx + (f ϕ(0), ϕ)L2(�) − (gϕ(0), trŴϕ
1
(ϕ))L2(Ŵ

ϕ
1 ), (121)

a(ϕ0, ψ) + ζ (ψ0, ψ) =
∫

Ŵ
ψ
1

tr
Ŵ

ψ
1

(ψ)tr
Ŵ

ψ
1

(b ∗ e(u0)) · ndŴ
ψ

1 −
∫

�

ψdiv(b ∗ e(u0))dx

+
∫

Ŵ
ψ
1

tr
Ŵ

ψ
1

(ψ)tr
Ŵ

ψ
1

(mθ0) · ndŴ
ψ

1 −
∫

�

ψdiv(mθ0)dx − (gψ (0), tr
Ŵ

ψ
1

(ψ))
L2(Ŵ

ψ
1 )

. (122)

It follows, from the positive definiteness condition (48), when ξ = 0, that equations (121) and (122) constitute a
boundary value problem for a strongly elliptic system of second-order partial differential equations with respect
to ϕ0 ∈ Vϕ(�) and ψ0 ∈ Vψ (�) [23], which is solvable since the compatibility conditions (45) are satisfied.
From the regularity properties of the given functions, we have:

trŴϕ
1
(ε ∗ e(u0)) · n + trŴϕ

1
(µθ0) · n − gϕ(0) ∈ H1/2(Ŵ

ϕ

1 ),

−div (ε ∗ e(u0)) − div(µθ0) + f ϕ(0) ∈ L2(�),

tr
Ŵ

ψ
1

(b ∗ e(u0)) · n + tr
Ŵ

ψ
1

(mθ0) · n − gψ (0) ∈ H1/2(Ŵ
ψ

1 ),

−div(b ∗ e(u0)) − div(mθ0) ∈ L2(�),

hence, applying the regularity theorem [23], we infer that the solutions ϕ0 and ψ0 of equations (121) and (122)
belong to H2(�).

Assume now that the following compatibility condition is satisfied:

g(0) = trŴ1
(c ∗ e(u0) + ε ∗ grad ϕ0 + b ∗ grad ψ0 − λθ0) n on Ŵ1. (123)
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Applying Green’s formula and equation (123), we obtain:

c(u0, v) + ε(ϕ0, v) + b(ψ0, v) − λ(θ0, v) − (g(0), trŴ1
(v))L2(Ŵ1)

= −
∫

�

div (c ∗ e(u0) + ε ∗ grad ϕ0 + b ∗ grad ψ0 − λθ0) · vdx, ∀v ∈ V(�).

From equation (47), we infer that 1/ρ ∈ L∞(�) and, taking

u2 = 1

ρ
(f (0) + div (c ∗ e(u0) + ε ∗ grad ϕ0 + b ∗ grad ψ0 − λθ0)) ,

we have u2 ∈ L2(�) and u2, ϕ0, ψ0 satisfy equations (51) to (53). Thus, if the boundary Ŵ and the given
functions satisfy the aforementioned additional regularity conditions and the compatibility condition (123),
there exist u2 ∈ L2(�), ϕ0 ∈ Vϕ(�) and ψ0 ∈ Vψ (�) that satisfy equations (51) to (53).

5. Conclusions

In this work, we investigated boundary and initial boundary value problems with general mixed boundary
conditions for mechanical displacement, electric and magnetic potentials and temperature, corresponding to
the linear static and dynamic three-dimensional models of multidomain inhomogeneous anisotropic thermo-
electro-magneto-elastic bodies. We obtained the variational formulations of the three-dimensional problems in
corresponding Sobolev spaces or spaces of vector-valued distributions with respect to the time variable with
values in Sobolev spaces that are equivalent to the original differential formulations of boundary and initial
boundary value problems in spaces of twice continuously differentiable functions. Also, we obtained new results
on the existence and uniqueness of solutions of the three-dimensional boundary and initial boundary value prob-
lems in corresponding factor spaces of Sobolev spaces and, to prove the existence, we approximated the solution
of the dynamic three-dimensional problem by solutions of finite dimensional systems of ordinary differential
equations. Moreover, for the dynamic problem, we obtained an energy equality and, by applying it, we proved the
continuous dependence of a solution on given data in suitable function spaces. The methodology presented here
can be used to investigate various continuum mechanics models in Sobolev spaces and construction algorithms
of their solutions.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work

was supported by the Shota Rustaveli National Science Foundation of Georgia (SRNSFG) (Grant number 217596, Construction and

investigation of hierarchical models for thermoelastic piezoelectric structures).

ORCID iDs

Gia Avalishvili https://orcid.org/0000-0003-4598-2426

Mariam Avalishvili https://orcid.org/0000-0002-6224-6618

Ayech Benjeddou https://orcid.org/0000-0002-4760-4800

References

[1] Voigt, W. Allgemeine Theorie der piëzo- und pyroelectrischen Erscheinungen an Krystallen. Abhandlungen der K Gesell Wiss

Göttingen 1890; 36: 1–99.

[2] Cady, WG. Piezoelectricity. New York: Dover, 1964.

[3] Mindlin, RD. Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int J Solids Struct 1974; 10: 625–637.

[4] Nowacki, W. A reciprocity theorem for coupled mechanical and thermoelectric fields in piezo-electric crystals. Proc Vib Prob

1965; 1: 3–11.

[5] Nowacki, W. Some general theorems of thermo-piezoelectricity. J Thermal Stresses 1978; 1: 171–182.

[6] Dhaliwal, RS, and Wang, J. A uniqueness theorem for linear theory of thermo-piezoelectricity. Z Angew Math Mech 1994; 74:

558–560.

30



[7] Li, JY. Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity. Q J Mech Appl Math 2003; 56(1):

35–43.

[8] Aouadi, M. On the coupled theory of thermo-magneto-electro-elasticity. Q J Mech Appl Math 2007; 60(4): 443–456.

[9] Akamatsu, M, and Nakamura, G. Well-posedness of initial-boundary value problems for piezoelectric equations. Appl Anal 2002;

81: 129–141.

[10] Mulholland, AJ, Picard, R, Trostorff, S et al. On well-posedness for some thermo-piezoelectric coupling models. Math Meth Appl

Sci 2016; 39(15): 4375–4384.

[11] Natroshvili, D. Mathematical problems of thermo-electro-magneto-elasticity. Lect Notes Tbilisi Int Centre Math Inf 2011; 12:

3–127.

[12] Moon, FC. Magneto-solid mechanics. New York: Wiley, 1984.

[13] Qin, QH. Fracture mechanics of piezoelectric materials. Boston: WIT Press, 2001.

[14] Bardzokas, DI, Filshtinsky, ML, and Filshtinsky, LA. Mathematical methods in electro-magneto-elasticity. Berlin: Springer-

Verlag, 2007.

[15] Vu, DK, and Steinmann, P. On 3-D coupled BEM–FEM simulation of nonlinear electro-elastostatics. Comput Methods Appl

Mech Eng 2012; 201–204: 82–90.

[16] Vashishth, AK, and Sukhija, H. Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface. Appl

Math Mech 2015; 36(1): 11–36.

[17] Tiwari, R, and Mukhopadhyay, S. On electromagneto-thermoelastic plane waves under Green–Naghdi theory of thermoelasticity

II. J Therm Stresses 2017; 40(8): 1040–1062.

[18] Allam, MNM, Tantawy, R, and Zenkour, AM. Magneto-thermo-elastic response of exponentially graded piezoelectric hollow

spheres. Adv Comput Des 2018; 3(3): 303–318.

[19] Avalishvili, G, and Avalishvili, M. On approximation of three-dimensional model of thermoelastic piezoelectric plates by two-

dimensional problems. Bull Georgian Natl Acad Sci 2018; 12(4): 23–32.

[20] Benjeddou, A. Field-dependent nonlinear piezoelectricity: a focused review. Int J Smart Nano Mater 2018; 9(1): 68–84.

[21] Yakhno, V. The well-posedness of dynamical equations of magneto-electro-elasticity. Mediterr J Math 2018; 15: 21.

[22] Avalishvili, G, Avalishvili, M, and Müller, WH. Investigation of the three-dimensional boundary value problem for thermoelastic

piezoelectric solids. Bull Tbilisi Int Centre Math Inf 2017; 21(2): 65–79.

[23] McLean, W. Strongly elliptic systems and boundary integral equations. Cambridge: Cambridge University Press, 2000.

[24] Dautray, R, and Lions, J-L. Mathematical analysis and numerical methods for science and technology, vol 5: evolution problems

I. Berlin: Springer-Verlag, 2000.

[25] Whitney, H. Geometric integration theory. Princeton: Princeton University Press, 1957.

[26] Ciarlet, PG. Mathematical elasticity, vol. I: three-dimensional elasticity. Amsterdam: North-Holland, 1988.

31


