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This paper is devoted to the investigation of three-dimensional models of thermo-electro-magneto-elastic solids made of a multidomain inhomogeneous anisotropic material. General boundary and initial boundary value problems corresponding to the static and dynamic models are studied where, on certain parts of the boundary, mechanical displacement, electric and magnetic potentials and temperature vanish and, on the corresponding remaining parts of the boundary, the mechanical stress vector and components of the electric displacement, magnetic induction and heat flux along the outward normal vector of the boundary are given. Variational formulations of the boundary and initial boundary value problems are obtained and, applying them, existence and uniqueness results and the continuous dependence of solutions on given data, in suitable factor spaces of Sobolev spaces or spaces of vector-valued distributions, are proved.

Introduction

Modern complex engineering constructions and technological processes are controlled by using sensors and actuators, which gather information and facilitate the adequate adjustment of constructions or processes. The need to construct sensors and actuators with the appropriate physical characteristics stimulates the analysis of interactions between various physical fields, such as elastic, thermal, electric and magnetic. Piezoelectric materials are the most popular materials currently being used in smart structures, owing to their direct and converse piezoelectric effects, which permit them to be utilized as both actuators and sensors. A wide area of their application is aerospace engineering, where most structures operate in changing thermal environments. Therefore, the investigation of multifield problems in continuum mechanics is important from a practical as well as a theoretical point of view; hence, owing to their numerous applications, the study of the mechanics of thermo-electro-magneto-elastic materials has attracted increasing attention in recent years.

One of the first rigorous theoretical models of piezoelectricity, describing the interaction between elastic, electric and thermal properties of a thermoelastic body, was constructed by Voigt [START_REF] Voigt | Allgemeine Theorie der piëzo-und pyroelectrischen Erscheinungen an Krystallen[END_REF]. Later on, Cady [START_REF] Cady | Piezoelectricity[END_REF] treated the physical properties of piezoelectric crystals as well as their practical applications. A threedimensional model accounting for the coupling of elastic, electric and thermal fields was derived by Mindlin [START_REF] Mindlin | Equations of high frequency vibrations of thermopiezoelectric crystal plates[END_REF], who applied a variational principle. Nowacki [START_REF] Nowacki | A reciprocity theorem for coupled mechanical and thermoelectric fields in piezo-electric crystals[END_REF][START_REF] Nowacki | Some general theorems of thermo-piezoelectricity[END_REF] developed uniqueness and reciprocity theorems for thermo-piezoelectricity. Dhaliwal and Wang [START_REF] Dhaliwal | A uniqueness theorem for linear theory of thermo-piezoelectricity[END_REF] proved a uniqueness theorem for linear three-dimensional thermo-piezoelectricity without restriction on the coupling constant between temperature and electric field, and positive definiteness of the elasticity tensor, which were used in [START_REF] Nowacki | Some general theorems of thermo-piezoelectricity[END_REF]. Li [START_REF] Li | Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity[END_REF] considered the coupling effects between elastic, electric, magnetic and thermal fields, and generalized the uniqueness result obtained in [START_REF] Dhaliwal | A uniqueness theorem for linear theory of thermo-piezoelectricity[END_REF] and the reciprocity theorem of Nowacki [START_REF] Nowacki | A reciprocity theorem for coupled mechanical and thermoelectric fields in piezo-electric crystals[END_REF], which were further strengthened by Aouadi [START_REF] Aouadi | On the coupled theory of thermo-magneto-electro-elasticity[END_REF], and the results were proved without positive definiteness assumptions on the conductivity tensor used in [START_REF] Li | Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity[END_REF]. The existence, uniqueness and continuous dependence on the given data of a solution of an initial boundary value problem with the mixed boundary conditions for mechanical displacement, mechanical stress, electric potential and electric displacement corresponding to the three-dimensional model of an anisotropic inhomogeneous piezoelectric material with quasi-static equations for the electric field were proved in Sobolev spaces by Akamatsu and Nakamura [START_REF] Akamatsu | Well-posedness of initial-boundary value problems for piezoelectric equations[END_REF]. Well-posedness results in specific function spaces for the three-dimensional model of thermo-piezoelectricity with inhomogeneous material parameters in the cases of homogeneous pure Dirichlet-or Neumann-type boundary conditions given on the entire boundary were obtained by Mulholland et al. [START_REF] Mulholland | On well-posedness for some thermo-piezoelectric coupling models[END_REF]. Applying the potential method and theory of pseudodifferential equations, Natroshvili [START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF] studied static and pseudo-oscillation problems with basic, mixed and crack-type boundary conditions for homogeneous anisotropic thermo-electro-magneto-elasticity. For various classical and nonclassical models of piezoelectric solids, problems of propagation of waves, methods of solutions of corresponding initial and initial boundary value problems, applications of the obtained results and related topics are considered by many researchers (see [START_REF] Aouadi | On the coupled theory of thermo-magneto-electro-elasticity[END_REF][START_REF] Akamatsu | Well-posedness of initial-boundary value problems for piezoelectric equations[END_REF][START_REF] Mulholland | On well-posedness for some thermo-piezoelectric coupling models[END_REF][START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF][START_REF] Moon | Magneto-solid mechanics[END_REF][START_REF] Qin | Fracture mechanics of piezoelectric materials[END_REF][START_REF] Bardzokas | Mathematical methods in electro-magneto-elasticity[END_REF][START_REF] Vu | On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics[END_REF][START_REF] Vashishth | Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface[END_REF][START_REF] Tiwari | On electromagneto-thermoelastic plane waves under Green-Naghdi theory of thermoelasticity II[END_REF][START_REF] Allam | Magneto-thermo-elastic response of exponentially graded piezoelectric hollow spheres[END_REF][START_REF] Avalishvili | On approximation of three-dimensional model of thermoelastic piezoelectric plates by twodimensional problems[END_REF][START_REF] Benjeddou | Field-dependent nonlinear piezoelectricity: a focused review[END_REF][START_REF] Yakhno | The well-posedness of dynamical equations of magneto-electro-elasticity[END_REF] and the references given therein).

To the authors' knowledge, three-dimensional initial boundary value problems with general mixed boundary conditions for mechanical displacement, temperature, electric and magnetic potentials corresponding to the linear dynamic model with quasi-static equations for electric and magnetic fields for a multidomain inhomogeneous anisotropic thermo-electro-magneto-elastic body have not yet been investigated in Sobolev spaces. Only the boundary value problem with general mixed boundary conditions corresponding to the static model has been studied [START_REF] Avalishvili | Investigation of the three-dimensional boundary value problem for thermoelastic piezoelectric solids[END_REF].

In this paper, we investigate static and dynamic models with quasi-static equations for electric and magnetic fields of a multidomain thermo-electro-magneto-elastic body, where each subdomain consists of an anisotropic inhomogeneous material, and obtain new existence, uniqueness and continuous dependence results in the corresponding function spaces. The dynamic model is studied by applying the variational approach and the method of successive approximations, which permits one to construct the algorithm for the numerical solution of the problem. One of the aims of the paper is to obtain a new well-posedness result in ordinary Sobolev spaces, which are widely used for the investigation of the initial boundary value problems corresponding to the dynamic models of the classical linear elasticity, without any additional structures of function spaces.

In Section 2, we consider the differential formulation of the initial boundary and boundary value problems corresponding to the linear dynamic and static three-dimensional models for a multidomain inhomogeneous anisotropic thermo-electro-magneto-elastic body with general mixed boundary conditions, where, on certain parts of the boundary, the surface force and components of the electric displacement, magnetic induction and heat flux along the outward normal vector are prescribed, and, on the remaining parts, the mechanical displacement, electric and magnetic potentials and temperature vanish. We obtain integral relations that require less regularity of the unknown functions than in the original problem and show that, in the space of twice continuously differentiable functions, the obtained integral relations are equivalent to the original differential equations.

In Section 3, on the basis of the integral relations obtained in Section 2, we consider the variational formulation in suitable Sobolev spaces of the boundary value problem corresponding to the static three-dimensional model of thermo-electro-magneto-elastic solids considered in Section 2. We define the structure of the set of solutions of the homogeneous boundary value problem and, applying it, we formulate results regarding the existence, uniqueness and continuous dependence of a solution of the three-dimensional boundary value problem on given data in suitable function spaces.

In Section 4, applying the integral relations obtained in Section 2, we obtain the variational formulation in suitable spaces of vector-valued distributions with respect to the time variable with values in Sobolev spaces of the initial boundary value problem corresponding to the dynamic three-dimensional model of thermo-electromagneto-elastic solids considered in Section 2. We introduce suitable factor spaces and prove the existence and uniqueness theorem. The existence of a solution of the three-dimensional initial boundary value problem is proved by applying new a priori estimates and compactness arguments. Furthermore, an energy equality is obtained, which permits us to prove the uniqueness result and continuous dependence of a solution on given data in suitable function spaces. At the end of Section 4, we analyse the conditions of the theorem and obtain effective sufficient conditions for existence of a solution of the three-dimensional initial boundary value problem.

Formulation of the static and dynamic three-dimensional models

Throughout this paper, the indices i, j, p, q range in the set {1, 2, 3} and the summation convention with respect to repeated indices is used; the indices or exponents k, k vary in the set {1, ..., K}, save when they are used for indexing sequences, where K is a natural number, and we do not use the summation convention with respect to k, k. For any vectors x, y from the three-dimensional Euclidean space R 3 ,l e tx • y and x × y denote the Euclidean inner product and the vector product of vectors x, y in the space R 3 , respectively, and we denote by |x|= √ x • x the Euclidean norm of x ∈ R 3 . The Cartesian coordinates of a point x ∈ R 3 are denoted x i , and we let ∂ i = ∂/∂x i . The space of real 3 × 3 matrices we designate by M 3 equipped with the matrix inner product

F : F = F ij F ij ,f o ra l lF, F ∈ M 3 . We denote by H * F ∈ M 3 , R * F ∈ R 3 and R * x ∈ M 3 the products of any fourth-order tensor H = (H ijpq ), third-order tensor R = (R ipq ), matrix F = (F pq ) ∈ M 3 and vector x = (x i ) ∈ R 3 , which are defined by (H * F) ij = H ijpq F pq ,( R * F) i = R ipq F pq and (R * x) pq = R ipq x i .G i v e n a smooth enough vector field v = (v i ): → R 3 and matrix field σ = (σ ij ): → M 3 , their divergences divv : → R and div σ = ((div σ ) i ): → R 3 are defined by divv = ∂ i v i and (div σ ) i = ∂ j σ ij ,where ⊂ R 3 is an open set. The gradients of a smooth enough scalar field v : → R and vector field v = (v i ): → R 3 are defined by grad v = ((grad v) i ): → R 3 ,(grad v) i = ∂ i v and ∇v = ((∇v) ij ): → M 3 ,(∇v) ij = ∂ j v i .W e denote by n = (n i ), n k = (n k i
) the unit outward normal vectors of the corresponding surfaces. Let us consider a multidomain thermo-electro-magneto-elastic body with initial configuration =∪ K k=1 k , where each subdomain k consists of a general inhomogeneous anisotropic material that is characterized by consistent spatially dependent parameters. The governing field equations of the dynamic linear threedimensional model of the stress-strain state of each subdomain k of the thermo-electro-magneto-elastic body in differential form with quasi-static equations for electric and magnetic fields, where the rate of the magnetic field is small, i.e., the electric field is curl free, and there is no electric current, i.e., the magnetic field is curl free, are of the following form [START_REF] Li | Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity[END_REF][START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF]:

ρ k ∂ 2 u k ∂t 2 -div σ k = f k in k × (0, T), (1) 
divD k = f ϕ,k in k × (0, T), ( 2 
)
divB k = 0i n k × (0, T), ( 3 
)
κ k ∂θ k ∂t -div η k * grad θ k + 0 ∂ ∂t λ k : e u k -0 ∂ ∂t µ k • grad ϕ k -0 ∂ ∂t m k • grad ψ k = f θ ,k in k × (0, T), ( 4 
)
where

σ k = (σ k ij )
is the mechanical stress tensor in the subdomain k , which is given by the following linear constitutive equation for a thermo-electro-magneto-elastic solid: [START_REF] Nowacki | Some general theorems of thermo-piezoelectricity[END_REF] where

σ k = c k * e u k + ε k * grad ϕ k + b k * grad ψ k -λ k θ k ,
u k = (u k i ): k × [0, T] → R 3 is the mechanical displacement vector-function; ϕ k : k × [0, T] → R and ψ k : k × [0, T] → R
stand for the electric and magnetic potentials, such that electric and magnetic fields are

E k =-grad ϕ k and H k =-grad ψ k and θ k : k × [0, T] → R is the temperature distribution. For smooth enough vector field, v = (v i ): → R 3 , e(v) = (e ij (v)), e ij (v) = 1/2 ∂ j v i + ∂ i v j is the strain tensor; c k = (c k ijpq (x)) is the elasticity tensor; ε k = (ε k ipq (x)) and b k = (b k ipq (x)
) are the piezoelectric and piezomagnetic coefficients;

λ k = (λ k ij (x)
) is the stress-temperature tensor; ρ k is the mass density in the reference configuration;

f k = (f k i ): k × (0, T) → R 3
is the density of the applied body force; D k = (D k i ) is the electric displacement vector and B k = (B k i ) is the magnetic induction vector. The latter are given, respectively, by the following linear constitutive equations: [START_REF] Li | Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity[END_REF] where

D k = ε k * e u k -d k grad ϕ k -a k grad ψ k + µ k θ k ,( 6 ) B k = b k * e u k -a k grad ϕ k -ζ k grad ψ k + m k θ k ,
d k = (d k ij (x)) and ζ k = (ζ k ij (x)
) are the permittivity and permeability tensors; a k = (a k ij (x)) are the coupling coefficients connecting electric and magnetic fields; µ k = (μ k i (x)) and m k = (m k i (x)) are coefficients characterizing the relations between thermal and electric fields and between thermal and magnetic fields, respectively;

f ϕ,k : k × (0, T) → R is the density of electric charges; κ k is the thermal capacity; η k = (η k ij (x)
) is the thermal conductivity tensor; 0 > 0 is the temperature of the thermo-electro-magneto-elastic body in the natural state of no deformation and electromagnetic fields, which is considered a reference temperature, and f θ ,k : k × (0, T) → R is the density of heat sources. Note that the mechanical displacement vector u of the entire thermo-electro-magneto-elastic body is equal to u k on k , the electric potential ϕ of is equal to ϕ k on k , the magnetic potential ψ of is equal to ψ k on k and the temperature θ of is equal to θ k on k .

We consider classical boundary conditions on the boundary of the body and on the interfaces between the subdomains k , which are widely used in applications. More precisely, we assume that the entire thermoelectro-magneto-elastic body is clamped along a part Ŵ 0 ⊂ Ŵ = ∂ of the Lipschitz boundary Ŵ,and,onthe remaining part Ŵ 1 = Ŵ\Ŵ 0 , an applied surface force vector, with density g = (g i ): [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF] of Ŵ:

Ŵ 1 × (0, T) → R 3 , is given, where Ŵ = Ŵ 0 ∪ Ŵ 1 is a Lipschitz dissection
u k = 0 on Ŵ 0,k = Ŵ 0 ∩ ∂ k , σ k n k = g on Ŵ 1,k = Ŵ k \Ŵ 0,k , Ŵ k = ∂ k .( 8 
)
Along a part Ŵ ϕ 0 ⊂ Ŵ of the boundary, the electric potential vanishes and, on the remaining part Ŵ ϕ 1 = Ŵ\Ŵ ϕ 0 ,the normal component of the electric displacement, with density g ϕ : Ŵ ϕ 1 ×(0, T) → R,isgiven,whereŴ = Ŵ ϕ 0 ∪Ŵ ϕ 1 is a Lipschitz dissection of Ŵ:

ϕ k = 0o nŴ ϕ 0,k = Ŵ ϕ 0 ∩ ∂ k , D k • n k = g ϕ on Ŵ ϕ 1,k = Ŵ k \Ŵ ϕ 0,k .( 9 
)
Along a part Ŵ ψ 0 ⊂ Ŵ, the magnetic potential vanishes and, on the remaining part Ŵ ψ 1 = Ŵ\Ŵ ψ 0 , the normal component of the magnetic induction, with density g ψ :

Ŵ ψ 1 × (0, T) → R,isgiven,whereŴ = Ŵ ψ 0 ∪ Ŵ ψ 1 is a Lipschitz dissection of Ŵ: ψ k = 0o nŴ ψ 0,k = Ŵ ψ 0 ∩ ∂ k , B k • n k = g ψ on Ŵ ψ 1,k = Ŵ k \Ŵ ψ 0,k . (10) 
The temperature vanishes along a part Ŵ θ 0 ⊂ Ŵ of the boundary and the heat flux along the outward normal of Ŵ, with density

g θ : Ŵ θ 1 × (0, T) → R,isgivenonŴ θ 1 = Ŵ\Ŵ θ 0 ,whereŴ = Ŵ θ 0 ∪ Ŵ θ 1 is a Lipschitz dissection of Ŵ: θ k = 0o nŴ θ 0,k = Ŵ θ 0 ∩ ∂ k , -η k grad θ k • n k = g θ on Ŵ θ 1,k = Ŵ k \Ŵ θ 0,k . (11) 
On the common interfaces Ŵ k ∩ Ŵ k , of the subdomains k and k , rigid contact conditions are assumed; i.e., the mechanical displacement vector, temperature, electric and magnetic potentials, mechanical stress vector and normal components of the heat flux, electric displacement and magnetic induction are continuous:

u k = u k , σ k n = σ k n on Ŵ k ∩ Ŵ k , (12) 
ϕ k = ϕ k , D k • n = D k • n on Ŵ k ∩ Ŵ k , (13) 
ψ k = ψ k , B k • n = B k • n on Ŵ k ∩ Ŵ k , (14) 
θ k = θ k , η k grad θ k • n = η k grad θ k • n on Ŵ k ∩ Ŵ k . ( 15 
)
At the initial moment of time, we have the following initial conditions for the mechanical displacement vectorfunction and temperature:

u(x,0) = u 0 (x), ∂u ∂t (x,0) = u 1 (x), θ(x,0) = θ 0 (x), x ∈ ,( 1 6 ) 
where u 0 = (u 0i )a n du 1 = (u 1i ) are the initial mechanical displacement and velocity vector-functions, respectively, and θ 0 is the initial distribution of temperature. We assume that the elasticity tensors (c k ijpq ), stress-temperature tensor (λ k ij ), piezoelectric tensor (ε k pij )a n d piezomagnetic tensor (b k pij ) satisfy the following symmetry conditions:

c k ijpq = c k ijqp = c k jipq , λ k ij = λ k ji , ε k pij = ε k pji , b k pij = b k pji . ( 17 
)
If u k , ϕ k , ψ k and θ k are twice continuously differentiable, then by multiplying equation ( 1) by an arbitrary continuously differentiable function v k : k → R 3 , which vanishes on Ŵ 0,k and 

v k = v k on Ŵ k ∩ Ŵ k , multiplying equation (2) by a continuously differentiable function ϕ k : k → R, such that ϕ k = 0onŴ ϕ 0,k and ϕ k = ϕ k on Ŵ k ∩Ŵ k ,
: k → R, such that θ k = 0onŴ θ 0,k and θ k = θ k on Ŵ k ∩ Ŵ k
, by integrating on k and by using Green's formula, we obtain the following integral relations for a subdomain k :

k ρ k ∂ 2 u k ∂t 2 • v k dx - Ŵ k σ k n k • v k dŴ k + k σ k : ∇v k dx = k f k • v k dx, (18) 
Ŵ k D k • n k ϕ k dŴ k - k D k • grad ϕ k dx = k f ϕ ϕ k dx, (19) 
Ŵ k B k • n k ψ k dŴ k - k B k • grad ψ k dx = 0, ( 20 
) k κ k ∂θ k ∂t θ k dx - Ŵ k η k grad θ k • n k θ k dŴ + k η k grad θ k • grad θ k dx + 0 k λ k : e ∂u k ∂t θ k dx -0 k µ k • grad ∂ϕ k ∂t θ k dx -0 k m k • grad ∂ψ k ∂t θ k dx = k f θ ,k θ dx. ( 21 
)
On the common interfaces

Ŵ k ∩ Ŵ k ,w eha vev k = v k , ϕ k = ϕ k , ψ k = ψ k , θ k = θ k and n k =-n k . Therefore,
from the rigid contact conditions [START_REF] Moon | Magneto-solid mechanics[END_REF] to [START_REF] Vu | On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics[END_REF], after summation of equations ( 18) to [START_REF] Yakhno | The well-posedness of dynamical equations of magneto-electro-elasticity[END_REF] with respect to k,b y applying the boundary conditions [START_REF] Aouadi | On the coupled theory of thermo-magneto-electro-elasticity[END_REF] to [START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF] and the constitutive equations ( 5) to [START_REF] Li | Uniqueness and reciprocity theorems for linear thermo-electro-magneto-elasticity[END_REF], and taking into account the symmetry conditions [START_REF] Tiwari | On electromagneto-thermoelastic plane waves under Green-Naghdi theory of thermoelasticity II[END_REF], we obtain:

K k=1 k ρ k ∂ 2 u k ∂t 2 • v k dx + K k=1 k c k * e u k : e v k dx + K k=1 k ε k * grad ϕ k : e v k dx + K k=1 k b k * grad ψ k : e v k dx - K k=1 k λ k : e v k θ k dx = f • vdx + Ŵ 1 g • vdŴ, ( 22 
) - K k=1 k ε k * e u k • grad ϕ k dx + K k=1 k d k grad ϕ k • grad ϕ k dx + K k=1 k a k grad ψ k • grad ϕ k dx - K k=1 k µ k • grad ϕ k θ k dx = f ϕ ϕdx - Ŵ ϕ 1 g ϕ ϕdŴ,( 2 3 ) 
- K k=1 k b k * e u k • grad ψ k dx + K k=1 k a k grad ϕ k • grad ψ k dx + K k=1 k ζ k grad ψ k • grad ψ k dx - K k=1 k m k • grad ψ k θ k dx =- Ŵ ψ 1 g ψ ψdŴ,( 2 4 ) 
K k=1 k κ k ∂θ k ∂t θ k dx + K k=1 k η k grad θ k • grad θ k dx + 0 K k=1 k λ k : e ∂u k ∂t θ k dx -0 K k=1 k µ k • grad ∂ϕ k ∂t θ k dx -0 K k=1 k m k • grad ∂ψ k ∂t θ k dx = f θ θdx - Ŵ θ 1 g θ θ dŴ,( 2 5 ) 
where

f = f k , f ϕ = f ϕ,k and f θ = f θ ,k in k and v = v k , ϕ = ϕ k , ψ = ψ k and θ = θ k on k .
Therefore, if u k , ϕ k , ψ k and θ k are solutions of equations ( 1) to (4) and satisfy the boundary conditions ( 8) to [START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF] and the rigid contact conditions [START_REF] Moon | Magneto-solid mechanics[END_REF] to [START_REF] Vu | On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics[END_REF], then u k , ϕ k , ψ k and θ k are solutions of equations ( 22) to [START_REF] Whitney | Geometric integration theory[END_REF]. Conversely, if u k , ϕ k , ψ k and θ k are twice continuously differentiable solutions of equations ( 22) to (25), then by using Green's formula we obtain:

K k=1 k ρ k ∂ 2 u k ∂t 2 • v k dx+ K k=1 Ŵ k σ k n k • v k dŴ- K k=1 k div c k * e u k +ε k * grad ϕ k +b k * grad ψ k -λ k θ k • v k dx = f • vdx + Ŵ 1 g • vdŴ, (26) 
- K k=1 Ŵ k (D k • n k )ϕ k dŴ k + K k=1 k div ε k * e u k -d k grad ϕ k -a k grad ψ k + µ k θ k ϕ k dx = f ϕ ϕdx- Ŵ ϕ 1 g ϕ ϕdŴ, (27) 
- K k=1 Ŵ k B k • n k ψ k dŴ+ K k=1 k div b k * e u k -a k grad ϕ k -ζ k grad ψ k + m k θ k ψ k dx=- Ŵ ψ 1 g ψ ψdŴ,( 2 8 ) 
K k=1 k κ k ∂θ k ∂t θ k dx + K k=1 Ŵ k η k grad θ k • n k θ k dŴ- K k=1 k div η k grad θ k θ k dx + 0 K k=1 k λ k : e ∂u k ∂t θ k dx -0 K k=1 k µ k • grad ∂ϕ k ∂t θ k dx -0 K k=1 k m k • grad ∂ψ k ∂t θ k dx = f θ θdx - Ŵ θ 1 g θ θ dŴ, (29) 
where 

v k , ϕ k , ψ k and θ k are continuously differentiable functions on k , such that v k = 0 on Ŵ 0,k , ϕ k = 0on Ŵ ϕ 0,k , ψ k = 0o nŴ ψ 0,k , θ k = 0o nŴ θ 0,k and v k = v k , ϕ k = ϕ k , ψ k = ψ k and θ k = θ k on Ŵ k ∩ Ŵ k . By letting v k ∈ (C 1 0 ( k )) 3 , C 1 0 ( k ) ={ v ∈ C 1 ( k ) |v = 0o nŴ k }, ϕ k ∈ C 1 0 ( k ), ψ k ∈ C 1 0 ( k )a n dθ k ∈ C 1 0 ( k ),
2 (Ŵ 1,k ), L 2 (Ŵ ϕ 1,k ), L 2 (Ŵ ψ 1,k )andL 2 (Ŵ θ 1,k )
, we infer, from equations ( 26) to (29), that u k , ϕ k , ψ k and θ k satisfy the boundary conditions [START_REF] Aouadi | On the coupled theory of thermo-magneto-electro-elasticity[END_REF] to [START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF]. Similarly, if the functions v k , ϕ k , ψ k and θ k are arbitrary continuous functions on the interfaces Ŵ k ∩ Ŵ k and vanish on the remaining parts of the boundaries Ŵ k and Ŵ k , then, from equations ( 26) to (29), taking into account equations ( 1) to ( 4) and the density of the sets of continuous functions on Ŵ k ∩ Ŵ k , vanishing on the boundaries of the corresponding surfaces in space L 2 (Ŵ k ∩Ŵ k ), we obtain that u k , ϕ k , ψ k and θ k satisfy the rigid contact conditions ( 12) to [START_REF] Vu | On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics[END_REF]. Note that the differential linear three-dimensional model of the static equilibrium [START_REF] Avalishvili | Investigation of the three-dimensional boundary value problem for thermoelastic piezoelectric solids[END_REF] of the thermo-electromagneto-elastic body is given by the system of equations ( 1) to ( 4), together with the boundary conditions ( 8) to [START_REF] Natroshvili | Mathematical problems of thermo-electro-magneto-elasticity[END_REF] and rigid contact conditions ( 12) to [START_REF] Vu | On 3-D coupled BEM-FEM simulation of nonlinear electro-elastostatics[END_REF], where the functions

u k , ϕ k , ψ k , θ k , f k , f ϕ,k , f θ ,k
, g, g ϕ , g ψ and g θ do not depend on the time variable t and the corresponding equations are fulfilled in . Hence, in the static model, instead of equations ( 1) and ( 4), we have:

-div σ k = f k in k ,( 3 0 ) 
-div η k grad θ k = f θ ,k in k ,( 3 1 ) 
and, instead of equations ( 22) and ( 25), we have:

K k=1 k c k * e u k : e(v k )dx + K k=1 k ε k * grad ϕ k : e v k dx + K k=1 k b k * grad ψ k : e v k dx - K k=1 k λ k : e v k θ k dx = f • vdx + Ŵ 1 g • vdŴ, ( 32 
) K k=1 k η k grad θ k • grad θ k dx = f θ θdx - Ŵ θ 1 g θ θdŴ. (33) 
Thus, the initial boundary value problem (1) to ( 4) and ( 8) to ( 16) corresponding to the dynamic threedimensional model of a multidomain anisotropic inhomogeneous thermo-electro-magneto-elastic solid is equivalent to equations ( 22) to ( 25), together with the initial conditions ( 16) in spaces of twice continuously differentiable functions. The boundary value problem ( 2), ( 3), ( 8) to ( 15), ( 30) and (31) corresponding to the static three-dimensional model of the thermo-electro-magneto-elastic solid is equivalent to equations ( 23), ( 24), (32) and (33) in spaces of twice continuously differentiable functions. On the basis of the latter, in the next sections we obtain the so-called weak or variational formulations of the static problem (2), ( 3), ( 8) to ( 15), ( 30) and (31) and the dynamic problem (1) to ( 4) and ( 8) to [START_REF] Vashishth | Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface[END_REF], and investigate the existence and uniqueness of the corresponding solutions in suitable function spaces.

Analysis of the static problem

Hereafter, for each real s ≥ 0, 0 ≤š ≤ 1, we denote by H s (D)a n dH š( Ŵ) the Sobolev spaces of real-valued functions based on H 0 (D) = L 2 (D)a n dH 0 ( Ŵ) = L 2 ( Ŵ), respectively, where D ⊂ R n , n ∈ N, is a bounded Lipschitz domain and Ŵ is an element of a Lipschitz dissection of the boundary ∂D [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF]; H s 0 (D) denotes the closure of the set D(D) of infinitely differentiable functions with compact support in D in the space H s (D). We denote the corresponding spaces of vector-valued functions by 3 and s 1 ≥ 1 and the trace operators by tr Ŵ :

H s (D) = [H s (D)] 3 , H s 0 (D) = [H s 0 (D)] 3 , s ≥ 0, H š( Ŵ) = [H š( Ŵ)] 3 ,0≤š ≤ 1, L s 1 ( Ŵ) = [L s 1 ( Ŵ)]
H 1 (D) → H 1/2 ( Ŵ)
and tr Ŵ : H 1 (D) → H 1/2 ( Ŵ). For any measurable set D ⊂ R n , n ∈ N, (., .) L 2 (D) and (., .) L 2 (D) are the classical scalar products in L 2 (D)andL 2 (D), respectively.

Note that if functions v k belong to H 1 ( k ), and on the common interfaces 23), ( 24), ( 32) and (33), we obtain the following variational formulation of the boundary value problem ( 2), ( 3), ( 8) to ( 15), ( 30) and (31):

Ŵ k ∩ Ŵ k we have tr Ŵ k ∩Ŵ k (v k ) = tr Ŵ k ∩Ŵ k (v k ), then there exists the function v ∈ H 1 ( ) such that v = v k in k . Therefore, from equations (
Find

u ∈ V( ) ={ v ∈ H 1 ( ); tr Ŵ (v) = 0 on Ŵ 0 }, ϕ ∈ V ϕ ( ) ={ ϕ ∈ H 1 ( ); tr Ŵ (ϕ) = 0o nŴ ϕ 0 }, ψ ∈ V ψ ( ) ={ψ ∈ H 1 ( ); tr Ŵ (ψ) = 0onŴ ψ 0 }, θ ∈ V θ ( ) ={θ ∈ H 1 ( ); tr Ŵ (θ) = 0onŴ θ 0 } such that c(u, v) + ε(ϕ, v) + b(ψ, v) -λ(θ , v) = L u (v), ∀v ∈ V( ), ( 34 
) -ε(ϕ, u) + d(ϕ, ϕ) + a(ψ, ϕ) -μ(θ, ϕ) = L ϕ (ϕ), ∀ϕ ∈ V ϕ ( ), ( 35 
) -b(ψ, u) + a(ϕ, ψ) + ζ (ψ, ψ) -m(θ, ψ) = L ψ (ψ), ∀ψ ∈ V ψ ( ), (36) 
η(θ, θ ) = L θ (θ), ∀θ ∈ V θ ( ), (37) 
where

c(u, v) = (c * e(u)) : e(v)dx, ε(ϕ, v) = (ε * grad ϕ) : e(v)dx, b(ψ, v) = (b * grad ψ) : e(v)dx, d(ϕ, ϕ) = (d grad ϕ) • grad ϕdx, a(ψ, ϕ) = (a grad ψ) • grad ϕdx, ζ (ψ, ψ) = (ζ grad ψ) • grad ψdx, λ(θ , v) = (λ : e(v)) θdx, μ(θ , ϕ) = (µ • grad ϕ) θdx, m(θ, ψ) = m • grad ψ θdx, η(θ, θ ) = (η grad θ ) • grad θ dx, L u (v) = f • vdx + Ŵ 1 g • tr Ŵ 1 (v)dŴ, L ϕ (ϕ) = f ϕ ϕdx - Ŵ ϕ 1 g ϕ tr Ŵ ϕ 1 (ϕ)dŴ, L ψ (ψ) =- Ŵ ψ 1 g ψ tr Ŵ ψ 1 (ψ)dŴ, L θ (θ) = f θ θdx - Ŵ θ 1 g θ tr Ŵ θ 1 (θ)dŴ,
and

u = u k , ϕ = ϕ k , ψ = ψ k , θ = θ k , c = c k , ε = ε k , b = b k , λ = λ k , d = d k , a = a k , µ = µ k , ζ = ζ k , m = m k and η = η k in k .
Note that if the parts Ŵ 0 , Ŵ ϕ 0 , Ŵ ψ 0 and Ŵ θ 0 of the boundary of are empty sets, then the homogeneous problem (34) to (37), where f ≡ 0, g ≡ 0, f ϕ ≡ 0, g ϕ ≡ 0, g ψ ≡ 0, f θ ≡ 0a n dg θ ≡ 0, has non-trivial solutions. Hence, the solution of the problem (34) to (37) is not unique in the first-order Sobolev spaces mentioned in the variational formulation and it is necessary to introduce suitable factor spaces, where the solution of the problem (34) to (37) is unique.

As in the case of most practical applications, we assume that c ijpq ,

ε pij , b pij , d ij , ζ ij , a ij , λ ij , μ i , m i and η ij ∈ L ∞ ( ) satisfy the following positive definiteness conditions: (c(x) * F) : F ≥ α c F : F, η(x)ξ • ξ ≥ α η |ξ | 2 , ( 38 
) d(x)ξ • ξ + a(x)ξ • ξ + a(x)ξ • ξ + ζ (x)ξ • ξ ≥ α(|ξ | 2 +|ξ | 2 ), (39) 
for all F ∈ S 3 , ξ , ξ ∈ R 3 and almost all x ∈ ,whereα c , α η and α are positive constants and S 3 designates the set of all symmetric 3 × 3 matrices.

Let us denote by R the set of solutions of the homogeneous problem (34) to (37), where

L u (v) = 0, L ϕ (ϕ) = 0, L ψ (ψ) = 0andL θ (θ) = 0, for all v ∈ V( ), ϕ ∈ V ϕ ( ), ψ ∈ V ψ ( )andθ ∈ V θ ( ).
The structure of the set R is determined in [START_REF] Avalishvili | Investigation of the three-dimensional boundary value problem for thermoelastic piezoelectric solids[END_REF] and R is of the following form:

R = v rθ r , ϕ rθ r , ψ rθ r , θ r ∈ V( ) × V ϕ ( ) × V ψ ( ) × V θ ( ); v rθ r = v r + u rθ r , ϕ rθ r = ϕ r + ϕ rθ r , ψ rθ r = ψ r + ψ rθ r , v r , ϕ r , ψ r ∈ R V , θ r ∈ R θ ,
where

R V = v r , ϕ r , ψ r ∈ V( ) × V ϕ ( ) × V ψ ( ); v r (x) = α + β × Ox, α, β ∈ R 3 , Ox = (x i ),ϕ r = α ϕ , α ϕ ∈ R , ψ r = α ψ , α ψ ∈ R , R θ = θ r ∈ V θ ( ); θ r = α θ , α θ ∈ R and u rθ r , ϕ rθ r , ψ rθ r ∈ V( ) × V ϕ ( ) × V ψ ( )
is a solution of the homogeneous equations ( 34) to (36), when θ = θ r . Applying the set R, we can define the factor space (V( )

× V ϕ ( ) × V ψ ( ) × V θ ( ))/R, which consists of the following elements: v, ϕ, ψ, θ R = v, ϕ, ψ, θ + v rθ r , ϕ rθ r , ψ rθ r , θ r ; v rθ r , ϕ rθ r , ψ rθ r , θ r ∈ R , for each (v, ϕ, ψ, θ) ∈ V( ) × V ϕ ( ) × V ψ ( ) × V θ ( )
, which is the Hilbert space equipped with the following norm:

v, ϕ, ψ, θ R * = inf v, ϕ, ψ, θ + v rθ r , ϕ rθ r , ψ rθ r , θ r (H 1 ( )) 6 ; v rθ r , ϕ rθ r , ψ rθ r , θ r ∈ R .
By applying the set R, we can define the solution of the problem (34) to (37) in the factor space (V( ) × V ϕ ( ) × V ψ ( ) × V θ ( ))/R. Indeed, for each solution (u, ϕ, ψ, θ) of the problem (34) to (37), any vectorfunction (u, ϕ, ψ, θ) + (v rθ r , ϕ rθ r , ψ rθ r , θ r ), where (v rθ r , ϕ rθ r , ψ rθ r , θ r ) ∈ R is also a solution of equations (34) to (37). Therefore, we say that (u, ϕ, ψ, θ

) R ∈ (V( ) × V ϕ ( ) × V ψ ( ) × V θ ( ))/R
is a solution of the problem (34) to (37), if any function from the equivalence class (u, ϕ, ψ, θ) R is a solution of the problem (34) to (37).

For the problem (34) to (37), which is equivalent to the boundary value problem (1) to ( 4) and ( 8) to (15) in the spaces of classical twice continuously differentiable functions, the following existence, uniqueness and continuous dependence theorem was proved in [START_REF] Avalishvili | Investigation of the three-dimensional boundary value problem for thermoelastic piezoelectric solids[END_REF].

Theorem 1. Suppose that ⊂ R 3 is a bounded Lipschitz domain; the parameters c ijpq , ε pij ,b pij ,d ij , ζ ij ,a ij , λ ij , μ i ,m i and η ij ∈ L ∞ ( )
satisfy the symmetry and positive definiteness conditions [START_REF] Tiwari | On electromagneto-thermoelastic plane waves under Green-Naghdi theory of thermoelasticity II[END_REF], ( 38) and (39

).I f f ∈ L 6/5 ( ), g ∈ L 4/3 (Ŵ 1 ),f ϕ ∈ L 6/5 ( ),g ϕ ∈ L 4/3 (Ŵ ϕ 1 ),g ψ ∈ L 4/3 (Ŵ ψ 1 ) ,f θ ∈ L 6/5 ( ),g θ ∈ L 4/3 (Ŵ θ 1 ), L θ (θ r ) = 0 and L u (v r ) + L ϕ (ϕ r ) + L ψ (ψ r ) = 0, for all ( v r , ϕ r , ψ r ) ∈ R V , θ r ∈ R θ , then the problem (34) to (37) possesses a unique solution (u, ϕ, ψ, θ) R ∈ (V ( ) × V ϕ ( ) × V ψ ( ) × V θ ( ))/R
, which continuously depends on the given data, i.e., the mapping (f, g, f ϕ , g ϕ , g ψ , f θ , g θ ) → (u, ϕ, ψ, θ) R is linear and continuous from the space L 6/5 ( )

× L 4/3 (Ŵ 1 ) × L 6/5 ( ) × L 4/3 (Ŵ ϕ 1 ) × L 4/3 (Ŵ ψ 1 ) × L 6/5 ( ) × L 4/3 (Ŵ θ 1 ) to the space (V( ) × V ϕ ( ) × V ψ ( ) × V θ ( ))/R.
Note that, if the areas of the surfaces Ŵ 0 , Ŵ ϕ 0 , Ŵ ψ 0 , Ŵ θ 0 are positive, then the homogeneous equations (34) to (37) have only a trivial solution. Hence, R V ={ (0,0,0)}, R θ ={ 0}, R ={ (0,0,0,0)}, the factor space (V( )

× V ϕ ( ) × V ψ ( ) × V θ ( ))/R coincides with V( ) × V ϕ ( ) × V ψ ( ) × V θ (
) and, from Theorem 1, we have the following theorem.

Theorem 2. Suppose that ⊂ R 3 is a bounded Lipschitz domain, the parameters c ijpq , ε pij ,b pij ,d ij , ζ ij ,a ij , λ ij , μ i ,m i , η ij ∈ L ∞ ( )
satisfy the symmetry and positive definiteness conditions [START_REF] Tiwari | On electromagneto-thermoelastic plane waves under Green-Naghdi theory of thermoelasticity II[END_REF], ( 38) and (39).I fŴ 0 = ∅,

Ŵ ϕ 0 = ∅, Ŵ ψ 0 = ∅, Ŵ θ 0 = ∅ and f ∈ L 6/5 ( ), g ∈ L 4/3 (Ŵ 1 ),f ϕ ∈ L 6/5 ( ),g ϕ ∈ L 4/3 (Ŵ ϕ 1 ),g ψ ∈ L 4/3 (Ŵ ψ 1 ), f θ ∈ L 6/5 ( ),g θ ∈ L 4/3 (Ŵ θ 1 )
, then the problem (34) to (37) possesses a unique solution (u, ϕ, ψ, θ) ∈ V( ) × V ϕ ( ) × V ψ ( ) × V θ ( ), and the mapping (f, g, f ϕ , g ϕ , g ψ , f θ , g θ ) → (u, ϕ, ψ, θ) is linear and continuous from the space L 6/5 ( )

× L 4/3 (Ŵ 1 ) × L 6/5 ( ) × L 4/3 (Ŵ ϕ 1 ) × L 4/3 (Ŵ ψ 1 ) × L 6/5 ( ) × L 4/3 (Ŵ θ 1 ) to the space V( ) × V ϕ ( ) × V ψ ( ) × V θ ( ).

Analysis of the dynamic problem

In addition to the notation used in the previous section, we denote, here, by C 0,1 (D) the space of the Lipschitz continuous function on D,w h e r eD ⊂ R n , n ∈ N, is a bounded Lipschitz domain. For a Banach space X , we denote by C([0, T]; X ) the space of continuous vector-functions on [0, T] with values in X ; L s 1 (0, T; X ), 1 ≤ s 1 ≤∞, is the space of such measurable vector-functions g :(0,T) → X ,sothat g X ∈ L s 1 (0, T) and the generalized derivative of g is denoted by g ′ = dg/dt ∈ D ′ (0, T; X ) [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF]. If g ∈ L 1 (0, T; X ) and X is a space of functions of variable x ∈ D ⊂ R n , n ∈ N, we identify g with a function g(x, t), and g(t) denotes the function g(t):x → g(x, t), for almost all t ∈ (0, T). We identify the distributional derivative dg/dt with the derivative ∂g/∂t of g in D ′ (D × (0, T)). Hereafter, we use c 1 , c 2 , to denote generic constants that are independent of the main parameters involved, but whose values may differ from line to line and may change even within a single chain of estimates.

We identify the unknown vector-function u and the functions ϕ, ψ, θ with vector-functions defined on [0, T] with values in suitable spaces of functions defined on ; by applying equations ( 22) to [START_REF] Whitney | Geometric integration theory[END_REF], we obtain the following variational formulation of the initial boundary value problem (1) to ( 4) and ( 8) to ( 16) in the spaces of vector-valued distributions:

Find

u ∈ C([0, T]; V( )) , u ′ ∈ L ∞ (0, T; V( )), u ′′ ∈ L ∞ (0, T; L 2 ( )), ϕ ∈ C([0, T]; V ϕ ( )), ϕ ′ ∈ L ∞ (0, T; V ϕ ( )), ψ ∈ C([0, T]; V ψ ( )), ψ ′ ∈ L ∞ (0, T; V ψ ( )), θ ∈ C([0, T]; V θ ( )), θ ′ ∈ L ∞ (0, T; L 2 ( )) ∩ L 2 (0, T; V θ ( ))
, which satisfy the following equations in the sense of distributions on (0, T):

ρu ′′ , v L 2 ( ) + c(u, v) + ε(ϕ, v) + b(ψ, v) -λ(θ , v) = L u (v), ∀v ∈ V( ), (40) 
-ε (ϕ, u) + d (ϕ, ϕ) + a (ψ, ϕ) -μ (θ, ϕ) = L ϕ (ϕ) , ∀ϕ ∈ V ϕ ( ), (41) 
-b ψ, u + a ϕ, ψ + ζ ψ, ψ -m θ, ψ = L ψ ψ , ∀ψ ∈ V ψ ( ), ( 42 
) κθ ′ , θ L 2 ( ) + η θ, θ + 0 λ θ, u ′ -0 μ θ, ϕ ′ -0 m θ, ψ ′ = L θ θ , ∀θ ∈ V θ ( ), (43) 
together with the initial conditions

u(0) = u 0 , u ′ (0) = u 1 , θ(0) = θ 0 , (44) 
where

ρ = ρ k , κ = κ k in k .
Note that if the parts Ŵ ϕ 0 and Ŵ ψ 0 of the boundary of are empty sets, then the homogeneous problem (40) to (44) has non-trivial solutions. Indeed, if the tensors (d ij (x)), (a ij (x)) and (ζ ij (x)) characterizing electric and magnetic fields satisfy the positive definiteness conditions (39) and u ≡ 0, θ ≡ 0, f ϕ ≡ 0, g ϕ ≡ 0, g ψ ≡ 0, then the solutions ϕ and ψ are constants. Consequently, the solution of the problem (40) to (44) is not unique in the spaces mentioned in the variational formulation and it is necessary to introduce suitable factor spaces, where the solution of the problem (40) to (44) is unique.

Let us denote by

R ϕ ={ ϕ r ∈ V ϕ ( ); ϕ r = α ϕ , α ϕ ∈ R} and R ψ ={ ψ r ∈ V ψ ( ); ψ r = α ψ , α ψ ∈ R} the
sets of solutions ϕ and ψ of the homogeneous equations ( 41) and (42), when u ≡ 0, θ ≡ 0andf ϕ ≡ 0, g ϕ ≡ 0, g ψ ≡ 0. Applying them, we introduce the factor spaces

V ϕ R ϕ ( ) = V ϕ ( )/R ϕ and V ψ R ψ ( ) = V ψ ( )/R ψ , which consist of equivalence classes ϕ R ϕ ={ϕ + ϕ r ; ϕ r ∈ R ϕ }, for each ϕ ∈ V ϕ ( ), and ψ R ψ ={ψ + ψ r ; ψ r ∈ R ψ }, for each ψ ∈ V ψ ( ), respectively. The factor spaces V ϕ R ϕ ( )a n dV ψ R ψ ( ) are the Hilbert spaces with respect to the norms ϕ R ϕ V ϕ Rϕ ( ) = inf{||ϕ+ϕ r || H 1 ( ) ; ϕ r ∈ R ϕ } and ψ R ψ V ψ R ψ ( ) = inf{||ψ +ψ r || H 1 ( ) ; ψ r ∈ R ψ }.
The sets R ϕ and R ψ permit one to define a solution of the problem (40) to (44) in the spaces mentioned in the variational formulation, where V ϕ ( ) is replaced by

V ϕ R ϕ ( )andV ψ ( ) is replaced by V ψ R ψ ( ). Indeed, if (u, ϕ, ψ, θ
) is a solution of the problem (40) to (44), then for any ϕ r ∈ R ϕ and ψ r ∈ R ψ , the vector-function (u, ϕ, ψ, θ)+(0, ϕ r , ψ r , 0) is also a solution of 40 to (44). Therefore, we say that (u, ϕ R ϕ , ψ R ψ , θ) is a solution of the problem (40) to (44), if any vector-function (u, ϕ, ψ, θ), where ϕ and ψ are functions from the equivalence classes ϕ R ϕ and ψ R ψ , respectively, is a solution of the problem (40) to (44). Note that if, in equations ( 41) and ( 42), ϕ = ϕ r ∈ R ϕ and ψ = ψ r ∈ R ψ , then the left-hand sides vanish; hence, we obtain the following necessary conditions for the existence of a solution of the problem (40) to (44):

L ϕ (ϕ r ) = 0, L ψ (ψ r ) = 0, ∀ϕ r ∈ R ϕ , ψ r ∈ R ψ . ( 45 
)
Hereafter, we assume that the bilinear forms d, a, ζ , ε, b, μ, m are defined on the factor spaces V ϕ R ϕ ( )and

V ψ R ψ ( ), d ϕ R ϕ , ϕ R ϕ = d ( ϕ, ϕ) , a ϕ R ϕ , ψ R ψ = a ϕ, ψ , ζ ψ R ψ , ψ R ψ = ζ ψ, ψ , ε ϕ R ϕ , v = ε (ϕ, v) , b ψ R ψ , v = b ψ, v , μ θ , ϕ R ϕ = μ θ, ϕ , m θ , ψ R ψ = m θ, ψ ,
and, taking into account the compatibility conditions (45), we also define the linear forms L ϕ and L ψ on the factor spaces

L ϕ ϕ R ϕ = f ϕ , ϕ R ϕ L 2 ( ) -g ϕ ,tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) = (f ϕ , ϕ) L 2 ( ) -g ϕ ,tr Ŵ ϕ 1 (ϕ) L 2 (Ŵ ϕ 1 )
,

L ψ ψ R ψ =-g ψ ,tr Ŵ ψ 1 ψ R ψ L 2 Ŵ ψ 1 =-g ψ ,tr Ŵ ψ 1 ψ L 2 Ŵ ψ 1
, where ϕ, ϕ ∈ V ϕ ( )and ψ, ψ ∈ V ψ ( ) are arbitrary elements of the equivalence classes

ϕ R ϕ , ϕ R ϕ ∈ V ϕ R ϕ ( ) and ψ R ψ , ψ R ψ ∈ V ψ R ψ ( )
, respectively, and v ∈ V( ), θ ∈ V θ ( ). For the problem (40) to (44), which is equivalent to the initial boundary value problem (1) to ( 4) and ( 8) to [START_REF] Vashishth | Reflection and transmission of plane waves from fluid-piezothermoelastic solid interface[END_REF] in the spaces of classical twice continuously differentiable functions, we prove the following existence, uniqueness and continuous dependence theorem.

Theorem 3. Suppose that , 1 , ..., K ⊂ R 3 are bounded Lipschitz domains, the parameters ρ, κ,c ijpq ,

ε pij , b pij ,d ij , ζ ij ,a ij , λ ij , μ i ,m i ∈ L ∞ ( ), η k ij ∈ C 0,1 ( k ),
for almost all x ∈ , satisfy the symmetry conditions ( 17) and

d ij (x) = d ji (x), ζ ij (x) = ζ ji (x), a ij (x) = a ji (x), ( 46 
)
and positive definiteness conditions (38) and

ρ(x) >α ρ = const > 0, κ(x) >α κ = const > 0, ( 47 
) d(x)ξ • ξ + a(x)ξ • ξ + a(x)ξ • ξ + ζ (x)ξ • ξ + 1 0 κ(x)ξξ -2ξ µ(x) • ξ -2ξ m(x) • ξ ≥ α(|ξ | 2 +|ξ | 2 +ξ 2 ), ( 48 
)
for all ξ , ξ ∈ R 3 , ξ ∈ R and for almost all x ∈ ,w h e r e α is a positive constant. If f, f ′ ∈ L 2 (0, T; L 2 ( )), g, g ′ , g ′′ ∈ L 2 (0, T; L 4/3 (Ŵ 1 )),f ϕ ,(f ϕ ) ′ ,(f ϕ ) ′′ ∈ L 2 (0, T; L 6/5 ( )),g ϕ ,(g ϕ ) ′ ,(g ϕ ) ′′ ∈ L 2 (0, T; L 4/3 (Ŵ ϕ 1 )), g ψ ,(g ψ ) ′ ,(g ψ ) ′′ ∈ L 2 (0, T; L 4/3 (Ŵ ψ 1 )),f θ ,(f θ ) ′ ∈ L 2 (0, T; L 2 ( )),g θ ,(g θ ) ′ ∈ L 2 (0, T; L 4/3 (Ŵ θ 1 )
) and the initial conditions u 0 ∈ V( ),

u 1 ∈ V( ), θ 0 ∈ V θ ( ), θ 0 = θ k 0 in k , θ k 0 ∈ H 2 ( k )
, satisfy the compatibility conditions (45) and

g θ (0) =-tr Ŵ θ 1,k η k grad θ k 0 • n k on Ŵ θ 1,k , (49) 
tr

Ŵ k ∩Ŵ k η k grad θ k 0 • n = tr Ŵ k ∩Ŵ k η k grad θ k 0 • n on Ŵ k ∩ Ŵ k , ( 50 
)
and there exist

u 2 ∈ L 2 ( ), ϕ 0 ∈ V ϕ ( ), ψ 0 ∈ V ψ ( ), such that (ρu 2 , v) L 2 ( ) + c(u 0 , v + ε(ϕ 0 , v)+b(ψ 0 , v)-λ(θ 0 , v) = (f(0), v) L 2 ( ) +(g(0), tr Ŵ 1 (v)) L 2 (Ŵ 1 ) , ∀v ∈ V( ), (51) -ε(ϕ, u 0 )+d(ϕ 0 , ϕ)+a(ψ 0 , ϕ)-μ(θ 0 , ϕ) = (f ϕ (0), ϕ) L 2 ( ) -(g ϕ (0), tr Ŵ ϕ 1 (ϕ)) Ŵ ϕ 1 , ∀ϕ ∈ V ϕ ( ), (52) -b ψ, u 0 +a ϕ 0 , ψ +ζ ψ 0 , ψ -m θ 0 , ψ =-g ψ (0), tr Ŵ ψ 1 ψ Ŵ ψ 1 , ∀ψ ∈ V ψ ( ), ( 53 
)
then the problem (40) to (44) possesses a unique solution

(u, ϕ R ϕ , ψ R ψ , θ),w h e r eϕ R ϕ ∈ C([0, T]; V ϕ R ϕ ( )), (ϕ R ϕ ) ′ ∈ L ∞ (0, T; V ϕ R ϕ ( )), ψ R ψ ∈ C([0, T]; V ψ R ψ ( )), (ψ R ψ ) ′ ∈ L ∞ (0, T; V ψ R ψ ( ))
, which continuously depends on the given data, i.e., the mapping

u 0 , u 1 , θ 0 , f, g, g ′ , f ϕ , (f ϕ ) ′ , g ϕ , (g ϕ ) ′ , g ψ , g ψ ′ , f θ , g θ → u, u ′ , ϕ R ϕ , ψ R ψ , θ
is linear and continuous from space

V( ) × L 2 ( ) × L 2 ( ) × L 2 (0, T; L 2 ( )) × L 2 (0, T; L 4/3 (Ŵ 1 )) × L 2 (0, T; L 4/3 (Ŵ 1 )) × L 2 (0, T; L 6/5 ( )) × L 2 (0, T; L 6/5 ( )) × L 2 (0, T; L 4/3 (Ŵ ϕ 1 )) × L 2 (0, T; L 4/3 (Ŵ ϕ 1 )) × L 2 (0, T; L 4/3 (Ŵ ψ 1 )) × L 2 (0, T; L 4/3 (Ŵ ψ 1 )) × L 2 (0, T; L 2 ( )) × L 2 (0, T; L 4/3 (Ŵ θ 1 )) to space C([0, T]; V( )) × C([0, T]; L 2 ( )) × C([0, T]; V ϕ R ϕ ( )) × C([0, T]; V ψ R ψ ( )) × C([0, T]; L 2 ( )) ∩ L 2 (0, T; V θ ( )) ,
and the following energy equality is valid:

E(t) = E(0) + L(t), ∀t ∈ [0, T], ( 54 
)
where

E(t) = ρu ′ (t), u ′ (t) L 2 ( ) + c(u(t), u(t)) + 1 0 (κθ(t), θ(t)) L 2 ( ) + 2 0 t 0 η(θ , θ)dτ + d(ϕ(t), ϕ(t)) + 2a(ϕ(t), ψ(t)) + ζ (ψ(t), ψ(t)) -2μ(θ(t), ϕ(t)) -2m(θ(t), ψ(t)), L(t) = 2 t 0 f(τ ), u ′ (τ ) L 2 ( ) dτ + 2(g(t), tr Ŵ 1 (u(t))) L 2 (Ŵ 1 ) -2(g(0), tr Ŵ 1 (u(0))) L 2 (Ŵ 1 ) -2 t 0 g ′ (τ ), tr Ŵ 1 (u(τ )) L 2 (Ŵ 1 ) dτ + 2 t 0 ((f ϕ ) ′ (τ ), ϕ(τ )) L 2 ( ) dτ -2 t 0 ((g ϕ ) ′ (τ ), tr Ŵ ϕ 1 (ϕ(τ ))) L 2 (Ŵ ϕ 1 ) dτ -2 t 0 ((g ψ ) ′ (τ ), tr Ŵ ψ 1 (ψ(τ ))) L 2 (Ŵ ψ 1 ) dτ + 2 0 t 0 f θ (τ ), θ(τ ) L 2 ( ) dτ - 2 0 t 0 (g θ (τ ), tr Ŵ θ 1 (θ(τ ))) L 2 (Ŵ θ 1 ) dτ ,
ϕ and ψ are any functions from the equivalence classes ϕ R ϕ and ψ R ψ , respectively.

Proof. First, let us prove the existence of a solution of the problem (40) to (44). Since f θ , f θ ′ ∈ L 2 (0, T; L 2 ( )) and g θ , g θ ′ ∈ L 2 (0, T; L 4/3 (Ŵ θ 1 )), it follows, from the embedding theorem [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], that f θ ∈ C([0, T]; L 2 ( )) and

g θ ∈ C([0, T]; L 4/3 (Ŵ θ 1 )
). By applying Green's formula and by taking into account the compatibility conditions (49) and (50), we obtain:

η(θ 0 , θ ) + g θ (0), θ L 2 (Ŵ θ 1 ) = K k=1 Ŵ k tr Ŵ k η k grad θ k • n k tr Ŵ k θ k dŴ k - K k=1 k div η k grad θ k 0 θ k dx + K k=1 Ŵ θ 1,k g θ (0)tr Ŵ k θ k dŴ k =-θ 0 , θ L 2 ( ) , ∀θ ∈ V θ ( ),
where

θ 0 = div η k grad θ k 0 in k . Since the functions η k ij are Lipschitz continuous in bounded domains k , we have that η k ij ∈ L ∞ ( k )
, and it follows from Rademacher's theorem [START_REF] Whitney | Geometric integration theory[END_REF] that they are differentiable almost everywhere in k and that their derivatives belong to L ∞ ( k ). Hence, by taking into account the fact that

θ k 0 ∈ H 2 ( k ), we have θ 0 ∈ L 2 ( ). Since f ϕ ,( f ϕ ) ′ ,( f ϕ ) ′′ ∈ L 2 (0, T; L 6/5 ( )), g ϕ ,( g ϕ ) ′ ,( g ϕ ) ′′ ∈ L 2 (0, T; L 4/3 (Ŵ ϕ 1 )
), and g ψ ,(g ψ ) ′ ,(g ψ ) ′′ ∈ L 2 (0, T; L 4/3 (Ŵ ψ 1 )), it follows from the embedding theorem [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF] 

that f ϕ ,(f ϕ ) ′ ∈ C([0, T]; L 6/5 ( )), g ϕ ,(g ϕ ) ′ ∈ C([0, T]; L 4/3 (Ŵ ϕ 1 )) and g ψ ,(g ψ ) ′ ∈ C([0, T]; L 4/3 (Ŵ ψ 1 
)), and

||w|| C([0,T];L 6/5 ( )) ≤ c 1 ||w|| L 2 (0,T;L 6/5 ( )) +||w ′ || L 2 (0,T;L 6/5 ( )) , (55) 
|| w|| C([0,T];L 4/3 ( Ŵ)) ≤ c 2 || w|| L 2 (0,T;L 4/3 ( Ŵ)) +|| w ′ || L 2 (0,T;L 4/3 ( Ŵ)) , (56) 
where w = f ϕ or w = (f ϕ ) ′ , Ŵ = Ŵ ϕ 1 when w = g ϕ or w = (g ϕ ) ′ and Ŵ = Ŵ ψ 1 when w = g ψ or w = (g ψ ) ′ . Therefore, we can consider the following problem: Find

θ 1 ∈ L 2 ( ), ϕ R ϕ 1 ∈ V ϕ R ϕ ( ), ψ R ψ 1 ∈ V ψ R ψ ( ) such that -ε ϕ R ϕ , u 1 +d ϕ R ϕ 1 , ϕ R ϕ +a ψ R ψ 1 , ϕ R ϕ -μ θ 1 , ϕ R ϕ = (f ϕ ) ′ (0), ϕ R ϕ L 2 ( ) -(g ϕ ) ′ (0), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) , ∀ϕ R ϕ ∈ V ϕ R ϕ ( ), (57) 
-b ψ R ψ , u 1 + a ϕ R ϕ 1 , ψ R ψ + ζ ψ R ψ 1 , ψ R ψ -m θ 1 , ψ R ψ =-(g ψ ) ′ (0), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) , ∀ψ R ψ ∈ V ψ R ψ ( ), (58) 
(κθ 1 , θ) L 2 ( ) + 0 λ(θ, u 1 ) -0 μ θ, ϕ R ϕ 1 -0 m θ, ψ R ψ 1 = f θ (0), θ L 2 ( ) + θ 0 , θ L 2 ( ) , ∀θ ∈ V θ ( ). ( 59 
)
Since ϕ R ϕ , ψ R ψ and θ are independent of each other, the problem (57) to (59) is equivalent to the following one:

Find ϕ R ϕ 1 , ψ R ψ 1 , θ 1 ∈ W ( ) = V ϕ R ϕ ( ) × V ψ R ψ ( ) × L 2 ( ) such that B ϕ R ϕ 1 , ψ R ψ 1 , θ 1 , ϕ R ϕ , ψ R ψ , θ = F ϕ R ϕ , ψ R ψ , θ , ∀ ϕ R ϕ , ψ R ψ , θ ∈ W ( ), (60) 
where

B ϕ R ϕ 1 , ψ R ψ 1 , θ 1 , ϕ R ϕ , ψ R ψ , θ = d ϕ R ϕ 1 , ϕ R ϕ + a ψ R ψ 1 , ϕ R ϕ -μ θ 1 , ϕ R ϕ + a ϕ R ϕ 1 , ψ R ψ + ζ ψ R ψ 1 , ψ R ψ -m θ 1 , ψ R ψ + 1 0 κθ 1 , θ L 2 ( ) -μ θ , ϕ R ϕ 1 -m θ, ψ R ψ 1 , ∀ ϕ R ϕ 1 , ψ R ψ 1 , θ 1 , ϕ R ϕ , ψ R ψ , θ ∈ W ( ), F ϕ R ϕ , ψ R ψ , θ = ε ϕ R ϕ , u 1 + (f ϕ ) ′ (0), ϕ R ϕ L 2 ( ) -(g ϕ ) ′ (0), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) + b ψ R ψ , u 1 -(g ψ ) ′ (0), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 )
λ(θ, u 1 )

+ 1 0 f θ (0), θ L 2 ( ) + 1 0 θ 0 , θ L 2 ( ) , ∀ ϕ R ϕ , ψ R ψ , θ ∈ W ( ). Since d ij , a ij , ζ ij , μ i , m i , ε pij , b pij , λ ij , κ ∈ L ∞ (
), i, j, p, q = 1, 2, 3, we obtain, by applying the Cauchy-Schwarz inequality, the following estimates:

d ϕ R ϕ 1 , ϕ R ϕ ≤ |(d grad ϕ 1 ) • grad ϕ| dx ≤ max 1≤i,j≤3 d ij L ∞ ( ) 3 j=1 ∂ϕ 1 ∂x j L 2 ( ) 3 i=1 ∂ϕ ∂x i L 2 ( ) ≤ 3m a x 1≤i,j≤3 d ij L ∞ ( ) ϕ R ϕ 1 V ϕ Rϕ ( ) ϕ R ϕ V ϕ Rϕ ( ) , ( 61 
)
a ϕ R ϕ 1 , ψ R ψ ≤ 3m a x 1≤i,j≤3 a ij L ∞ ( ) ϕ R ϕ 1 V ϕ Rϕ ( ) ψ R ψ V ψ R ψ ( ) , (62) 
ζ ψ R ψ 1 , ψ R ψ ≤ 3m a x 1≤i,j≤3 ζ ij L ∞ ( ) ψ R ψ 1 V ψ R ψ ( ) ψ R ψ V ψ R ψ ( ) , (63) 
μ θ, ϕ R ϕ 1 ≤ (µ • grad ϕ 1 ) θ dx ≤ √ 3max 1≤i≤3 μ i L ∞ ( ) θ L 2 ( ) ϕ R ϕ 1 V ϕ Rϕ ( ) , ( 64 
) m θ, ψ R ψ 1 ≤ (m • grad ψ 1 ) θ dx ≤ √ 3max 1≤i≤3 m i L ∞ ( ) θ L 2 ( ) ψ R ψ 1 V ψ R ψ ( ) , (65) 
ε ϕ R ϕ , v ≤ |(ε * grad ϕ) : e(v)| dx ≤ max 1≤p,i,j≤3 ε pij L ∞ ( ) 3 p=1 ∂ϕ ∂x p L 2 ( ) 3 i,j=1 e ij (v) L 2 ( ) ≤ 3 √ 3m a x 1≤p,i,j≤3 ε pij L ∞ ( ) ϕ R ϕ V ϕ Rϕ ( ) v H 1 ( ) , ( 66 
) b ψ R ψ , v ≤ 3 √ 3m a x 1≤p,i,j≤3 b pij L ∞ ( ) ψ R ψ V ψ R ψ ( ) v H 1 ( ) , (67) 
λ θ, v ≤ λ : e(v)θ dx ≤ 3m a x 1≤i,j≤3 λ ij L ∞ ( ) θ L 2 ( ) v H 1 ( ) , (68) 
for all ϕ

R ϕ 1 , ϕ R ϕ ∈ V ϕ R ϕ ( ),ψ R ψ 1 , ψ R ψ ∈ V ψ R ψ ( ), θ ∈ L 2 ( ), v ∈ H 1 ( ),
where ϕ 1 , ϕ, ψ 1 are arbitrary elements of the equivalence classes ϕ

R ϕ 1 , ϕ R ϕ , ψ R ψ
1 , respectively. Hence, from estimates (61) to (65), we have that the bilinear form

B : W ( ) × W ( ) → R is continuous. Because (f ϕ ) ′ (0) ∈ L 6/5 ( ), (g ϕ ) ′ (0) ∈ L 4/3 (Ŵ ϕ 1 )and(g ψ ) ′ (0) ∈ L 4/3 (Ŵ ψ 1 )
, and by applying Hölder's inequality, the compatibility conditions (45), estimates (55), (56) for w = (f ϕ ) ′ , w = (g ϕ ) ′ and w = (g ψ ) ′ , and continuity of the embedding H 1 ( ) ֒→ L 6 ( ) and the trace operator tr : H 1 ( ) → L 4 (Ŵ) [START_REF] Ciarlet | Mathematical elasticity, vol. I: three-dimensional elasticity[END_REF], we have:

(f ϕ ) ′ (0), ϕ R ϕ L 2 ( ) -(g ϕ ) ′ (0), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) -(g ψ ) ′ (0), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) ≤ inf ϕ r ∈R ϕ ((f ϕ ) ′ (0), ϕ + ϕ r ) L 2 ( ) + inf ϕ r ∈R ϕ ((g ϕ ) ′ (0), tr Ŵ ϕ 1 (ϕ + ϕ r )) L 2 (Ŵ ϕ 1 )
+ inf

ψ r ∈R ψ ((g ψ ) ′ (0), tr Ŵ ψ 1 (ψ + ψ r )) L 2 (Ŵ ψ 1 ) ≤||(f ϕ ) ′ (0)|| L 6/5 ( ) inf ϕ r ∈R ϕ ||ϕ + ϕ r || L 6 ( ) +||(g ϕ ) ′ (0)|| L 4/3 (Ŵ ϕ 1 ) inf ϕ r ∈R ϕ ||tr Ŵ ϕ 1 (ϕ + ϕ r )|| L 4 (Ŵ ϕ 1 ) +||(g ψ ) ′ (0)|| L 4/3 (Ŵ ψ 1 ) inf ψ r ∈R ψ tr Ŵ ψ 1 ψ + ψ r L 4 (Ŵ ψ 1 )
≤ c 1 inf

ϕ r ∈R ϕ ||ϕ + ϕ r || H 1 ( ) + inf ψ r ∈R ψ ψ + ψ r H 1 ( ) = c 1 ϕ R ϕ V ϕ Rϕ ( ) + ψ R ψ V ψ R ψ ( )
, where ϕ ∈ V ϕ ( )a n dψ ∈ V ψ ( ) are arbitrary elements of the equivalence classes ϕ

R ϕ ∈ V ϕ R ϕ ( )a n d ψ R ψ ∈ V ψ R ψ ( ), respectively. Therefore, since f θ (0) ∈ L 2 ( ), θ 0 ∈ L 2 (
), and taking into account estimates (66) to (68) and u 1 ∈ V( ), we infer that the linear form F : W ( ) → R is continuous.

From the positive definiteness conditions (47) and (48), we obtain:

B ϕ R ϕ , ψ R ψ , θ , ϕ R ϕ , ψ R ψ , θ = d(ϕ, ϕ) + a ψ, ϕ + a ϕ, ψ + ζ ψ, ψ + 1 0 κθ , θ L 2 ( ) -2μ θ, ϕ -2m θ, ψ ≥ min α, α κ 0 |grad ϕ| 2 +|grad ψ| 2 + θ 2 dx, (69) 
where ϕ ∈ V ϕ ( )a n dψ ∈ V ψ ( ) are arbitrary elements of the equivalence classes ϕ

R ϕ ∈ V ϕ R ϕ ( )a n d ψ R ψ ∈ V ψ R ψ ( ).
Applying the generalized Poincaré inequality [START_REF] Ciarlet | Mathematical elasticity, vol. I: three-dimensional elasticity[END_REF], we have:

|grad v| 2 dx ≥ c 1 ⎛ ⎜ ⎝ v 2 dx - vdx 2 ⎞ ⎟ ⎠ = c 1 inf c 2 ∈R v + c 2 2 L 2 ( ) ,
for all v ∈ H 1 ( ). Consequently, from (69), we infer that the bilinear form B : W ( ) × W ( ) → R satisfies the following inequality:

B ϕ R ϕ , ψ R ψ , θ , ϕ R ϕ , ψ R ψ , θ ≥ c 1 ϕ R ϕ , ψ R ψ , θ 2 W ( ) , (70) 
for all (ϕ R ϕ , ψ R ψ , θ) ∈ W ( ). Thus, the bilinear form B is continuous and bounded below, and the linear form F is continuous, and from the Lax-Milgram theorem [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF], we have that the problem (57) to (59) possesses a unique solution and

ϕ R ϕ 1 , ψ R ψ 1 , θ 1 W ( ) ≤ c 1 ||(f ϕ ) ′ (0)|| L 6/5 ( ) +||(g ϕ ) ′ (0)|| L 4/3 (Ŵ ϕ 1 ) +||(g ψ ) ′ (0)|| L 4/3 (Ŵ ψ 1 ) .
To prove the existence of the solution, let us consider complete systems of linearly independent elements

{v k } ∞ k=1 in the space V( ), {ϕ R ϕ k } ∞ k=1 in the space V ϕ R ϕ ( ), {ψ R ψ k } ∞ k=1 in the space V ψ R ψ ( )a n d{θ k } ∞ k=1 in the space V θ ( ). For each n ∈ N, we denote by V n ( ) the linear subspace of V( )definedby{v 1 , v 2 , v 3 , ..., v n },by V ϕ R ϕ n ( ) the linear subspace of V ϕ R ϕ ( )definedb y{ϕ R ϕ 1 , ϕ R ϕ 2 , ϕ R ϕ 3 , ..., ϕ R ϕ n },b yV ψ R ψ n ( ) the linear subspace of V ψ R ψ ( )d e fi n e db y{ψ R ψ 1 , ψ R ψ 2 , ψ R ψ 3 , ..., ψ R ψ
n } and by V θ n ( ) the linear subspace of V θ ( )d e fi n e db y {θ 1 , θ 2 , θ 3 , ..., θ n }. We consider a sequence of approximate solutions of the problem (40) to (44) given by

u n = n k=1 u nk (t)v k , ϕ R ϕ n = n k=1 ϕ nk (t)ϕ R ϕ k , ψ R ψ n = n k=1 ψ nk (t)ψ R ψ k , θ n = n k=1 θ nk (t)θ k ,
which are solutions of the following problem:

Find u n , u ′ n , u ′′ n ∈ C([0, T]; V n ( )), u ′′′ n ∈ L 2 (0, T; V n ( )), ϕ R ϕ n ,( ϕ R ϕ n ) ′ ∈ C([0, T]; V ϕ R ϕ n ( )), ( ϕ R ϕ n ) ′′ ∈ L 2 (0, T; V ϕ R ϕ n ( )), ψ R ψ n ,( ψ R ψ n ) ′ ∈ C([0, T]; V ψ R ψ n ( )), ( ψ R ψ n ) ′′ ∈ L 2 (0, T; V ψ R ψ n ( )), θ n , θ ′ n ∈ C([0, T]; V θ n ( )), θ ′′ n ∈ L 2 (0, T; V θ n ( ))
, which satisfy the following equations in the sense of distributions on (0, T):

ρ u ′′′ n , v n L 2 ( ) + c u ′ n , v n + ε ϕ ′ n , v n + b ψ ′ n , v n -λ θ ′ n , v n = (f ′ , v n ) L 2 ( ) + g ′ , tr Ŵ 1 (v n ) L 2 (Ŵ 1 ) , ∀v n ∈ V n ( ), ( 71 
) -ε ϕ R ϕ n , u ′′ n + d ϕ R ϕ n ′′ , ϕ R ϕ n + a ψ R ψ n ′′ , ϕ R ϕ n -μ θ ′′ n , ϕ R ϕ n = (f ϕ ) ′′ , ϕ R ϕ n L 2 ( ) -(g ϕ ) ′′ ,tr Ŵ ϕ 1 ϕ R ϕ n L 2 (Ŵ ϕ 1 )
, ∀ϕ

R ϕ n ∈ V ϕ R ϕ n ( ), ( 72 
) -b ψ R ψ n , u ′′ n +a ϕ R ϕ n ′′ , ψ R ψ n +ζ ψ R ψ n ′′ , ψ R ψ n -m θ ′′ n , ψ R ψ n =-(g ψ ) ′′ ,tr Ŵ ψ 1 ψ R ψ n L 2 (Ŵ ψ 1 ) , ∀ψ R ψ n ∈ V ψ R ψ n ( ), (73) κ θ ′′ n , θ n L 2 ( ) + η θ ′ n , θ n + 0 λ θ n , u ′′ n -0 μ θ n , ϕ R ϕ n ′′ -0 m θ n , ψ R ψ n ′′ = f θ ′ , θ n L 2 ( ) -g θ ′ ,tr Ŵ θ 1 (θ n ) L 2 (Ŵ θ 1 )
,

∀θ n ∈ V θ n ( ), ( 74 
)
together with the initial conditions

u n (0) = u 0n , u ′ n (0) = u 1n , u ′′ n (0) = u 2n , ϕ R ϕ n (0) = ϕ R ϕ 0n ,( ϕ R ϕ n ) ′ (0) = ϕ R ϕ 1n , (75) ψ R ψ n (0) = ψ R ψ 0n , ψ R ψ n ′ (0) = ψ R ψ 1n , θ n (0) = θ 0n , θ ′ n (0) = θ 1n ,
where u 0n , u 1n ,

u 2n ∈ V n ( ), ϕ R ϕ 0n , ϕ R ϕ 1n ∈ V ϕ R ϕ n ( ), ψ R ψ 0n , ψ R ψ 1n ∈ V ψ R ψ n ( ), θ 0n , θ 1n ∈ V θ n ( ).
Note that, for each n ∈ N, the problem (71) to ( 75) is an initial value one for a linear system of ordinary differential equations with respect to (u nk ) n k=1 ,(ϕ nk ) n k=1 ,(ψ nk ) n k=1 and (θ nk ) n k=1 , where the right-hand parts of the corresponding equations belong to L 2 (0, T). From the estimate (70) for θ = 0, we infer that ((ϕ nk ) ′′ ) n k=1 ,( ( ψ nk ) ′′ ) n k=1 can be expressed by invertible linear mapping of ((u nk ) ′′ ) n k=1 and ((θ nk ) ′′ ) n k=1 from equations ( 72) and ( 73). Since the initial value problem for the system of ordinary differential equations possesses a unique solution, we have that the problem (71) to (75) has a unique solution.

Since the systems

{v k } ∞ k=1 , {ϕ R ϕ k } ∞ k=1 , {ψ R ψ k } ∞ k=1 and {θ k } ∞ k=1 are complete in the spaces V( ), V ϕ R ϕ ( ), V ψ R ψ ( )andV θ ( ), respectively, the union of subspaces n≥1 V n ( )isdenseinV( ), the union n≥1 V ϕ R ϕ n ( ) is dense in V ϕ R ϕ ( ), the union n≥1 V ψ R ψ n ( )isdenseinV ψ R ψ (
) and the union n≥1 V θ n ( )isdenseinV θ ( ). Therefore, we can take u 0n , u 1n , u 2n , ϕ

R ϕ 0n , ϕ R ϕ 1n , ψ R ψ 0n , ψ R ψ
1n , θ 0n and θ 1n such that

u 0n → u 0 in V( ), u 1n → u 1 in V( ), u 2n → u 2 in L 2 ( ), as n →∞,( 7 6 ) 
ϕ

R ϕ 0n → ϕ R ϕ 0 in V ϕ R ϕ ( ), ϕ R ϕ 1n → ϕ R ϕ 1 in V ϕ R ϕ ( ), as n →∞,( 7 7 ) 
ψ

R ψ 0n → ψ R ψ 0 in V ψ R ψ ( ), ψ R ψ 1n → ψ R ψ 1 in V ψ R ψ ( ), as n →∞,( 7 8 
)

θ 0n → θ 0 in V θ ( ), θ 1n → θ 1 in L 2 ( ), as n →∞,( 7 9 ) 
where ϕ 73) and θ n = θ ′ n / 0 in equation ( 74), adding and integrating them on (0, t), taking into account the symmetry conditions (46) and using the formula for integration by parts, we obtain:

R ϕ 0 = ϕ 0 + ϕ r ; ϕ r ∈ R ϕ ∈ V ϕ R ϕ ( ), ψ R ψ 0 = ψ 0 + ψ r ; ψ r ∈ R ψ ∈ V ψ R ψ ( ). By letting v n = u ′′ n in equation (71), ϕ R ϕ n = ( ϕ R ϕ n ) ′ in equation (72), ψ R ψ n = ( ψ R ψ n ) ′ in equation (
ρ u ′′ n (t), u ′′ n (t) L 2 ( ) + c u ′ n (t), u ′ n (t) + d ϕ R ϕ n ′ (t), ϕ R ϕ n ′ (t) + 2a ϕ R ϕ n ′ (t), ψ R ψ n ′ (t) + ζ ψ R ψ n ′ (t), ψ R ψ n ′ (t) + 1 0 κ θ ′ n (t), θ ′ n (t) L 2 ( ) + 2 0 t 0 η θ ′ n , θ ′ n dτ -2μ θ ′ n (t), ϕ R ϕ n ′ (t) -2m θ ′ n (t), ψ R ψ n ′ (t) = (ρ u 2n , u 2n ) L 2 ( ) + c( u 1n , u 1n ) + d ϕ R ϕ 1n , ϕ R ϕ 1n + 2a ϕ R ϕ 1n , ψ R ψ 1n + ζ ψ R ψ 1n , ψ R ψ 1n + 1 0 κ θ 1n , θ 1n L 2 ( ) -2μ θ 1n , ϕ R ϕ 1n -2m θ 1n , ψ R ψ 1n + 2 t 0 (f ′ (τ ), u ′′ n (τ )) L 2 ( ) dτ + 2 g ′ (t), tr Ŵ 1 u ′ n (t) L 2 (Ŵ 1 ) -2 g ′ (0), tr Ŵ 1 ( u 1n ) L 2 (Ŵ 1 ) -2 t 0 g ′′ (τ ), tr Ŵ 1 u ′ n (τ ) L 2 (Ŵ 1 ) dτ + 2 t 0 (f ϕ ) ′′ (τ ), ϕ R ϕ n ′ (τ ) L 2 ( ) dτ -2 t 0 (g ϕ ) ′′ (τ ), tr Ŵ ϕ 1 ϕ R ϕ n ′ (τ ) L 2 (Ŵ ϕ 1 ) dτ + 2 0 t 0 f θ ′ (τ ), θ ′ n (τ ) L 2 ( ) dτ -2 t 0 (g ψ ) ′′ (τ ), tr Ŵ ψ 1 ψ R ψ n ′ (τ ) L 2 (Ŵ ψ 1 )
dτ -

2 0 t 0 g θ ′ (τ ), tr Ŵ θ 1 θ ′ n (τ ) L 2 (Ŵ θ 1 ) dτ , ∀t ∈ [0, T]. ( 80 
)
From the positive definiteness conditions (38) for tensors c ijpq and η ij , and by applying Korn's inequality [START_REF] Ciarlet | Mathematical elasticity, vol. I: three-dimensional elasticity[END_REF], we have that the bilinear forms c(., .) and η(., .) are coercive; i.e., there exist positive constants α c , α c and α η , α η such that

c(v, v) ≥ α c e(v):e(v) ≥ α c v 2 H 1 ( ) -α c v 2 L 2 ( ) , ∀v ∈ H 1 ( ), (81) 
η(θ , θ ) ≥ α η |grad θ | 2 dx ≥ α η θ 2 H 1 ( ) -α η θ 2 L 2 ( ) , ∀θ ∈ H 1 ( ). ( 82 
)
Because c ijpq ∈ L ∞ ( ), and by applying the Cauchy-Schwarz inequality, we obtain:

c(v, v) ≤ max 1≤i,j,p,q≤3 c ijpq L ∞ ( ) 3 i,j=1 e ij (v) L 2 ( ) 3 p,q=1
e pq (v)

L 2 ( ) ≤ 9m a x 1≤i,j,p,q≤3 c ijpq L ∞ ( ) 3 i,j=1 ∂v i ∂x j L 2 ( ) 3 p,q=1 ∂v p ∂x q L 2 ( ) ≤ c 1 v H 1 ( ) v H 1 ( ) , (83) 
where v, v ∈ H 1 ( ). Since g, g ′ , g ′′ ∈ L 2 (0, T; L 4/3 (Ŵ 1 )), it follows from the embedding theorem [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF] that g, g ′ ∈ C([0, T]; L 4/3 (Ŵ 1 )). By applying Hölder's inequality, conditions (45), the continuity of the embedding H 1 ( ) ֒→ L 6 ( ) and the trace operator tr : H 1 ( ) → L 4 (Ŵ) [START_REF] Ciarlet | Mathematical elasticity, vol. I: three-dimensional elasticity[END_REF] and the ε-inequality

|a 1 b 1 |≤ 1 2ε 1 a 2 1 + ε 1 2 b 2 1 ,
for all a 1 , b 1 ∈ R, ε 1 > 0, we have:

(g ′ (t), tr Ŵ 1 (v)) L 2 (Ŵ 1 ) ≤ g ′ (t) C([0,T];L 4/3 (Ŵ 1 )) tr Ŵ 1 (v) L 4 (Ŵ 1 ) ≤ c 1 g ′ (t) C([0,T];L 4/3 (Ŵ 1 )) v H 1 ( ) ≤ c 1 1 2ε 1 g ′ (t) 2 C([0,T];L 4/3 (Ŵ 1 )) + ε 1 2 v 2 H 1 ( ) ≤ c 2 ε 1 g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + c 1 ε 1 2 v 2 H 1 ( ) , ∀v ∈ H 1 ( ), t ∈ [0, T], ε 1 > 0, (84) (f ϕ ) ′′ (τ ), ϕ R ϕ L 2 ( ) -(g ϕ ) ′′ (τ ), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) ≤ (f ϕ ) ′′ (τ ) L 6/5 ( ) inf ϕ r ∈R ϕ ||ϕ + ϕ r || L 6 ( ) +||(g ϕ ) ′′ (τ )|| L 4/3 (Ŵ ϕ 1 ) inf ϕ r ∈R ϕ ||tr Ŵ ϕ 1 (ϕ + ϕ r )|| L 4 (Ŵ ϕ 1 ) ≤ 1 2 (f ϕ ) ′′ (τ ) 2 L 6/5 ( ) + 1 2 (g ϕ ) ′′ (τ ) 2 L 4/3 (Ŵ ϕ 1 ) + c 1 ϕ R ϕ 2 V ϕ Rϕ ( ) , ∀ϕ R ϕ ∈ V ϕ R ϕ ( ), (85) 
(g ψ ) ′′ (τ ), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) ≤ 1 2 (g ψ ) ′′ (τ ) 2 L 4/3 (Ŵ ψ 1 ) + c 1 2 ψ R ψ 2 V ψ R ψ ( ) , ∀ψ R ψ ∈ V ψ R ψ ( ), (86) 
for almost all τ ∈ (0, T), where ϕ ∈ V ϕ ( )andψ ∈ V ψ ( ) are arbitrary elements of the equivalence classes

ϕ R ϕ ∈ V ϕ R ϕ ( )andψ R ψ ∈ V ψ R ψ ( ), respectively. Similarly, t 0 g ′′ (τ ), tr Ŵ 1 u ′ n (τ ) L 2 (Ŵ 1 ) dτ ≤ t 0 g ′′ (τ ) L 4/3 (Ŵ 1 ) tr Ŵ 1 u ′ n (τ ) L 4 (Ŵ 1 ) dτ ≤ 1 2 g ′′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + c 1 2 t 0 u ′ n (τ ) 2 H 1 ( ) dτ , (87) 
t 0 g θ ′ (τ ), tr Ŵ θ 1 θ ′ n (τ ) L 2 (Ŵ θ 1 ) dτ ≤ t 0 g θ ′ (τ ) L 4/3 (Ŵ θ 1 ) tr Ŵ θ 1 θ ′ n (τ ) L 4 (Ŵ θ 1 )
dτ

≤ 1 2ε 1 g θ ′ 2 L 2 (0,T;L 4/3 (Ŵ θ 1 )) + c 1 ε 1 2 t 0 θ ′ n (τ ) 2 H 1 ( ) dτ , ∀t ∈ [0, T], ε 1 > 0. (88)
Hence, by using the conditions (47), the inequalities (61) to (65), ( 70) and (81) to (88) for small enough ε 1 > 0, and the Cauchy-Schwarz inequality, and from the equality (80), we obtain:

u ′ n (t) 2 H 1 ( ) + u ′′ n (t) 2 L 2 ( ) + ϕ R ϕ n ′ (t) 2 V ϕ Rϕ ( ) + ψ R ψ n ′ (t) 2 V ψ R ψ ( ) + θ ′ n (t) 2 L 2 ( ) + t 0 θ ′ n (τ ) 2 H 1 ( ) dτ ≤ c 1 ⎛ ⎝ u ′ n (t) 2 L 2 ( ) + t 0 u ′ n (τ ) 2 H 1 ( ) dτ + t 0 u ′′ n (τ ) L 2 ( ) dτ + t 0 ϕ R ϕ n ′ (τ ) 2 V ϕ Rϕ ( ) dτ + t 0 ψ R ψ n ′ (τ ) 2 V ψ R ψ ( ) dτ + t 0 θ ′ n (τ ) 2 L 2 ( ) dτ ⎞ ⎠ + c 2 u 1n 2 
H 1 ( ) + u 2n 2 L 2 ( ) + ϕ R ϕ 1n 2 V ϕ Rϕ ( ) + ψ R ψ 1n 2 V ψ R ψ ( ) + θ 1n 2 H 1 ( ) + f ′ 2 L 2 (0,T;L 2 ( )) + g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + (f ϕ ) ′′ 2 L 2 (0,T;L 6/5 ( )) + (g ϕ ) ′′ 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) + (g ψ ) ′′ 2 L 2 (0,T;L 4/3 (Ŵ ψ 1 )) + f θ ′ 2 L 2 (0,T;L 2 ( )) + g θ ′ 2 L 2 (0,T;L 4/3 (Ŵ θ 1 )) , ∀t ∈ [0, T]. (89) Since u ′ n , u ′′ n ∈ C([0, T]; V n ( ))
, we have:

u ′ n (t) 2 L 2 ( ) ≤ 2 u 1n 2 L 2 ( ) + 2t t 0 u ′′ n (τ ) 2 L 2 ( ) dτ , ∀t ∈ [0, T]. ( 90 
)
From the convergence properties of the sequences ( u 1n ) n≥1 ,( u 2n ) n≥1 ,( ϕ

R ϕ 1n ) n≥1 ,( ψ R ψ
1n ) n≥1 and ( θ 1n ) n≥1 , we infer that they are bounded in the spaces

H 1 ( ), L 2 ( ), V ϕ R ϕ ( ), V ψ R ψ ( )a n dL 2 (
), respectively, and from the estimates (89) and (90), we have, for all t ∈ [0, T],

u ′ n (t) 2 H 1 ( ) + u ′′ n (t) 2 L 2 ( ) + ϕ R ϕ n ′ (t) 2 V ϕ Rϕ ( ) + ψ R ψ n ′ (t) 2 V ψ R ψ ( ) + θ ′ n (t) 2 L 2 ( ) + t 0 θ ′ n (τ ) 2 H 1 ( ) dτ ≤ c 1 ⎛ ⎝ t 0 u ′ n (τ ) 2 H 1 ( ) dτ + t 0 u ′′ n (τ ) L 2 ( ) dτ + t 0 ϕ R ϕ n ′ (τ ) 2 V ϕ Rϕ ( ) dτ + t 0 ψ R ψ n ′ (τ ) 2 V ψ R ψ ( ) dτ + t 0 θ ′ n (τ ) 2 L 2 ( ) dτ ⎞ ⎠ + c 2 , (91) 
where c 1 , c 2 are positive constants that do not depend on u n , ϕ

R ϕ n , ψ R ψ n
or θ n . By applying Gronwall's lemma [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], we obtain:

u ′ n (t) 2 H 1 ( ) + u ′′ n (t) 2 L 2 ( ) + ϕ R ϕ n ′ (t) 2 V ϕ Rϕ ( ) + ψ R ψ n ′ (t) 2 V ψ R ψ ( ) + θ ′ n (t) 2 L 2 ( ) + t 0 θ ′ n (τ ) 2 H 1 ( ) dτ ≤ c 1 , ∀t ∈ [0, T]. Consequently, u ′ n is bounded in L ∞ (0, T; V( )), u ′′ n is bounded in L ∞ (0, T; L 2 ( )), ( ϕ R ϕ n ) ′ is bounded in L ∞ (0, T; V ϕ R ϕ ( )), ( ψ R ψ n ) ′ is bounded in L ∞ (0, T; V ψ R ψ ( )), and θ ′ n is bounded in L ∞ (0, T; L 2 ( )) and L 2 (0, T; V θ ( )). Because u n (t) = u 0n + t 0 u ′ n (τ )dτ , θ n (t) = θ 0n + t 0 θ ′ n (τ )dτ , ∀t ∈ [0, T], ϕ R ϕ n (t) = ϕ R ϕ 0n + t 0 ϕ R ϕ n ′ (τ )dτ , ψ R ψ n (t) = ψ R ψ 0n + t 0 ψ R ψ n ′ (τ )dτ , ∀t ∈ [0, T],
we deduce that

u n is bounded in L ∞ (0, T; V( )), ϕ R ϕ n is bounded in L ∞ (0, T; V ϕ R ϕ ( )), ψ R ψ n is bounded in L ∞ (0, T; V ψ R ψ ( )) and θ n is bounded in L ∞ (0, T; V θ ( ))
. Hence, by the weak-* compactness of a bounded set in non-reflexive Banach space and weak compactness of a bounded set in reflexive Banach space, there exists a subsequence (

u n k ) k≥1 of sequence ( u n ) n≥1 , a subsequence ( ϕ R ϕ n k ) k≥1 of ( ϕ R ϕ n ) n≥1 , a subsequence ( ψ R ψ n k ) k≥1 of ( ψ R ψ n ) n≥1
and a subsequence ( θ n k ) k≥1 of ( θ n ) n≥1 , which possess the following properties:

u n k → u, u ′ n k → u ′ weakly-* in L ∞ (0, T; V( )), u ′′ n k → u ′′ weakly-* in L ∞ (0, T; L 2 ( )), ϕ R ϕ n k → ϕ R ϕ ,( ϕ R ϕ n k ) ′ → (ϕ R ϕ ) ′ weakly-* in L ∞ (0, T; V ϕ R ϕ ( )), (92) ψ 
R ψ n k → ψ R ψ ,( ψ R ψ n k ) ′ → (ψ R ψ ) ′ weakly-* in L ∞ (0, T; V ψ R ψ ( )), θ n k → θ weakly-* in L ∞ (0, T; V θ ( )), θ ′ n k → θ ′ weakly-* in L ∞ (0, T; L 2 ( )), θ ′ n k → θ ′ weakly in L 2 (0, T; V θ ( )), as k →∞.
By integrating equations ( 71) and (74) from 0 to t, and by integrating equations ( 72) and (73) twice from 0 to t,

for all t ∈ [0, T]andforv n ∈ V n ( ), ϕ R ϕ n ∈ V ϕ R ϕ n ( ), ψ R ψ n ∈ V ψ R ψ n ( )andθ n ∈ V θ n (
), we obtain:

ρ u ′′ n (t), v n L 2 ( ) + c u n (t), v n + ε( ϕ n (t), v n ) + b ψ n (t), v n -λ θ n (t), v n -ρ u 2n (t), v n L 2 ( ) + c( u 0n , v n ) + ε( ϕ 0n , v n ) + b ψ 0n , v n -λ θ 0n , v n = (f (t), v n ) L 2 ( ) + (g(t), tr Ŵ 1 (v n )) L 2 (Ŵ 1 ) -(f (0), v n ) L 2 ( ) -(g(0), tr Ŵ 1 (v n )) L 2 (Ŵ 1 ) , ( 93 
) -ε ϕ R ϕ n , u n (t) + d ϕ R ϕ n (t), ϕ R ϕ n + a ψ R ψ n (t), ϕ R ϕ n -μ θ n (t), ϕ R ϕ n --ε ϕ R ϕ n , u 1n + d ϕ R ϕ 1n , ϕ R ϕ n + a ψ R ψ 1n , ϕ R ϕ n -μ θ 1n , ϕ R ϕ n t --ε ϕ R ϕ n , u 0n + d ϕ R ϕ 0n , ϕ R ϕ n + a ψ R ψ 0n , ϕ R ϕ n -μ θ 0n , ϕ R ϕ n = f ϕ (t), ϕ R ϕ n L 2 ( ) -g ϕ (t), tr Ŵ ϕ 1 ϕ R ϕ n L 2 (Ŵ ϕ 1 ) -(f ϕ ) ′ (0), ϕ R ϕ n L 2 ( ) -(g ϕ ) ′ (0), tr Ŵ ϕ 1 ϕ R ϕ n L 2 (Ŵ ϕ 1 ) t-f ϕ (0), ϕ R ϕ n L 2 ( ) -g ϕ (0), tr Ŵ ϕ 1 ϕ R ϕ n L 2 (Ŵ ϕ 1 ) , (94) 
-b ψ R ψ n , u n (t) + a ϕ R ϕ n (t), ψ R ψ n + ζ ψ R ψ n (t), ψ R ψ n -m θ n (t), ψ R ψ n --b ψ R ψ n , u 1n + a ϕ R ϕ 1n , ψ R ψ n + ζ ψ R ψ 1n , ψ R ψ n -m θ 1n , ψ R ψ n t --b ψ R ψ n , u 0n + a ϕ R ϕ 0n , ψ R ψ n + ζ ψ R ψ 0n , ψ R ψ n -m θ 0n , ψ R ψ n =-g ψ (t), tr Ŵ ψ 1 ψ R ψ n L 2 (Ŵ ψ 1 ) + g ψ ′ (0), tr Ŵ ψ 1 ψ R ψ n L 2 (Ŵ ψ 1 ) t + g ψ (0), tr Ŵ ψ 1 ψ R ψ n L 2 (Ŵ ψ 1 ) ,( 9 5 
)

κ θ ′ n (t), θ n L 2 ( ) + η θ n (t), θ n + 0 λ θ n , u ′ n (t) -0 μ θ n , ϕ R ϕ n ′ (t) -0 m θ n , ψ R ψ n ′ (t) -κ θ 1n , θ n L 2 ( ) + η θ 0n , θ n + 0 λ θ n , u 1n -0 μ θ n , ϕ R ϕ 1n -0 m θ n , ψ R ψ 1n = f θ (t), θ n L 2 ( ) -g θ (t), tr Ŵ θ 1 (θ n ) L 2 (Ŵ θ 1 ) -f θ (0), θ n L 2 ( ) -g θ (0), tr Ŵ θ 1 θ n L 2 (Ŵ θ 1 ) . ( 96 
)
From the density of the unions n≥1 V n ( ) 93) to (96), by integrating them on (0, T) and passing to the limit as k →∞ , and from the convergence properties (92), we infer:

, n≥1 V ϕ R ϕ n ( ), n≥1 V ψ R ψ n ( )and n≥1 V θ n ( )inV( ), V ϕ R ϕ ( ), V ψ R ψ ( )andV θ ( ), respectively, there exist sequences ( v n ) n≥1 ,( ϕ R ϕ n ) n≥1 ,( ψ R ψ n ) n≥1 and ( θ n ) n≥1 such that v n → v in V( ), ϕ R ϕ n → ϕ R ϕ in V ϕ R ϕ ( ), ψ R ψ n → ψ R ψ in V ψ R ψ ( )and θ n → θ in V θ ( ), as n →∞. By taking n = n k , v n k = v n k ξ (t), ξ ∈ D(0, T), ϕ R ϕ n k = ϕ R ϕ n k ξ (t), ψ R ψ n k = ψ R ψ n k ξ (t)andθ n k = θ n k ξ (t) in equations (
T 0 (ρu ′′ (t), v) L 2 ( ) +c(u(t), v)+ε(ϕ(t), v)+b(ψ(t), v)-λ(θ (t), v)-(f (t), v) L 2 ( ) -(g(t), tr Ŵ 1 (v)) L 2 (Ŵ 1 ) ξ (t)dt = T 0 (ρu 2 (t), v) L 2 ( ) + c(u 0 , v) + ε(ϕ 0 , v) + b(ψ 0 , v) -λ(θ 0 , v) -(f (0), v) L 2 ( ) -(g(0), tr Ŵ 1 (v)) L 2 (Ŵ 1 ) ξ (t)dt, ∀v ∈ V( ), (97) T 0 -ε ϕ R ϕ , u(t) + d ϕ R ϕ (t), ϕ R ϕ + a ψ R ψ (t), ϕ R ϕ -μ θ(t), ϕ R ϕ -f ϕ (t), ϕ R ϕ L 2 ( ) + g ϕ (t), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) ξ (t)dt = T 0 -ε ϕ R ϕ , u 1 + d ϕ R ϕ 1 , ϕ R ϕ + a ψ R ψ 1 , ϕ R ϕ -μ θ 1 , ϕ R ϕ -(f ϕ ) ′ (0), ϕ R ϕ L 2 ( ) + (g ϕ ) ′ (0), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 )
tξ (t)dt

+ T 0 (-ε(ϕ R ϕ , u 0 ) + d(ϕ R ϕ 0 , ϕ R ϕ ) + a(ψ R ψ 0 , ϕ R ϕ ) -μ(θ 0 , ϕ R ϕ ) -(f ϕ (0), ϕ R ϕ ) L 2 ( ) + (g ϕ (0), tr Ŵ ϕ 1 (ϕ R ϕ )) L 2 (Ŵ ϕ 1 ) )ξ (t)dt, ∀ϕ R ϕ ∈ V ϕ R ϕ ( ), ( 98 
) T 0 -b ψ R ψ , u(t) + a ϕ R ϕ (t), ψ R ψ + ζ ψ R ψ (t), ψ R ψ -m θ(t), ψ R ψ + g ψ (t), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) ξ (t)dt = T 0 -b ψ R ψ , u 1 + a ϕ R ϕ 1 , ψ R ψ + ζ ψ R ψ 1 , ψ R ψ -m θ 1 , ψ R ψ + (g ψ ) ′ (0), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 )
tξ (t)dt

+ T 0 -b ψ R ψ , u 0 + a ϕ R ϕ 0 , ψ R ψ + ζ ψ R ψ 0 , ψ R ψ -m θ 0 , ψ R ψ + g ψ (0), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) ξ (t)dt, ∀ψ R ψ ∈ V ψ R ψ ( ), ( 99 
) T 0 κθ ′ (t), θ L 2 ( ) + η θ(t), θ + 0 λ θ, u ′ (t) -0 μ θ, ϕ R ϕ ′ (t) -0 m θ, ψ R ψ ′ (t) -f θ (t), θ L 2 ( ) + g θ (t), tr Ŵ θ 1 (θ ) L 2 (Ŵ θ 1 )
ξ (t)dt

= T 0 (κθ 1 , θ) L 2 ( ) + η(θ 0 , θ ) + 0 λ(θ, u 1 ) -0 μ θ, ϕ R ϕ 1 -0 m θ, ψ R ψ 1 -(f θ (0), θ) L 2 ( ) + g θ (0), tr Ŵ θ 1 (θ ) L 2 (Ŵ θ 1 ) ξ (t)dt, ∀θ ∈ V θ ( ). ( 100 
)
By taking into account equations ( 51) to (53) and equations ( 57) to (59), we deduce from equations (97) to (100) that u, ϕ R ϕ , ψ R ψ and θ satisfy equations ( 40) to (43) in the sense of distributions on (0, T). Furthermore, the limit functions u and θ satisfy the initial conditions (44). Indeed, for any continuously differentiable function ξ ∈ C 1 ([0, T]), such that ξ (T) = 0, ξ (0) = 0andw n k , w ′ n k ∈ L 2 (0, T; H), φ n k ∈ H,w e have [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF]:

T 0 w ′ n k (t), φ n k ξ (t) H dt =-(w n k (0), φ n k ξ (0)) H - T 0 w n k (t), φ n k ξ ′ (t) H dt, ( 101 
)
where H is a Hilbert space and (., .) H denotes the scalar product in H. We use equation ( 101) in three cases:

(a) w n k = u n k , φ n k = v n k and H = L 2 ( ); (b) w n k = u ′ n k , φ n k = v n k and H = L 2 ( ); (c) w n k = θ n k , φ n k = θ n k and H = L 2 ( ).
From the convergence properties (76), ( 79) and (92), and by passing to the limit in equation ( 101) as k →∞, we obtain:

T 0 w ′ (t), φξ(t) H dt =-(w 0 , φξ(0)) H - T 0 w(t), φξ ′ (t) H dt, (102) 
where w = u, w 0 = u 0 and φ = v ∈ V( ) in case (a); w = u ′ , w 0 = u 1 and φ = v ∈ V( ) in case (b); w = θ , w 0 = θ 0 and φ = θ ∈ V θ ( ) in case (c). On the other hand, by applying the formula for integration by parts for w, w ′ ∈ L 2 (0, T; H), φ ∈ H,wehave:

T 0 w ′ (t), φξ(t) H dt =-(w(0), φξ(0)) H - T 0 w(t), φξ ′ (t) H dt. (103) 
Hence, from equations ( 102) and (103), we deduce that (w 0 , φ) H = (w(0), φ) H for all φ = v ∈ V( )o r φ = θ ∈ V θ ( ). Note that, by the embedding theorem [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], u ∈ C([0, T]; V( )), u ′ ∈ C([0, T]; L 2 ( )) and θ ∈ C([0, T]; V θ ( )), and we can let w = u, w = u ′ ,orw = θ in equation ( 103). Consequently, by the density of D( )inL 2 ( ), we get that w(0) = w 0 , which is equivalent to the initial conditions (44). So, the problem (40) to (44) possesses a solution. Now, let us prove the energy equality (54), uniqueness of the solution and continuous dependence of the solution on the given data. From the conditions η k ij ∈ C 0,1 ( k ), we have η ij ∈ L ∞ ( ); hence, the following estimate is valid:

η θ, θ = η grad θ • grad θ dx ≤ max 1≤i,j≤3 η ij L ∞ ( ) 3 j=1 ∂ θ ∂x j L 2 ( ) 3 i=1 ∂θ ∂x i L 2 ( ) ≤ 3m a x 1≤i,j≤3 η ij L ∞ ( ) θ V θ ( ) θ V θ ( ) , ∀ θ , θ ∈ V θ ( ). ( 104 
)
It follows from the estimates (61) to (68), ( 83) and ( 104) that [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF] there exist linear continuous operators

C : V( ) → V ′ ( ), E : V ϕ R ϕ ( ) → V ′ ( ), E : V( ) → (V ϕ R ϕ ( )) ′ , B : V ψ R ψ ( ) → V ′ ( ), B : V( ) → (V ψ R ψ ( )) ′ , : L 2 ( ) → V ′ ( ), : V( ) → L 2 ( ), D : V ϕ R ϕ ( ) → (V ϕ R ϕ ( )) ′ , A : V ϕ R ϕ ( ) → (V ψ R ψ ( )) ′ , A : V ψ R ψ ( ) → (V ϕ R ϕ ( )) ′ , Z : V ψ R ψ ( ) → (V ψ R ψ ( )) ′ , M : L 2 ( ) → (V ϕ R ϕ ( )) ′ , M : V ϕ R ϕ ( ) → L 2 ( ), M : L 2 ( ) → (V ψ R ψ ( )) ′ , M : V ψ R ψ ( ) → L 2 ( )and : V θ ( ) → (V θ ( )) ′ , such that C v, v =c( v, v), Eϕ R ϕ , v =ε(ϕ R ϕ , v), Ev, ϕ R ϕ ϕ = ε(ϕ R ϕ , v), Bψ R ψ , v =b(ψ R ψ , v), Bv, ψ R ψ ψ = b(ψ R ψ , v), θ, v =λ( θ, v), ( v, θ ) L 2 ( ) = λ( θ, v), D ϕ R ϕ , ϕ R ϕ ϕ = d( ϕ R ϕ , ϕ R ϕ ), Aϕ R ϕ , ψ R ψ ψ = a(ϕ R ϕ , ψ R ψ ), Aψ R ψ , ϕ R ϕ ϕ = a(ϕ R ϕ , ψ R ψ ), Z ψ R ψ , ψ R ψ ψ = ζ ( ψ R ψ , ψ R ψ ), M θ, ϕ R ϕ ϕ = μ( θ, ϕ R ϕ ), (Mϕ R ϕ , θ) L 2 ( ) = μ( θ, ϕ R ϕ ), M θ, ψ R ψ ψ = m( θ, ψ R ψ ), (M ψ R ψ , θ) L 2 ( ) = m( θ, ψ R ψ )a n d θ, θ θ = η( θ , θ), for all v, v ∈ V( ), θ ∈ L 2 ( ), ϕ R ϕ , ϕ R ϕ ∈ V ϕ R ϕ ( ), ψ R ψ , ψ R ψ ∈ V ψ R ψ ( ), θ, θ ∈ V θ ( )
, where ., . , ., . ϕ , ., . ψ and ., . θ denote the duality relations between the spaces V( ),

V ϕ R ϕ ( ), V ψ R ψ ( ), V θ ( )and their duals V ′ ( ), (V ϕ R ϕ ( )) ′ ,(V ψ R ψ ( )) ′ ,(V θ ( )) ′ , respectively. Since the linear combinations of products ξ v, ξ ϕ R ϕ , ξ ψ R ψ and ξ θ ,whereξ ∈ D( ), v ∈ V( ), ϕ R ϕ ∈ V ϕ R ϕ ( ), ψ R ψ ∈ V ψ R ψ ( )andθ ∈ V θ ( ), are dense in L 2 (0, T; V( )), L 2 (0, T; V ϕ R ϕ ( )), L 2 (0, T; V ψ R ψ ( ))
and L 2 (0, T; V θ ( )), respectively, we infer that equations (40) to (43) are equivalent to the following ones:

ρ d 2 u dt 2 + Cu + Eϕ R ϕ + Bψ R ψ -θ = f + G in L 2 0, T; V ′ ( ) , (105) 
-Eu + Dϕ R ϕ + Aψ R ψ -Mθ = F ϕ -G ϕ in L 2 0, T; V ϕ R ϕ ( ) ′ , (106) 
-Bu + Aϕ R ϕ + Zψ R ψ -Mθ =-G ψ in L 2 0, T; V ψ R ψ ( ) ′ , (107) 
κ dθ dt + θ + 0 du dt -0 M dϕ R ϕ dt -0 M dψ R ψ dt = f θ -G θ in L 2 0, T; V θ ( ) ′ , (108) 
where

G, v = (g, tr Ŵ 1 (v)) L 2 (Ŵ 1 ) , F ϕ -G ϕ , ϕ R ϕ ϕ = f ϕ , ϕ R ϕ L 2 ( ) -g ϕ ,tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) 
,

G ψ , ψ R ψ ψ = g ψ ,tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) , G θ , θ θ = g θ ,tr Ŵ θ 1 θ L 2 (Ŵ θ 1 )
,

for all v ∈ V( ), ϕ R ϕ ∈ V ϕ R ϕ ( ), ψ R ψ ∈ V ψ R ψ ( )andθ ∈ V θ ( ).
By applying continuity of the embedding H 1 ( ) ֒→ L 6 ( ) and the trace operator tr : H 1 ( ) → L 4 (Ŵ), and taking into account condition (45), we have:

d α g dt α (t), tr Ŵ 1 (v) L 2 (Ŵ 1 ) ≤ d α g dt α (t) L 4/3 (Ŵ 1 ) tr Ŵ 1 (v) L 4 (Ŵ 1 ) ≤ c 1 d α g dt α (t) L 4/3 (Ŵ 1 ) v H 1 ( ) , ∀v ∈ V( ), d α f ϕ dt α (t), ϕ R ϕ L 2 ( ) - d α g ϕ dt α (t), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 ) ≤ d α f ϕ dt α (t) L 6/5 ( ) inf ϕ r ∈R ϕ ||ϕ + ϕ r || L 6 ( ) + d α g ϕ dt α (t) L 4/3 (Ŵ ϕ 1 ) inf ϕ r ∈R ϕ ||tr Ŵ ϕ 1 (ϕ + ϕ r )|| L 4 (Ŵ ϕ 1 ) ≤ c 1 d α f ϕ dt α (t) L 6/5 ( ) + d α g ϕ dt α (t) L 4/3 (Ŵ ϕ 1 ) ϕ R ϕ n V ϕ Rϕ ( ) , ∀ϕ R ϕ ∈ V ϕ R ϕ ( ), d α g ψ dt α (t), tr Ŵ ψ 1 ψ R ψ L 2 (Ŵ ψ 1 ) ≤ d α g ψ dt α (t) L 4/3 (Ŵ ψ 1 ) inf ψ r ∈R ψ tr Ŵ ψ 1 ψ + ψ r L 4 (Ŵ ψ 1 ) ≤ c 1 d α g ψ dt α (t) L 4/3 (Ŵ ψ 1 ) ψ R ψ V ψ R ψ ( ) , ∀ψ R ψ ∈ V ψ R ψ ( ), d β g θ dt β (t), tr Ŵ θ 1 (θ) L 2 (Ŵ θ 1 ) ≤ d β g θ dt β (t) L 4/3 (Ŵ θ 1 ) tr Ŵ θ 1 (θ) L 4 (Ŵ θ 1 ) ≤ c 1 d β g θ dt β (t) L 4/3 (Ŵ θ 1 ) θ H 1 ( ) , ∀θ ∈ V θ ( ),
for almost all t ∈ (0, T), and, consequently,

d α G/dt α ∈ L 2 (0, T; V ′ ( )), d α (F ϕ -G ϕ )/dt α ∈ L 2 (0, T;(V ϕ R ϕ ( )) ′ ), d α G ψ /dt α ∈ L 2 (0, T;(V ψ R ψ ( )) ′ )andd β G θ /dt β ∈ L 2 (0, T;(V θ ( )) ′ ), α = 0, 1, 2, β = 0, 1. From the embedding theorem [24], we have that G, G ′ ∈ C([0, T]; V ′ ( )), F ϕ -G ϕ ,(F ϕ -G ϕ ) ′ ∈ C([0, T]; (V ϕ R ϕ ( )) ′ ), G ψ ,(G ψ ) ′ ∈ C([0, T]; (V ψ R ψ ( )) ′ )andG θ ∈ C([0, T]; (V θ ( )) ′ ).
Multiplying equation (105) by du/dt in the space L 2 (0, T; V ′ ( )), differentiating equations (106) and (107) and multiplying them by ϕ and ψ in the spaces L 2 (0, T;

(V ϕ R ϕ ( )) ′ )a n dL 2 (0, T;(V ψ R ψ ( )) ′ )
, respectively, and multiplying equation (108) by θ/ 0 in the space L 2 (0, T;(V θ ( )) ′ ), integrating them on (0, t), using the formula for integration by parts [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], and taking into account symmetry conditions (46), and adding the obtained equations, we get the energy equality (54).

By similar arguments, which have been used to obtain estimates (84) to (88), we infer:

(g(t), tr Ŵ 1 (v)) L 2 (Ŵ 1 ) ≤ c 1 ε 1 g 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + c 2 ε 1 2 v 2 H 1 ( ) , ( 109 
) t 0 (g ′ (τ ), tr Ŵ 1 (u(τ ))) L 2 (Ŵ 1 ) dτ ≤ 1 2 g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + c 1 2 t 0 u(τ ) 2 H 1 ( ) dτ , ( 110 
) t 0 (f ϕ ) ′ (τ ), ϕ R ϕ (τ ) L 2 ( ) -(g ϕ ) ′ (τ ), tr Ŵ ϕ 1 ϕ R ϕ (τ ) L 2 (Ŵ ϕ 1 ) dτ ≤ 1 2 (f ϕ ) ′ (τ ) 2 L 2 (0,T;L 6/5 ( )) + 1 2 (g ϕ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 ) + c 1 t 0 ϕ R ϕ (τ ) 2 V ϕ Rϕ ( ) dτ , ( 111 
) t 0 (g ψ ) ′ (τ ), tr Ŵ ψ 1 ψ R ψ (τ ) L 2 (Ŵ ψ 1 ) dτ ≤ 1 2 (g ψ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ψ 1 ) + c 1 2 t 0 ψ R ψ ′ (τ ) 2 V ψ R ψ ( ) dτ , (112) t 0 g θ (τ ), tr Ŵ θ 1 (θ (τ )) L 2 (Ŵ θ 1 ) dτ ≤ 1 2ε 1 g θ 2 L 2 (0,T;L 4/3 (Ŵ θ 1 )) + c 1 ε 1 2 t 0 θ(τ ) 2 H 1 ( ) dτ , (113) 
for all t ∈ [0, T], ε 1 > 0, v ∈ H 1 ( ). By using the conditions (47), the inequalities (61) to (65), ( 70), ( 81), ( 82) and ( 109) to (113) for small enough ε 1 > 0, and the Cauchy-Schwarz inequality, and from the energy equality (54), we obtain:

u(t) 2 H 1 ( ) + u ′ (t) 2 L 2 ( ) + ϕ R ϕ (t) 2 V ϕ Rϕ ( ) + ψ R ψ (t) 2 V ψ R ψ ( ) + θ(t) 2 L 2 ( ) + t 0 θ(τ ) 2 H 1 ( ) dτ ≤ c 1 ⎛ ⎝ u(t) 2 L 2 ( ) + t 0 u(τ ) 2 H 1 ( ) dτ + t 0 u ′ (τ ) L 2 ( ) dτ + t 0 ϕ R ϕ (τ ) 2 V ϕ Rϕ ( ) dτ + t 0 ψ R ψ (τ ) 2 V ψ R ψ ( ) dτ + t 0 θ(τ ) 2 L 2 ( ) dτ ⎞ ⎠ + c 2 u 0 2 H 1 ( ) + u 1 2 L 2 ( ) + ϕ R ϕ 0 2 V ϕ Rϕ ( ) + ψ R ψ 0 2 V ψ R ψ ( ) + θ 0 2 L 2 ( ) + f 2 L 2 (0,T;L 2 ( )) + g 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + (f ϕ ) ′ 2 L 2 (0,T;L 6/5 ( )) + (g ϕ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) + (g ψ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ψ 1 )) + f θ 2 L 2 (0,T;L 2 ( )) + g θ 2 L 2 (0,T;L 4/3 (Ŵ θ 1 )) , ∀t ∈ [0, T]. ( 114 
)
Since u ∈ C([0, T]; V( )) and u ′ ∈ L ∞ (0, T; V( )), we have:

u(t) 2 L 2 ( ) ≤ 2 u 0 2 L 2 ( ) + 2t t 0 u ′ (τ ) 2 L 2 ( ) dτ , ∀t ∈ [0, T]. ( 115 
)
From inequalities (114) and (115), we obtain:

u(t) 2 H 1 ( ) + u ′ (t) 2 L 2 ( ) + ϕ R ϕ (t) 2 V ϕ Rϕ ( ) + ψ R ψ (t) 2 V ψ R ψ ( ) + θ(t) 2 L 2 ( ) + t 0 θ(τ ) 2 H 1 ( ) dτ ≤ c 1 ⎛ ⎝ t 0 u(τ ) 2 H 1 ( ) dτ+ t 0 u ′ (τ ) L 2 ( ) dτ+ t 0 ϕ R ϕ (τ ) 2 V ϕ Rϕ ( ) dτ+ t 0 ψ R ψ (τ ) 2 V ψ R ψ ( ) dτ+ t 0 θ(τ ) 2 L 2 ( ) dτ ⎞ ⎠ + c 2 u 0 2 H 1 ( ) + u 1 2 L 2 ( ) + ϕ R ϕ 0 2 V ϕ Rϕ ( ) + ψ R ψ 0 2 V ψ R ψ ( ) + θ 0 2 L 2 ( ) + f 2 L 2 (0,T;L 2 ( )) + g 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + (f ϕ ) ′ 2 L 2 (0,T;L 6/5 ( )) + (g ϕ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) + (g ψ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ψ 1 )) + f θ 2 L 2 (0,T;L 2 ( )) + g θ 2 L 2 (0,T;L 4/3 (Ŵ θ 1 )) , ∀t ∈ [0, T], (116) 
where c 1 and c 2 are positive constants that do not depend on u, ϕ R ϕ , ψ R ψ or θ. By applying Gronwall's lemma [START_REF] Dautray | Mathematical analysis and numerical methods for science and technology[END_REF], and from inequality (116), we have:

u(t) 2 H 1 ( ) + u ′ (t) 2 L 2 ( ) + ϕ R ϕ (t) 2 V ϕ Rϕ ( ) + ψ R ψ (t) 2 V ψ R ψ ( ) + θ(t) 2 L 2 ( ) + t 0 θ(τ ) 2 H 1 ( ) dτ ≤ Te c 1 T c 2 u 0 2 H 1 ( ) + u 1 2 L 2 ( ) + ϕ R ϕ 0 2 V ϕ Rϕ ( ) + ψ R ψ 0 2 V ψ R ψ ( ) + θ 0 2 L 2 ( ) + f 2 L 2 (0,T;L 2 ( )) + g 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′ 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + (f ϕ ) ′ 2 L 2 (0,T;L 6/5 ( )) + (g ϕ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) + (g ψ ) ′ 2 L 2 (0,T;L 4/3 (Ŵ ψ 1 )) + f θ 2 L 2 (0,T;L 2 ( )) + g θ 2 L 2 (0,T;L 4/3 (Ŵ θ 1 )) , ∀t ∈ [0, T]. ( 117 
)
To obtain estimate for ϕ R ϕ 0 and ψ R ψ 0 , note that, since ϕ R ϕ and ψ R ψ are independent of each other, the system of equations ( 52) and ( 53) can be written as follows:

B ϕ R ϕ 0 , ψ R ψ 0 , ϕ R ϕ , ψ R ψ = F ϕ R ϕ , ψ R ψ , ∀ ϕ R ϕ , ψ R ψ ∈ W ( ), (118) 
where 

W ( ) = V ϕ R ϕ ( ) × V ψ R ψ ( )andϕ
B ϕ R ϕ 0 , ψ R ψ 0 , ϕ R ϕ , ψ R ψ = d ϕ R ϕ 0 , ϕ R ϕ + a ψ R ψ 0 , ϕ R ϕ + a ϕ R ϕ 0 , ψ R ψ + ζ ψ R ψ 0 , ψ R ψ , ∀(ϕ R ϕ , ψ R ψ ) ∈ W ( ), F ϕ R ϕ , ψ R ψ = ε ϕ R ϕ , u 0 + μ θ 0 , ϕ R ϕ + f ϕ (0), ϕ R ϕ L 2 ( ) -g ϕ (0), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 )
+ b ψ R ψ , u 0 + m θ 0 , ψ R ψg ψ (0), tr Ŵ ψ

1 ψ R ψ L 2 (Ŵ ψ 1 )
, ∀ ϕ R ϕ , ψ R ψ ∈ W ( ).

Since f ϕ (0) ∈ L 6/5 ( ), g ϕ (0) ∈ L 4/3 (Ŵ ϕ 1 )a n dg ψ (0) ∈ L 4/3 (Ŵ ψ 1 ), and by applying Hölder's inequality, the compatibility conditions (45), estimates (55) and (56) for w = f ϕ , w = g ϕ and w = g ψ , and the continuity of the embedding H 1 ( ) ֒→ L 6 ( ) and the trace operator tr : H 1 ( ) → L 4 (Ŵ) [START_REF] Ciarlet | Mathematical elasticity, vol. I: three-dimensional elasticity[END_REF], we have:

f ϕ (0), ϕ R ϕ L 2 ( ) -g ϕ (0), tr Ŵ ϕ 1 ϕ R ϕ L 2 (Ŵ ϕ 1 )
g ψ (0), tr Ŵ ψ 

+ ψ R ψ 2 V ψ R ψ ( ) 1/2 , ∀ ϕ R ϕ , ψ R ψ ∈ W ( ). (119) Note that B ϕ R ϕ 0 , ψ R ψ 0 , ϕ R ϕ , ψ R ψ = B ϕ R ϕ 0 , ψ R ψ 0 ,0 , ϕ R ϕ , ψ R ψ ,0 .
Hence, applying inequality (70), we have: Consequently, from inequality (117), we infer the following estimate: which implies the uniqueness of the solution and continuous dependence on the given data.

B ϕ R ϕ 0 , ψ R ψ 0 , ϕ R ϕ 0 , ψ R ψ 0 ≥ c 1 ϕ R ϕ 0 2 V ϕ Rϕ ( ) + ψ R ψ 0 2 V ψ R ψ ( 
u(t) 2 H 1 ( ) + u ′ (t) 2 L 2 ( ) + ϕ R ϕ (t) 2 V ϕ Rϕ ( ) + ψ R ψ (t) 2 V ψ R ψ ( ) + θ(t) 2 L 2 ( ) + t 0 θ(τ ) 2
Remark 1. If Ŵ ϕ 0 and Ŵ ψ 0 are not empty sets, then the homogeneous equations ( 41) and (42), when u ≡ 0, θ ≡ 0andf ϕ ≡ 0, g ϕ ≡ 0, g ψ ≡ 0, have only trivial solutions. Therefore, R ϕ = R ψ ={ 0}, the factor spaces V ϕ R ϕ ( )a n dV ψ R ψ ( ) coincide with V ϕ ( )a n dV ψ ( ), respectively, and Theorem 3 is valid, when V ϕ R ϕ ( )i s replaced by V ϕ ( )andV ψ R ψ ( ) is replaced by V ψ ( ). Applying Green's formula and equation (123), we obtain: c(u 0 , v) + ε(ϕ 0 , v) + b(ψ 0 , v)λ(θ 0 , v) -(g(0), tr Ŵ 1 (v)) L 2 (Ŵ 1 ) =div (c * e(u 0 ) + ε * grad ϕ 0 + b * grad ψ 0λθ 0 ) • vdx, ∀v ∈ V( ).

From equation (47), we infer that 1/ρ ∈ L ∞ ( ) and, taking u 2 = 1 ρ (f (0) + div (c * e(u 0 ) + ε * grad ϕ 0 + b * grad ψ 0λθ 0 )) , we have u 2 ∈ L 2 ( )a n du 2 , ϕ 0 , ψ 0 satisfy equations (51) to (53). Thus, if the boundary Ŵ and the given functions satisfy the aforementioned additional regularity conditions and the compatibility condition (123), there exist u 2 ∈ L 2 ( ), ϕ 0 ∈ V ϕ ( )andψ 0 ∈ V ψ ( ) that satisfy equations (51) to (53).

Conclusions

In this work, we investigated boundary and initial boundary value problems with general mixed boundary conditions for mechanical displacement, electric and magnetic potentials and temperature, corresponding to the linear static and dynamic three-dimensional models of multidomain inhomogeneous anisotropic thermoelectro-magneto-elastic bodies. We obtained the variational formulations of the three-dimensional problems in corresponding Sobolev spaces or spaces of vector-valued distributions with respect to the time variable with values in Sobolev spaces that are equivalent to the original differential formulations of boundary and initial boundary value problems in spaces of twice continuously differentiable functions. Also, we obtained new results on the existence and uniqueness of solutions of the three-dimensional boundary and initial boundary value problems in corresponding factor spaces of Sobolev spaces and, to prove the existence, we approximated the solution of the dynamic three-dimensional problem by solutions of finite dimensional systems of ordinary differential equations. Moreover, for the dynamic problem, we obtained an energy equality and, by applying it, we proved the continuous dependence of a solution on given data in suitable function spaces. The methodology presented here can be used to investigate various continuum mechanics models in Sobolev spaces and construction algorithms of their solutions.

  of ϕ 0 and ψ 0 , respectively,

1 )≤ c 1

 11 ≤||f ϕ (0)|| L 6/5 ( ) inf ϕ r ∈R ϕ ||ϕ + ϕ r || L 6 ( ) +||g ϕ (0)|| L 4/3 (Ŵ ϕ 1 ) inf ϕ r ∈R ϕ ||tr Ŵ ϕ 1 (ϕ + ϕ r )|| L 4 (Ŵ ϕ ||f ϕ || L 2 (0,T;L 6/5 ( )) +||(f ϕ ) ′ || L 2 (0,T;L 6/5 ( )) +||g ϕ || L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) +||(g ϕ ) ′ || L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) +||g ψ || L 2 (0,T;L 4/3 (Ŵ ψ 1 )) +||(g ψ ) ′ || L 2 (0,T;L 4/3 (Ŵ ψ ϕ ∈ V ϕ ( )a n dψ ∈ V ψ ( ) are arbitrary elements of the equivalence classes ϕ R ϕ ∈ V ϕ R ϕ ( )a n d ψ R ψ ∈ V ψ R ψ ( ).Therefore, by using estimates (64) to (67) for θ = θ 0 , v = u 0 , the inequality|a 1 |+|b 1 |≤ √ 2(a 2 1 + b 2 1 ) 1/2 , a 1 , b 1 ∈ R,and taking into account that θ 0 ∈ V θ ( ) ⊂ L 2 ( ), we infer that the linear formF : W ( ) → R is continuous and F ϕ R ϕ , ψ R ψ ≤ √ 2c 2 u 0 H 1 ( ) + θ 0 L 2 ( ) +||f ϕ || L 2 (0,T;L 6/5 ( )) +||(f ϕ ) ′ || L 2 (0,T;L 6/5 ( )) +||g ϕ || L 2 (0,T;L 4/3 (Ŵ ϕ 1 ))+||(g ϕ ) ′ || L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) +||g ψ || L 2 (0,T;L 4/3 (Ŵ ψ 1 )) +||(g ψ ) ′ || L 2 (0,T;L 4/3 (Ŵ ψ

a 1 , 2 H 1 ( ) + θ 0 2 L 2 ( 2 L 2

 1212222 ), and, from equation (118) and inequality (119), for (ϕ R ϕ , ψ R ψ ) = (ϕ ..., a n ∈ R , n ∈ N , ) +||f ϕ || 2 L 2 (0,T;L 6/5 ( )) +||(f ϕ ) ′ || 2L 2 (0,T;L 6/5 ( ))+||g ϕ || 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) +||(g ϕ ) ′ || 2 L 2 (0,T;L 4/3 (Ŵ ϕ 1 )) +||g ψ || 2 L 2 (0,T;L 4/3 (Ŵ ψ 1 )) +||(g ψ ) ′ ||

H 1 ( ) dτ ≤ c 1 u 0 2 H 1 ( ) + u 1 2 L 2 ( ) + θ 0 2 L 2 ( ) + f 2 L 2 ( 2 L 2 ( 2 L 2 + (g ϕ ) ′ 2 L 2 + g θ 2 L 2 (

 2122222222222222 0,T;L 2 ( )) + g 2 L 2 (0,T;L 4/3 (Ŵ 1 )) + g ′ 0,T;L 4/3 (Ŵ 1 )) +||f ϕ || 2 L 2 (0,T;L 6/5 ( )) + (f ϕ ) ′ 2 L 2 (0,T;L 6/5 ( )) +||g ϕ || 0,T;L 4/3 (Ŵ θ1)) , ∀t ∈ [0, T],

  and by taking into account the density of C 1 0 ( )i nL 2 ( ), we obtain, from equations (26) to (29), that u k , ϕ k , ψ k and θ k , k = 1, ..., K, satisfy equations (1) to (4). Now, if functions v k , ϕ k , ψ

		k and θ	k are arbitrary continuous
	functions on the surfaces Ŵ 1,k , Ŵ ϕ 1,k , Ŵ	ψ 1,k and Ŵ θ 1,k and vanish on the remaining parts of the boundary Ŵ k , then
	by applying equations (1) to (4) and the density of the sets of continuous functions on Ŵ 1,k , Ŵ ϕ 1,k , Ŵ 1,k and Ŵ θ ψ 1,k ,
	vanishing on the boundaries of the corresponding surfaces in spaces L
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Remark 2. The conditions (51) and (53) of Theorem 3 for given u 2 ∈ L 2 ( ) and θ 0 ∈ V θ ( ) constitute a system of variational equations with respect to u 0 , ϕ 0 , ψ 0 .B ys u b t r a c t i n g( ρu 2 , v) L 2 ( ) from both sides of equation (51), we infer that the system (51) to (53) coincides with equations (34) to (36) of the static problem, where instead of f we have f (0)ρu 2 . Consequently, it follows from the results of the analysis of the static problem [START_REF] Avalishvili | Investigation of the three-dimensional boundary value problem for thermoelastic piezoelectric solids[END_REF] that, for solvability of equations ( 51) to (53), u 2 ∈ L 2 ( ) should satisfy the following condition:

for all v r ∈ V( ), v r (x) = α + β × Ox, α, β ∈ R 3 , Ox = (x i ), and then there exist u 0 ∈ V( ), ϕ 0 ∈ V ϕ ( ), ψ 0 ∈ V ψ ( ) satisfying equations (51) to (53). Note that, if Ŵ 0 is not an empty set, then α = β = 0; hence, for any u 2 ∈ L 2 ( ), there exists a unique (u 0 , ϕ 0 , ψ 0 ) ∈ V( )× V ϕ ( ) × V ψ ( ) that satisfies equations ( 51) to (53).

Remark 3. Sufficient conditions for the existence of 51) to (53) can be obtained by applying regularity results for strongly elliptic systems. To simplify the notations, we assume that the thermo-electro-magneto-elastic solid consists of a single domain, i.e., K = 1.

In addition to the conditions of Theorem 3, let us assume that is a bounded C 1,1 domain [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF],

∅ and the given functions satisfy the following additional regularity properties:

). Hence, from Rademacher's theorem [START_REF] Whitney | Geometric integration theory[END_REF], we have that the functions c ijpq ,

everywhere in and that their derivatives belong to L ∞ ( ). Applying Green's formula, equations ( 52) and ( 53) can be written as

It follows, from the positive definiteness condition (48), when ξ = 0, that equations ( 121) and (122) constitute a boundary value problem for a strongly elliptic system of second-order partial differential equations with respect to ϕ 0 ∈ V ϕ ( )a n dψ 0 ∈ V ψ ( ) [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF], which is solvable since the compatibility conditions (45) are satisfied.

From the regularity properties of the given functions, we have:

hence, applying the regularity theorem [START_REF] Mclean | Strongly elliptic systems and boundary integral equations[END_REF], we infer that the solutions ϕ 0 and ψ 0 of equations ( 121) and (122) belong to H 2 ( ).

Assume now that the following compatibility condition is satisfied: