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Abstract

This paper is devoted to the investigation of three-dimensional models of thermo-electro-magneto-elastic solids made of
a multidomain inhomogeneous anisotropic material. General boundary and initial boundary value problems correspond-
ing to the static and dynamic models are studied where, on certain parts of the boundary, mechanical displacement,
electric and magnetic potentials and temperature vanish and, on the corresponding remaining parts of the boundary, the
mechanical stress vector and components of the electric displacement, magnetic induction and heat flux along the
outward normal vector of the boundary are given. Variational formulations of the boundary and initial boundary value
problems are obtained and, applying them, existence and uniqueness results and the continuous dependence of solutions
on given data, in suitable factor spaces of Sobolev spaces or spaces of vector-valued distributions, are proved.

Keywords
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I. Introduction

Modern complex engineering constructions and technological processes are controlled by using sensors and
actuators, which gather information and facilitate the adequate adjustment of constructions or processes. The
need to construct sensors and actuators with the appropriate physical characteristics stimulates the analysis
of interactions between various physical fields, such as elastic, thermal, electric and magnetic. Piezoelectric
materials are the most popular materials currently being used in smart structures, owing to their direct and
converse piezoelectric effects, which permit them to be utilized as both actuators and sensors. A wide area of
their application is aerospace engineering, where most structures operate in changing thermal environments.
Therefore, the investigation of multifield problems in continuum mechanics is important from a practical as
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well as a theoretical point of view; hence, owing to their numerous applications, the study of the mechanics of
thermo-electro-magneto-elastic materials has attracted increasing attention in recent years.

One of the first rigorous theoretical models of piezoelectricity, describing the interaction between elas-
tic, electric and thermal properties of a thermoelastic body, was constructed by Voigt [1]. Later on, Cady
[2] treated the physical properties of piezoelectric crystals as well as their practical applications. A three-
dimensional model accounting for the coupling of elastic, electric and thermal fields was derived by Mindlin
[3], who applied a variational principle. Nowacki [4, 5] developed uniqueness and reciprocity theorems for
thermo-piezoelectricity. Dhaliwal and Wang [6] proved a uniqueness theorem for linear three-dimensional
thermo-piezoelectricity without restriction on the coupling constant between temperature and electric field,
and positive definiteness of the elasticity tensor, which were used in [5]. Li [7] considered the coupling effects
between elastic, electric, magnetic and thermal fields, and generalized the uniqueness result obtained in [6]
and the reciprocity theorem of Nowacki [4], which were further strengthened by Aouadi [8], and the results
were proved without positive definiteness assumptions on the conductivity tensor used in [7]. The existence,
uniqueness and continuous dependence on the given data of a solution of an initial boundary value prob-
lem with the mixed boundary conditions for mechanical displacement, mechanical stress, electric potential
and electric displacement corresponding to the three-dimensional model of an anisotropic inhomogeneous
piezoelectric material with quasi-static equations for the electric field were proved in Sobolev spaces by
Akamatsu and Nakamura [9]. Well-posedness results in specific function spaces for the three-dimensional
model of thermo-piezoelectricity with inhomogeneous material parameters in the cases of homogeneous pure
Dirichlet- or Neumann-type boundary conditions given on the entire boundary were obtained by Mulholland
et al. [10]. Applying the potential method and theory of pseudodifferential equations, Natroshvili [11] studied
static and pseudo-oscillation problems with basic, mixed and crack-type boundary conditions for homogeneous
anisotropic thermo-electro-magneto-elasticity. For various classical and nonclassical models of piezoelectric
solids, problems of propagation of waves, methods of solutions of corresponding initial and initial boundary
value problems, applications of the obtained results and related topics are considered by many researchers (see
[8-21] and the references given therein).

To the authors’ knowledge, three-dimensional initial boundary value problems with general mixed bound-
ary conditions for mechanical displacement, temperature, electric and magnetic potentials corresponding to the
linear dynamic model with quasi-static equations for electric and magnetic fields for a multidomain inhomoge-
neous anisotropic thermo-electro-magneto-elastic body have not yet been investigated in Sobolev spaces. Only
the boundary value problem with general mixed boundary conditions corresponding to the static model has
been studied [22].

In this paper, we investigate static and dynamic models with quasi-static equations for electric and magnetic
fields of a multidomain thermo-electro-magneto-elastic body, where each subdomain consists of an anisotropic
inhomogeneous material, and obtain new existence, uniqueness and continuous dependence results in the corre-
sponding function spaces. The dynamic model is studied by applying the variational approach and the method of
successive approximations, which permits one to construct the algorithm for the numerical solution of the prob-
lem. One of the aims of the paper is to obtain a new well-posedness result in ordinary Sobolev spaces, which are
widely used for the investigation of the initial boundary value problems corresponding to the dynamic models
of the classical linear elasticity, without any additional structures of function spaces.

In Section 2, we consider the differential formulation of the initial boundary and boundary value problems
corresponding to the linear dynamic and static three-dimensional models for a multidomain inhomogeneous
anisotropic thermo-electro-magneto-elastic body with general mixed boundary conditions, where, on certain
parts of the boundary, the surface force and components of the electric displacement, magnetic induction and
heat flux along the outward normal vector are prescribed, and, on the remaining parts, the mechanical dis-
placement, electric and magnetic potentials and temperature vanish. We obtain integral relations that require
less regularity of the unknown functions than in the original problem and show that, in the space of twice
continuously differentiable functions, the obtained integral relations are equivalent to the original differential
equations.

In Section 3, on the basis of the integral relations obtained in Section 2, we consider the variational formu-
lation in suitable Sobolev spaces of the boundary value problem corresponding to the static three-dimensional
model of thermo-electro-magneto-elastic solids considered in Section 2. We define the structure of the set of
solutions of the homogeneous boundary value problem and, applying it, we formulate results regarding the exis-
tence, uniqueness and continuous dependence of a solution of the three-dimensional boundary value problem
on given data in suitable function spaces.



In Section 4, applying the integral relations obtained in Section 2, we obtain the variational formulation in
suitable spaces of vector-valued distributions with respect to the time variable with values in Sobolev spaces of
the initial boundary value problem corresponding to the dynamic three-dimensional model of thermo-electro-
magneto-elastic solids considered in Section 2. We introduce suitable factor spaces and prove the existence
and uniqueness theorem. The existence of a solution of the three-dimensional initial boundary value problem
is proved by applying new a priori estimates and compactness arguments. Furthermore, an energy equality is
obtained, which permits us to prove the uniqueness result and continuous dependence of a solution on given data
in suitable function spaces. At the end of Section 4, we analyse the conditions of the theorem and obtain effective
sufficient conditions for existence of a solution of the three-dimensional initial boundary value problem.

2. Formulation of the static and dynamic three-dimensional models

Throughout this paper, the indices i, j, p, ¢ range in the set {1, 2,3} and the summation convention with respect
to repeated indices is used; the indices or exponents k, k vary in the set {1, ..., K}, save when they are used for
indexing sequences, where K is a natural number, and we do not use the summation convention with respect
to k, k. For any vectors x,y from the three-dimensional Euclidean space R3, let x - y and x x y denote the
Euclidean inner product and the vector product of vectors x,y in the space R?, respectively, and we denote by
|x| = /x - x the Euclidean norm of x € R3. The Cartesian coordinates of a point x € R3 are denoted x;, and
we let 9; = 3/0x;. The space of real 3 x 3 matrices we designate by M equipped with the matrix inner product
F :F = F;F;, forall F,F € M®. We denote by H x F € M®, R« F € R* and R » x € M? the products
of any fourth-order tensor H = (Hj,,), third-order tensor R = (R;,,), matrix F = (F),,) € M? and vector
x = (x;) € R?, which are defined by (H * F); = HyjpgFpy, (R % F); = Rj,,F,, and (R * x)p, = Ripyx;. Given
a smooth enough vector field v = (v;) : Q@ — R® and matrix field ¢ = (o) : @ — M, their divergences
divv : @ — Rand dive = ((divo),) : @ — R? are defined by divw = 9;v; and (dive); = 0j0;j, where Q C R3
is an open set. The gradients of a smooth enough scalar field v : & — R and vector fieldv = (v;) : @ — R3
are defined by grad v = ((grad v),) : Q@ — R?, (gradv); = 9;v and Vy = (Vv))) : 2 — M3, (Vv);; = djv;. We
denote by n = (n,), n* = (nf‘ ) the unit outward normal vectors of the corresponding surfaces.

Let us consider a multidomain thermo-electro-magneto-elastic body with initial configuration Q = U,’fZIQ_k,

where each subdomain € consists of a general inhomogeneous anisotropic material that is characterized
by consistent spatially dependent parameters. The governing field equations of the dynamic linear three-
dimensional model of the stress—strain state of each subdomain €2; of the thermo-electro-magneto-elastic body
Q2 in differential form with quasi-static equations for electric and magnetic fields, where the rate of the magnetic
field is small, i.e., the electric field is curl free, and there is no electric current, i.e., the magnetic field is curl
free, are of the following form [7, 11]:

92uk
pkﬁ—divak :fk in Qk X(O,T), (1)
leDk :f(p’k in Qk X (07 T)? (2)
divB* =0 in Q x(0,7), (3)
96" ok k 9k k d k . k .k
%‘¥ — div (n* * grad 6 )+®OE (A :e(u)) — G0 (1" - grad o )_605 (m* - grad y*) = 1
in Q x (0,7), 4)

where 0% = (O‘il;») is the mechanical stress tensor in the subdomain €2, which is given by the following linear
constitutive equation for a thermo-electro-magneto-elastic solid:

0" =c" xe(u') + & x grad o* + b* x grad y* — 1*6%, 5)

where u* = (uf-‘) - Qi x [0,T] = R3 is the mechanical displacement vector-function; ok Qe x[0,T] = R
and ¥* : @ x [0, T] — R stand for the electric and magnetic potentials, such that electric and magnetic fields
are E¥ = —grad ¢* and H* = —grad ¥* and 6% : Q; x [0,T] — R is the temperature distribution. For
smooth enough vector field, v = (v;) : Q2 — R3, e(v) = (e;j(v), e;j(v) = 1/2 (8jvl- + Bivj) is the strain tensor;

¢t = (cf,,(x)) is the elasticity tensor; ¥ = (g (x)) and bt = (bj,,(x)) are the piezoelectric and piezomagnetic



coefficients; A = (Ak (x)) is the stress—temperature tensor; pX is the mass density in the reference configuration;

k= (fF) : Qi x (0,T) — R? is the density of the applied body force; DF = (DY) is the electric displacement

vector and Bk (BY) is the magnetic induction vector. The latter are given, respectively, by the following linear
constitutive equations:

D' = &* xe (u*) — d*grad ¢* — a*grad y* + p*o*, (6)
B* =b" x e (u") —a'grad ¢* — ¢*grad y* +m"0", (7)

where d* = (dk (x)) and ¢* = ({U (x)) are the perm1tt1V1ty and permeablhty tensors; a* (ag(x)) are the coupling
coefficients connecting electric and magnetic fields; (ul (x)) and m* (mf (x)) are coefficients character-
izing the relations between thermal and electric ﬁelds and between thermal and magnetic fields, respectively;
fo% @ x (0,T) — R is the density of electric charges; »* is the thermal capacity; p* = (ng(x)) is the
thermal conductivity tensor; ®y > 0 is the temperature of the thermo-electro-magneto-elastic body in the
natural state of no deformation and electromagnetic fields, which is considered a reference temperature, and
fO% + Q@ x (0,T) — R is the density of heat sources. Note that the mechanical displacement vector u of the
entire thermo-electro-magneto-elastic body € is equal to u* on €, the electric potential ¢ of Q is equal to ¢*
on €, the magnetic potential v of  is equal to ¥* on Q; and the temperature 6 of Q is equal to 6% on Q.

We consider classical boundary conditions on the boundary of the body €2 and on the interfaces between
the subdomains €2, which are widely used in applications. More precisely, we assume that the entire thermo-
electro-magneto-elastic body €2 is clamped along a part I'y C I' = 92 of the Lipschitz boundary I', and, on the
remaining part I'; = I'\I'y, an applied surface force vector, with density g = (g;) : I'; x (0, T) — R3, is given,
where I' = I'g U I'; is a Lipschitz dissection [23] of I'":

uk =0 on F()’k = F() N 3Qk , aknk =g O0n Fl,k = Fk\FO,ka Fk = an (8)

Along apart I'§ C T of the boundary, the electric potential vanishes and, on the remaining part I'{ = I'\I'{, the
normal component of the electric displacement, with density g¥ : I'{ x (0, T) — R, is given, where ' = [§ UT'{
is a Lipschitz dissection of I":

¢*=0 on TIY, =T§nNo, D' -n*=g* on TI'Y =T\IY,. )

Along a part Fg C I', the magnetic potential vanishes and, on the remaining part F}p = F\F‘”, the normal

component of the magnetic induction, with density gV : F'llf x (0,T) — R, is given, where I' = F(If U Fi/’ isa
Lipschitz dissection of I':

Yyf=0 on Iy, =TyNa., B n* =g’ on T =TIy, (10)

The temperature vanishes along a part I'j C I' of the boundary and the heat flux along the outward normal of

I, with density g7 : T'Y x (0,T) — R, is given on I'{ = T'\I'j, where I" = Fg U T'Y is a Lipschitz dissection of
I:

0*=0 on T§,=TiNa., —(r'grad0") - n*=¢" on T|, =T\\I},. (11)

On the common interfaces I'y NI, of the subdomains €2 and g, rigid contact conditions are assumed; i.e.,

the mechanical displacement vector, temperature, electric and magnetic potentials, mechanical stress vector and
normal components of the heat flux, electric displacement and magnetic induction are continuous:

k k k k

u =u", o’n=o0"n on I'y NIy, (12)
o* = ¢F, D' -n=DF n on Ty NTy, (13)
Yk = gk, B*-n=B"n on Iy N Ty, (14)
ok = 6%, (n*grad 6*) - n = (nzgrad (9%) -n on Iy NI} (15)



At the initial moment of time, we have the following initial conditions for the mechanical displacement vector-
function and temperature:

u(x,0) = up(x), aa—l:(x, 0) =u;(x), 0(x,0) = 6y(x), x e Q, (16)

where uy = (uy;) and u; = (uy;) are the initial mechanical displacement and velocity vector-functions,
respectively, and 6 is the initial distribution of temperature.

We assume that the elasticity tensors (ck ), stress— —temperature tensor (k ), piezoelectric tensor (e*.) and

iipq Pij

k
piezomagnetic tensor (b)) satisty the following symmetry conditions:

ko k __ k k _ a4k k _ ok kK pk
Ciipg = Cijgp = Cjipg> )‘ )‘ﬂ’ Epij = Epji> bpu bp/l )

If u*, o*, ¥ and 6* are twice continuously differentiable, then by multiplying equation (1) by an arbitrary
continuously differentiable function v* : Q; — R?, which vanishes on I'p; and v* = v* on [, NI, multiplying
equation (2) by a continuously differentiable function g* : Q; — R, such that g* = 0 on Fg’k and @* = @* on
'y NI, multiplying equation (3) by a continuously differentiable function ¥ . Q@ — R, which vanishes on Fgf f
and Jk = Wk on I'y N I'z, and multiplying equation (4) by a continuously differentiable function 7" Q — R,

such that & = 0 on I§, and 8" =7 only N I';, by integrating on € and by using Green’s formula, we obtain
the following integral relations for a subdomain €2;:

32 k

/pk a:; yhdx — /a nt dek+/ :Vvkdxszk-vkdx, (18)

Qk Qk Qk
f DF . n*gkdr, — f D" . grad g*dx = / fe@*dx, (19)

Q
/ B n<ydr, — / Bt - grad v dx = 0, (20)
' Qe
aek = . ok —«
%" 8" dx — (n*grad 6*) -n g'dr + (n*grad 6*) - grad§ dx + O, [ A e\ =7 6" dx
o U
9 kN k
—@0/ (/Lk-grad 8—‘/;) 7' dx — @0/ (m _grad i)e dx = /f“@dx Q1)
o o

On the common interfaces I'y N I';, we have yk = vk, ok = az, Wk = Wk, 9" = §k and nf = —nF. Therefore,

from the rigid contact conditions (12) to (15), after summation of equations (18) to (21) with respect to k, by
applying the boundary conditions (8) to (11) and the constitutive equations (5) to (7), and taking into account
the symmetry conditions (17), we obtain:

K

Zf Bu kdx—l—Z/c xe :e(vk)dx+Z/(ek*grad<pk):e(vk)dx
k= IQk k= IQA k:lgk
K
+ s grad Ak Okdx = | f -vdx+ [ g-vdl', (22)
z/ ) e o) d 2/ () / /



K K
— Z/ (" x e (u")) - grad @“dx + Z/ (d“grad ¢*) - grad g*dx + Z/ (a*grad y*) - grad g*dx

k=1, k=1, k=1g
K
—Zﬂﬁ“gmwww=/ﬂwwj£%w,@$
k:le Q Fflp
K k K k K k
— Z/ (0" x e (u")) - grad v dx + Z/ (a“grad ¢*) - grad v dx + Z/ (¢*grad y*) - grad ¥ dx
k=1¢ k=1¢ k=14
k k k
K
—Z/ (mk-grad?‘) o dx = —/ngr, (24)
k:le FY/
K K K
06% _ _ ouk\ _
Z / %ka—ekdx+ Z/ (n*grad 6*) - grad 9" dx + 0 Z/Xk e (%) 7" dx
k=1gy ! k=1g k=1, !
K K
dg*\ = APEN _ _
_®Ozf (,;,".grad ai) dex—(%Z/ (mk.grad ai) " dx = /f99dx—/g99dr, (25)
k=10 ! =l t @ ry

where f = fX, f¢ = fo* and f? = % in Qg andv =v*, o = @, ¥ = Ek and§ = 0" on .

Therefore, if u¥, ¢*, ¥* and 6* are solutions of equations (1) to (4) and satisfy the boundary conditions (8)
to (11) and the rigid contact conditions (12) to (15), then u*, ¢*, ¥* and 6* are solutions of equations (22) to
(25). Conversely, if u*, ¢*, ¥ and 6* are twice continuously differentiable solutions of equations (22) to (25),
then by using Green’s formula we obtain:

K K K

32 k
Z / pka—tl; - vkdx-i—z f okn . vde—Z /div (c* x e (u*)+&" * grad ¢* +-b* x grad y* —1%0*) - v¥dx
k=18, k=1p =19,

:/f-vdx+/g-vdf‘, (26)
Q Iy
K K
-> / D" - nhyptdly + ) / div (" x e (u")—d*grad o* —a*grad y* + p*0*) g*dx
k=1 p k=1g
= [ 15 [ e, @7
Q re
K k K k
— Z/ (B -n*) Yy dF—I—Zfdiv (b* x e (u*)—a*grad ¢* —¢*grad v* + m*0*) ¥ dx:—/ g’wdr, (28)
k=1 I, k=1 o F://
: A SN 43t s ouly
Z/%kyé dx-i-Z/ (ﬂkgradek -nk)G dF—Z/div (nkgradQ)G dx-l—@oZ/kk e (W)Q dx
k=1¢ k=1p, k=1g k=1¢

<} 3 k LAY - k VN [ oz 05
0> [ (n grad —— 0'dx— 0y [ (m -grad —— ) 0'dx = | f'6dx— [ ¢"0dr, (29)
k=1 o k:le Q F'l?

where vk, @k s Ek and §k are continuously differentiable functions on 4, such that v = 0 on Tox, @k =0on
Loy s ¥ =0on I 7" =0on Iy, and v* = vk, g = g, ¥ =¥ and " = 8" on I, N I'z. By letting
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v e (Y@ CY@) = (v € C'@) v = 0 on T}, 7 € CY@). ¥ € Cy(@) and §° € C}(), and
by taking into account the density of C(l)(ﬁ) in L*(R2), we obtain, from equations (26) to (29), that u*, ¢*, ¥
and 0%, k = 1,..., K, satisfy equations (1) to (4). Now, if functions v, ok, Ek and §k are arbitrary continuous
functions on the surfaces | N & Fff,k and F(f’k and vanish on the remaining parts of the boundary [y, then
by applying equations (1) to (4) and the density of the sets of continuous functions on I'y 4, Ff’k, 1.4 and rY &
vanishing on the boundaries of the correspondmg surfaces in spaces LX(T ) LZ(I“ k) LZ(F ) and Lz(Fl’k), we
infer, from equations (26) to (29), that u¥, ¢*, ¥* and 6* satisfy the boundary conditions (8) to (11). Similarly,
if the functions v¥, @, Wk and §" are arbitrary continuous functions on the interfaces I'y N I'z and vanish on the
remaining parts of the boundaries I'y and I'z, then, from equations (26) to (29), taking into account equations
(1) to (4) and the density of the sets of continuous functions on I'y N I';, vanishing on the boundaries of the
corresponding surfaces in space L?(I'y NT';), we obtain that u¥, ¢, ¥* and 6* satisfy the rigid contact conditions
(12) to (15).

Note that the differential linear three-dimensional model of the static equilibrium [22] of the thermo-electro-
magneto-elastic body €2 is given by the system of equations (1) to (4), together with the boundary conditions
(8) to (11) and rigid contact conditions (12) to (15), where the functions u*, ¢, y*, 0%, f¥, foX (0K g g% g?
and g’ do not depend on the time variable 7 and the corresponding equations are fulfilled in 2. Hence, in the
static model, instead of equations (1) and (4), we have:

—dive* = f* in €, (30)
—div (y*grad 6*) = f%* in 4, (31)

and, instead of equations (22) and (25), we have:

Z/ e e(vk)dx+Z/ " x grad ¢") : e (V) dx

k= 1S2k k= IQk
K K
—l—Z/(bk*gradwk) :e(vk)dx—Z/(Xk e (v)) 0Fdx = /f vdx+fg vdl', (32)
kZIQk kZIQk I
K
> / n*grad 6% - grad 8" dx = / Fo9dx — / %9dr. (33)
k:le F9

Thus, the initial boundary value problem (1) to (4) and (8) to (16) corresponding to the dynamic three-
dimensional model of a multidomain anisotropic inhomogeneous thermo-electro-magneto-elastic solid is equiv-
alent to equations (22) to (25), together with the initial conditions (16) in spaces of twice continuously differ-
entiable functions. The boundary value problem (2), (3), (8) to (15), (30) and (31) corresponding to the static
three-dimensional model of the thermo-electro-magneto-elastic solid €2 is equivalent to equations (23), (24),
(32) and (33) in spaces of twice continuously differentiable functions. On the basis of the latter, in the next
sections we obtain the so-called weak or variational formulations of the static problem (2), (3), (8) to (15), (30)
and (31) and the dynamic problem (1) to (4) and (8) to (16), and investigate the existence and uniqueness of the
corresponding solutions in suitable function spaces.

3. Analysis of the static problem

Hereafter, for each real s > 0,0 < § < 1, we denote by H*(D) and HS'(IV‘) the Sobolev spaces of real-valued
functions based on H(D) = L*(D) and H'(I') = L*(I"), respectively, where D C R”, n € N, is a bounded
Lipschitz domain and I" is an element of a Lipschitz dissection of the boundary 0D [23]; Hj(D) denotes the
closure of the set (D) of infinitely differentiable functions with compact support in D in the space H*(D). We
denote the corresponding spaces of vector-valued functions by H*(D) = [H*(D)]?, Hy(D) = [Hg(D)]3, s >0,
H§(Iv‘) = [Hg(f‘)]3, 0<s<l, le(f‘) = [le(f‘)]3 and s; > 1 and the trace operators by try : H'(D) — Hl/z(f‘)



and try : H'(D) — H'2(I"). For any measurable set D ¢ R, n € N, (., Jr2py and (., .);2(p) are the classical
scalar products in L?(D) and L*(D), respectively.
Note that if functions V¥ belong to H 1(€4), and on the common interfaces ', N I'z we have tr[‘kn[‘;(\/k ) =

tr[‘kmr‘z(vz), then there exists the function v € H'(Q) such that v = v* in ;. Therefore, from equations (23),
(24), (32) and (33), we obtain the following variational formulation of the boundary value problem (2), (3), (8)
to (15), (30) and (31):

Findu € V(Q) = {v € H(Q);trr(v) = 0on Iy}, € V¥(Q) = {g € H(Q);trr (@) = 0 on | NG IRVANC
VV(Q) = (¥ e H(Q):tr(¥) =00on Ty}, 60 € VO(Q) = {0 € H(Q); trr(F) = 0 on T'Y} such that

cm,v) + g(@,v) + b(yr,v) — A6,v) = L*(v), Vv € V(Q), (34)
—e(@,u) +d(e,9) + a(y,9) — w0, 9) = LY(9), Vo € V¥(Q), (35)
—b(Y,u) +alp, ¥) + C(W. ) —m@, %) =LY (), Yy € VI(Q), (36)
n(0,0) = LY 6), Vo € VU(Q), (37)
where
c(u,v) = /(c xe(u)) : e(v)dx, e(p,v) = / (¢ x grad @) : e(v)dx,
Q Q
bpow) = [ (b xgrad v s ey, dip9) = [ @ grady) - gradd
Q Q
(). 9) = / (a grad v) - grad gidx, () = f (¢ grad y) - grad jdx,
Q Q
MO,v) = / (A : e(v))Odx, w@, o) = / (k- grad @) 0dx,
Q Q
m@®,v) = / (m - grad ¥) 6dx, n,0) = / (n grad 0) - grad 6dx,
Q Q
vo = [t [g- o, r@) = [ [ genur,
Q I Q re
LYW = — f gwtrrlw (Y)dr, LY©0) = / F0dx — / ggtrr? (6)dr,
r’ @ r{

andu=ur, o =9 Yy =y50=0c=c,e=eb=b1A=2d=d" a=d" pn=upt¢ =2k
m = m* and 5y = 5* in Q.

Note that if the parts Iy, 'y, I“g’ and Fg of the boundary of €2 are empty sets, then the homogeneous problem
(34) to (37), where f = 0,2 =0,/ =0,8* =0,g” =0, = 0and g = 0, has non-trivial solutions.
Hence, the solution of the problem (34) to (37) is not unique in the first-order Sobolev spaces mentioned in the
variational formulation and it is necessary to introduce suitable factor spaces, where the solution of the problem
(34) to (37) is unique.

As in the case of most practical applications, we assume that c;jg, €pij> bpijs dij> ij» aij, Ajjs I4i» m; and n;; €
L*>(€2) satisfy the following positive definiteness conditions:

(cx)*xF):F > aF : F, N - & > o, lE)%, (38)
d)E - & + a0 - & + a0k - &+ L(0E - & > a(E]” + €], (39)

forall F € S?, &, E € R3 and almost all x € Q, where «,, a, and « are positive constants and S? designates the
set of all symmetric 3 x 3 matrices.



Let_us denote by R _the set of solutions of the homogeneous_ problem (34) to _(37), where L*(v) = 0, L?(p) =
0,LY(y) =0and L?(@) = 0, forall v € V(Q), ¢ € V¥(Q), ¥ € V¥(Q) and 6 € V(). The structure of the
set PR is determined in [22] and #R is of the following form:

R={ (v 7" T07) € V@) x VAR x VH@) x VI v =V

or 10" —r

=Ty (V7T e R 0 e Ry,

" =0 +¢"

where

Ry = { (vr,ar,wr) € V() x V4(Q) x V(v () =+ B x Ox,a, B € R>,0x = (x).7 = at,,

(x(peR,Er:aw,a,/, GR},

Ro = {0" € V(0" = a9, a9 € R}

and
@™, ") € V(Q) x V¥(Q) x V()

is a solution of the homogeneous equations (34) to (36), when 6 = 6".
Applying the set R, we can define the factor space (V(Q2) x V#(Q) x V¥(Q) x V?(Q))/MR, which consists
of the following elements:

070" = [(50.0) + (7 T () <)

for each (v, @, ¥, 0) € V() x V() x V¥ (Q) x V?(), which is the Hilbert space equipped with the following
norm:

&2

By applying the set R, we can define the solution of the problem (34) to (37) in the factor space (V(£2) x
Ve(Q) x VV(Q) x VI(Q))/R. Indeed, for each solution (u, ¢, ¥, 6) of the problem (34) to (37), any vector-

function (u, ¢, ¥, 0) + (v, @™ Wre v

‘SI
<

7| = { oz o) (55 0)

vrer,arer’wwr’er> c m} )

‘(HI(Q))ﬁ ’ (

0"), where (v"?", _’gr, ¥ ,0") € Ris also a solution of equations (34) to
(37). Therefore we say that (u o, Y, 9)9% € (V(R2) x V¢ (Q2) x V‘”(Q) x V?(R))/A is a solution of the problem
(34) to (37), if any function from the equivalence class (u, ¢, ¥, 0)™ is a solution of the problem (34) to (37).

For the problem (34) to (37), which is equivalent to the boundary value problem (1) to (4) and (8) to (15)
in the spaces of classical twice continuously differentiable functions, the following existence, uniqueness and
continuous dependence theorem was proved in [22].

Theorem 1. Suppose that Q2 C R3 is a bounded Lipschitz domain; the parameters Cijpq, Epij bpij» dij » Cij» ayj,
Aijy Wix mi and m; € L®(Q) satisfy the symmetry and positive definiteness conditions (17), (38) and (39). If
fe L), g e LT, 7 € LF(Q), g¢ € LYATY), ¢ e LATY), f* e LP(Q), ¢ e LT,
L°®") = 0 and L*(v") + L (@") + L‘p(wr) =0, forall (v', Er,wr) € Ry, 0" € Ry, then the problem (34) to
(37) possesses a unique solution (u, @, W,Q)m e (V(R) x V¥(Q) x V¥(Q) x V(Q))/R, which continuously
depends on the given data, i.e., the mapping (f,g.f¢, g%.8".f%,8°) — ., ¢, ¥,0)™ is linear and continuous
from the space LY3(Q2) x LA3(I'y) x L83(Q) x L*3(T?) x L*3(ITY) x L5(Q) x L*3(T9) to the space (V(R) x
Ve(Q) x V¥ () x VI(Q))/A.

Note that, if the areas of the surfaces I'g, F(‘f s Fg s Fg are positive, then the homogeneous equations (34)
to (37) have only a trivial solution. Hence, Ry = {(0,0,0)},Ry = {0}, B = {(0,0,0,0)}, the factor space
(V(Q) x V() x V¥(Q) x V! (Q))/R coincides with V(Q) x V(Q) x V¥(Q) x V?() and, from Theorem 1,
we have the following theorem.



Theorem 2. Suppose that Q C R3 is a bounded Lipschitz domain, the parameters Cjjpq, €pij» bpij, dij, $ij» aijy Ajj,
Wi, mj, n;; € L%(RQ) satisfy the symmetry and positive definiteness conditions (17), (38) and (39). If T'y # &,
T @, T # @, T8 # @andf € L), g € L3I, ¢ € L), g¢ € LYATY), gV e L3T)),
1o e L¥3(Q), g° € LY3(T'Y), then the problem (34) to (37) possesses a unique solution (u,p,V,0) € V() x
Ve(Q) x V¥(Q) x VU(RQ), and the mapping (f.g.f¢, g*,gV.f°,8%) — (u,p,¥,0) is linear and continuous
from the space L93(Q2) x L*3(I"y) x L53(2) x L4/3(F‘f) X L4/3(F;/’) x LS3(Q) x L4/3(F]9) to the space V(£2) x
Ve(Q) x VY (Q) x V/(Q).

4. Analysis of the dynamic problem

In addition to the notation used in the previous section, we denote, here, by C®!(D) the space of the Lipschitz
continuous function on D, where D C R", n € N, is a bounded Lipschitz domain. For a Banach space X,
we denote by C([0, T]; X) the space of continuous vector-functions on [0, 7] with values in X; L*'(0,T;X),
1 < s, < o0, is the space of such measurable vector-functions g : (0, 7) — X, so that ||g|ly € L*'(0,T) and the
generalized derivative of g is denoted by g’ = dg/dt € D'(0,T;X) [24]. If g € L' (0, T;X) and X is a space of
functions of variable x € D C R", n € N, we identify g with a function g(x, t), and g(¢) denotes the function
g(t) : x — g(x,1), for almost all r € (0, T). We identify the distributional derivative dg/dt with the derivative
dg/ot of g in ®'(D x (0, T)). Hereafter, we use ¢, ¢z, to denote generic constants that are independent of the
main parameters involved, but whose values may differ from line to line and may change even within a single
chain of estimates.

We identify the unknown vector-function u and the functions ¢, 1, 6 with vector-functions defined on [0, 7]
with values in suitable spaces of functions defined on €2; by applying equations (22) to (25), we obtain the
following variational formulation of the initial boundary value problem (1) to (4) and (8) to (16) in the spaces
of vector-valued distributions:

Find u € C(0,T1;V(R)), u' € L=0,T;V(Q)), u’ € L®0,T;L*(Q)), ¢ € C(0,T];V¥(Q)), ¢ €
L>®(0,T; V¥ (RQ)), ¥ € C(0,T]; VY(Q)), ¥ € L=(0,T; V¥ (R)), 6 € C(0,T1; VY (Q)), 0" € L=(0,T;L*(Q)) N
L*(0, T; V¥(R2)), which satisfy the following equations in the sense of distributions on (0, T):

(PU"¥) 2y + @, ¥) + 80, ¥) + b(Y,¥) — A(0,v) = L"), Vv € V(R), (40)
—e(@.u)+d(p.9)+a,p) —n@.9) =L (@), VoeV(Q), (41)
—b(Yu)+a(e¥)+¢ (V. ) —m(0.¢¥)=L" (¥), VYyeV/(Q), 42

(50',0) 2y + 1 (6,0) + Ooi (6,u') — Oou (6,¢') = Oum (6,9') =L° (), VO eV (), 43

together with the initial conditions
u(0) = uy, u'(0) = uy, 6(0) = 6o, (44)

where p = p*, 2c = s in Q.
Note that if the parts I' and F(‘)” of the boundary of 2 are empty sets, then the homogeneous problem (40)

to (44) has non-trivial solutions. Indeed, if the tensors (d,-j(x)), (a,-j(x)) and ({ij(x)) characterizing electric and
magnetic fields satisfy the positive definiteness conditions (39) andu = 0,6 =0,f¢ =0, g¥ =0, g¥ =0, then
the solutions ¢ and ¥ are constants. Consequently, the solution of the problem (40) to (44) is not unique in the
spaces mentioned in the variational formulation and it is necessary to introduce suitable factor spaces, where

the solution of the problem (40) to (44) is unique. B B

Let us denote by R, = {g" € V¥(Q); @ = a,, a, € R}and Ry, = (¥’ € V¥(Q); ¥ = ay, ay € R} the
sets of solutions ¢ and i of the homogeneous equations (41) and (42), whenu = 0,6 =0and f¥ =0, g% =0,
g¥ = 0. Applying them, we introduce the factor spaces Vg’ﬁiﬂ(Q) = V?(Q)/R, and Vg‘;w Q) = V¥H(Q)/ Ry,
which consist of equivalence classes o = (g+9"¢ € R, }, foreach g € V¥(Q2), and me = {W—I—Er; Jr €
Ry }, for each ¥ € V¥(RQ), respectively. The factor spaces Vgi‘w(Q) and Vgﬁw (2) are the Hilbert spaces with

_ ey _, —R [ S—— —r
respect to the norms ||§0m"||v§¢(sz) = inf{|[9+¢"||p1@): @ € Ry} and || w”‘/gﬁ @ = inf{|[V+¢ ||y €
v

Ry}
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The sets R, and Ry, permit one to define a solution of the problem (40) to (44) in the spaces mentioned in
the variational formulation, where V¥(£2) is replaced by V. (Q) and V¥(Q) is replaced by Vw (Q) Indeed, if

(u, ¢, ¥, 0) is a solution of the problem (40) to (44), then for any 9" € R, and w € Ry, the Vector—functlon

w, o, v,0)+0,¢", Er, 0) is also a solution of 40 to (44). Therefore, we say that (u, (p%, wm‘”, 0) is a solution of
the problem (40) to (44), if any vector-function (u, ¢, ¥, 8), where ¢ and  are functions from the equivalence
classes ™% and ¥ ™, respectively, is a solution of the problem (40) to (44).

Note that if, in equations (41) and (42), ¢ = ¢" € R, and U= Er € Ry, then the left-hand sides vanish;

hence, we obtain the following necessary conditions for the existence of a solution of the problem (40) to (44):

L@)=0, L'@)=0, Vg eR, ¥ eRy. (45)

Hereafter, we assume that the bilinear forms d, a, ¢, ¢, b, i, m are defined on the factor spaces Vgﬁ‘w(Q) and
Vaz, (),

i(3%.7%) =d@w, a(¢V)=a@ V). z(w”“wm)=c($,$),
(@) =c@n.  b(Fw)=b@y).  w(@FV)=w@9). m(EF")=m@.9).

and, taking into account the compatibility conditions (45), we also define the linear forms L¢ and LV on the
factor spaces

L (@%) - (f(p’a%)ﬂ(m a (g(p’trr‘f (aw))ﬁ(r‘f’) =" P = <g(p’trrf @))Lz(r‘{’)’
L () = = (8" (Em))ﬁ(ﬂ”) =~ (8" 9)) | 1)

where @, ¢ € V?(Q2) and fp\ ¥ € VY () are arbitrary elements of the equivalence classes ¢7%, @7 € V“’ (2)

and @m,,,’ me € Vggw(Q), respectively, and v € V(2), 0 e VU(Q).

For the problem (40) to (44), which is equivalent to the initial boundary value problem (1) to (4) and (8)
to (16) in the spaces of classical twice continuously differentiable functions, we prove the following existence,
uniqueness and continuous dependence theorem.

Theorem 3. Suppose that Q, 2, ..., C R? are bounded Lipschitz domains, the parameters p, », Cijpg> Epijs
buijdij, Cijy aij, Aijy i, m; € L(82), 175- e CON(Q), for almost all x € 2, satisfy the symmetry conditions (17)
and

dij(x) = dji(x), gii(x) = gi(x), a;i(x) = a;i(x), (46)
and positive definiteness conditions (38) and
p(x) > a, = const > 0, »#(x) > o, = const > 0, a7
_ _ | _ _
dx)E-E+ax)E-&E+a)é - E+C(0)E-E+ 6—0%()6)55 —26p(x) - & — 26m(x) - & > (& + EI°+ED),
(48)

forall €, € € R? | & € R and for almost all x € S, where & is a positive constant. If f,.f € L*0,T;L3()),
g.8.8" € LXO,T;LY3Ty), f2.(f*).(f*)" € L*0,T;L°(Q)), g%.(g%),(¢?) € L*0,T;L*3(IY)),
g’ (8").(g")" € LXO.T:LY*(T))), f7.(f°) e LX0,T:LA(Q), §°,(8") € L0, T;LY*(T))) and the ini-
tial conditions uy € V(Q), u; € V(Q), 0, € VU(Q), 0, = 0F in Qi, 05 € H*(Q), satisfy the compatibility
conditions (45) and

g%0) = —trpy, (n*grad 6;) - n* on TY, (49)

trr,Ar, (n*grad 65) -n = trr,nry (nEgrad 95) ‘n on TyNTy, (50)
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and there exist u, € L*(Q2), ¢y € V9(Q), Yo € VV(RQ), such that

(pu2$ V)LZ(Q) + C(u()’ v+ 8(¢05 V)+b(1l/0, v) _)\'(90’ v) == (f(o)’ V)LZ(Q)+(g(0), trF. (V))L2(]"1), Vv € V(Q)9 (5 1)
—&(@, u0)+d(@o, ©)+a(Yo, ©) — (b, ©) = (f*(0), ©)12(@) — (8*(0), trpe (@)re, Vo e VH(Q), (52)

—b (Y, u0)+a (g0, ¥)+¢ (Yo, ¥) —m (60, ¥ ) =— (gdf (0), trpy (E))Fw , Vi e VY (Q), (53)

then the problem (40) to (44) possesses a unique solution (u, o™,y 0), where 9™ e C([0,T1; V&(Q)),

() e L*(0,T; V&(Q)), v e (o, T];Vg;w(ﬁ)), (Yy™Y e L*0,T; Vgﬁw(ﬁ)) , which continuously
depends on the given data, i.e., the mapping

(o 1. 60.1,2.8'. 7%, (%) 8% (8" 8%+ (8") of7.8") — (w.u ™, ™. 0)
is linear and continuous from space

V() x L2(Q) x LX) x L*(0, T; L*(2)) x L*0, T; L*3('))) x L*(0, T; L*3(T")))
x L*(0, T; L°(Q)) x L*(0, T; L*(R)) x L*(0, T; L**(T'Y)) x L*(0, T; L**(I'!))
x L0, T; LY*(TV)) x L2(0, T; L*3(TY)) x LX0, T; L*(R)) x LX0, T; L**(T%))

to space

C([0, T1; V() x C([0, T L) x C([0,T1; Vi () x C([0,T]; Vi, ()
x (C([0, T]; L*()) N L*(0,T; V*(Q))) ,

and the following energy equality is valid:
E(t) = E(0) + L(1), vt € [0,T], (54)

where
1 2 t
E(t) = (pu' (1), u'(t))Lz(Q) + c(u(®),u(r)) + ®_0(%9(t)79(t))L2(§2) + 0 / n(@,0)dt + d(p(), ¢(1))
0

+ 2a(e(0), ¥ (1) + EW (0, ¥ (1)) — 2u(0(1), (1)) — 2m(0(1), Y (1)),

L(t) = 2/ (fo), u/(T))Lz(Q) dr + 2(g(), trr, (@), — 2(g(0), trr, (u(0))2(r))
0

t

=2 [ (gt @)y, dr 2 [ @O Nt =2 [ @ Otz e
0 0

0

t N 5 t 9 5 t 9
2 [ @ Oty O g e + o [ (000 g7 = o [ @Oty @M.
0 0 0

@ and  are any functions from the equivalence classes ™% and y™¥, respectively.

Proof. First, let us prove the existence of a solution of the problem (40) to (44). Since f?, f € L*(0,T; L*(RQ))
and g%, g% € L*(0,T; L 3(Ff)), it follows, from the embedding theorem [24], that f¢ € C([0, T]; L*(R2)) and
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g’ € C([0, T]; L**('Y)). By applying Green’s formula and by taking into account the compatibility conditions
(49) and (50), we obtain:

K
1(60,0) + (°(0), 0)L2(F9 thrrk (n*grad 6%) - n*trr, ( k) dry — Z/div (n*grad 6;) 8" dx

k= 1Fk k:le

+ Z / g (O)trpk dFk (é;,é)Lz(m, Vo € V/(Q),
r9

where 5;, = div (nkgrad 9(')‘) in Q. Since the functions ng are Lipschitz continuous in bounded domains €2,

we have that r]k € L*(2), and it follows from Rademacher’s theorem [25] that they are differentiable almost
everywhere in Qk and that their derivatives belong to L*°(£2;). Hence, by taking into account the fact that
6F € H2(Q), we have 0, € LX(R).

Since f¢, (f¢), (f*)" € L*0,T;L(Q)), g%, (g¢), (¢¥)" € L*0,T;L**(TY)), and g¥,(g").(g")" €
L2(0, T; L*3(T'")), it follows from the embedding theorem [24] that £, (f¢) e C([0, T1; LY5(R)), g%, (g*) €
C(0, T, LYA(T)) and g, () € C([0, T1; L¥3(T'Y)), and

||W||C([0,T];L6/5(Q)) = (||W||L2(0,T;L6/5(s2)) + ||W/||L2(0,T;L(’/5(SZ))) > (55)

||W||C([0,T];L4/3(F)) by e) (||W||L2(0,T;L4/3(F)) + ||W/||L2(0,T;L4/3(F))) ) (56)

where w = f¢ orw = (f*), T =T whenw = g? orw = (¢¥) and T’ = I'/’ when = g¥ orw = (g%).
Therefore, we can consider the following problem:
Find 6, € L3 (), (p] € V‘/’ (£2), w € V;w(g) such that

—e (@) +d (0" 77 ) +a (918 ) e (097) = (0 OB

(@O (@), YO VR @,
| (57

b (E%’m) +a (‘P?% v ) +¢ ( im’ lﬁ%) - (91’?)%) - ((g‘”)/(O),trrip (Em»ﬁ(r}ﬂ)’

—NR
vy Ve V;’gw(sz), (58)
— — — — m — ~
(401, B2y + O0A@,u1) = Oout (8,977 ) = Oum (9,97 ) = (17(0).9) 1oy + (00,9) 1y
Vo € VY(Q). (59

Since @™ ¥, %m"' and 6 are independent of each other, the problem (57) to (59) is equivalent to the following
one:
Find

((p?%’ wfm,er) € W(Q) = Vi (Q) x v;‘;w(o) x LX(Q)

such that

B((ﬁr,ﬁ“,@l) , (am«z,wm‘”,é)) —F (a%,w‘m,@), v(a%,wm,é) eW®Q),  (60)

13



where

B(47.0). (P 577) = (555 o (47.5) - (0.57) 4y
+¢ ( m“’,wm‘”) —m (91,?’%) + @io (5461,8) 12y — 1
—m(B.07) Y (e v 0) (7. 07.0) e Wi,
~ (€O tres (77))

b (5 ) = (0t (57)) - 16000

F (™. 07.8) =& (¢%.m) + (¢ ©.7%)

L)

1 — 1 _m —R
+ N (fe(o)’e)LZ(sz) T ®% (90’9)L2(s2>’ (fp%“’,lﬁ '

")

LX(TY)

,5) c W(Q).

Since djj, ajj, Cij, i, Mi, Epij bpij, Aij, 22 € L>(2), 1,j,p,q = 1,2, 3, we obtain, by applying the Cauchy—Schwarz

inequality, the following estimates:

a(o77)| = [ 1 grad ) - gradgian

: 3§01 : 09
= 12?53 ‘d’JHL‘”(Q Z Z a_x
= ) = e
ek
<3 121353 “le ||L°°(Q) ‘% ‘ v, (@ H Vzﬁxw(m’
—R 7
‘a (‘P?%,W w) = 312‘?;(3 “al'j”mm) ‘«)1 ‘VS& @ H w“"&ﬁ @
Ry TRy T SRW H
‘5( 1Y ) <313¥§”5ﬂhwm>'wl m)H @
e (8.07%) 5/|<ﬂ'gmd‘/’l)§|d"
. — Ry
< ~ﬁ§{2i§|HLJhp«Q>”QHL%Q)le Ve, @
m (3.07)| < / On - grad y) ] dx
< V/_rnaxIhnAhﬁ%Q)HQHLRQ)“¢' va <Q)

’e (amw,v)| < /Q (e % grad @) : e(v)| dx

3

dg
< max ||8I7UHL°°(Q) Z ox,

3
Y lei)|

1<p,ij<3 Z
=p,iyJ 17=1 LZ(Q) 1J=] LZ(Q)
< 34/3 max | e, H—m‘p ) ’
< \/_1517’&]53 ” szHLoo(sz) 2 i@ Il
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(62)

(63)

(64)

(65)

(66)



— R, —9R,
‘b (W W’v>‘ = 3\/51321?(53 ”b‘”ij”m(m H‘/’ ' Hv;ﬁw(sz) Wl ) 7
A (0,v)] 5/ A :e(B|dx
Q
<3 max ”)‘ij HLOO(Q) ||§HL2(S2) Il ) » (68)

1<ij<3

for all <p?‘¢, o € Vg;w(sz) , wfm, TV e V;’gw(sz), 0 € L3(Q), v € H'(Q), where ¢, @, ¥, are arbitrary

elements of the equivalence classes go?‘“’, o0, 1//?‘ ¥ respectively. Hence, from estimates (61) to (65), we have
that the bilinear form B : W(2) x W(2) — R is continuous.

Because (f¢) (0) € L¥3(Q), (g¥)'(0) € LY3(I'}) and (g¥)'(0) € L4/3(F1//), and by applying Holder’s inequal-
ity, the compatibility conditions (45), estimates (55), (56) forw = (f¢), W = (g¢)' and w = (g¥)', and continuity
of the embedding H'(Q) < L(2) and the trace operator tr : H'(Q) — L*T") [26], we have:

‘<(f¢)/(0)’¢%)ﬁ(s2) a ((g“’)’(O),trl-f (@%))Lz(rf) a ((g‘/’)/(O),trF;/, <WW)>LZ(F}”)

< nf [(@*©0.9+ 8w + _jnf (" O, s @ + 8z

+ inf |((g")O), tre (¥ + ¥,
it (@Y Oty TV Dy |

< Y Ol z6r50) Wigf)f% 1@ + @' ll1s) + 11(g¥) (0)] |43y a}élgf% |[trpe (@ + (78] |Lare)

Y Oy, inf ey (7 4+77)

_inf
llfrémv,

4r)
<c (jnf 1o + @Il + _inf HE +v
?'eR, ¥ eRy

H‘(ﬂ))
_ —Ry
=a o], ot PV, o)
v, & Vi, (@)

where g € V¥(Q) and ¥ € VY(RQ) are arbitrary elements of the equivalence classes Em“’ € V;W(Q) and

Em € VDﬁW(Q), respectively. Therefore, since f%(0) € L*(Q), é?) € L*(R), and taking into account estimates

(66) to (68) and u; € V(£2), we infer that the linear form F : W(2) — R is continuous.
From the positive definiteness conditions (47) and (48), we obtain:

3y - %, - 1
B ((5%,w%vf’9) , (@%’wm‘/”9>) =d@.9)+a(V.0) +a(@ V) +¢ (V. ¥) + o (540.0) 210,
2 (3.9) —2m (3.7)

me{&',“—"} / (lgrad @ + 1grad ¥1* + (6)°) ax, (69)
ON)
Q

where ¢ € V#(Q) and ¥ € V() are arbitrary elements of the equivalence classes @m“’ € Vg‘p{w(ﬂ) and

—R
U e Vi ().
Applying the generalized Poincaré inequality [26], we have:
2
/lgradv|2dx > ¢ /vzdx— /vdx =c in% v+ c2ll72q
(XS
Q Q Q
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for all v € H'(Q). Consequently, from (69), we infer that the bilinear form B : W(2) x W(2) — R satisfies the
following inequality:

B((#%979). (¢ 7™8)) e | (o5 9) )

W@’

for all (@mw, Emw ,0) € W(S). Thus, the bilinear form B is continuous and bounded below, and the linear form
F is continuous, and from the Lax—Milgram theorem [23], we have that the problem (57) to (59) possesses a
unique solution and

(e wl™ )], = €1 (16Ol + 1Y Ollonc + 16" Ol sy, )

To prove the existence of the solution, let us consider complete systems of linearly independent elements
(1}, in the space V(). {7, ¥}, in the space Vi, (), (¥}, in the space Vg'fw(Q) and {02, in the
space V?(Q). For each n € N, we denote by V ,(§2) the linear subspace of V(Q) defined by {v{,v,,v3,...,v,}, by

(Q) the linear subspace of Vw (R2) defined by {(p%, go?“’, go?“’, ey On } by Vg; (R2) the linear subspace
of V'p , () defined by {1/f1 , mw’ ;Rw, T w} and by VY(Q) the linear subspace of V?(Q) defined by

{61, 92, 03, ...,0,}. We consider a sequence of approximate solutions of the problem (40) to (44) given by

n

~ ~ “ _ —NRy ~ “ —
U= v @t = ouF, Z VOV, B= D )i,
k=1 k=1

k=1

which are solutions of the following problem:
Find u,,u,,u! € C([0,T];V.(Q)), &) € L*(0,T;V.(Q)), Pn ,((pm“’) e C([0,TY; (Q)) (@ Sp‘“’)”

9‘§ / m 14 /
L*0,T; Vi, (), Wn (Y ") € C([0,TT; Vgﬁw(ﬂ)), (Y )" € LX0,T; Vgﬁwn(ﬁ)), 00,0, € C([O, T1; VE (),
0 € L*0,T; V,? (£2)), which satisfy the following equations in the sense of distributions on (0, T):

(L), v )LZ(Q) +c (@, va) + & (@.va) + b (Né’vn) —A (é:wv") = (" vae + (g/’trﬁ("n))LZ(rl) ’
Y, € V,(2), (71)

—e(ea)va (@) ) o () ) - @07

= (08) gy = (117 (7)) YO € V(D )

o () v (@) T ) e () T ) o @) = (6 (7))

vw evgﬁ (), (73)

— ~ _ _ " _ ~ "
(40.81) 12y + 1 (B 00) + O0r (B, W) — Oopt (e (@) ) — @m <9n, () )

0/ o 6/ y2) n 6
= (1".00) ey — (87 trrg @), |, VB € V@, (74)

1
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together with the initial conditions

ﬁn(o) = ﬁOna ﬁ;(o) = iiln’ ﬁg(o) = fiiZns (O) w()n ’ (@"3&/’)/(0) = a?:w, (75)
~NR ~NR ~9Ry\’ ~NR ~ ~
wn W(O) = Wonw, ( n w) (O) = wlnw, 9,,(0) = 9011’ Qn(O) = O,

where o, i, fan € Va(Q), o' 1’ € Vi (D Ton' - T’ € Vik, (). Bon. B1 € VI (). Note that, for each
n € N, the problem (71) to (75) is an initial Value one for a linear system of ordinary differential equations with
respect t0 (Un)y_1> (@ak)i—;> (War)i—, and (6,4);_,, where the right-hand parts of the corresponding equations
belong to L*(0, T). From the estimate (70) for & = 0, we infer that (@) i ys ((frak)");—, can be expressed
by invertible linear mapping of ((u,x)");_, and ((6,x)");_, from equations (72) and (73). Since the initial value
problem for the system of ordinary differential equations possesses a unique solution, we have that the problem
(71) to (75) has a unique solution.

Since the systems {v;}72,, {@?%}Zi], {W,im},fil and {0;}%°, are complete in the spaces V(L), Vg’ﬁ‘w(ﬂ),
V() is dense in V(£2), the union | J,,, vg;wn(sz)
Vn@(Q) is dense in V?(Q).

ng‘w (R2) and V¥ (), respectively, the union of subspaces | J,, |

is dense in VD‘%(Q), the union U”>1 mw ,(£2) is dense in V'/’ (Q) and the union _J
~R, TRy 9%

In>¥0n > ¥l1n >

n>1

Therefore, we can take W, Uy, U, (pg}" , O 90n and 6, such that

Uy, — uy in V(), U, — u; inV(Q), Uy — uy inL*(Q), asn— oo, (76)
&g:“’ — (p?“’ in V&w(Q), 519:“’ — (piﬁ‘" in Vg’ﬁip(Q), asn — oo, (77)
Tor' = Yo inVy (. ¥ >y inVe (@), asn— oo, (78)

Bon — O in VY (Q), 01, — 0, in LX), asn — oo, (79)

where gy * = {go + 737" € Ry} € Vi (@95 = [wo + V5 im} e Vggw(sz).

By letting v, = u, in equation (71), go,?%“’ (gon ) in equation (72), w (IZ:},R "Y in equation (73) and

= 6/ /© in equation (74), adding and integrating them on (0, 7), taking into account the symmetry conditions
(46) and using the formula for integration by parts, we obtain:

(DT D) 2,0, + € (0. T, () +d(( ) ), ( ) (t)) +2a <( ) 0. ( sm) (t))

+¢ (( ) . (7)) <r>) b CAO.T0) o, + - [ 10T dr 2 (9 . (@) (r))
0

—2m (9 o, (3 (t)) = (Pl Tz + i i) +d (71 G0y ) +2a (@1 T, )

1 ~ ~
+7¢ ( In ,‘//1,, )+®_0(%91n791n)L2(Q)
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t
~ A ~ R ~ ~
- ZIU/ (91n, ¢?:W> —2m (91}1’ W],,w) + 2/(]0/(-[)’ u;/(t))Lz(Q)dT +2 (g/(t)’ trl"l (uil(t)))Lz(Fl)
0

t t

- 2 (g/(o)a trl"l (’l\iln))I}(F]) - 2/ (g//(t)’ trﬁ (ﬁ;(T)))LZ(Fl) dt + 2/ ((f‘/’)”(r)’ (&?w)/ (T)> dt
0 s L2(Q)

t

; N ! 2 / ~
_ 2/ ((gw)//(r)’ trye (((pﬁ) (f)>> dr + o ((fe) (), 9,;(1))L2(Q) dr
, LAY 0
; '~ ! 2 \ ’ ~
_2/(¢%%ﬂﬂw<@f0(d»mwﬁf—6; «f)@MqﬂqumﬁquGWJl (80)
0 ! 0

From the positive definiteness conditions (38) for tensors ¢, and n;;, and by applying Korn’s inequality [26],
we have that the bilinear forms ¢(., .) and (., .) are coercive; i.e., there exist positive constants &, &, and o, &,
such that

c(v,v) = ace®) : e(v) = & VIl ) — @ IVl » v € H/(Q), (81)
— — — ~ =12 =02 —
n(,0) > an/ lgrad 0 °dx > @, 0|11, — @ 0] 120, » Vo € H'(Q). (82)
Q

Because ¢, € L*(2), and by applying the Cauchy—Schwarz inequality, we obtain:

3 3
09 = | max_cipgll g | 2ol | D len®)
ij=1 L2(%) p.g=1 12(9)
3 3 —
Bv,- ov
<9 max |cp — 2 < ci IVl Pl (83)
= L Lo°(Q — H'(Q H'(Q2)°
1=tpas3 ( )i,j;l 0% |2 gy 11 9% 2oy ()

where v,v € H'(Q). Since g,g’.g” € L*(0,T;L*3(I'"))), it follows from the embedding theorem [24] that
g.g € C([0,T];LY3(I'})). By applying Holder’s inequality, conditions (45), the continuity of the embedding
H'(Q) — L°() and the trace operator tr : H'(Q) — L*(I") [26] and the e-inequality

1 €1
a\by| < —a} + —b?,
|ll|_281 1 ) 1

for all a;, b € R, g; > 0, we have:

‘ (g/(t)’ trl"l (V))LZ(FI) ‘ =< ”g/(t) H C([O,T];L4/3(F1)) ” trl“l (V) ” L4(l“])
<c |go] caorrsayy W

1 ) £
< - / 1 b
= (i (281 ||g ® || C([0,TT;LA/3(Ty)) + 5 ”v”Hl(Q)

c
<2

€1

2 2 cre
(Hg/ ||L2(O,T;L4/3(F1)) +|g” ||L2(0,T;L4/3(I‘1))> + % ||V||%11(Q),

vw e HY(Q),1 € [0,T], &, > 0, (84)
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((f‘ﬂ)”(r),ag“w) _ ((g‘p)"(r), trpe (a%))

= (VA KCIT o A 17+ Pl + 1) (Nl At Mt @ + 9Dz

L2(S2) L2(rY)

s VgTv € Vi (), (85)

1
< Y Ol + 5 16 g, e [,

’((g’/’)"(r), trpy (Wg%>>L2(F¢

for almost all T € (0, T), where @ € V¥(Q2) and / € V¥ () are arbitrary elements of the equivalence classes
o e V;W(Q) and Wm‘” c V;}/’{V,(Q), respectively.
Similarly,

, c1 ||—Ry ||? —R
< IOl + S0, 0 W VR @ @0
Ry

t

/(g (o), trr, (@, (t)))LZ(I‘ ) / ||g//(f)||L4/3(rl) trr, (@,(0) ”L“(I‘)

0
=9 Hg// ||L2(O,T;L4/3(F|)) + EI/ ||u;,(f)||H1(9) dr, (87)
0
/ ) (), trpe (6, (r)))m@ dr| < / “ W(F?) tre (6,(7)) L4(F?)dr
0
1 K 6181
S 2_81 H (ge) LZ(O,T;L4/3(I‘(19)) / HO ( )”HI(Q)

Vte[0,T], & > 0. (88)

Hence, by using the conditions (47), the inequalities (61) to (65), (70) and (81) to (88) for small enough
€1 > 0, and the Cauchy—Schwarz inequality, and from the equality (80), we obtain:

+H( )(r)

t
sanmm%®+/u(mm®m+/Wme®m+/H% o|

13
*W@m%®+/mﬂﬂﬁmﬂf

, 2
32,0 [0, + 1720, + H (@) o

Vi, () vm (®)

dr
Vi (Q)

flyo

m+/Wwam®w
W(Q)

~9R ~
s @ H Ui, : + Heln”iﬂm) + Hiz(o,r;mm»

+ ”g’ “iZ(O,T;L‘W(Fl)) + Hg//Hi2(0,T;L4/3(r1)) + ”(f(p)NHiz(O,T;LGﬁ(Q)) + H(g(p)” HZZ(O,T;L4/3<rf))

2 2 2
+ ” (gw)” ||L2(0,T;L4/3(r}”)) + ”fe/ ||L2(0,T;L2(sz)) + ng/ ||L2(0,T;L4/3(Ff))) V1 €[0,7T]. (89)

(uumnm(m g, + |70 ], \%(9
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~/ =

Since u,,u, € C([0,T]; V,(2)), we have:
t
~ 2 ~ ~ 2
Hu;(t)HLZ(Q) <2 ||u1,,||iz(9) + 2t / Hu;;(r)HLz(m dr, vt € [0, T]. (90)
0

From the convergence properties of the sequences (#1,),>1, @2n)n>15 @i},}’ In>1s (%9:‘” )n>1 and (51,1),2 1, we infer
that they are bounded in the spaces H!'(R2), L*(Q), V;)’;w(Q), Vg;w (R) and L*(Q), respectively, and from the
estimates (89) and (90), we have, for all ¢ € [0, T1],

/ 2 ~ / 2 ~ p ~
R N L N [ G NSRS [0 ) IO T Ny AT
V&, Vg, (@ .
\ ~/ 2 \ ~ \ ""m‘p ! 2 \ Nm’l’ ' 2
<o | [ he dt + [ @@l i+ [ @) ©f - dos [IEY) @f
0 0 0 Vmw () 0 Voz " ()

t
-‘,—/Hé;;(r)“iz(g)d‘[ e, (O1)
0

where ¢y, ¢, are positive constants that do not depend on #,,, E,Z,?“", lznm Y or gn By applying Gronwall’s lemma
[24], we obtain:

2

~ 2 ~ 2 s '
(A S AGY H (@3% ) ®

+ H (?‘”)/(t)

t
10O+ [ 1700
Vi, 0

2
¥
\% Q
", @

<c,Vte[0,T].

Consequently, #, is bounded in L>®(0,T;V(R2)), #/ is bounded in L>*(0,T;L?*(R)), (&,?Q“’ Y is bounded

in L*°0,T; Vggw(Q)), (1}?‘”)/ is bounded in L*(0,T; Vgﬁw(Q)), and 5,2 is bounded in L*®(0,T;L*($2)) and
L*(0,T;V?(R)). Because

13 1

(1) =Ty, + / i (r)dr, 6. (1) =0, + / 6/ (t)dr, Vi € [0, T,
0 0
t t
~ ~ ~ / ~R ~R ~Ry\’
) = go + / (go,?‘*") (v)dr, a0 = P + / (wn *”) (v)dr, Vi € [0, T],
0 0

we deduce that %, is bounded in L*(0, T; V()), 5,?%’ is bounded in L*°(0, T; V&(Q)), J,,m ¥ is bounded in
L, T, Vgﬁw(Q)) and 5,1 is bounded in L>(0, T; V?(R2)). Hence, by the weak-* compactness of a bounded set
in non-reflexive Banach space and weak compactness of a bounded set in reflexive Banach space, there exists
a subsequence (&, )i>1 of sequence (#,),>1, a subsequence (&,?f‘” Jk>1 of ((ﬁ?%)nzl, a subsequence (%?,? "Ve=1 Of
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(i/\/:,?% )»>1 and a subsequence (gnk)kzl of (5,,)”21, which possess the following properties:

u, — u,u, —u weakly-*in L*(0,T; V(R)),
u, — u" weakly-* in L*(0,T; L*(Q)),
e = ™%, @) — (™) weakly-* in L(0,T; V§, (), (92)

T’ w“w,(mm’ — (™) weakly-* in L¥(0,T; vg’;v,m)),

0, — 0 weakly-*in L*(0,T; V*(Q)),
gr’lk — 0’ weakly-* in L®(0, T; L*(2)), 5;2,( — 0’ weakly in L*(0,T; V%(Q)), ask — oo.

By integrating equations (71) and (74) from O to ¢, and by 1ntegrating equations (72) and (73) twice from O to ¢,
for all ¢ € [0, T] and for v, € V,(), @,’?“" € V“’ (), w € Vgﬁw(ﬁ) and 6,, € V/(Q), we obtain:

(PTE(0). Vi Vi) + (T, (1), v0) + &@, (1), v4) + b (V,(0).v) — & (6,().v)
— (P20 2) 2 g+ s )+ 6@0e90) + b (T ) = 4 Fovn) )
= (f (), v + €O, trr, W ))i2wy) — (F(0), vidra o) — €O0), trr, (v))i2r,),  (93)
e (7" 5,0) +d (G 0.7 ) +a (T 0.9 - (B.0.9:7)
— (=e(@.a,) +d (Fr.on ) +a (o) = n (G.0:7))
= (e (8 0) +a (B0 00) +a (T2 - (B )
- <f¢(t)’¢;m)L2(Q) B (g(p(t)’trrf (ag‘w))y(r‘f)

- (((f‘ﬂ)’(oxaﬁ*‘”)m—(<g‘ﬂ>’<0>,trrga () e, )r ((f“’(O) @

~b (v ,u<r))+a( o, W”“”)+ (I 0.0 ) = m (G095,
= (o (w ) +a (@ )+ o (T ) —m (8,.977)) o
— (=0 (i) +a(@or 00 ) ¢ (Ton 00 ) = m (G0 03
(0 (7)), + (0 Oty (7)) (0 (7)) 09
(Bh0.80) 10y + 1 (6,0,0,) + ©0. (B, 7,0) — Oop <§n, (@) (r)) — Oom (én, (7)) (z))
~ (D1 Ba) iy + 1 BsBa) + O0% (Bus,) — O (B @1y ) — O (B, ))

= ("0 0, ~ ('O @), ((f@<0>,§n)Lz(Q) — (8", ryy (én))wr?)) . (%)

) )_(gw(o),trrf (ﬁw ))wrb) ’
(94)
)

From the density of the unions (-, V,(£2), Un>1 W), Ui Vg‘v () and (- V() in V(Q), V, (Q)
Vg;w(Q) and V?(Q), respectively, there exist sequences C Vi1, ((pn In>1s (% "’),,Z 1 and (Gn)nZ 1 such thatv,, — v
inv(Q), 3¢ — @™ in V&W(Q), 1?""/ v in v (@) and B, — 0in V¥(R),as n — o0. By taking n = n,
Vo, = V&0, § € D(0,T), @k = O S(f) Wnk = lﬁnkwE(l‘) and 0,,, = 6,,£(¢) in equations (93) to (96), by
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integrating them on (0, 7') and passing to the limit as k — oo, and from the convergence properties (92), we
infer:

T
f (Cou" (), V)20 +c@(D), V) +e(p(1), V) +b( (1), V) = 2O (1), V) = (f (1), V)12 ) — (€ (D), trr, ())rar,)) §(dr
0

T
= / (om0, V)2 + g, v) + £(@,v) + by, ) — (6, v) — (F(0),¥)12() — (€(0), trr, (M)p2ry) & (D)dr,
0

Yy e V(2), (97)

T
/ (—e (#V.u0) +d (0™ 0.7 ) +a (¥ 0.7%) - u (60,77 - (170, 7™)
0

L2(Q)

LAY

+ (gt (7)) ) (s

L2(R)

T
= [ (e @) a7 1 (37) (087 - (Y 057)
0
+ ("), trry (a%))w) 1 (1)
T
+ [ @™ g+ d T+ aw]” T - a0 7)
0

— (F*00, 9™ + (€7 O0), tre @) a5 D1, VG € Vi (), (98)
T

/ ( —b (7 u0) +a (¢ 0.5 ) + e (Y O.7) = m (00,97)
0

- (g‘/f(t), try (J%»Lz(rw) )g(z)dt
T

(o) 5T 2 (075 5™

0

+ (@Y.t (77)) )rsmdr

Yy

T

] () a7 e (107 (05

0
+ (8" (0. try (Em))mw) >$(t)dt, Vi e v (@), (99)
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T
/( (50'(1),0) 12 + 1 (0, 0) + Ooh (6,u' (1)) — @ML( (ﬁ%) (z))
0
O (5, (W)/m) — (F°0.8) gy + (8", trry @)Lz(rg)) £
T
- / ((%91,5)Lz(9) + 1(8y.8) + OpA (@, u,) — Oppt (5, ﬁ“ﬂ)
0

—00m (.97 ) = 0. D)@ + (g9<0>,trrf<§>)w)) Endr, VB e VIQ).  (100)

By taking into account equations (51) to (53) and equations (57) to (59), we deduce from equations (97) to (100)
that u, (p%, v™ and 0 satisfy equations (40) to (43) in the sense of distributions on (0, 7).

Furthermore, the limit functions u# and 6 satisfy the initial conditions (44). Indeed, for any continuously
differentiable function £ € C'([0, T), such that £&(T) = 0, £(0) # 0 and W w;lk e L*(0,T;H), ¢, € H, we
have [24]:

T T
/0 (W3, (0, P £ (D)), At = =Wy, (0), ¢, £ (0 — /O (Wi (1), P8’ (1)), 1, (101)

where H is a Hilbert space and (., .)y denotes the scalar product in H. We use equation (101) in three cases:

(@) w, =1u,. b, =, and H =L*(Q);
(b) w, =1, ¢, =7, and H =L*(Q);
0

©) w, =0,.n _enk and H = L*(Q).

From the convergence properties (76), (79) and (92), and by passing to the limit in equation (101) as k — oo,
we obtain:

T T
/O (W(0). $E(1)), dt = —(wo, PEO))r — /0 (). & (1) , dr, (102)

where w = u, wy =u and ¢ =v € V(Q) incase (a); w =u', wo = u; and ¢ = v € V() in case (b); w = 6,
wo = 6y and ¢ = 6 € V?(Q) in case (c). On the other hand, by applying the formula for integration by parts for
w,w € L*(0,T;H), ¢ € H, we have:

T T
/0 (WD), $ED), dt = —(w(0), EO)s — /0 (). &'(1),, db. (103)

Hence, from equations (102) and (103), we deduce that (w,,¢)y = (W(0),¢)y for all ¢ = v € V() or
¢ = 0 € V/(Q). Note that, by the embedding theorem [24], u € C([0,T]; V(Q)), &' € C([0, T];L*(Q)) and
0 € C([0,T]; V?(R2)), and we can let w = u, w = u’, or w = 6 in equation (103). Consequently, by the density
of D(Q) in L*(R2), we get that w(0) = w,, which is equivalent to the initial conditions (44). So, the problem (40)
to (44) possesses a solution.

Now, let us prove the energy equality (54), uniqueness of the solution and continuous dependence of the
solution on the given data. From the conditions nj; € C%'(S), we have n; € L™(S); hence, the following
estimate is valid:

|’7(§5)| =/9|('l gradé) -grad 6| dx

30 > |08
= max [0l ey | 20|55 2o
RS i ] LZ(Q) i=1 LZ(Q)
=3 1r<na§3 [ n4 ”LOO(Q) Hé\” VO(Q) |‘§Hv9(§z)’ ¥0.0 € V'(Q). (104)
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It follows from the estimates (61) to (68), (83) and (104) that [23] there exist linear continuous opera-
tors C : V() — V(Q), & : Vggw(Q) - V(Q), & : V(Q) — (VS (SZ))/ : V'/’ (Q) — V'(Q),

B : V(Q) — (vgﬁw(sz))’, A LA(Q) > V(Q), A V(Q) — Lz(Q), D : (Q) — (Vi (Q),
A VE (@) = (Vo (Q)), A Vi (@) — (V§ (), 2 2 Vig () — (Vi (), M : L2(sz) - (V“’ (@),
M Vi () — LAQ), M LAQ) — (Vi (), T : Vi (Q) — LH(Q) and E : V9(Q) — (Vﬂ(sz))’ such
that (CT.¥) = c.7). (E77%.¥) = @), Ev.57%), = e@™.v). (BY*.v) = b . v). (B, w Yy =
b ), (ABv) = 2@ (An,B)pe = A@.), (DE%.5%%), = d@"v.5™), <A¢%,w by

a@™ ), (A @), = a@™e G, (ZPT )y = c@T ), (MB ), = n@.8™),
M™, 820y = @97, MG ")y = m@.9 ), Oy 020 = m@ ") and (E6,0) =
n@,0), for all v,3 € V(Q), 6 € LX), o7, 0"% ¢ Vi, (), TR T e 144 (sz) 0,0 € V%(Q), where
()5 (550 » (5 2)y and (., .}y denote the duality relations between the spaces V(2), V, (Q) Vw (Q) V9 () and
their duals V/(Q) %4 (Q))/ (V;{; (RQ)), (V¥(R)), respectively. Since the linear comblnatlons of products &v,
£5%, £97 and £, where £ € D(Q), v € V(Q), 7™ € Vi, (), TV e v;ﬁw(sz) and 6 € V9(Q), are dense

in L2(0, T; V(Q)), L*(0, T; V&w(Q)), L*0,T; Vgﬁw (2)) and LZ(O, T;V9(Q)), respectively, we infer that equations
(40) to (43) are equivalent to the following ones:

d2

Pz +Cu+EQ™ + By — A =f +G in L*(0,T;V'(Q), (105)
—Eu+Dp™ + AYy™ — MO =F° —-G* in L? (0, (sz) ) (106)
—Bu + Ap™ + Zy™v — e = -GV in (0, V"’ (@) ) (107)

do —du —dp™ —dy® 0
— 4+ BO + OgA— — OpM— — O M =f' -G 0,7; (V(Q) 108
s+ B0+ QR — O M — O ——— = f in 2(0.7:(V@) ). 108)

where

(G.¥) = @ trr, ey (F7 = G‘Wm“’)w =(r (’)@%)Lz@) G (a%»mr‘f) ’

T 0 (g 1698, ()
Gy Ty = (8%t (¥ 2y’ (G".0), = (8" try (0) 2w’

forallv € V(Q), g°% € V‘” (Q), w € V;{’W(Q) and 0 € V?(Q). By applying continuity of the embedding
H'(Q) — L°(Q) and the trace operator tr : H'(Q2) — L*(I"), and taking into account condition (45), we have:

d*g
[ter, )] i,y < Pl [/ W € V(Q),

LA3(Ty)

d“g
(t)7 trF (V)) =<
( dta ! LZ(I‘I)

L43(T)
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dofe d*g¢ . dofe
( 0.9 ) —( =0ty (go%)) = =m0 inf 17+ s
12(Q) dr LA(rY) dr L5/5() #'€
dO(
t inf ||tr +
‘ - W(W%H ro (@ + @l s,
dofe dog?
<o (£ ‘ & 1) H—%H Vg € Ve (9.
dta L6/5(Q) dta L4/3(r<1”) m (Q)

inf Htr v (w-l—w)

deg¥
< H—g (0)
dr L4/3(I“/’ v emw

d g’ Ry
— (), t =
‘( dta ( ) rr‘;/’ (w )>L2(F\l/)

)

—Ry H Ry ¥
<c , A4 eV, (Q),
: dt AT H Ve, (@ v Ry
dfg? ) dﬁg —
1), trre (0 —(t trre (0
‘( 0 ®) =[G O] [ @l
<o |2 e VeV,
dt L4/3(1'*fl9)

for almost all ¢ € (0, T), and, consequently, d*G/dt® € L*(0, T; V'(RQ)), d*(F¢ — G*)/dt* € L*(0,T; (V;;W(Q))’),
d*GY [d* € L*(0,T; (V;)l; ()))and d?G? /dr? € L*(0,T;(V9(RQ))),a =0,1,2, B = 0, 1. From the embedding
theorem [24], we have that G, G’ € C([0, T1]; V/(R)), F¢ — G*,(F¥ — G¥) € C([0,T]; (V& (SZ))) GV, (G")Y e
([0, 7] ;(Vgﬁw(ﬂ)) )and G € C([0, T1; (V*(Q))).

Multiplying equation (105) by du/dt in the space L*(0, T; V'(R2)), differentiating equations (106) and (107)
and multiplying them by ¢ and ¥ in the spaces L*(0, T (V%(Q))’) and L*(0, T; (Vgﬁw(Q))’ ), respectively, and

multiplying equation (108) by /@, in the space L*(0, T; (V?(2))), integrating them on (0, f), using the for-
mula for integration by parts [24], and taking into account symmetry conditions (46), and adding the obtained
equations, we get the energy equality (54).

By similar arguments, which have been used to obtain estimates (84) to (88), we infer:

1 2 1112 C281
|<g(r>,trr.<v))Lz<rl)|_a g 720 ra0nay + 18 |0 rasnay) + 5 Pl - (109)

A

t
/ 1 112 C1 2
@', trr, @Dy dr| = 3 8 |y + 5 [ 14O, dr (110)
0 0

/ (((fw)/(f)’(p%(T)>Lz<sz) B ((gw)/(T)’trF? (‘p%(f)))LZ(FfJ &
0

dr, (111
(Q)

1 /
= 2 H(fw) (T)Hiz(o,T;Lﬁ/S(Q)) H (* ”Lz(OTL‘W(FV’) +a / ‘
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t
1 2 c / 2
/ (€Y@ (¥™) @) @Y ao gy + = f (v™) @ dr, (112)
2} ) =2 OLLED) = 2 Vi@
0 0 Ry
t 1 t
0112 C1&] 2
/ (8"t 0(o) van 8| = 25 1€ [ oranany + = / 10(D)131 g dT, (113)
0 0

forallt € [0,T], &; > 0,v € H(Q). By using the conditions (47), the inequalities (61) to (65), (70), (81), (82)
and (109) to (113) for small enough &; > 0, and the Cauchy—Schwarz inequality, and from the energy equality
(54), we obtain:

2
l®ling) + #0120 (Q)+ [ ol 101 + / 1020 d
9“‘,/,
0

dr
(Q)

N T / (D) g A + / [/ 20y A7 + / |

2
R 2
- f o], g0+ / 16012 gy dv

2 2 2
t e (laoll g, + i 220y + o™ - + v’ ()V,,, o ol + W o + I8 o rasn,

/ 2 / / 2
+ Hg HL2(0,T;L4/3(1"1)) + ”(fw) ”Lz(o,r;Lﬁ/S(Q)) + ” (&%) ”LZ((),T;L4/3<F¥’)) + ”(gw)/ ”LZ(O,T;L“/%F;"))
2 2
+ “fg HLZ((),T;LZ(Q)) + ”ge ||L2(0,T;L4/3(r?))> ’ Vi €[0,T]. (114)
Sinceu € C([0,T]; V(R2)) and u’ € L>*(0, T; V(R2)), we have:

t

, 2
1 (0) 1226 < 2 o122, + 21 f |0/ @)];2,0, . Vi € [0,T]. (115)
0

From inequalities (114) and (115), we obtain:

Ol + 50 2y + [ 0™ 0 o

/||u(r)||H1(Q)dT+/||"(T)”Lz(g) df‘f’/‘

(”uOHHl(Q) + ”uIHLZ(Q) + HQDO

2
Hevo), 10015 + / 1631 q) de
Ry

t

R, 2
o0t / [y 1 S 10 0
0 0

+ ],

+ ”90”L2(Q) + “f”Lz(O T:L2(Q)) + ”g”LZ(O T;LA/3(T))

V&, @ 124 ,@

+ Hg/Hi2(o,T;L4/3(r1)) + ”(fw) ”LZ(O,T;Lﬁ/S(Q» + ” €19) “LZ((),T;L“/W?’)) + H(g ) “LZ(O,T;L‘W(F;/’))

2 2
1 oz + 1€ Daorasnas,) Vi € [0.7], (116)
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where ¢; and ¢, are positive constants that do not depend on u, ™%, ™ or 6. By applying Gronwall’s lemma
[24], and from inequality (116), we have:

t
5 2 2
Ol + [0 O+ [0, o+ [0l o+ 1808 + [ 1806 a0
(2 12 0
< 7T 2 2 R, | Ry |2 00112 2
= l1e ¢ ”uOHHl(Q) + ”ul”LZ(Q) + Yo Ve (@) + WO v @ + ” OHLZ(Q) + ”f”Lz((),T;LZ(Q))
Ry Ry

+ ”g“iz(O,T;L‘W(Fl)) + Hg/ Hiz((),T;L‘W(FI)) + H (fw)/ ”iZ(O,T;LGﬁ(Q)) + ”(gw)/ ”iZ(O,T;L4/3(rf))

2 2 2
+ ” 3 ||L2(0,T;L4/3(r}”)) + ”fe ||L2(0,T;L2(sz)) + ||g9 ||L2(0,T;L4/3(rf))) , Vtel0,T]. (117)

To obtain estimate for (pém and wéﬁ Y, note that, since g~ and W%’ are independent of each other, the system
of equations (52) and (53) can be written as follows:

~ R _m R ~ (g —R _m —R ~
B((e0 w0 ). (@ 9™)) =F (a7™.97). vEv I ) e, s
where W(Q) = V;;(p(Q) X Vg;w(Q) and (pg“” and W((;R ’ are equivalence classes of ¢, and v, respectively,

B((agvwa ). (2. 07™)) = a (0% 2% ) +a(ve.8%) +a (o0 0™) + ¢ (w0 07),
@™ ) e @,
F@v™) =e(™m0) +u(0.07) + (F0.7%) ,  ~(s°O.tr (7))

() £ (07) - (O (57), Y)W

LAY

Since f¢(0) € L%3(Q), g#(0) € LY 3(F(f) and g¥(0) e LY 3(Fl‘b), and by applying Holder’s inequality, the
compatibility conditions (45), estimates (55) and (56) for w = f¢, W = g% and w = g, and the continuity of
the embedding H 1(Q) — L% ) and the trace operator tr : H Q) — L*(T) [26], we have:

200). 5 e —%)) _( v (—9%))
‘<f ©.9 )LZ(Q) (g (O trr (sﬂ vy \8 O trpy (¥ 2ry)
< WOl @jélgf% o + @ |ls) + ||g(p(0)||L4/3(r‘f)¢,i£9f% ||trr‘f(¢ + 9"l |L4(Ff)

Ol i, g (7+9)
+ ||g ( )||L4/3(F;//) @’lgmw rri/ 1/f + 1/f L4(F;l/)

<cq (Hf¢||L2(O,T;L"/5(Q)) + 1T 2072850 + 118 20,7243y + ||(g(p)/||L2(O,T;L4/3(I“f))

—R,
Ve () + H‘ﬁ va (Q)) ’
Ry %w

118"z zanaty T 1E gty (Ha%

where ¢ € V#(Q) and ¥ € V() are arbitrary elements of the equivalence classes @m‘ﬂ € Vggw(SZ) and
—Ry
14

ﬁ(a% + b%)]/ 2, a;,b; € R, and taking into account that 6, € V?(Q) C L*(2), we infer that the linear form

€ Vgﬁw (€2). Therefore, by using estimates (64) to (67) for 0 = 6y, v = uy, the inequality |a;| + |b1] <
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F: VT/(Q) — R is continuous and

~ (_;m —Ry
‘F (¢%,¢ )‘ < ﬁcz( ||u0||H1(Q)+||90||Lz(g)+|lf‘p||L2(o,T;L6/5(Q))+||(f(/))/||L2(0,T;L6/5(Q))+||gw||L2(0,T;L4/3(F{’))

172
o
5 (@ ve,@)

v (ai"w,wm"’) e W(). (119)

() (77 57) =5 (90.0)- (57 570))-

Hence, applying inequality (70), we have:

((s2ew) o) 2 (1)

and, from equation (118) and inequality (119), for ((p% W ’”) = ((p0 /N “’) using the inequality

+||(g ) ||L2(OTL4/3(Fw))+||g ||L2(0TL4/3(FW))+||(g ) ||L2(0TL4/3(F1//))> (”(P

Note that

2)1/2

|a1|+---—i—|an|§\/ﬁ(a%+---+an , ai,...,a, € R, neN,

we obtain:

—ERW
(pO ¥
(Q) Ve " (€)

462

2

2 2 2 2

= <C_> (”uOHHl(Q) + ”90||L2(Q) + |V¢||L2(0,T;L6/5(Q)) + ||(f(p)/||L2(0’T;L6/5(Q))
1

@12 V112 V2 vy 112
+||g ||L2(O,T;L4/3(F(lp)) + ”(g ) ||L2(0,T;L4/3(F(lp)) + ||g ||L2(0,T;L4/3(F¥/)) + ||(g ) ||L2(0,T;L4/3(F;//))> .

Consequently, from inequality (117), we infer the following estimate:

t
N 2
8Ol g + 40 [y + 0™ @ ool T 1601 + / 1021 d7
‘.Rw 0

Vi, (@)

2 2 2 2 2 /2
= Cl( ”uOHHl(Q) + ”ul ”LZ(Q) + ”90”L2(S2) + |lf||L2(0,T;L2(Q)) + ||g||L2(0,T;L4/3(F1)) + ||g ||L2(O,T;L4/3(F1))
+ 14115 +ey|; +118°112 +@|;
L2(0,T;L5/5()) L2(0,T5L853(Q)) L2(0.T:L43(T))) L2(0,T5L43(T)))
v2 ¥y ]12 02 02
+ ||g ||L2(0,T;L4/3(Fi/')) + H (g ) ||L2(O,T;L4/3(I‘;//)) + ||f ||L2(0,T;L2(SZ)) + Hg ||L2(O,T;L4/3(F?)) s Vt S [0, T]’

which implies the uniqueness of the solution and continuous dependence on the given data. O

Remark 1. If T'§ and F(')/f are not empty sets, then the homogeneous equations (41) and (42), when u = 0,
f=0andf? =0,g% =0, g‘” = 0, have only trivial solutions. Therefore, R, = Ry, = {0}, the factor spaces
Vgﬁ{w(ﬂ) and Vf;/‘/*w(sz) coincide with V¥(€2) and V¥ (), respectively, and Theorem 3 is valid, when Vi‘)’ﬁ{w(ﬁ) is

replaced by V¥(2) and Vg'ﬁw(Q) is replaced by V¥(Q).
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Remark 2. The conditions (51) and (53) of Theorem 3 for given u, € L?*(Q) and 0, € V(Q) constitute
a system of variational equations with respect to g, @o, ¥o. By subtracting (pus,v);2(q) from both sides of
equation (51), we infer that the system (51) to (53) coincides with equations (34) to (36) of the static problem,
where instead of f we have f(0) — pu,. Consequently, it follows from the results of the analysis of the static
problem [22] that, for solvability of equations (51) to (53), u, € L*(R2) should satisfy the following condition:

(f(0) — puz, v)yaq) + €O0), trr, (V)2 = 0, (120

forall v € V(Q),v'(x) = a + B x Ox, a, B € R?, Ox = (x;), and then there exist uy € V(RQ), gy € V¥(RQ),
Yo € VV(Q) satisfying equations (51) to (53). Note that, if "y is not an empty set, then « = B = 0; hence, for
any u; € L?(2), there exists a unique (#o, @o, Yo) € V(2)x VP(Q2) x V¥(Q) that satisfies equations (51) to
(53).

Remark 3. Sufficient conditions for the existence of u, € L*(Q), ¢y € V() and vy € VV(Q) satisfying
equations (51) to (53) can be obtained by applying regularity results for strongly elliptic systems. To simplify
the notations, we assume that the thermo-electro-magneto-elastic solid consists of a single domain, i.e., K = 1.

In addition to the conditions of Theorem 3, let us assume that €2 is a bounded C"! domain [23], Fg N Ff =0,

ﬁ N ﬁ = & and the given functions satisfy the following additional regularity properties: cjpq, €pij» bpij» dij»
S @i Mo i mi € CON(Q), ug € V() NHA(Q), £4(0) € LX(R), g#(0) € H'ATY) and g7 (0) € H'A(I'}).
Hence, from Rademacher’s theorem [25], we have that the functions c;j,q, €pij » bpij» dij» Cij» aij» Aij» i, m; are
differentiable almost everywhere in €2 and that their derivatives belong to L>°(€2). Applying Green’s formula,
equations (52) and (53) can be written as

d(@o, ) + a(Yo, ) = / trre (@)trre (€ * e(uo)) - ndl'y{ — / @div (e * e(up)) dx
ry Q
+ / s @) () - ndT — / Fdiv(ubo)dx + (770, gy — @°O) tipg @)y (121)
ry Q
algo, ) + £ (Yo, ¥) = / tryw ()t (b * e(ug)) - ndTY — / Vdivib x e(up))dx
r/ @
+ | e (Y)trpe (mby) - ndl} — | Ydivmb)dx — (g7 (0), trpw (¥)) o ot - (122)
1 1 1 Ty
r/ &

It follows, from the positive definiteness condition (48), when & = 0, that equations (121) and (122) constitute a
boundary value problem for a strongly elliptic system of second-order partial differential equations with respect

to ¢, € V() and ¥, € V¥(R2) [23], which is solvable since the compatibility conditions (45) are satisfied.
From the regularity properties of the given functions, we have:

trg (& * e(up)) - 1 + trpe () - n — g#(0) € H'A(T'Y),
—div (& * e(ug)) — div(uby) + f#(0) € L*(),
v (b % e(uo)) - 1 + trpy (m6o) - n — g¥(0) e HAT)),

—div(b * e(uy)) — div(méy,) € L*(),
hence, applying the regularity theorem [23], we infer that the solutions ¢y and v of equations (121) and (122)
belong to H*(Q).

Assume now that the following compatibility condition is satisfied:

g20) = trr, (c xe(uy) + & *xgrad gy + b = grad vy — LBy n onT}. (123)

29



Applying Green’s formula and equation (123), we obtain:

C(uo’ V) + 8(()00’ V) + b(WO, V) - )\'(905 V) - (g(o)’ trrl (V))LZ(]"I)

= — / div (c * e(uy) + € * grad ¢y + b * grad ¥y — A6y) - vdx, Vv € V(Q).

Q

From equation (47), we infer that 1/p € L°°(£2) and, taking
1
u; = — (f(0) + div (c * e(up) + € * grad ¢y + b * grad Vo — A6))),
0

we have u, € L*(Q) and u,, ¢, ¥ satisfy equations (51) to (53). Thus, if the boundary I' and the given
functions satisfy the aforementioned additional regularity conditions and the compatibility condition (123),
there exist u, € L2(Q), ¢y € V¥(Q) and ¥y € V¥ (RQ) that satisfy equations (51) to (53).

5. Conclusions

In this work, we investigated boundary and initial boundary value problems with general mixed boundary
conditions for mechanical displacement, electric and magnetic potentials and temperature, corresponding to
the linear static and dynamic three-dimensional models of multidomain inhomogeneous anisotropic thermo-
electro-magneto-elastic bodies. We obtained the variational formulations of the three-dimensional problems in
corresponding Sobolev spaces or spaces of vector-valued distributions with respect to the time variable with
values in Sobolev spaces that are equivalent to the original differential formulations of boundary and initial
boundary value problems in spaces of twice continuously differentiable functions. Also, we obtained new results
on the existence and uniqueness of solutions of the three-dimensional boundary and initial boundary value prob-
lems in corresponding factor spaces of Sobolev spaces and, to prove the existence, we approximated the solution
of the dynamic three-dimensional problem by solutions of finite dimensional systems of ordinary differential
equations. Moreover, for the dynamic problem, we obtained an energy equality and, by applying it, we proved the
continuous dependence of a solution on given data in suitable function spaces. The methodology presented here
can be used to investigate various continuum mechanics models in Sobolev spaces and construction algorithms
of their solutions.
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