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Abstract: In this paper, we give explicit criteria to guarantee the robust stabilization of simple
first-order transport systems coupled with finite-dimensional dynamics, using Proportional
or Proportional Integral boundary output feedback controllers. Using a frequency-sweeping
approach developed for Time-Delay Systems, we characterize the closed-loop stability intervals
in the parameter space for several interconnected partial differential equations and ordinary
differential equations configurations. The performances of the proposed boundary feedback con-
trollers are compared with other classical approaches in simulation. The proposed methodology
is a necessary step before a detailed comparison between proportional integral controllers with
low computational complexity and other control approaches for infinite-dimensional systems.
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1. INTRODUCTION

Modern complex dynamical systems are highly intercon-
nected and mutually interdependent, both physically and
through a multitude of information and communication
networks. By properly formulating them in terms of sub-
systems’ interactions involving energy and mass transfer,
their dynamical models can be derived from mass, energy,
and information balance considerations. It generates dy-
namic states with values distributed over time and space.
Such interconnections lead to increased complexity, emer-
gence of new dynamics, whether or not feedback is present,
environmental effects in a broad sense, with possibly the
non-separability of these aspects.

In this context, interconnected Ordinary Differential
Equations (ODEs) and hyperbolic Partial Differential
Equations (PDEs) are one of the simplest structure that
conserves the distributed nature of the underlying dy-
namics. These systems appear in many engineering appli-
cations, from electrical networks containing transmission
lines Brayton (1968), or mechanical vibrations in drilling
systems Aarsnes and Shor (2018) to thermo-acoustic oscil-
lations in combustion dynamics de Andrade et al. (2018).
The ODE part can efficiently model current/voltage in
lumped elements, or loads or actuator dynamics, while the
PDE part can model the dynamics of the lossless trans-
mission lines in electrical networks or any propagation
phenomena as vibrations.
Recently, several approaches have been developed for
the control of coupled PDE-ODE systems (predictor-type
feedback Krstic and Smyshlyaev (2008); Redaud et al.
(2021), backstepping design Deutscher et al. (2018), flat-
ness strategies Meurer and Kugi (2009)). Although these
contributions enabled major breakthroughs, the analysis
of the closed-loop behavior and robustness properties have

been neglected so far, due to the lack of experimen-
tal implementations or benchmarks. In particular, due
to the complexity of their control architecture, infinite-
dimensional controllers require know-how and computing
power to be implemented on real systems. On the con-
trary, PID controllers are broadly applicable, and many
experimental methods exist to tune their parameters. It
explains why practitioners usually prefer using such stan-
dard controllers, despite the lack of theoretical results for
ODE-PDE interconnections. To the best of the authors’
knowledge, there do not exist explicit conditions guaran-
teeing the existence of appropriate gain values stabilizing
such interconnected systems.

In this paper, we give explicit criteria to guarantee the
robust stabilization of simple first-order transport systems
coupled with finite-dimensional dynamics, using Propor-
tional (P) or Proportional Integral (PI) boundary output
feedback controllers. We first rewrite the system as a time-
delay system of neutral type to which we apply the D-
decomposition method Neimark (1949). Indeed, integrat-
ing along the characteristics lines, solutions of hyperbolic
systems can be closely related to such time-delay systems
Auriol and Di Meglio (2019). Using a frequency-domain
representation, we study the location of the characteristic
roots of the closed-loop systems, that characterizes the
rate of exponential growth of their fundamental solution.
We can therefore define proportional and integral gains to
ensure that all the poles have negative real parts Gu et al.
(2003). We determine the closed-loop stability intervals
in the parameter space for one test case (transport equa-
tions with actuation dynamics). The main contribution of
this paper is methodological and presents how frequency-
domain approaches developed for delay-differential equa-
tions (DDEs) can be relevant for the analysis of coupled
hyperbolic PDE-ODE systems. It should be mentioned



that the idea of reducing a class of nonlinear mixed ini-
tial boundary problems of such systems to a initial value
problem of a system described by coupled continuous-time
delay-difference with delay-differential equations goes back
to the 60s Cooke and Krumme (1968). We propose a short
comparison with state-of-the-art control approaches. It is
a necessary step before a detailed comparison between
industry-standard PI controllers and recently developed
control approaches, that can cover more general cases
by explicitly taking into account the delays and high-
frequency dynamics at a cost of an increased complexity.

The layout of this paper is the following. In Section 2 we
present the system under consideration and the control
strategy. In Section 3, the D-decomposition method used
for the stability analysis of scalar neutral-type equations
is briefly introduced. Then, in Section 4, this strategy is
applied to design stabilizing P and PI controllers for trans-
port equations with actuation dynamics. We characterize
the closed-loop stability intervals in the parameter space,
and we give some illustrative simulation results.

Notations The Hilbert space of square integrable func-
tions is denoted L2([0, 1]; R)

.
= L2(0, 1). We denote χ = R×

L2([0, 1]; R2). For all state (X,u, v) ∈ χ, we define the χ-
norm as the sum of L2−norms and Euclidian norm of the
states ‖(X,u, v)‖χ = (‖u‖2L2 + ‖v‖2L2 + ‖X‖2)

1
2 .

2. PROBLEM DESCRIPTION

2.1 Systems under consideration

In this paper we consider a scalar linear heterodirectional
hyperbolic system (namely a system of two transport
equations) coupled at one end with a scalar ODE. More
precisely, we consider systems with the following structure

∂tu(t, x) + λ∂xu(t, x) = 0, (1)

∂tv(t, x)− µ∂xv(t, x) = 0, (2)

Ẋ(t) = aX(t) + bv(t, 0) + V (t), (3)

with the boundary conditions

u(t, 0) = qv(t, 0) + cX(t), (4)

v(t, 1) = ρu(t, 1), (5)

where t > 0 and x ∈ [0, 1] are respectively the time and
space variables, X ∈ R is the ODE state, u(t, x) ∈ R and
v(t, x) ∈ R are the PDE states, and V (t) is the control
input. The transport velocities λ > 0 and µ > 0, and the
coupling terms a, b, c, q, ρ are all real. The output of the
system is denoted y(t) and defined by

y(t) = X(t). (6)

Note that signal y(t) corresponds to collocated measure-
ments 1 .

Such system is schematically illustrated in Figure 1. Here,
the ODE corresponds to actuator dynamics acting on a
wave-like propagation system. This case is motivated by
industrial applications such as suppressing mechanical vi-
brations in drilling devices with the bit off-bottom. These
systems are composed of long flexible strings subject to
torsional vibrations that propagate upwards and down-
wards, represented by the PDE states (u, v) Aarsnes and
Shor (2018).

1 The case of non-collocated measurements could be covered using
similar techniques.

Fig. 1. Schematic representation of system (1)-(5)

Due to space restrictions, we did not present the case of
load dynamics.

The initial condition is denoted
(X(0), u(x, 0), v(x, 0)) = (X0, u0(x), v0(x)) ∈ χ. The open-
loop system is well-posed (Bastin and Coron, 2016, The-
oream A.6). In what follows, we denote τ the transport
delay induced by the PDE system τ = 1

λ + 1
µ and r = ρq.

Finally, we make the following assumption:

Assumption 1. The boundary couplings ρ and q verify
|r| = |ρq| < 1.

Assumption 1 is slightly stronger than a necessary condi-
tion for delay-robust stabilization and prevents having an
infinite number of poles on the Right-Half Plane (RHP)
Logemann et al. (1996); Hale and Verduyn Lunel (2013);
Auriol et al. (2018a,b).

2.2 Control objective

Even if the PDE and ODE systems can be separately
stable, the coupling between them can be the source of in-
stabilities. Recent contributions in the literature have con-
sidered the design of stabilizing controllers for the inter-
connected system (1)-(5) using a backstepping approach
Redaud et al. (2021); Auriol et al. (2018b). However, the
resulting output-feedback laws may be computationally
expensive, as they require solving in real-time a PDE sys-
tem (observer system) or performing a dynamical inversion
of the ODE dynamics Bou Saba et al. (2019). Thus, it
might be valuable to consider Proportional (P) or Propor-
tional Integral (PI) controllers to lower the computational
effort, which can be critical for practical implementations.
However, one must be aware that the plant (1)-(5) may
not always be stabilizable by P or PI controllers (1)-(5)
Bastin et al. (2015), and the resulting output-feedback
laws may induce lower closed-loop performance compared
to the backstepping controllers. The objective of this paper
is to derive general conditions under which it is possible to
stabilize the plant (1)-(5) using P or PI controllers. More
precisely, the control input is chosen as

V (t) = Kpy(t) +Ki

∫ t

0

y(ν)dν, (7)

the coefficient Ki being equal to zero for the proportional
case. For each case, we give admissible bounds for the
gains (Kp,Ki) so that the closed-loop is exponentially
stabilized in the sense of the χ−norm, that is to say there
exist ν > 0, C0 ≥ 1, for all (X0, u0, v0) ∈ χ, such that

‖(X,u, v)‖χ ≤ C0e−νt‖(X0, u0, v0)‖χ.
The performances of the proposed control laws will be
compared with other classical approaches in simulation.



A complete analysis of the closed-loop quantitative per-
formance is out of the scope of the paper but will be the
purpose of future work.

2.3 Methodology

The methodology we follow relies on tools developed for
time-delay systems:

• First, using the method of characteristics, we rewrite
the original PDE-ODE system as a time-delay equa-
tion of neutral type;
• Next, applying the Laplace transform, we derive

the transfer function of the system. We deduce the
characteristic quasipolynomial equation δ(s, τ) = 0
satisfied by its poles, in open-loop and in closed-loop
with the control law (7);
• Following the D-decomposition approach Neimark

(1949) and the methodology proposed in Niculescu
(2001), we then determine stability regions on the
parameter space for the closed-loop system, with ap-
propriate conditions on the controller gain Kp;
• Finally, we discuss the robustness properties of the

closed-loop system regarding uncertainties in parame-
ters. In particular, we study the impact of the integral
term on the overall performance.

We give some Matlab simulation results to illustrate this
approach. To guarantee consistency and ease interpreta-
tion, all simulations are made with the same initial con-
ditions. Although the ODE state is assumed to be scalar,
the method we present in this paper can be generalized
to non-scalar ODEs. The case of non-scalar PDEs requires
a deeper analysis as it induces several and possibly non-
commensurate transport delays. However, it should be
possible to follow a similar methodology.

3. PRELIMINARY RESULTS ON LINEAR
TIME-DELAY SYSTEMS OF NEUTRAL TYPE

In this section, we recall some general results regarding
the stability of time-delay systems of neutral type. In
particular, we present the D-decomposition method and
apply it to first-order neutral equations.

3.1 General considerations

In what follows we consider a neutral equation of the form
M∑
k=0

dkz
(k)(t) + nkz

(k)(t− τ) = 0, (8)

where M ∈ N, dk and nk are real coefficients such that
dMnM 6= 0, and the state z is defined on [−τ, 0] by
an appropriate initial condition z0 ∈ L2([−τ, 0],R). The
quasipolynomial characteristic equation associated to (8)
is given in the Laplace domain by

δ(s, τ) = d(s) + n(s)e−τs = 0, (9)

with d(s) =
∑M
k=0 dks

k, n(s) =
∑M
k=0 nks

k, and deg(d) =
deg(n). This is a major difference with retarded systems,
for which deg(d) > deg(n). The study of stability proper-
ties in the neutral case is much more complicated. Here,
the real part of the rightmost root of the spectrum of
the corresponding characteristic function is not necessarily

continuous, due to the presence of the essential spectrum
Michiels and Niculescu (2014).

3.2 D-decomposition method

To analyze the stability of linear time-delay systems in
the parameter-space, we consider that the delay τ > 0
is fixed (D-decomposition approach Neimark (1949)). The
methodology used in the sequel can be resumed as follows
Cooke and van den Driessche (1986); Niculescu (2001):

(1) First, we consider the delay-free case τ = 0 to
determine a first stability condition for the system
without delay;

(2) Then, we determine the frequency of characteristic
roots crossing the imaginary axis, that can correspond
to a switch in stability. If they exist, we define a
stability interval [0, τc) on which the system is stable.

(3) If there are no crossing roots, since the change of
stability can only occur through the imaginary axis,
we derive conditions for stability of the closed-loop
system independently of the intrinsic delay τ .

3.3 Application to the first-order case

We show in the following that the interconnected sys-
tem (1)-(5), in open-loop or subject to a proportional feed-
back controller, can be expressed as a first-order neutral
equation yielding a quasi-polynomial of degree 3. We give
first some general stability results applying the aforemen-
tioned approach.

Let us consider that two first-order polynomials d(s) = s+
α and n(s) = γs+ β, such that δ(s, τ) in (9) rewrites as:

δ(s, τ) = s+ α+ (γs+ β)e−τs (10)

= s(1 + γe−τs) + α+ βe−τs.

As discussed in Hale and Verduyn Lunel (2013), the
exponential stability of the trivial solution of the difference
equation z(t)+γz(t−τ) = 0 is a necessary condition for the
exponential stability of the scalar neutral equation with
the characteristic function δ. In our case, this condition
simply rewrites as |γ| < 1.

We first study the stability in the delay-free case, since,
as discussed in Michiels and Niculescu (2014), increasing
the delay in the closed-loop system induces instability.
Without delay, the characteristic equation (10) rewrites as
a first-order polynomial δ(s, 0) = s(1 + γ) + α+ β, whose

only root is given by s∗ = −α+β1+γ . It belongs to the LHP

under the condition

α+ β > 0. (11)

If this condition is not satisfied, the controller cannot
even stabilize the delay-free plant. Next, consider the real
delayed equation. Under condition (11), by a continuity
argument, the system is stable for τ ∈ [0, τc), where τc
corresponds to the frequency of the first imaginary axis
crossing s = jω, with

(α2 + ω2)− (γ2ω2 + β2) = 0 =⇒ (1− γ2)ω2 = β2 − α2.
(12)

If α2 > β2 (or equivalently α > |β| using condition (11)),
equation (12) has no solution ω ∈ R. Since zero is not
a solution of δ(s, τ) = 0, the system is then stable with
infinite delay margin under the condition

α ≥ |β|. (13)



Else, (12) admits a unique solution ωc > 0 corresponding
to the frequency of the first crossing point on the imaginary
axis. It is given by

ωc =

√
β2 − α2

1− γ2
. (14)

We can now define the critical delay

τc = min{ τ
ω
| s+ α+ (γs+ β)z = 0, z = e−τs}.

Solving the equation zc = e−jωcτc = − α+jωc

β+jωcγ
, we obtain

τc =

√
1− γ2
β2 − α2

arctan(−
√

(β2 − α2)(1− γ2)

α+ βγ
). (15)

In the case |γ| < 1, under condition (11), the system is
stable for τ ∈ [0, τc).

We now apply this methodology to derive conditions under
which the system (1)-(5) can be stabilized by proportional
feedback controllers. A similar analysis could be done to
deal with the PI case. It is omitted here due to space
restrictions, and is only briefly presented for the two
considered test cases.

4. APPLICATION TO THE PI STABILIZATION OF
TRANSPORT EQUATIONS WITH ACTUATION

DYNAMICS

4.1 Neutral formulation and open-loop analysis

Let us denote z(t) = v(t, 0). Using the method of charac-
teristics, we immediately obtain

z(t) = ρqz(t− τ) + cρX(t− τ). (16)

We now take the Laplace transform of (3) and (16) ne-
glecting their initial conditions. Indeed, initial conditions
only impact the transient behavior and do not modify the
stability analysis Hale and Verduyn Lunel (2013). We get

(s− a)X(s) = bz(s) + V (s), (17)

z(s)(1− ρqe−τs) = cρe−τsX(s). (18)

This yields X(s) = HXV (s)V (s), where the transfer
function is given by

HXV (s) =
1− ρqe−τs

(s− a)− ρ(qs+ bc− qa)e−τs
. (19)

Open-loop stability The poles of the open-loop system
are the solutions of the characteristic equation

δOL(s) = (s− a)− ρ(qs+ bc− qa)e−τs = 0. (20)

It is a particular case of equation (10) with

α = −a, β = ρ(qa− bc), γ = −ρq. (21)

Following the methodology given in Section 3.3, the first
necessary stability condition (11) is given by a(1 − ρq) +
bcρ < 0. Then, applying condition (13), the system is open-
loop stable with infinite delay margin (i.e. independently
of delay) if and only if −a ≥ |ρ(qa − bc)|. Else, we must
consider the crossing points of the imaginary axis to obtain
a finite-delay margin. From (14)-(15) we get

ωc = |a|+

√
(ρbc)2 − 2abcr

1− r2

τc =

√
1− r2

(ra− bcρ)2 − a2
atan(

−bcρ
√

(1− r2)[(ra− bcρ)2 − a2]
abcρ− r(ra− bcρ)2

).

If the necessary stability condition is verified, and if
the second stability condition is satisfied or if τ < τc,
the system is already open-loop stable, so the boundary
feedback controller can be used to fasten convergence rate.

4.2 Boundary feedback stabilization

Proportional feedback controller We first aim to stabilize
system (1)-(5) using a proportional feedback controller
V (t) = Kpy(t). The characteristic equation of the closed-
loop system is now given by

δCL(s) = s−(a+Kp)+(−ρqs+ρ(q(a+Kp)−bc))e−τs = 0.

It corresponds to equation (10) with

α = −(a+Kp), β = ρ[q(a+Kp)− bc], γ = −ρq. (22)

Note that |γ| < 1 under Assumption 1. Following the
methodology given in Section 3.3, we obtain the first
necessary stability condition

Kp < −a−
bcρ

1− ρq
. (23)

Next, we must determine the Kp-domain when the closed-
loop system is stable with infinite delay margin, i.e. when
(a + Kp)

2 − ρ2(q(a + Kp) − bc)2 ≥ 0. This polynomial of
discriminant (2ρbc)2 ≥ 0 admits one or two real solutions

K± = −a− bcρ(ρq ± 1)

1− (ρq)2
, (24)

such that condition (13) is satisfied on (−∞,K−) ∪
(K+,+∞). If this condition is not verified, the system can
still be stabilized for some Kp, if the system delay τ is
small enough. Finally, taking into account (23), we have
the following result:

Proposition 2. Consider system (1)-(5) with the propor-
tional feedback control law (7) (Ki = 0) under Assump-
tion 1. If the constant parameters of the system and the
gain Kp satisfy either of the following set of inequalities

(1) bcρ ≥ 0, and Kp < −a− bcρ
1−ρq ;

(2) bcρ < 0, and Kp < −a+ bcρ
1+ρq ;

(3) bcρ < 0, −a + bcρ
1+ρq ≤ Kp < −a − bcρ

1−ρq and τ < τc,

where
τc =

1

ωc
arctan(− ωcbcρ

(a+Kp)(bcρ− r(a+Kp))− rωc
),

ωc =

√
(r(a+Kp)− bcρ)2 − (a+Kp)2

1− r2
.

then, the closed-loop system (1)-(5) is exponentially stable
in the χ-norm.

Proof. Using the analysis presented above, we directly
have that the state X is exponentially stable. Then, since
|ρq| < 1, we obtain the exponential stability of the state
z(t), which in turn implies the exponential stability of the
system (1)-(5).

For these values of Kp, the closed-loop system is stabi-
lized by the boundary feedback controller. Moreover, it is
robustly stabilized as it is robust to uncertainties on the
parameters Niculescu (2001). One can notice that it is
always possible to choose Kp negative enough such that
one of the two first conditions is satisfied. However, the



third condition allows choosing smaller absolute values of
Kp, thus improving the robustness properties of the closed-
loop system.

PI feedback controller We now consider the interest of
adding an integral term in the feedback controller Ki 6= 0.
In the Laplace domain, the control feedback becomes
V (s) = (Kp + Ki

s )X(s) and (17) rewrites

(s− a−Kp −
Ki

s
)X(s) = bz(s). (25)

Combining this equation with (18), the characteristic
equation of the closed loop system rewrites as Q(s, τ) +
P (s, τ)(Kp + Ki

s ) = 0, with{
Q(s, τ) = (s− a)− ρ[q(s− a) + bc]e−τs,
P (s, τ) = −1 + ρqe−τs.

(26)

Under Assumption 1, P (jω, τ) 6= 0, ∀ω ∈ R, i.e P has no

roots on the imaginary axis. We obtain Kp+Ki

s = −Q(s,τ)
P (s,τ) .

Looking for solutions of the characteristic equation cor-
responding to imaginary axis crossings, we consider s =
jω ∈ jR and identify Kp (resp. Ki) with the real part
(resp. imaginary part) of the second member. Indeed, we
have

Kp = <(−Q(jω)

P (jω)
), Ki = =(

Q(jω)

P (jω)
). (27)

In particular, in the considered case, we obtain:
Kp = −a+ ρ(2aq − bc) cos(ωτ) + ρ2q(aq − bc)

1 + (ρq)2 − 2ρq cos(ωτ)
,

Ki = −ωω(1 + ρ2q2)− 2ρqω cos(ωτ) + ρbc sin(ωτ)

1 + (ρq)2 − 2ρq cos(ωτ)
.

(28)

By continuity, the instability degree, i.e number of poles
in the RHP, changes when a new pole crosses the imag-
inary axis. We can define stable regions bounded by
Kp(ω),Ki(ω) for which the instability degree is constant.
We can then define the controller gains on compact in-
tervals inside the domains corresponding to stability re-
gions. Plotting (28) as a function of the frequency, we
obtain Figure 2. Writing the characteristic equation of
the closed-loop system in form (9), the necessary con-
ditions for d(s,Kp,Ki) + n(s,Kp,Ki) to be Hurwitz is

Kp < −a − bcρ
1−r , Ki < 0 (light blue region delimited

by green lines). The dotted lines correspond to the first
stability condition (11). In our case, bcρ < 0, so the light
green zone corresponds to a stability region, independently
from the value of Ki. Finally, the light yellow regions
correspond to stability regions with finite delay margin.
For each (Kp,Ki), the critical delay must me computed
beforehand to ensure that τ < τc.

4.3 Numerical simulations

We now illustrate our results with simulations. In what
follows, the space domain [0, 1] is discretized with a mesh
of 100 points. We simulate the PDE system (1)-(5) using
a Godounov Scheme LeVeque (2002) (CFL = 1) on the
time interval [0, 50]s. We solve the ODE using the Matlab
method ode45. The parameters are given in Table 1, and
are chosen such that the open-loop system is unstable. The
χ−norm of the open-loop system is represented in Figure 4
(red curve).

Fig. 2. Stability regions (Kp(ω),Ki(ω)) (d = 1)

Param. Value Param. Value Param. Value

a -0.1 b 0.7 c -0.7
q 0.5 ρ 0.8 τ 4

Table 1. System parameters (Case 1)

We can select Kp so that the conditions of Prop. 2 are
satisfied. Since bcρ < 0, the closed-loop system is expo-
nentially stable if Kp < −0.18 (condition (2)). However,
choosing Kp ∈ [−0.18,−0.04], the third condition can also
be satisfied, as illustrated in Figure 3. The evolution of
the χ−norm of the system is represented in Figure 4 for
Kp = −0.1.

Fig. 3. Available values for Kp (d = 1) under condition (3)
of Prop. 2

Fig. 4. Evolution of ‖(X,u, v)‖χ in open-loop and closed-
loop (d = 1) for different control strategies

We now consider the introduction of an integral gain to im-
prove the closed-loop performance. Using a gradient sam-
pling algorithm Burke et al. (2005) accelerated by BFGS,



we can find values of Kp,Ki minimizing the spectral ab-
scissa of the corresponding time-delay system in closed-
loop. In this case, we obtain Ki ≈ −0.89,Kp ≈ −1.89,
which belongs to the stability region as expected. As illus-
trated in Figure 4 (black dotted curve), the stabilization is
faster when we add an integral term in the controller. Fi-
nally, for comparison purposes, we also plotted in Figure 4
the closed-loop behavior using the controller developed in
Bou Saba et al. (2019) (”reference”). It has comparable
performance to the ones of the well-tuned PI controller at
the cost of higher complexity.

5. CONCLUSION AND PERSPECTIVES

In this paper, we presented a methodology to determine
adequate gains for a proportional or PI feedback controller
stabilizing an interconnected system of ODE and PDEs.
Using a frequency-sweeping approach developed for Time-
Delay Systems, we characterize the closed-loop stability
intervals in the parameter space. In future work, we will
pursue this study and develop quantitative criteria to
quantify closed-loop performance and allows a fair com-
parison between PI controllers and more complex control
strategies. This work also paves the way for the stability
analysis of more complex networks of interconnected PDE-
ODEs, for instance, a PDE-ODE-PDE interconnection
known as the Rijke tube de Andrade et al. (2018). The
performances of the PI controller proposed can then be
compared with other full-state feedback controllers like the
one obtained by the backstepping method in terms of per-
formance, and numerical implementation de Andrade et al.
(2020). Finally, the case of coupled hyperbolic systems
is much more challenging as it induces distributed delay
terms in the neutral equation. The characteristic equation
is not a quasipolynomial anymore. However, extending
the proposed methodology to such systems is necessary
to compare PI controllers with infinite-dimensional con-
trollers for such systems.
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