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Abstract: Passive Radio-Frequency Identification (RFID), used recently to monitor landslide displace- 1

ment at a high spatio-temporal resolution, was used to measure only 1D displacement. This study 2

demonstrates the ability to track 2D displacements, using an array of antennas connected to an RFID 3

interrogator. Ten tags were deployed on a landslide for 12 months and 2D relative localization was 4

performed using a Phase-of-Arrival approach. A period of landslide activity was monitored through 5

RFID, and displacements were confirmed by reference measurements. The tags show displacements 6

up to 1.2m over the monitored period. The centimeter-scale accuracy of the technique was confirmed 7

experimentally and theoretically for horizontal localization, by developing a measurement model that 8

includes antenna and tag positions, as well as multipath interference. This study confirms that 2D 9

landslide displacement tracking with RFID is feasible at relatively low instrumental and maintenance 10

cost. 11

Keywords: Phase localization, landslides, RFID, remote sensing, wireless sensor network, early 12

warning 13

Key Contribution: Landslide deformations are monitored in 2D through RFID phase measurements ; 14

A 2D sensitivity model allows optimizing antenna position with respect to a set of tags ; Centimetric 15

precision over long time periods is validated experimentally and theoretically 16
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1. Introduction 17

Ground deformation monitoring with a high resolution both in space and time remains 18

a challenge due to the high cost of existing solutions, and to environmental limitations 19

such as meteorological phenomena, rough terrain or dense vegetation. Amongst several 20

remote sensing methods [1,2], surface monitoring of large landslides can be typically per- 21

formed through Interferometric Synthetic Aperture Radar (InSAR), either by space-borne 22

measurements [3,4] or using ground-based stations [5–9]. Despite the high space resolution 23

of these methods, the station cost remains high and the time resolution can be of multiple 24

days in the case of satellite remote sensing. More localized techniques such as GPS [10–13] 25

and radiofrequency-transponders [14,15] show higher time resolution, but also require 26

on-board power sources which greatly increase initial cost and maintenance. 27

In this context, Radio-Frequency Identification (RFID) is showing an increasing potential 28

for earth sciences [16,17]. Amongst other applications, it is foreseen as a promising alter- 29

native for landslide and civil engineering structures deformation monitoring [18] thanks 30

to its low cost relative to other solutions, and because it works under rain, snow and 31

vegetation [19,20]. It can thus be used as a tool for landslide early-warning [21], forecasting 32

or long-term monitoring [22]. A wide range of solutions exist for tag localization using 33

RFID [23,24], with various possibilities both in the measured quantity and in the measuring 34

scheme. 35

36

The quantities most notably used for localization are the Received Signal Strength and 37

the back-scattered phase of arrival. Signal-Strength based methods have been widely used 38

for tag localization [25,26,26–29]. Yet, phase-based methods have shown better precision 39

and reliability in recent years [30–32], notably because they are less sensitive to environ- 40

mental variations and because the phase of the signal varies more rapidly with distance 41

than the received signal strength. 42

Phase-based localization is separated in multiple schemes, which are extensively 43

presented elsewhere [33–36]. These schemes generally rely on either multistatic station- 44

ary antennas and different carrier frequencies [30,37,38], or on a moving antenna with a 45

known trajectory (Synthetic Aperture Radar technique) [39–43]. This paper will focus on 46

a monostatic multi-antenna Time-Domain Phase Difference (TD-PD) inspired scheme, as 47

TD-PD showed the best results for measuring relative displacements outdoors [18], with a 48

precision of about 1 cm over long time periods for 1D displacement tracking. As of now, 49

RFID systems deployed to monitor moving ground only provide one-dimensional distance 50

information and are subject to phase unwrapping issues that could be solved by using 51

multiple antennas. In this article, we will test the stationary configuration for 2D RFID 52

tag localization using a set of four antennas in a TD-PD relative localization approach, 53

and will also discuss on 3D localization perspectives. To the best of our knowledge, this 54

is the first attempt at 2D-localizing RFID tags in an outdoor scenario, using a monostatic 55

monofrequency multi-antenna setup. 56

57

In the following section, we present the instrumentation of the experimental site and 58

the methodology for data acquisition and processing. Section 3 provides a theoretical 59

background and experimental validation of the RFID measurement error, in order to decide 60

on ideal antenna positioning by optimizing the localization accuracy and phase ambiguity. 61

Section 4 reports on an example of 12 months of surface deformation monitoring on the 62

slow moving Harmalière landslide. 63

2. Instrumentation and Methods 64

2.1. Experimental Site: Harmalière landslide 65

The Harmalière landslide (Sinard, Isère, France) is located in the Trièves area about 66

50 km South of Grenoble in the western Pre-alps (see Figure 1). Trièves appears as a 67

sedimentary plateau eroded by the Drac river, the plateau is formed by Quaternary varved 68

clays and alluvial materials deposited in a glacially dammed lake during the Würm period 69



Version July 20, 2022 submitted to Remote Sens. 3 of 19

Figure 1. (Top) The Harmalière landslide location in France. (Bottom) Overview of the Harmalière
landslide, with the RFID tags distribution (red points). Blue points : antennas and acquisition system.
The dotted black line represents the landslide scar, the gray dotted lines represent 1-meter isolines.

[44]. Quaternary sediments also include silts, with sometimes a morainic cover, and rest 70

on either interglacial Riss–Würm period glaciofluvial materials (gravels and sands) or on 71

the underlying Jurassic carbonate bedrock. The thickness of the clay deposits can vary 72

from 0 to a maximum of 200 m [45]. The landslide is southeast oriented, 400 m wide at 73

the top narrowing to 150 m at the toe. It develops from an altitude of 735 m (asl), down to 74

the Monteynard Lake (480 m), over a distance of about 1.5 km. It was abruptly activated 75

in 1981 and has remained active ever since, with new peaks of activity in 2016 and 2017 76

[46]. The slow moving landslide shows a regressive behaviour, the headscarp retreating at 77

an average velocity of 1 m/year, with very strong variations from year to year (including 78

almost a decade of rest). The central body of the landslide is moving at velocities ranging 79

from cm/year to m/year, with possible dramatic acceleration phases (m/day). A variety of 80

research subjects are currently investigated through it [46,47]. 81

2.2. RFID Instrumentation and localization 82

2.2.1. RFID Instrumentation 83

In february 2020, a portion of the landslide was equipped with a RFID system consist- 84

ing of 32 battery-assisted passive tags and an acquisition station located near the landslide 85

scar (see Figure 1). These tags can last about a decade without maintenance or replace- 86

ment, in the present real-time monitoring scenario. The station includes 4 antennas, an 87

interrogator (Impinj SR420), a micro-computer (RPI-3B), and a modem to send the data 88

automatically to a remote server, as described by (patent pending FR-17/53739). It is 89

powered by a photovoltaic module and a wind turbine. The station collects RFID data 90

during 3 minutes every 20 minutes from every tag and every antenna. The data includes 91

the Phase of Arrival (that we will call phase) measured at 865.7 Hz, the Received Signal 92

Strength Indication and the tag temperature. The tags were placed by pairs on fiber glass 93

stakes, respectively 50 cm and 1 m above ground. They are spread out within the antennas 94

reading range in a zone approximately 30m x 30m wide (see Figure 1), in such a way as 95

to maximize the line-of-sight readability of each tag by multiple antennas. To validate the 96

RFID localization calculations, the position of the tags was measured with a LEICA TCR805 97
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tacheometer and a handheld target (estimated precision 4 cm), approximately once every 98

month. 99

2.2.2. RFID Localization Scheme 100

TD-PD is a relative ranging technique based on a phase variation δϕ = ϕ1 − ϕ0
between two measurements at different points in time. δϕ is related to the radial distance
variation δr = r1 − r0 between tag and reader antenna, by the following equation:

δr = − c
4π f

δϕ (1)

where f is the frequency of the electromagnetic wave (see values above) and c is the speed 101

of light in the propagation medium. It is important to note that Eq. 1 is only valid for 102

displacements smaller than λ/4 ≈ 8cm between two phase measurements because of 103

phase ambiguity. In the present case this condition is generally fulfilled as the incremental 104

displacements are small compared to the wavelength (usually less than 1 cm between 105

two successive acquisitions). Moreover, a series of phase measurements can generally 106

be unwrapped using well-defined algorithms. In that case, Equation 1 is valid for any 107

unwrapped phase variation. 108

Section 3 will present a multidimensional localization scheme based on TD-PD. 109

3. Theoretical model 110

In this section we derive a mathematical model for phase-based RFID localization, 111

in order to compute the localization error of our real experiment. The main goal of this 112

derivation is to study the origins of the localization uncertainty, mainly with regard to the 113

system geometry and the physical measurement process. 114

From now we will consider that all phase measurements are unwrapped, and that Equa- 115

tion 1 is valid for all phase variations. Most presented tags were correctly read and no 116

unwrapping error was detected on the monitored period. The specific case of an unwrap- 117

ping error is to be studied separately, and does not fit in the scope of this work. 118

In the following, index i will describe a series of measurements starting at i = 0 and j will 119

describe the antenna indexing. 120

3.1. Localization model 121

3.1.1. One dimensional TD-PD 122

The localization method presented in this paper is based on the tag phase shift mea- 123

sured by each antenna, at different points in time (TD-PD)[36]. In a homogeneous medium, 124

the phase shift ϕi,j − ϕ0,j between the initial and the i-th (unwrapped) phase measurement, 125

is directly proportional to the radial displacement δri,j between the tag and antenna j (see 126

Eq. 1). 127

Assuming an initial radial distance r0,j, we get a series of radial distances ri,j from a
measured phase series ϕi,j:

ri,j = r0,j + δri,j (2)

where δri,j is obtained directly through Eq. 1. This localization method is hence relative to 128

the initial position, as it doesn’t allow for absolute positioning without further information 129

about the system (e.g. when r0,j is not known). 130

3.1.2. 2D relative displacement approach 131

Using the measurements of multiple antennas, we can expand this TD-PD method
with spatial considerations. For this purpose we need both the phase measurements and
geometrical coordinates (xj, yj) of each antenna. This derivation focuses on the 2D problem,
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and the 3D case will be shortly discussed at the end.
We define the initial distance r0,j from the antenna j to the tag:

r0,j =
√
(xj − x0)2 + (yj − y0)2

where (x0, y0) are the initial coordinates of the tag and (xj, yj) those of the antenna. 132

Thanks to Eq. 2 we obtain a series of radial displacements from the phase measurements 133

of each antenna. From these radial distance measurements, a multilateration approach [48] 134

can be applied to estimate the most probable position (x̂i, ŷi) for the tag at the ith position. 135

Amongst various possible methods of multilateration, we used an optimization algorithm 136

that minimizes the following cost function C f for the i-th measurement: 137

C fi(x, y) =
Na

∑
j=1

∣∣ri,j −
√
(xj − x)2 + (yj − y)2

∣∣ (3)

(x̂i, ŷi) = argmin
(
C fi(x, y)

)
(x,y)∈R2

where (x, y) are the test point coordinates, Na is the number of antennas, ri,j is the i-th radial 138

distance from antenna j, and (x̂i, ŷi) is the most probable tag position. The minimization 139

of this cost function was performed using the Trust-region optimization algorithm [49] 140

implemented in the Scipy-optimize Python module. 141

142

3.2. Geometrical localization sensitivity 143

In this section we focus on theoretical considerations regarding the localization sensi-
tivity of the geometrical antenna-tag system, in order to compute the value and direction
of a displacement error of the tag, with respect to a phase measurement error [19]. For a
given antenna position (xj, yj) , the absolute phase accumulated on a linear ray path (line
of sight, LOS) between the antenna and a point (x, y) is expressed as follows:

ϕj(x, y) = −4π f
c

×
√
(xj − x)2 + (yj − y)2

Let us define Kϕj as the space gradient of the measured phase ϕj, also defined as the phase 144

sensitivity kernel, expressed in spatial dimension as: 145

Kϕj(x, y) =

 ∂ϕj
∂x
∂ϕj
∂y

 =

Kx
ϕj

Ky
ϕj

 (4)

For a system consisting of two antennas (A and B) and small phase variations, the
relation between the phase variation vector δϕ and the true tag displacement δr can then
be approximated by the linear matrix system:[

δϕA
δϕB

]
=

[
Kx

ϕA
Ky

ϕA

Kx
ϕB

Ky
ϕB

][
δx
δy

]
146

That we can simply rewrite :
δϕ = Kδr (5)

Equation 5 holds for any number of phase measurements (thus any number of antennas 147

Na), and any number of space dimensions M ; in such cases K will be an M × Na matrix. 148
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Figure 2. Localization error shape at the position of tag A (see Fig.1) compared with the RFID
position estimation during a stable period in l’Harmalière (November to December 2020). The green
point distribution is computed through the K−1 transformation (see Eq. 6), using a Gaussian phase
distribution with a standard deviation of 0.04 rad. The eigenvectors of the green distribution (red
lines) are scaled up to encompass 97% of the data. The black points correspond to the RFID-Phase
localization results. The antennas positions are set as in the real experiment (see Fig.1).

It expresses the direct solution of the phase-based relative localization problem, where K 149

represents the transformation matrix from measured phase space to localization space. 150

For the sake of simplicity, consider now that Na = M = 2, which implies a bijective 151

relationship between phase measurements and tag 2D relative displacement. In this case 152

the invertibility of the K matrix is almost always possible : the only exceptions are when 153

the point position (x, y) coincides with that of one antenna, or when it is aligned with the 154

two antennas. We exclude these limit cases that have no significance in our experiments. 155

The above equation can then be reversed and gives the theoretical phase sensitivity of the 156

tag position: 157

δr = K−1 δϕ (6)

We now consider the linear transformation matrix K−1 on which we will apply Singu-
lar Value Decomposition (SVD). Any real matrix can be decomposed as follows [50]:

K−1 = UΣV⊤ (7)

In our model V⊤ represents the eigenvectors in phase space, Σ the diagonal eigenvalue 158

matrix and U the eigenvectors in localization space. 159

In this derivation, we assume the same variance for all phase measurements, hence
the covariance matrix Cϕ is defined as follows :

Cϕ = σ2
ϕ · INa (8)

where σϕ is the typical phase standard deviation and INa is an identity matrix of size 160

Na. Cϕ is thus a constant diagonal matrix in our model, with typical values of 0.04 rad. This 161

phase standard deviation is both an experimentally computed value and also corresponds 162

to the modeled approximation of Equation 12 (see next section). 163
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Figure 3. Schematic definition of the two-ray multipath model. The orange line represents the Line of
Sight path with angle i1 and propagation distance r1. The blue line represents the reflected path with
angle i2 and propagation distance r2. htag and hantenna are the tag and antenna heights above ground.

Considering a given phase measurement uncertainty for each antenna, we can plug 164

any phase distribution into the transformation from Eq.7. The shape and orientation of 165

the resulting spatial distribution around tag position (that we will call localization spot) is 166

described by the localization-space covariance matrix Cr. This matrix can be expressed in 167

the following way, depending on K−1 as well as the hypothetical covariance of the phase 168

measurement matrix Cϕ: 169

Cr = (K−1)⊤CϕK−1 = UΣ2U⊤ (9)

Extracting the eigenvalues and eigenvectors of Cr allows for a completely analytical 170

determination of the localization spot properties (especially the direction of highest error), 171

for a given antenna-tag geometry, as shown in Fig. 2. With a phase error of 0.04 rad and at 172

the given tag position, we expect a localization random error of about 1 cm. Note that in 173

the model, any relative increase in phase error will result in the same relative increase in 174

localization error, as the measurement operator is linear. 175

176

The calculation presented above can be extended to a 3 antennas system for a 3D
localization problem, following Equations 1 to 9 with K a 3 × 3 matrix. In the case where
Na > 3, the system from Eq. 5 is overdetermined, and a least-squares solution has to be
found [51] [52]. Using the pseudo-inverse of K, Equation 6 then gives:

δr = (K⊤K)−1K⊤δϕ (10)

This new system can be solved and the eigenvectors computed by considering the transfor- 177

mation matrix (K⊤K)−1K⊤. 178

3.3. Phase error model : multipath, phase standard deviation and radiation pattern 179

While the previous section focuses on geometrical localization error, we will now 180

incorporate the impact of real-scenario error sources, e.g. antenna radiation pattern and 181

multipath. The following derivation is based on the work of [20]. 182

3.3.1. Multipath propagation model 183

Multipath interference is a major challenge in RFID-localization and several solutions
have been proposed to estimate, reduce or mitigate its effect on measurements [53,54]. To
start investigating multipath we use a simple two-ray model, assuming that the measured
signal is a superposition of the line of sight (p = 1) signal and a signal reflected on the
ground (p = 2), as shown in Figure 3. The two signals propagate over different path lengths
rp and orientations, which translate in different received power values due to Friis law:

Pp(r) =
( λ

4πrp

)2 × Pt · GT(ip) · GR(ip) f or p = {1, 2}
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where Pt is the power transmitted by the antenna, Pp is the received power along path p,
Gr and Gt are the receiver and transmitter gain which depend on the signal orientation
angle ip and the antenna radiation pattern, λ is the carrier wavelength and rp is the path
propagation distance. We can then define the amplitude gain Ap(ip, rp) for the Line Of
Sight (1) and reflected (2) signals :

A1(i1, r1) =
1
r1

√
Gt(i1) · Gr(i1)

A2(i2, r2) =
1
r2

R(i2)
√

Gt(i2) · Gr(i2)

where R(i2) is the reflection coefficient impacting the reflected ray (which depends on
ground relative permittivity). The received signal voltage sp after normalization by the
initial emitted voltage, can be expressed by the following phasor:

sp(ip, rp) = Ap(ip, rp) ·
λ

4π
· e−jkrp f or p = {1, 2} (11)

where k is the wave number. The resulting signal stot arriving on the tag is the sum of
the two phasors:

stot = s1(i1, r1) + s2(i2, r2)

After accounting for tag modulation efficiency Lt [55] and due to the reciprocity of all gain
values during the backscattered propagation, the full signal phasor received by the station
antenna is finally expressed as follows:

s f ull = s2
tot · Lt

As a reminder, the squared stot corresponds to the back-and-forth path of the signal. 184

3.3.2. Two types of phase error 185

We define the phase measurement error as the difference between the ideal LOS phase
and the full received phase. This error can be divided in two contributions: the phase
random deviation σrdm and the systematic phase bias ϕb, which are both consequences
of multipath interference. Let us now consider these two error contributions separately.

Figure 4. Schematic description of the matrix transformations in phase space towards real 2D space
for a 2-antennas system. (a) Representation of the simulated multipath-induced phase measurement
distribution (orange) compared to the previously assumed centered distribution (blue), highlighting
the scaling S and translation T. The translation is illustrated by the shift between the center of the
blue distribution and the center of the red distribution. (b) True space localization spot obtained by
further transformation via the K−1 matrix. The antennas are not represented. The systematic bias is
again illustrated by the shift between the real position (black point) and the center of the measured
distribution (red point).
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Previous works [18] have shown a direct relationship between antenna received power
P(W) and phase random deviation σrdm(rad), using the same acquisition configuration (tag,
interrogator, and communication protocol):

σrdm =
4π f

c
· 9.5 · 10−9/

√
P (12)

where c is the light velocity and f the carrier frequency. This empirical relationship 186

reproduces the phase error value of 0.04 rad used in the previous section. The received 187

power greatly depends on propagation distance but also on multipath interference, which 188

is why σrdm is multipath-sensitive. 189

The systematic phase bias ϕb will be defined as the difference between the ideal LOS phase 190

ϕ1 and the full received phase ϕ f ull : 191

ϕb = arg(s2
1)− arg(s f ull) = ϕ1 − ϕ f ull (13)

The phase bias obviously depends on multipath behaviour. In phase space, the two error 192

contributions σrdm and ϕb can be interpreted respectively as a scaling and translation 193

operation on an ideal phase measurement distribution. Indeed, σrdm represents the width of 194

the measurement error distribution, and the bias ϕb represents the center of this distribution 195

: compared to the LOS ideal measurement, the true measurement will thus be translated 196

by ϕb and scaled to a width of σrdm. Assuming a gaussian behaviour for the measurement 197

process, each antenna j will hence present a measurement distribution ϕj following a 198

normal law : 199

ϕj = N (ϕb, σ2
rdm)

These considerations can be applied in the phase-localization scheme presented in the 200

previous section, via a multi-antenna phase distribution. 201

Let us define the scaling matrix S and the translation vector T as follows: 202

S =

[
σ1 0
0 σ2

]
T =

[
ϕb1 ϕb2

]⊤
The entries of S originate from Eq. 12 and the entries of T from Eq. 13. They correspond
to the values of phase random error and phase bias measured by each antenna (Na=2 in
this simple scenario). Note that the phase random deviation values σj are different for each
antenna because of geometrical reasons : each antenna is in a different location, hence the
multipath and radiation patterns do not yield the same error values. The scaling S in phase
space allows for a definition of the phase covariance matrix Cϕ :

Cϕ = S · S⊤

Cϕ can be used in the Singular Value Decomposition to compute the displacement error 203

eigenvectors via the displacement covariance matrix Cr (see Equation 9). The localiza- 204

tion spot dimensions are hence fully described by the following covariance matrix in 205

displacement space Cr : 206

Cr = (K−1)⊤CϕK−1 (14)

On the other hand, the translation T induced by the phase bias corresponds to a translation
drb in displacement space, obtained by :

drb = K−1 · T (15)
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Equations 14 and 15 represents our best attempt to model the deviation from an ideal 207

LOS phase measurement, taking into account the various phase measurement errors, and 208

the geometry of the system. Figure 4 presents a 2D schematic view of the measurement 209

distributions from phase space to displacement space. We see that the phase distribution is 210

scaled and translated in phase space, compared to the centered distribution that was set in 211

Equation 8. In displacement space this gives a specific localization spot with covariance Cr, 212

translated from the true LOS measurement by vector drb. The specific values of Cr and drb 213

will be discussed in section 4.2. 214

4. Harmalière Landslide monitoring 215

In this section we will discuss the specific case of the Harmalière landslide RFID 216

system. After presenting the acquired data, the theoretical model will be applied to the real 217

system geometry, then the localization results will be presented 218

4.1. Real phase data 219

4.1.1. Available RFID Data 220

Among the 32 tags installed in the field, 10 were read almost continuously by more 221

than two antennas for 12 months (January 2021 - February 2022). The rest of the tags 222

yielded partial results that could not be used for 2D localization via the present scheme. 223

Two main factors can explain the lack of readability of some tags, namely the narrow 224

horizontal directivity of the antennas (+/- 30° aperture) and signal attenuation: the furthest 225

tags showed the lowest signal quality. Generally speaking, the tags placed 50 cm above 226

ground showed worse results than those placed 1 m above ground, both in terms of data 227

quality and localization accuracy. This observation corresponds to the above theoretical 228

results (see Section 4.2 and Figure 7-c), which tend to show that displacements close to the 229

ground are subject to stronger multipath interference. This study will only show the tags 230

read by at least two antennas during the whole period. 231

The unwrapped phase measured during the January 2021 - February 2022 time period is 232

presented in Fig. 5 for tag A. The data (70 measurements per day) was averaged over 24h 233

periods before applying the localization algorithm, in order to mitigate the daily phase 234

variations due to humidity and temperature. The missing values correspond to strong 235

weather events that most likely depleted the battery of the acquisition system, or to hard- 236

ware failures. 237

238
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Figure 5. Unwrapped phase variation for tag A, measured by 4 antennas at a frequency f=865 MHz,
from January 2021 to February 2022. The grey bar shows a period of missing data due to hardware
failure. Data was directly available after replacement of the malfunctioning device.
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4.2. Application of the model to a real geometry 239

Before presenting the localization results, we will first apply the previously developed 240

model to the real system geometry. The workflow is presented in Figure 6, showing how the 241

real parameters come together with the geometry and model to compute the localization 242

error mapping. 243

Figure 6. Schematic view of the workflow used in order to estimate the localization error and bias in
the real-scenario Harmalière geometry.

We have set the model geometry according to Table 1, which corresponds to the Har- 244

malière setup geometry. The number of antennas is now set to Na = 4. The ground relative 245

permittivity is set according to the literature for dry soils [56,57], and the following results 246

correspond to this dry soil scenario. In the case of a wet soil, we expect the relative per- 247

mittivity to reach values around 25. In the model, this turned out to generally increase the 248

phase error (and localization error) values by about 30%, which can represent millimeters 249

to centimeter values depending on the context ( see Section 4.2.2). 250

Antenna no. x (m) y (m) z (m)
1 0 0 0
2 0.018 -0.034 1.55
3 0.013 -2.608 0.256
4 -0.338 2.148 0.287

hantenna (m) 3
htag (m) 1

Ground relative permittivity 2.4
Table 1. (Up) Geometrical parameters for the positions of the four antennas in the Harmalière setup.
(Down) Values of the main variables used in the two-ray model (see Figure 3); the height of the
station is relative to the ground at the same position.

4.2.1. Random localization error of the experimental field 251

The previous developments (Eqs. 14-15) have been applied to the geometry installed 252

in the Harmalière landslide, as shown in Figure 7. A mapping of the random localization 253

error (related to σrdm, Eq. 12) is shown in Fig. 7a. We see that the lowest error is obtained 254

when facing the antennas, which are oriented east-ward. The plot is separated in two main 255

areas, discriminated by the 2 cm random localization error value. This value was chosen 256

because it reflects the target precision in our application. 257

4.2.2. Systematic localization bias of the experimental field 258

The systematic localization bias (related to ϕb, Eq. 13) presented in Fig. 7b-c is not to 259

be understood as a raw localization error, but as a varying bias when moving in space: the 260

interference between LOS and reflected signal changes with tag position. 261

In order to better understand the effect of the multipath-induced phase bias on 3D 262

displacement measurements, we propose to consider the typical case of a 1 m displacement 263

along a given spatial direction, starting from the position of tag A. The symmetry of our 264

experiment being mainly cylindrical, we consider a cylindrical coordinate system with 265

its central axis in (x = 0, y = 0). For this displacement we compute the localization bias 266
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Figure 7. Mapping of the 2D localization error extracted from Eqs. 14 and 15, simulating the geometry
of l’Harmalière setup. The red dots represent the reader antennas, and the arrows show the principal
antenna directions. The orange cross indicates the position of tag A. The vectors (u⃗r, u⃗θ , u⃗z) define the
cylindrical coordinate system used later on. (a) The colormap shows the random localization error
(maximum dimension of the localization spot) up to 2 cm, related to the phase random deviation
σrdm. The localization bias is not shown. (b) Color-mapping of the systematic localization bias
(related to ϕb) in the xOy plane, that shows oscillations with meter-order spatial frequency and
increasing amplitude with distance from the measurement system. The random localization error
is not shown. (c) Color-mapping of the systematic localization bias in the xOz plane, with higher
oscillation amplitude and frequency. The ground is located at z=-3 m.
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Bias
Dir. u⃗` u⃗r u⃗z

max. u⃗θ bias <1cm <1cm 10cm
(1cm) (20cm)

max. u⃗r bias 1cm 1cm 2cm
(1cm) (15cm)

max. u⃗z bias 1cm <1cm 70cm
(5cm) (110cm)

Table 2. Direction-dependent localization bias in the 3 directions (cylindrical coordinates), for a
typical 1 m displacement. Each column corresponds to a different direction of displacement. Each
line represents the localization bias amplitude along a certain direction, during the 1 m displacement.
The values in italic correspond to field experiment localization bias measurements.

fluctuation, and project it on every space direction (along u⃗θ , u⃗r, u⃗z) in order to obtain an 267

amplitude value. The displacement length of 1 m was chosen both because it encompasses 268

about one phase bias cycle, and because it corresponds to the actual displacement we 269

measured in the real landslide scenario (see next section). 270

Table 2 reports the simulated localization bias amplitude in the three space directions, 271

together with real error measurements that were performed on field. 272

• The direction that produces the least bias variation is a u⃗θ displacement, which corre- 273

sponds to the quasi rotational symmetry of the system. 274

• A horizontal displacement along u⃗r yields a small localization error. This confirms 275

previous studies and demonstrates a centimeter precision for the RFID technique in 276

the horizontal plane [18]. 277

• A vertical displacement along u⃗z undergoes several strong bias oscillations (Fig. 7c). 278

The subsequent localization error is a cumulative effect of both the strong multipath 279

interference and the small vertical aperture of the measurement system. 280

These results tend to show that vertical localization in the current localization scheme 281

cannot be performed with precision. The mutlipath effect along with the high system sensi- 282

tivity in this direction, yield a very high localization bias. This is why we will not present 283

Oz localization results in the following section. This model highlights the importance of 284

the geometrical features of the system, such as antenna position and spacing, tag height 285

and direction of displacement. 286

4.3. Surface displacement monitoring results 287

In this section, we present the experimental localization of the tags in the Harmalière 288

landslide. We first focus on the 2D localization of one specific tag (tag A) in Figure 1, then 289

we recapitulate on the whole setup and discuss the results. 290

4.3.1. 2D relative displacement for one tag 291

The 2D displacement of tag A, computed from the radial displacements using multi- 292

lateration and data from the four antennas (see Eq. 3), is shown in Fig. 8 against reference 293

tacheometer position measurements. The xOy results are in good agreement with reference 294

points. Note that for stable phase periods (for example July 2021) the localization algorithm 295

yields very stable results with a centimeter scale variability, which is in agreement with 296

the theoretical localization error presented in Fig. 2. This correspondence between theory 297

and experiment during stable periods is observed for several tags, further validating the 298

measurement error model. Note that Figure 2 does not present any phase bias results, but 299

focuses only on measurement random deviation (dimensions of the localization spot). 300

4.3.2. 2D localization for all tags 301

Figure 9 shows an overview of the xOy displacement norm measured by RFID-Phase 302

for all available tags during the measurement period. The total displacement is also shown 303
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Figure 8. RFID localization in the xOy plane, using phase data for tag A (Figure 5). The total
displacement is about 1.6 m. The color plot represents the time evolution of the RFID relative
localization. The red crosses represent the reference measurements using tacheometer, with an
estimated error of about 4 cm. The tacheometer measurement of March 2021 is set as an absolute
reference for relative localization. The black crosses correspond to the estimated random error bars
for TD-Phase localization (calculated via the model developped in section 4.2).

for every tag in Table 3. All RFID localization results fit with reference measurements, 304

notably for displacements greater than 1 m. The steep displacement increase in January 305

2022 concerning tags 51, 4e and A, was confirmed by tacheometer measurement. This rapid 306

and localized deformation generated cracks, and a landslide retrogression of about 2 meters 307

in this area. A south-east tendency is clearly validated and corresponds to the landslide 308

main direction, as can be seen in the qualitative vector mapping in Figure 10, with various 309

displacement amplitudes depending on tag location. This opens the way to 2D spatio- 310

temporal monitoring of the landslide surface, offering the possibility to better understand 311

the physical mechanisms at the origin of the landslide activation and propagation, and to 312

build new early warning monitoring systems. 313

Tag 51 A 4e 26 55 5f 2d 5c 59 5b
Total disp (m) 1.54 1.37 1.20 0.81 0.75 0.85 0.69 0.67 0.74 0.56
Reference (m) 1.57 1.45 1.28 0.81 0.79 0.74 0.77 0.74 0.72 0.59

Table 3. Total 2D displacement norm for all presented tags computed from RFID phase, from January
2021 to February 2022. The reference is computed from the tacheometry measurements, with an
estimated error of ±4cm.

4.4. Discussion 314

In this section we briefly discuss some of the results presented in this paper, as well as 315

the future developments for the RFID localization system. 316

4.5. Localization error and reference measurements 317

In the context in which RFID localization was performed, absolute reference localiza- 318

tion at a centimeter level was a complicated task. For practical reasons, reference positions 319

taken via GPS were not accurate enough to be compared to RFID localization results. This 320

is why tacheometry was used, which is a relative localization method. A landslide is 321

an ever-changing environment, and using absolute references such as trees or antennas 322

involves several sources of error. For this reason, the tacheometer uncertainty given in 323
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Figure 9. Cumulative 2D displacement norm for each tag, with reference measurements performed
via tacheometer (black crosses). An offset was added to every plot, to increase readability. The total
displacement values are given in Table 3.

Figure 10. Vector mapping of the total 2D displacement for all available tags, from January 2021 to
September 2021. The scale is modified for clarity, with a 1m displacement reference (black arrow). The
red arrows represent the displacement estimated from the RFID measurements, and the black arrows
represent the displacement computed from reference measurements. The blue points numbered 1 to
4 correspond to the reader antennas.

Table 3 is ±4cm. As was already mentioned in previous works [18], RFID phase outdoor 324

localization can outperform the reference measurements. 325

4.5.1. Discussion on antenna position 326

The above model (Section 4.2) is a tool for optimizing the antenna positions in a given 327

terrain, in order to minimize localization errors originating from both multipath and ge- 328

ometry. We performed calculations for several geometrical cases in a plane xOy geometry, 329

searching for the lowest random deviation in the monitored zone. As a general rule, we 330

conclude that surrounding the field with antennas yields the best accuracy (lowest localiza- 331

tion random deviation). For example, if 4 antennas are spread around the Harmalière field, 332

the horizontal random localization error is expected to go down to 1 mm. 333

Such setups are not always possible in real-environment operational situations : the 334

experimental setup obviously has to be designed taking into account the operational 335

constraints and priorities. In cases where a portion of the field is inaccessible for example, 336
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the distance between antennas (system aperture) should be maximized to obtain the lowest 337

random deviation. This guideline has limitations such as cable length or station cost, hence 338

the final setup will generally be a compromise between precision and station/maintenance 339

cost. Note that other localization methods such as Angle of Arrival Techniques [54,58] rely 340

on different system geometries and will not lead to the same optimal antenna disposition. 341

The guidelines herein provided only apply to a relative displacement scheme, and absolute 342

positioning is a different matter which we do not discuss here. 343

4.5.2. Perspective for improving data availability 344

In this work the tags that yielded only partial data (less than 2 antennas readings, long 345

time periods without data) were not used, although more complex data assimilation tech- 346

niques could be of use [59,60]. Exploiting both the knowledge of the landslide mechanics 347

and the redundancy of information that the system yields, could allow tag monitoring 348

even in partial data scenarios, which are a common issue in outdoor environments. Such 349

techniques will be implemented in future works. 350

5. Conclusion 351

We have derived a phase-based 2D localization error theoretical model that allows 352

for error estimation in the scenario of two to four static interrogator antennas, taking into 353

account the specific setup geometry. The model is based on both the sensitivity kernel of 354

the measurement system, and a two-ray propagation model (multipath). Under certain 355

conditions, this model confirms the ability for tracking centimetric ground displacements. 356

The in-plane horizontal measurements demonstrate much better accuracy than out-of-plane 357

vertical measurements, due to the preferential horizontal antenna distribution, and ground- 358

reflection multipath interference. 359

A set of RFID tags was placed on an active landslide and phase measurements were 360

performed during several months to monitor the tags displacement. Results show a clear 361

south-east displacement of about 1 m in the horizontal plane, over the monitored area. 362

The presented method, inspired by the Time-Difference Phase-difference scheme, has 363

shown very good results to monitor relative displacements in 2D at the centimeter scale. 364

Monitoring of landslides using RFID technology proves to be a viable solution, with a 365

centimeter-scale accuracy over large periods of time. A further step in large scale monitoring 366

could be to deploy a moving antenna (SAR) over greater lengths, and to implement a data 367

assimilation approach in order to increase data availability. 368
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12. Šegina, E.; Peternel, T.; Urbančič, T.; Realini, E.; Zupan, M.; Jež, J.; Caldera, S.; Gatti, A.; 403

Tagliaferro, G.; Consoli, A.; et al. Monitoring Surface Displacement of a Deep-Seated Landslide 404

by a Low-Cost and near Real-Time GNSS System. Remote sensing 2020, 12, 3375. 405

13. Dong, M.; Wu, H.; Hu, H.; Azzam, R.; Zhang, L.; Zheng, Z.; Gong, X. Deformation prediction of 406

unstable slopes based on real-time monitoring and deepar model. Sensors 2020, 21, 14. 407

14. Intrieri, E.; Gigli, G.; Gracchi, T.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Frodella, W.; Bertolini, 408

G.; Carnevale, E.; Favalli, M.; et al. Application of an ultra-wide band sensor-free wireless 409

network for ground monitoring. Engineering Geology 2018, 238, 1–14. 410

15. Mucchi, L.; Jayousi, S.; Martinelli, A.; Caputo, S.; Intrieri, E.; Gigli, G.; Gracchi, T.; Mugnai, F.; 411

Favalli, M.; Fornaciai, A.; et al. A flexible wireless sensor network based on ultra-wide band 412

technology for ground instability monitoring. Sensors 2018, 18, 2948. 413

16. Schneider, J.M.; Turowski, J.M.; Rickenmann, D.; Hegglin, R.; Arrigo, S.; Mao, L.; Kirchner, J.W. 414

Scaling relationships between bed load volumes, transport distances, and stream power in steep 415

mountain channels. Journal of Geophysical Research: Earth Surface 2014, 119, 533–549. 416

17. Breton, M.L.; Liébault, F.; Baillet, L.; Charléty, A.; Éric Larose.; Tedjini, S. Dense and longdterm 417

monitoring of Earth surface processes with passive RFID – a review, 2021, [arXiv:physics.ins- 418

det/2112.11965]. 419

18. Le Breton, M.; Baillet, L.; Larose, E.; Rey, E.; Benech, P.; Jongmans, D.; Guyoton, F.; Jaboyedoff, 420

M. Passive radio-frequency identification ranging, a dense and weather-robust technique for 421

landslide displacement monitoring. Engineering geology 2019, 250, 1–10. 422

19. Le Breton, M.; Baillet, L.; Larose, E.; Rey, E.; Benech, P.; Jongmans, D.; Guyoton, F. Outdoor uhf 423

rfid: Phase stabilization for real-world applications. IEEE Journal of Radio Frequency Identification 424

2017, 1, 279–290. 425

20. Le Breton, M. Suivi temporel d’un glissement de terrain à l’aide d’étiquettes RFID passives, 426

couplé à l’observation de pluviométrie et de bruit sismique ambiant. PhD thesis, Université 427

Grenoble Alpes (ComUE), 2019. 428

21. Intrieri, E.; Gigli, G.; Mugnai, F.; Fanti, R.; Casagli, N. Design and implementation of a landslide 429

early warning system. Engineering Geology 2012, 147, 124–136. 430

22. Intrieri, E.; Carlà, T.; Gigli, G. Forecasting the time of failure of landslides at slope-scale: A 431

literature review. Earth-science reviews 2019, 193, 333–349. 432

23. Balaji, R.; Malathi, R.; Priya, M.; Kannammal, K. A Comprehensive Nomenclature Of RFID 433

Localization. 2020 International Conference on Computer Communication and Informatics 434

(ICCCI). IEEE, 2020, pp. 1–9. 435

24. Miesen, R.; Ebelt, R.; Kirsch, F.; Schäfer, T.; Li, G.; Wang, H.; Vossiek, M. Where is the tag? IEEE 436

Microwave Magazine 2011, 12, S49–S63. 437

25. Ni, L.M.; Liu, Y.; Lau, Y.C.; Patil, A.P. LANDMARC: Indoor location sensing using active 438

RFID. Proceedings of the First IEEE International Conference on Pervasive Computing and 439

Communications, 2003.(PerCom 2003). IEEE, 2003, pp. 407–415. 440

26. Subedi, S.; Pauls, E.; Zhang, Y.D. Accurate localization and tracking of a passive RFID reader 441

based on RSSI measurements. IEEE Journal of Radio Frequency Identification 2017, 1, 144–154. 442

27. Rohmat Rose, N.D.; Low, T.J.; Ahmad, M. 3D trilateration localization using RSSI in indoor 443

environment. International Journal of Advanced Computer Science and Applications 2020, 11, 385– 444

391. 445

http://xxx.lanl.gov/abs/2112.11965
http://xxx.lanl.gov/abs/2112.11965
http://xxx.lanl.gov/abs/2112.11965


Version July 20, 2022 submitted to Remote Sens. 18 of 19

28. Martinelli, F. A robot localization system combining RSSI and phase shift in UHF-RFID signals. 446

IEEE Transactions on Control Systems Technology 2015, 23, 1782–1796. 447

29. Shen, L.; Zhang, Q.; Pang, J.; Xu, H.; Li, P. PRDL: relative localization method of RFID tags via 448

phase and RSSI based on deep learning. IEEE Access 2019, 7, 20249–20261. 449

30. Scherhäufl, M.; Pichler, M.; Stelzer, A. UHF RFID localization based on evaluation of backscat- 450

tered tag signals. IEEE Transactions on Instrumentation and Measurement 2015, 64, 2889–2899. 451

31. Wang, Z.; Ye, N.; Malekian, R.; Xiao, F.; Wang, R. TrackT: Accurate tracking of RFID tags 452

with mm-level accuracy using first-order taylor series approximation. Ad hoc networks 2016, 453

53, 132–144. 454

32. Zhou, C.; Griffin, J.D. Accurate phase-based ranging measurements for backscatter RFID tags. 455

IEEE Antennas and Wireless Propagation Letters 2012, 11, 152–155. 456

33. Li, C.; Mo, L.; Zhang, D. Review on UHF RFID localization methods. IEEE Journal of Radio 457

Frequency Identification 2019, 3, 205–215. 458

34. Huiting, J.; Flisijn, H.; Kokkeler, A.B.; Smit, G.J. Exploiting phase measurements of EPC 459

Gen2 RFID tags. 2013 IEEE International Conference on RFID-Technologies and Applications 460

(RFID-TA). IEEE, 2013, pp. 1–6. 461

35. Pelka, M.; Bollmeyer, C.; Hellbrück, H. Accurate radio distance estimation by phase measure- 462

ments with multiple frequencies. 2014 International Conference on Indoor Positioning and 463

Indoor Navigation (IPIN). IEEE, 2014, pp. 142–151. 464

36. Nikitin, P.V.; Martinez, R.; Ramamurthy, S.; Leland, H.; Spiess, G.; Rao, K. Phase based spatial 465

identification of UHF RFID tags. 2010 IEEE International Conference on RFID (IEEE RFID 2010). 466

IEEE, 2010, pp. 102–109. 467

37. Povalac, A.; Sebesta, J. Phase difference of arrival distance estimation for RFID tags in frequency 468

domain. 2011 IEEE International Conference on RFID-Technologies and Applications. IEEE, 469

2011, pp. 188–193. 470

38. Scherhäufl, M.; Pichler, M.; Stelzer, A. UHF RFID localization based on phase evaluation of 471

passive tag arrays. IEEE Transactions on Instrumentation and Measurement 2014, 64, 913–922. 472

39. Buffi, A.; Nepa, P.; Cioni, R. SARFID on drone: Drone-based UHF-RFID tag localization. 2017 473

IEEE International Conference on RFID Technology & Application (RFID-TA). IEEE, 2017, pp. 474

40–44. 475

40. Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Cioni, R. A SAR-based measurement method for 476

passive-tag positioning with a flying UHF-RFID reader. IEEE Transactions on Instrumentation 477

and Measurement 2018, 68, 845–853. 478

41. Motroni, A.; Nepa, P.; Magnago, V.; Buffi, A.; Tellini, B.; Fontanelli, D.; Macii, D. SAR-based 479

indoor localization of UHF-RFID tags via mobile robot. 2018 International Conference on Indoor 480

Positioning and Indoor Navigation (IPIN). IEEE, 2018, pp. 1–8. 481

42. Bernardini, F.; Buffi, A.; Motroni, A.; Nepa, P.; Tellini, B.; Tripicchio, P.; Unetti, M. Particle 482

swarm optimization in SAR-based method enabling real-time 3D positioning of UHF-RFID tags. 483

IEEE Journal of Radio Frequency Identification 2020, 4, 300–313. 484

43. Gareis, M.; Fenske, P.; Carlowitz, C.; Vossiek, M. Particle filter-based SAR approach and 485

trajectory optimization for real-time 3D UHF-RFID tag localization. 2020 IEEE International 486

Conference on RFID (RFID). IEEE, 2020, pp. 1–8. 487

44. G., M. La transfluence Durance-Isère Essai de synthèse du Quaternaire du bassin du Drac’(Alpes 488

françaises). Géologie Alpine 1973, 49, 57–118. 489

45. Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical 490

investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). 491

Engineering geology 2009, 109, 45–56. 492

46. Fiolleau, S.; Borgniet, L.; Jongmans, D.; Bièvre, G.; Chambon, G. Using UAV’s imagery and 493

LiDAR to accurately monitor Harmalière (France) landslide evolution. Geophysical Research 494

Abstracts, 2019, Vol. 21. 495

47. Fiolleau, S.; Jongmans, D.; Bièvre, G.; Chambon, G.; Lacroix, P.; Helmstetter, A.; Wathelet, M.; 496

Demierre, M. Multi-method investigation of mass transfer mechanisms in a retrogressive clayey 497

landslide (Harmalière, French Alps). Landslides 2021, pp. 1–20. 498

48. Norrdine, A. An algebraic solution to the multilateration problem. Proceedings of the 15th 499

international conference on indoor positioning and indoor navigation, Sydney, Australia, 2012, 500

Vol. 1315. 501

49. Conn, A.R.; Gould, N.I.; Toint, P.L. Trust region methods; SIAM, 2000. 502

50. Van Loan, C.F. Generalizing the singular value decomposition. SIAM Journal on numerical 503

Analysis 1976, 13, 76–83. 504



Version July 20, 2022 submitted to Remote Sens. 19 of 19

51. Anton, H.; Rorres, C. Elementary linear algebra: applications version; John Wiley & Sons, 2013. 505

52. Golub, G.; Kahan, W. Calculating the singular values and pseudo-inverse of a matrix. Journal of 506

the Society for Industrial and Applied Mathematics, Series B: Numerical Analysis 1965, 2, 205–224. 507

53. Wang, G.; Qian, C.; Cui, K.; Shi, X.; Ding, H.; Xi, W.; Zhao, J.; Han, J. A Universal Method to 508

Combat Multipaths for RFID Sensing. IEEE INFOCOM 2020-IEEE Conference on Computer 509

Communications. IEEE, 2020, pp. 277–286. 510

54. Faseth, T.; Winkler, M.; Arthaber, H.; Magerl, G. The influence of multipath propagation 511

on phase-based narrowband positioning principles in UHF RFID. 2011 IEEE-APS Topical 512

Conference on Antennas and Propagation in Wireless Communications. IEEE, 2011, pp. 1144– 513

1147. 514

55. Rembold, B. Optimum modulation efficiency and sideband backscatter power response of 515

RFID-tags. Frequenz 2009, 63, 9–13. 516

56. ITU, R. Electrical Characteristics of the Surface of the Earth. ITU-R P. 523-7 1992. 517

57. Lytle, R.J. Measurement of earth medium electrical characteristics: Techniques, results, and 518

applications. IEEE Transactions on Geoscience Electronics 1974, 12, 81–101. 519

58. Azzouzi, S.; Cremer, M.; Dettmar, U.; Kronberger, R.; Knie, T. New measurement results for 520

the localization of uhf rfid transponders using an angle of arrival (aoa) approach. 2011 IEEE 521

International Conference on RFID. IEEE, 2011, pp. 91–97. 522

59. Sun, S.L.; Deng, Z.L. Multi-sensor optimal information fusion Kalman filter. Automatica 2004, 523

40, 1017–1023. 524

60. Sarkka, S.; Viikari, V.V.; Huusko, M.; Jaakkola, K. Phase-based UHF RFID tracking with 525

nonlinear Kalman filtering and smoothing. IEEE Sensors Journal 2011, 12, 904–910. 526


	Introduction
	Instrumentation and Methods
	Experimental Site: Harmalière landslide
	RFID Instrumentation and localization
	RFID Instrumentation
	RFID Localization Scheme


	Theoretical model
	Localization model
	One dimensional TD-PD
	2D relative displacement approach

	Geometrical localization sensitivity
	Phase error model : multipath, phase standard deviation and radiation pattern
	Multipath propagation model
	Two types of phase error


	Harmalière Landslide monitoring
	Real phase data
	Available RFID Data

	Application of the model to a real geometry
	Random localization error of the experimental field
	Systematic localization bias of the experimental field

	Surface displacement monitoring results
	2D relative displacement for one tag
	2D localization for all tags

	Discussion
	Localization error and reference measurements
	Discussion on antenna position
	Perspective for improving data availability


	Conclusion
	Aknowledgements
	References
	References

