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1.1.  
Scope and purpose of this publication 
It	is	difficult	to	overestimate	the	importance	of	the	ocean	for	
mankind and animal life on our planet. Covering 70% of the 
Earth’s	surface,	the	ocean	is	the	world's	largest	source	of	ox-
ygen and absorbs 50 times more carbon dioxide than the at-
mosphere.	Climate	is	regulated	by	the	ocean	heat	transport,	
making our world a habitable place.

For	human	beings,	the	ocean	is	also	a	source	of	food,	eco-
nomic	resources,	travel,	and	leisure	activities.	Fish	accounts	
for	about	17%	of	the	animal	protein	consumed	globally	(FAO,	
2020).	The	economic	activities	associated	with	the	ocean	are	
many	and	of	crucial	 importance.	For	example,	the	FAO	es-
timates that 59.6 million people in the world are engaged 
in	fisheries	activities.	Only	in	the	European	Union,	it	is	esti-
mated that the blue sector employs almost three and a half 
million workers. World commerce heavily depends on ma-
rine transportation; approximately 50 thousand ships trade 
internationally,	representing	80-90%	of	world	trade	(Schnurr	
and	Walker,	2019).	About	40%	of	the	world	population	lives	
along	coasts,	which	are	now	endangered	by	the	sea	level	rise	
due to climate change and are of paramount importance for 
economic activity.

These	facts	and	figures	highlight	that	ocean	forecasting	is	
considered	as	a	vital	activity.	The	first	scientific	successful	
ocean forecasting method was developed during the second 
world war to facilitate the landings of the US Navy. Swell 
forecasts were produced by analyzing wind speeds and fetch 
extension.	The	first	modern	approaches,	based	on	the	use	
of	numerical	models	(Pinardi	et	al.,	2017),	were	developed	
during the 1950s with the establishment of the basics of 
storm	surge	forecasting	(Hansen,	1956).	Other	relevant	ad-
vances,	including	first	3-dimensional	simulations,	took	place	
during the 1960s. Good examples of these achievements can 
be	found	on	estuarine	(Shubinski	et	al.,	1965)	and	general	
circulation	modeling	(McWilliams,	1966).

Since	those	early	successes,	thanks	to	an	ever-increasing	
computing	capacity,	ocean	forecast	techniques	have	evolved	
to	what	is	today	a	complex	body	of	codes,	data	and	tech-
nologies able to deal with the non-linear and chaotic nature 
of	ocean	processes.	Today,	the	scientific	modeling	commu-
nity	is	committed	to	improve	the	reliability	of	the	forecasts,	
mainly advancing on three leading edge areas: data assimila-
tion,	coupled	forecasting	and	ensemble	modeling.

Advances in computer power have played a relevant key in 
the progress of the discipline. Figure 1.1 shows the dramatic 
increase	in	supercomputing	power	during	the	last	decades,	
from	the	first	transistor-based	machines	to	the	present	day	
petascale computing.

The following example illustrates the evolution of ocean 
forecasting over the last three decades. Figure 1.2 shows the 
output of two numerical simulations over the same area exe-
cuted	by	the	same	team.	The	figure	on	the	left	was	the	result	
of a 1991 state-of-the-art 3D-baroclinic simulation covering 
the	Ria	de	Vigo.	It	was	the	first	simulation	of	this	kind	in	that	
area,	an	estuary	in	the	northwest	of	Spain.	The	right	plot	in	
Figure 1.2 shows a screenshot of the Portus system (Álvarez 
Fanjul	et	al.,	2018)	in	the	same	geographical	domain,	as	gen-
erated by an operational system running 3 decades later

The	differences	between	both	simulations,	summarized	in	
Table	1.1,	are	striking	and	demonstrate	the	great	evolution	
that has taken place in the discipline.1

The ocean forecasting discipline includes much more than 
the execution of the numerical models. There are several steps 
to transform the data produced into accessible and usable in-
formation. The downstream activities to produce tailored ser-

1. https://en.wikipedia.org/wiki/History_of_supercomputing

Figure 1.1.  Supercomputers performance evo-
lution,	based	on	data	from	www.top500.org	site.	
The logarithmic y-axis shows performance in 
GFLOPS. Dark blue line: combined performance 
of	500	largest	supercomputers	(“Sum”);	Light	
blue	line:	fastest	supercomputer	(“Top”);	Orange	
line:	supercomputer	in	500th	place	(“#500”)	
(adapted from 🔗1).
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vices	and	to	serve	all	kinds	of	final	users	are	more	and	more	
frequent	and	relevant.	This	creates	a	network	of	scientists,	
public	institutions,	private	companies,	and	final	users	that	
today is driving the modeling community in a virtuous loop 
driven by the needs of the users.2

2. https://portus.puertos.es/index.html?locale=en#/

The main objective of this guide is to promote the develop-
ment of new marine forecasting systems around the globe 
along	with	the	improvement	of	the	existing	ones,	compiling	
and making available valuable information to the profes-
sionals in charge of developing these services. In writing the  

 

1991 Ria de Vigo simulation 2021 Portus Operational system

Type of simulation

Spatial resolution

Input

Execution time

Storage

Output

Downstream applications

R&D	offline	simulation

800 meters

Several hours of simulation per day

Magnetic tape

Mechanical plotter

No

Minutes of simulation per day

Solid State Disk

40 meters

Fully operational simulation integrat-
ed	into	a	service,	operated	24/7

Operational,	daily	update,	wind,	
rivers and boundary conditions

Internet,	available	immediately	at	
global level

Several downstream applications 
(alert	systems,	oils	spill,	etc.)

Climatological	wind,	rivers	and	
boundary conditions

Table 1.1. State-of-the-art of ocean forecast systems in 1991 and 2021.

Figure 1.2. 	 The	Ria	de	Vigo	estuarine	system	as	seen	by	a	1991	simulation	(on	the	left)	and	the	2021	Portus	
operational	forecasting	system	(on	the	right,	from	🔗2).

CHAPTER 1. INTRODUCTION 4CHAPTER 1. INTRODUCTION 4

https://portus.puertos.es/index.html?locale=en#/


various	 chapters,	 the	 authors	 assumed	 that	 the	 reader	 has	
a general knowledge on ocean science but little or no back-
ground in ocean modeling. The present book intends to pro-
vide an overview of the entire value chain of an Operational 
Ocean	Monitoring	and	Forecasting	System	(OOFS),	explaining	
its	basis.	This	guide	will	also	focus,	although	to	a	lesser	extent,	
into the more recent technical advances in the sector.

This	publication,	after	the	present	introductory	chapter,	has	
the following structure:

• Chapter 2: Motivation and international context of 
ocean forecasting. This chapter describes the activities 
of the Expert Team on Operational Ocean Forecasting 
Systems	(ETOOFS)	and	its	connections	with	the	World	
Meteorological	Organization	(WMO)	and	the	Joint	Tech-
nical Commission for Oceanography and Marine Mete-
orology	(JCOMM).	Special	focus	is	made	on	Copernicus	
Marine Service and other well-established initiatives. 
Recent	advances	in	open	data	policy	are	introduced,	
such as the Inspire Open Data Directive. The socio-eco-
nomic impact of ocean forecasting is described by three 
pillars:	applications,	climate	and	ocean	health.

• Chapter 3: Definition of ocean forecasting systems: 
temporal and spatial scales solved by marine model-
ing systems. This section includes a description of the 
various temporal and spatial scales involved in ocean 
modeling,	explaining	the	differences	between	products	
derived from large time scales runs (such as re-analysis 
and	scenarios)	and	forecasting	services.	 It	also	deals	
with	the	significant	variations	found	in	the	physics	and	
numerical schemes associated with the different spa-
tial	scales	(global,	regional	and	coastal).	This	matter	is	
further deepened for each variable in chapters 5 to 9.

• Chapter 4: Architecture of ocean monitoring and fore-
casting systems.  It contains a general description of the 
common aspects to all ocean forecasting systems. It ex-
plains	the	basics	related	to	system	architecture	(inputs,	
execution,	outputs,	etc.),	quality	control	and	products.	
The content of this section works as a template to the 
topics that will be developed in chapters from 5 to 9. 

• Chapters 5 to 9: Detailed description of ocean fore-
casting	systems,	depending	on	the	variable	treated	
(chapter 5	for	Circulation	modeling,	6	for	Sea-ice,	7 for 
Sea	level	and	Storm	surge	modeling,	8 for Wave model-
ing,	9	for	Biogeochemical	modeling).	The	purpose	of	
these	chapters	is	to	make	understandable,	even	for	
non-expert	readers,	all	theoretical	and	practical	basis	
to properly set-up a forecasting system for a given vari-
able. These chapters provide the physical background 
on the discipline.

• Chapter 10: Coupled prediction: integrated atmo-
sphere–wave–ocean forecasting. In this chapter it is 
explained the importance of considering the processes 
described in previous chapters in an integrated way. 

• Chapter 11: Downstream applications: from data to 
products. This chapter deals with the way the output 
data from models are transformed into tailored infor-
mation for the end user. Examples are made for: web 
pages	and	other	dissemination	mechanisms,	oil	spill	
forecasting,	alert	systems,	search	and	rescue,	naviga-
tion	aid,	and	fisheries

• Chapter 12: Challenges and future perspectives in 
ocean prediction. Future development and expecta-
tions	in	the	field	of	ocean	forecasting	are	described	in	
the	final	chapter.

There is no claim of having included in a single monograph 
all the knowledge and beauty of ocean modeling. This guide 
hopes to be a guideline and inspiration to professionals all 
around	the	globe,	stimulating	the	reader	to	research	deeper	
knowledge	on	this	vast	field.	If	this	objective	is	achieved,	this	
publication is expected to foster the generation of valuable 
information that will be used in decision making processes 
and,	therefore,	to	advocate	a	wiser	and	more	sustainable	re-
lation with our always generous ocean.
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Ocean forecasting took its modern form at the turn of the 
century,	when	marine	experts	on	in	situ	observations,	satel-
lite	observations,	numerical	modelling	and	data	assimilation	
decided to move together towards an integrated approach. 
Since	then,	operational	oceanography	has	evolved	incredibly	
fast,	fostering	communities’	engagement,	bringing	innova-
tions	to	operations,	and	structuring	new	information	ser-
vices for users.

International cooperation was immediately adopted as a 
natural	framework	for	the	development	of	ocean	forecasting,	
and this is still today an indispensable driving force pulling 
forward local and national initiatives across continents. 

The	Global	Ocean	Data	Assimilation	Experiment	(GODAE),	
kicked	off	in	1997	(Bell	et	al,	2010),	played	a	leading	role	cat-
alysing the initial steps of this revolution by engaging stake-
holders	worldwide	to	build	“a	global	system	of	observations,	
communications,	modelling	and	assimilation,	that	will	de-

Operational	Ocean	Forecasting	Systems	(OOFS)	are	amongst	
the main and more powerful tools to build the bridge be-
tween	marine	science	and	society	needs,	with	a	consistent	
and state-of-the-art digital depiction of the ocean envi-
ronmental state. It took less than two decades to OOFS to 
emerge	from	science,	gain	realism	and	operational	maturity,	
and convince users of their value; and this is not by chance 
if	international	cooperation	was	identified	from	the	very	first	
day	as	a	key	condition	for	success,	being	today	the	natural	
playground for the development of the OOFS capacity.

Given its importance in the socio-economic and environmen-
tal	context,	outlined	in	chapter	1, the role of OOFS is gaining 
relevance	with	time,	both	locally	through	expert	services,	
and globally through international coordinated actions. This 
importance is being additionally reinforced by the increasing 
quality of the forecast services and the international cooper-
ation	in	data	exchange	and	creation	of	standards,	vital	tools	
for ocean forecasting. 

The three pillars of the Global Ocean Observing System strat-
egy	(GOOS,	2020)	can	help	to	briefly	describe	this	relevance.	
These	are	applications,	climate,	and	ocean	health:

liver	regular,	comprehensive	information	on	the	state	of	the	
oceans,	in	a	way	that	will	promote	and	engender	wide	utility	
and	availability	of	this	resource	for	maximum	benefit	to	the	
community”. Most of today’s ocean forecasting centres were 
born to respond to this international call and are directly 
built on principles and methods designed in this framework. 

GODAE has indeed established the foundation of an interna-
tional	cooperation	for	ocean	forecasting	and	one	of	its	first	
outcomes	was	to	build	the	scientific	and	technical	“common”	
required to develop and operate advanced ocean forecast-
ing	systems,	promoting	a	cooperation	based	on	openness	
and	inclusiveness,	and	driven	by	constant	innovation.	This	
worldwide activity is benefitting ocean knowledge and is 
providing useful tools for decision making actions towards 
a more sustainable ocean. These motivations and principles 
are still framing and inspiring today our international coop-
eration for ocean forecasting.

• Applications (blue economy): Ocean forecasting is 
gaining worldwide relevance in creating applied solu-
tions for final users to contribute to a virtuous blue 
economy. Both public institutions and private compa-
nies are taking active steps to implement the so-called 
“value	chain”,	that	transforms	ocean	observation	into	
information to be employed by end user applications. 
This	is	invigorating	economic	activities,	creating	jobs,	
and providing solutions for environmental problems. 
Chapter 11 provides detailed insight on this particular 
and presents several relevant applications. Other out-
standing set of examples can be found at 🔗1.

• Climate: Climate	change	is	threatening	our	ocean	and,	
very	particularly,	our	coasts.	For	example,	sea	level	rise	
will produce an increase of coastal erosion and inunda-
tion events. And the earth climate cannot be explained 
without a fair understanding of the ocean climate. The 
study of climate change scenarios with numerical mod-
els	is	our	best	tool	to	assess	the	hazards,	one	of	the	
key	elements	of	risk	analyses,	together	with	vulnera-
bility and exposure. Ocean global reanalyses produced 
by ocean forecasting centres as reference simulations 

1. https://marine.copernicus.eu/services/use-cases 
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for the past decades are key elements in this domain. 
These	simulations,	together	with	scenario	projections,	
allow us to create climate change impact studies that 
are the main source of information to design mitigation 
and	adaptation	strategies.	On	shorter	time	scales,	dy-
namic risk reduction activities are vital for maintaining 
activities	in	a	changing	environment.	In	this	sense,	the	
OOFS	will	become	even	more	relevant,	as	the	number	
of extreme events increases. Examples of the ocean cli-
mate	monitoring	by	OOFS	can	be	found	here,	with	in-
dicators (🔗2)	and	annual	expert	reports	on	the	ocean	
climate (🔗3):	they	are	amongst	the	first	OOFS	products	
used by policy makers.

• Ocean health: Human activity is impacting ocean 
health,	increasing	its	temperature	and	its	acidification.	
This problem is having very visible and dramatic conse-
quences,	such	as	coral	bleaching,	increments	of	harmful	
algal	blooms,	migration	of	species	and	jellyfish	prolif-
eration. Ocean forecasting is a key tool to understand 
the	internal	dynamics	of	these	processes	and,	therefore,	
provide	solutions	based	on	knowledge.	Additionally,	
OOFS are providing vital information for strategic action 
areas to improve sustainability for future generations; 
food,	energy,	 tourism	transport,	energy,	and	seabed	
mining,	as	described	by	the	high-level	panel	for	a	sus-
tainable ocean economy (🔗4).	All	these	activities	are	 
benefiting from the accurate forecasts that our pres-
ent-day systems are providing.

2. https://marine.copernicus.eu/access-data/ocean-moni-
toring-indicators
3. https://marine.copernicus.eu/access-data/ocean-state-report
4 . https://www.oceanpanel.org/

All ocean forecasting systems have in common their depen-
dence on reliable ocean observations and state-of-the-art 
ocean	modelling	components,	together	with	the	human	ex-
pertise	and	operational	processes	to	design,	develop	and	
operate such systems. Marine services based on OOFS are 
consequently critically dependent on the considerable in-
vestments required to develop upstream research for ca-
pacity	building	and	large	infrastructures	such	as	satellites,	
marine observation networks and super-computers. Such 

The ocean dynamics is of course not limited by our nation-
al	boundaries,	so	international	cooperation	is	necessary	
when dealing with ocean forecasting. But the other reason 
for imposing international cooperation to ocean forecasting 
centres,	as	a	mandatory	framework	for	action,	is	the	need	
to build a strong community voice supporting the policy ef-
fort towards a sustainable ocean. With the Ocean relevance 
increasingly present on international political agendas (see 
the	UN	Agenda	2030,	the	EU	Green	Deal,	and	many	other	ini-
tiatives),	knowledge	derived	from	OOFS	is	today	essential,	
and the only way to achieve this is by action on a global 
framework. Even when OOFS implementation and ocean ap-
plications	are	local,	they	contribute	to	a	global	challenge.	On	
the local scale they bridge the gap between ocean observa-
tions and applications and are active players of a prosperous 
Blue	Economy.	But	their	impact	is	global,	by	supporting	as-
sessment studies and contributing to an improved local sus-
tainability	policy	that	impacts,	at	the	end,	the	global	ocean.	

Due	to	the	previous	reasons,	the	international	structura-
tion of the OOFS community is an essential condition for a 
sustainable development of the ocean. Ocean Forecasting is 
now a recognized player of international ocean governance 
fora such as the UN ocean initiatives where ocean policies 
are	discussed.	Remarkably,	ocean	forecasting	has	been	iden-
tified	by	the	UN	as	a	key	contributor	for	its	14th sustainable 
development goal “life below water”.

massive investments are not affordable at the scale of one 
entity	or	one	nation,	and	international	cooperation	is	the	
only framework able to ensure a sustainable effort in this 
matter and build this indispensable framework for the OOFS 
worldwide community. 

The	“butterfly	diagram”	(Figure	2.1)	illustrates	the	position	of	
ocean	forecasting	in	the	overall	value	chain,	bridging	ocean	
observations	with	end-users	(Bahurel	et	al.,	2010).	Ocean	
forecasting is present on the two steps signed with gears 
on	the	figure.	On	one	hand,	at	the	so-called	“core	services”,	
where its mission consists in integrating the richness and 
variety of ocean observations to build a state-of-the-art 
description	of	the	ocean	environment,	multi-variable,	con-
sistent	in	space	and	time,	reliable,	and	immediately	action-

2.2.  
International cooperation to build our “common”
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• Standards: data sharing or product validation are 
driven by expert processes and standards to reach ef-
ficiency	to	interoperability.	One	of	the	best	examples	
is the adoption of common data formats to facilitate 
exchanges. The international community work started 
with	GODAE	in	the	field	of	product	validation	with	the	
definition	of	common	protocols	(“metrics”)	now	widely	
adopted by OOF centres worldwide. 

• Products:	together	with	input	data	entering	OOFS,	the	
output products generated by these systems (ocean 
forecasts,	ocean	simulations,	ocean	indicators,	…)	are	
widely	shared	to	feed	a	common	set,	facilitating	inter-
comparison and individual systems improvements.

• Know-how: the outcomes of research undertaken by 
scientists	in	the	OOFS	fields	are	of	course	a	key	asset	
for	the	community	worldwide,	and	the	scientific	com-
munity has proposed in this matter fruitful models of 
cooperation; this common knowledge has been extend-
ing its scope with the development of OOFS through the 
sharing of best practices in the domain of system oper-
ations,	market	development	and	user	uptake.

This is at the heart of international cooperation and its con-
tent is in constant evolution. It reveals the strength and the 
dynamism of the OOFS community: we are prepared to see 
in the coming years a bloom of innovation to support OOFS 
development	in	the	coastal	zones,	marine	biodiversity,	polar	
areas,	climate	adaptation,	all	integrated	in	the	new	paradigm	
offered by digital twinning.

Figure 2.1.  From observation to end user services: the ocean value chain.

able	by	expert	services	in	their	own	fields	of	expertise.	On	a	
second	step,	intermediate	users	can	use	this	freely	available	
description	to	enrich	the	data	via	model	downscaling	and,	
finally,	generate	tailored	information	and	indicators	for	de-
cision making. This is done via a large variety of downstream 
services,	such	as	storm	surge	forecast	warning	systems	or	
water quality monitoring services.

The	left	wing	of	this	butterfly	(Marine	Core	Service)	also	il-
lustrates	the	OOFS	 ‘common’	–	 i.e.,	 the	assets	developed	
through international cooperation and shared by the OOFS 
community as a common good – that the GODAE initiative 
has	invented	two	decades	ago,	and	that	international	coop-
eration has developed through different channels. 

This OOFS ‘common’ includes:

• Data: Ocean observations measured from space by sat-
ellites,	and	in	situ	by	vessels	and	autonomous	networks	
as well as different forcings or coupling with atmosphere 
and river run-off required to run OOFS systems. Interna-
tional	cooperation	has	not	only	organised	and	simplified	
the	access	to	these	data	worldwide,	but	also	has	strength-
ened the voice of the OOFS community for a sustained 
observation effort.

• Tools: Operational tools used to generate a reliable 
4-dimensional description of the ocean environment 
and	operate	ocean	forecasting	systems	include	models,	
data assimilation systems and product generation soft-
ware.	Full-fledge	integrated	systems	and	their	param-
eterization	are	specific	to	their	purpose,	location,	and	
operating team but they are composed of individual 
bricks	(e.g.,	NEMO	-Nucleus	for	European	Modelling	of	
the	Ocean-	modelling	tool)	that	are	frequently	shared	
to feed the OOFS common.
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The	principle	of	openness	–	free	and	open	sharing	of	data,	
exchange	of	knowledge,	interdisciplinary	cooperation	–	and	
the unwavering ambition to generate at every moment the 
best possible information to improve our knowledge on the 
ocean and contribute to a sustainable development are fun-
damentals in this approach. This principle is a cornerstone of 
international cooperation and has been a key factor of suc-
cess of the development of ocean forecasting. 

One of the most structuring elements has been the adoption 
of open & free data policy amongst our community. As previ-
ously	mentioned,	data	sharing	is	a	vital	need	to	have	a	pre-
dicted ocean. The Resolution 40 of the World Meteorological 
Organization related to the exchange of meteorological data 
was	the	first	model	identified	by	weather	oceanographers.	
Afterwards,	the	scope	has	been	extended	by	several	interna-
tional initiatives developed to promote data exchange and 
systems	interoperability	at	a	wider	scale,	facilitating	inter-
disciplinary	approaches.	For	example,	the	INSPIRE	Directive	
aims to create a European Union spatial data infrastructure 
for the purposes of EU environmental policies and activities 
which may have an impact on the environment (🔗5).	

5 . https://inspire.ec.europa.eu/

This European Spatial Data Infrastructure is enabling the 
sharing of environmental spatial information among public 
sector	organisations,	 facilitating	 its	 public	 access	 across	
Europe,	 and	 assisting	 in	 policymaking	 across	 boundaries.	
Beyond its simplicity for implementation (open sharing 
means less energy spent in control and more in value cre-
ation),	openness	is	a	key	condition	for	inclusiveness.	Being	
inclusive	is	identified	as	particularly	important	in	the	field	of	
modern	oceanography	where	stakeholders,	motivations	and	
situations are particularly diverse and rich. The Copernicus 
Marine service in Europe has shown the strength of a state-
of-the-art operational service implemented by hundreds of 
experts	and	teams,	distributed	throughout	Europe,	coming	
from	public	and	private	sectors,	from	operational	and	re-
search	organisations,	from	different	countries,	from	diverse	
cultures and relations to the ocean. Openness facilitates in-
clusiveness	and	enables	diversity,	bringing	together	the	best	
skills and fostering capacity building. This principle of inclu-
siveness is particularly important to successfully manage the 
seamless integration of coastal centres in the OOFS frame-
work,	where	–	here	again	–	the	first	priority	will	be	to	build	a	
worldwide	capacity	open	and	benefitting	to	all.

2.3.  
International cooperation to foster openness and inclusiveness

Amongst	 the	 United	 Nations	 framework,	 the	 Intergovern-
mental	 Oceanographic	 Commission	 (IOC)	 of	 UNESCO	 is	
critically instrumental to build the world ocean ‘basic 
infrastructure’,	 i.e.,	 observations,	 data	management,	 and	
forecasting.	Within	 IOC,	 the	Global	Ocean	Observing	Sys-
tem	(GOOS)	program	is	a	key	element	of	 this	communi-
ty	 effort,	 and	 a	 powerful	 instrument	 to	 structure	 expert	
cooperation	 in	 the	different	 related	 thematic	areas	 (e.g.,	
from	physics	to	biology)	and	the	different	regions	through	
the	GOOS	Regional	Alliances.	In	this	frame,	the	Expert	Team	
on	Operational	Ocean	Forecasting	Systems	(see	below)	is	
fully devoted to ocean forecasting. The IOC Internation-
al	 Oceanographic	 Data	 and	 information	 Exchange	 (IODE)	

program	 complements	 this	 effort,	 with	 special	 focus	 on	
the setting of ocean data information system. 

Beyond	IOC-UNESCO,	the	other	GOOS	sponsors	–	World	Me-
teorological	Organization	(WMO),	UN	Environment	Program	
(UNEP)	and	the	International	Science	Council	(ISC)	–	are	all	
active players in this area. WMO offers a solid model of or-
ganisation,	set	for	weather	forecasting,	where	the	manage-
ment of basic infrastructures on one hand – see for instance 
the WMO Global Data Processing and Forecasting System 
(GDPFS)	that	coordinates	Member	capacities	to	prepare	and	
make meteorological analyses and forecast products – and 
the	management	of	weather	services	on	the	other,	can	in-
spire the world ocean community and propose immediate 
hooks	to	develop	ocean/weather	synergies,	as	it	is	already	

2.4.  
International frameworks to support OOFS development 
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the case for observations. The marine component of Glob-
al	Environment	Monitoring	System	(GEMS	Ocean)	of	UNEP	
is another example where ocean prediction information is 
identified	as	a	key	source	of	information.	As	an	illustration,	
we can observe how the World Environment Situation Room 
– which is an environmental dashboard operated by UNEP 
for its Member States – includes in its Ocean/ SDG14 section 
operational ocean prediction products. 

It is in this framework where the ETOOFS (Expert Team on 
Operational	Ocean	Forecasting	Systems)	action	takes	place:	
hosted	by	IOC	and	co-sponsored	as	GOOS	by	IOC,	WMO,	UNEP	
and	ISC,	this	body	brings	together	experts	representing	each	
continent,	highly	motivated	to	share	and	improve	their	ex-
perience and skills to help developing countries build their 
national centres for operational oceanography. ETOOFS en-
ables worldwide use of timely and reliable ocean forecasts 
for	applications	in	national	security,	environmental	protec-
tion,	and	the	maritime	economy.	It	is	a	vital	operational	link	
between observing networks and marine services.

Amongst	others,	 the	 following	ETOOFS	activities	are	to	
be highlighted:

• Manage	and	maintain	guide,	 scope	and	 require-
ment documents for countries providing ocean fore-
casting services.

• Manage and maintain an overview of active opera-
tional ocean forecasting systems.

• Manage and promote the adoption of an internation-
al standard to support interoperability and common 
formatting of ocean forecast products and services.

• Guide and initiate actions contributing to improving 
operational	ocean	prediction	system	efficiency,	fidelity	
and service quality.

• Promote	and	facilitate	support	for,	and	development	
of,	operational	and	forecasting	systems	and	their	adop-
tion in the wider community.

• Provide advice on operational ocean forecasting sys-
tems related matters and prepare submissions on the 
requirements of operational ocean forecasting systems 
operated by countries to other international groups.

Multilateral initiatives such as the G7 Future of Seas and 
Ocean Initiative (🔗6)	or	the	Blue	Planet	component	of	the	in-
ternational	GEO	(Group	on	Earth	Observations)	program	(🔗7)	
are other relevant frameworks where the value of OOFS is 

6 . https://www.g7fsoi.org/
7 . https://geoblueplanet.org/

progressively recognized and further developed. We observe 
for instance how the priorities set by the G7 FSOI (Future 
of	 the	Seas	and	Oceans	 Initiative)	on	digital	oceanography	
(amongst	others)	and	by	GEO	Blue	Planet	on	marine	applica-
tions are dependent on ocean prediction. 

It is also important to mention the tremendous contribu-
tion of large organisations such as the European Commis-
sion	 in	 Europe,	 which,	 in	 the	 frame	 of	 its	 space	 program	
Copernicus,	has	created	and	supports	a	unique	Copernicus	
Marine	forecasting	service	(Le	Traon	et	al.,	2017)	organisa-
tion (🔗8).	This	European-made	service	follows	the	inter-
national	 cooperation	 principles	 presented	 above,	 with	 a	
global	impact	as	the	first	driver,	and	was	the	key	to	design,	
build and operate a “core” service following common good 
principles,	 and	 to	 implement	a	 full	open	data	policy	 and	
an inclusive service organisation across Europe. The link 
with	 the	 other	 continents	 –	 America,	 Asia,	 Australia,	 Afri-
ca	–	is	at	the	heart	of	Copernicus	Marine.	Similarly,	we	can	
observe how the African Union has encouraged structuring 
initiatives for a prosperous Blue Economy across the Afri-
can	continent	with	IOC,	with	GEO	and	other	programs	where	
ocean forecasting is instrumental. The workshop organised 
by ETOOFS in the preparation phase of the present guide 
has shown a remarkable demand on all continents for a 
reinforced community approach and OOFS capacity devel-
opment worldwide.  

OceanPredict (🔗9),	which	descends	directly	from	the	ini-
tial	GODAE	initiative,	 is	the	best	international	framework	
to develop science & technology initiatives in the field of 
ocean	forecasting.	At	a	scientific	level,	the	modelling	com-
munity is indeed self-organised thanks to it. This is a team 
dedicated to work with the Global Ocean Observing System 
(GOOS)	and	associated	groups	to	co-design	and	co-develop	
the	ocean	observing	and	forecasting	system	of	the	future,	
with the aim of delivering the essential information need-
ed	for	safety,	wellbeing,	and	prosperity.	OceanPredict	 is	a	
vigorous and strong international coordination mechanism 
to build the ocean prediction capacity of the future. This 
will	be	achieved	thanks	to	the	improvement	of	the	science,	
capacity,	efficacy,	use,	and	impact	of	ocean	prediction	sys-
tems,	 contributing	 to	 a	 seamless	 ocean	 information	 val-
ue-chain,	from	observations	to	end	users,	for	economic	and	
societal	benefit.	

Finally,	the	launch	by	IOC-UNESCO	of	a	“UN	Decade	of	Ocean	
Science for Sustainable Development” is an excellent op-
portunity	 to	 do	more,	 reinforce	 international	 cooperation	
and	 enrich	 our	 community	 and	 knowledge	 in	 the	 field	 of	
ocean prediction. The relevance of ocean forecasting sys-
tems	will	 be	even	 larger	 in	 the	 future,	with	more	 reliable	

8 . https://marine.copernicus.eu/
9 . https://oceanpredict.org/
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and	interoperable	services,	able	to	serve	a	wider	range	of	
final	users.	In	this	process,	the	activities	of	the	UN	Decade	
of Ocean Science will be of paramount importance (UNES-
CO-IOC,	2021).	Under	the	vision	“the	science	we	need	for	the	
ocean	we	want”,	 the	Ocean	Decade	will	 implement	 trans-
formative ocean science solutions for sustainable devel-
opment. The following outcomes describe “the Ocean We 
Want,	which	is	the	aim	and	final	target	of	this	initiative:

• A clean ocean where sources of pollution are identi-
fied	and	reduced	or	removed.

• A healthy and resilient ocean where marine ecosys-
tems	are	understood,	protected,	restored	and	managed.

• A productive ocean supporting sustainable food sup-
ply and a sustainable ocean economy.

• A predicted ocean where society understands and 
can respond to changing ocean conditions.

• A safe ocean where life and livelihoods are protected 
from ocean-related hazards.

The	OceanPredict	website	describes	a	first	series	of	ocean	fore-
casting	systems,	projects	and	centres,	illustrating	the	worldwide	
dynamism	of	this	scientific	and	operational	domain:	they	are	
BlueLink	in	Australia,	Concepts	in	Canada,	ECCO,	Hycom	and	
NCEP	in	the	United	States,	ECMWF	and	the	Met	Office	in	the	
United	Kingdom,	INCOIS	in	India,	Mercator	Ocean	International	
in	France,	CMCC	(Centro	Euro	Mediterraneo	sui	Cambiamenti	Cli-
matici)	in	Italy,	MOVE/MRI	in	Japan,	NMEFC	(National	Marine	En-
vironmental	Forecasting	Center)	in	China,	REMO	in	Brazil	and	the	
NERSC	(Nansen	Environmental	and	Remote	Sensing	Center)	in	
Norway: they have in common their global and basin-scale geo-
graphical extensions and also their international visibility. But 
how many other OOFS could we map all over the world? What 
about SAMOA (Sistemas de Apoyo Meteorológico y Oceanográf-
ico	de	las	Autoridades	Portuarias)	in	Spain	(Alvarez	Fanjul	et	al.,	
2018)?	How	many	of	them	are	in	the	Pacific	or	along	the	African	
coast?	In	the	Mediterranean	only,	and	for	the	currents	only,	we	
can	find	32	different	forecasting	systems	according	to	the	Mon-

• An accessible ocean with open and equitable access 
to	data,	information,	technology,	and	innovation.

• An inspiring and engaging ocean where society un-
derstands and values the ocean in relation to human 
wellbeing and sustainable development.

As	a	part	of	the	Decade	activities,	Mercator	Ocean	International	
will implement a Decade Collaborative Center for Ocean Pre-
diction	(OceanPrediction	DCC).	This	initiative	will	provide: i)	a	
global forum to focus and optimise the efforts of individual 
Decade programmes on achieving the collective goals of the 
Decade,	ii)	a	communication	and	collaboration	hub	that	brings	
together	Decade	programmes	with	ocean	prediction	activities,	
institutes,	and	organisations	outside	of	the	Decade,	and	iii)	the	
global technical and organisational structure required to es-
tablish	a	pilot	for	a	Global	Ocean	Data	Processing,	Modelling,	
and Forecasting System building on the innovations generated 
by	Decade	programmes	–	such	as	CoastPredict,	Foresea	or	DIT-
TO	(Digital	Twins	of	the	Ocean)	to	name	a	few	–	and	other	na-
tional,	regional,	international	and	intergovernmental	partners.

GOOS webpage (🔗10):	they	can	be	local,	they	can	have	different	
purposes,	missions	or	maturities	but	they	are	exemplary	of	the	
richness and readiness of the OOFS community worldwide. It is 
time for us all to structure further this talented community and 
make it visible. The new international momentum offered by the 
UN Decade of Ocean Science on one hand and the technological 
breaks proposed by the integration of digital twining is a real 
chance. Ocean prediction centres are ready for a new step in 
this	digital	oceanography,	and	they	are	well	prepared:	commit-
ted	for	a	sustainable	ocean,	for	a	state-of-the-art	common	set	
of	assets	nourished	by	all	and	benefitting	to	all,	and	for	an	open	
and inclusive approach.

10.  http://www.mongoos.eu/

2.5.  
An international community of Operational Ocean Forecasting 
Systems ready for the next steps
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3.1.  
Operational oceanography and ocean forecasting services:  
definition and main purpose
Operational	Oceanography	is	defined	as	the	set	of	activities	
for the generation of products and services providing infor-
mation on the marine and coastal environment. OO is de-
signed	to	meet	different	societal,	economical,	scientific	and	
other	user	needs.	As	defined	by	the	EuroGOOS,	there	are	two	
main	pillars	in	OO	services:	i)	the	monitoring	element,	which	
focuses on the systematic and long-term routine measure-
ments	of	oceans	and	atmosphere,	and	their	rapid	interpre-
tation	and	dissemination;	and	ii)	the	prediction	component,	
which uses ocean models to generate a variety of products 
that may be nowcasts (the most accurate description of the 
present	ocean	state	provided	by	the	analyses),	forecasts	(the	
future	condition	of	the	ocean	for	as	far	ahead	as	possible)	
or	hindcasts	(the	most	complete	description	of	past	states,	
provided	by	reanalysis).

Understanding the physical behavior of ocean and coastal 
areas provides an important guidance to manage issues re-
lated to anthropic impacts and resource exploitation activi-
ties. A wide variety of operational ocean models have been 
and are currently used to tackle different issues and to sup-
port various service purposes. These different types of ocean 
model	applications,	specific	for	each	problem	to	be	solved,	
are based on different computer codes and parameteriza-
tions. They resolve a range of spatial and temporal scales 
(with	different	model	resolutions)	using	a	miscellany	of	data	
sources	(as	forcing	initial	and	boundary	conditions)	and	can	
rely or not on data assimilation methods to integrate obser-
vations	(Schiller	et	al.,	2018).

Wind,	waves	and	sea-level	traditionally	were	the	most	import-
ant met-ocean parameters for maritime activities due to their 
implications for marine safety and impacts on operations and 
navigation	conditions.	Therefore,	these	parameters	have	been	
the most extensively monitored and forecasted since earlier 
times and their forecasting has frequently been the responsi-
bility of meteorological services. The traditionally strong con-
nection between waves and weather prediction is reinforced 
by	the	direct	interaction	between	waves	and	winds,	which	
makes	the	waves	a	special	case	with	specific	models	coupled	
only with atmospheric models (see Chapter 10),	resulting	in	
a separated development of ocean and wave models. Never-
theless,	in	the	last	decade	the	gap	between	ocean	and	wave	
models is diminishing and they are being progressively in-
tegrated in more comprehensive operational ocean coupled 
systems	(in	some	cases	also	coupling	with	the	atmosphere).

The sea level is the other key variable that counts with a long 
tradition	in	operational	services	based	on	specific	models.	

Sea level prediction services have supported very different 
human	activities,	mostly	related	to	navigation	in	shallow	
waters	being	harbors,	estuaries	and	other	coastal	areas	im-
pacted by tides and appreciably sub-tidal variability. Sea 
level forecasting of storm surge is a key element in coastal 
flooding	warning	systems.	Originally,	only	astronomical	tidal	
predictions were used in the sea level forecasting but pro-
gressively this approach was augmented by the use of storm 
surge	models,	which	are	based	on	single-layer	homogeneous	
density barotropic ocean models but include also very de-
tailed bathymetries with astronomical tidal forcing and a 
meteorological residual contribution (see Chapter 7).	Cur-
rently,	storm	surge	forecasting	is	also	benefiting	from	the	sea	
surface height products delivered by the available high-res-
olution 3D global and regional baroclinic models operated by 
different	ocean	forecasting	services	(Pérez	et	al.,	2012).	

A recent overview of the current European capacity in terms 
of operational modeling of marine and coastal systems 
(Capet	et	al.,	2020)	provides	a	comprehensive	panorama	of	
what are the essential ocean variables and phenomena of 
most interest in relation to their relevance for regional en-
vironmental issues and their impact on different economic 
sectors. An interesting output from the survey performed to 
underpin this study reveals that nowadays a vast majority 
of	the	identified	OO	forecast	services	operate	hydrodynam-
ic models (see info on them in Chapter 5),	with	waves	and	
biogeochemical models (see Chapters 8 and 9)	also	 repre-
sented	but	to	a	lesser	extent.	Other	specific	models,	such	as	
for particle drift prediction and sea ice (see Chapter 6),	are	
scarcer in the operational landscape. The study also reveals 
how	currents,	salinity,	 temperature,	and	sea	surface	height	
are	 resolved	 for	 almost	 all	 operational	 models.	 Instead,	
basic	 variables	 of	 biogeochemistry	 (e.g.,	 oxygen,	 nutrients,	
phyto-	and	zooplankton	biomasses,	suspended,	and	organ-
ic	matter)	are	much	less	represented	in	the	ocean	forecast-
ing	services.	To	date,	marine	safety,	oil	spills	and	sea	level	
monitoring appear as the phenomena mostly addressed by 
European operational models (with more than 40 implemen-
tations).	Storm	surges,	water	quality,	and	eutrophication	are	
well-considered	 at	 present	 (~	 15-25	 implementations)	 and	
will	benefit	from	an	extended	coverage	in	the	coming	years	
(~	+30-50	%	within	5	years).	Finally,	 it	must	be	pointed	out	
that	 harmful	 algal	 blooms,	 shoreline/bathymetry	 changes,	
and	ocean	acidification	 receive	 some	attention	but	 remain	
limited in their coverage.

Biogeochemical	models	have	a	greater	complexity,	as	they	
involve	many	more	state	variables,	parameters,	uncertain	
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processes,	interactions	and	drivers,	which	means	that	they	
may not have yet reached the level of maturity required for 
accurate simulations and useful outputs; for these reasons 
their adoption in operational applications is presently limit-
ed. This also applies to the use of data assimilation in coast-
al	operational	application	or	sea	ice	coupled	models,	even	
though in the past decade substantial efforts have been 
dedicated to developing and improving comprehensive glob-
al and regional operational forecasting services. An example 
is the case of the service delivered by the marine component 
of the Copernicus Program of the European Union (Coperni-

cus	Marine	Service,	2021a)	which	provides	free,	regular	and	
systematic information on the state of the Blue (physical in-
cluding	waves),	White	(sea	ice)	and	Green	(biogeochemical)	
ocean	at	global	and	regional	scales,	on	the	basis	of	model	
applications with the appropriate complexity suitable for 
operational	forecasting.	Finally,	 it	 is	to	be	noted	that	sus-
tained	availability	of	global	and	regional	scale	core	products,	
such	as	the	ones	delivered	by	Copernicus	Marine	Service,	has	
fostered	the	development	of	specific	“downstream”	services	
devoted	to	coastal	forecasting,	favoring	synergies	between	
different	existing	services	(Sotillo	et	al.,	2021).

3.2.  
Essential ocean variables covered by marine monitoring and 
forecasting systems 
Numerical ocean models generate as output a substantial 
number of variables and volume of data. The variety of vari-
ables dealt by such models depends on the type of model 
applied,	the	processes	included,	and	the	systems	involved	
(for	example,	ocean	models	can	be	coupled	to	atmospheric	
and	surface	wave	models,	as	well	as	to	sea	ice	models	or	
biogeochemical	ones).	On	the	monitoring	side,	the	ability	to	
measure the ocean with new technologies and techniques 
(related to both remote-sensed and in-situ device observa-
tions)	has	been	continuously	enhanced	since	the	1980s	as	
well,	resulting	in	an	extended	range	of	ocean	variables	to	
deal with.

This wide variety in terms of variables used to monitor and 
model	the	ocean	is	reflected	by	the	CF	metadata	conventions	
(🔗1).	These	conventions	are	intended	to	be	used	with	cli-
mate	and	forecast	data	derived	from	atmosphere,	surface	
and	ocean	models,	and	from	comparable	observational	
datasets,	and	are	designed	to	facilitate	the	processing	and	
sharing	of	data	files	via	widely	used	 formats	 (e.g.	NetCDF	
and	 ZARR)	 and	web	 services	 (e.g.	 THREDDS	 and	 ERDDAP);	
their use is supported by a wide range of software. The CF 
Standard Names Table (🔗2)	is	a	living	document	that	is	con-
tinuously expanded following requests for new variables. In 
its	 version	 77,	 dated	 19	 January	 2021,	 there	were	 579	 stan-
dard names that match a query for the strings “seawater” or 
“ocean”. This number gives an idea of the broad panorama 
existing in terms of ocean climate and forecast variables.  

1. http://cfconventions.org/latest.html
2. http://cfconventions.org/standard-names

Due to this great breadth and differentiation of ocean vari-
ables,	 the	need	arose	 to	agree	on	some	common	key	vari-
ables	to	monitor	the	ocean.	In	the	late	1990s,	in	part	motivat-
ed by requirements to support activities and negotiations in 
the	framework	of	the	UNFCCC	and	the	IPCC,	emerged	the	con-
cept	of	ECVs.	An	ECV	is	a	physical,	chemical	or	biological	vari-
able	 (or	a	group	of	 linked	variables)	 that	critically	contrib-
utes	to	the	characterization	of	Earth’s	climate.	Furthermore,	
the ECV datasets progressively became also widely used in 
the	context	of	mitigation	and	adaptation	measures,	as	well	
as to assess risks and enable attribution of climate events to 
underlie causes. This is the fundamental importance of ECVs 
and the reason for which climate services focus resources 
to monitor and forecast these minimal sets of “key vari-
ables”.	 Currently,	 there	are	 54	 identified	ECVs	 (GCOS,	 2021).	
Global	expert	panels,	coordinated	by	GCOS,	are	responsible	
for	maintaining	updated	definitions	of	the	ECVs	required	to	
systematically observe the Earth’s changing climate. The ECV 
specification	sheets	are	intended	to	be	observation	platform	
agnostic,	not	 focusing	on	what	any	given	existing	or	novel	
observational	 technology	 can	 deliver,	 but	 on	 the	 ultimate	
resolution and accuracy that the full network of coordinated 
systems can achieve to meet user requirements.

The	WMO	defines	the	following	ECVs	specifically	focused	on	
the	ocean	(WMO,	2021):

• 12	related	to	physics:	Ocean	Surface	Heat	Flux,	Sea	Ice	
(including	 Concentration,	 Extent/Edge,	 Thickness	 and	
Drift),	Sea	Level	(Global	Mean	and	Regional),	Sea	State	
(Wave	Height),	Surface	Stress,	Temperature,	Salinity	and	
Currents for both Sea Surface and Subsurface;
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Figure 3.1. 	 Essential	Ocean	Variables	(EOVs):	lists	of	parameters	delivered	by	the	Copernicus	Marine	Service	
for	the	physical	ocean	(including	sea	wave	state),	biogeochemistry	and	sea	ice.	

• 6	biogeochemical:	 Inorganic	 Carbon,	Nitrous	Oxide	
(including	interior	ocean	N2O	and	N2O	air-sea	flux),	Nu-
trients	(including	ocean	concentrations	of	silicate,	phos-
phate	and	nitrate),	Ocean	Colour	(Chlorophyll-a	Concen-
tration),	Oxygen,	and	Transient	Tracers	(CFCs,	etc.).

• 2 Biological/Ecosystems: Marine Habitat Properties 
(Coral	 Reefs;	 Mangrove	 Forests,	 Seagrass	 Beds,	 Mac-
roalgal	Communities)	and	Plankton	 (Phytoplankton	
and	Zooplankton).

Ocean monitoring and forecasting services focus their re-
sources	 on	 covering	 most	 of	 these	 ocean	 ECVs.	 Actually,	
there is an expanded list of EOVs maintained by the GOOS 
(Sloyan	et	al.,	2019)	 in	collaboration	with	panels	provided	
by the OOPC panel and the IOCCP. GOOS aims to periodi-
cally	re-evaluate	and	update	the	EOVs	list.	Importantly,	the	
EOVs include observable ecosystem and biogeochemical 
characteristics of the ocean that are needed for under-
standing	the	state	and	health	of	the	marine	environment,	
currently under pressure by human stressors and climate 
change. While networks that observe the physical ECVs/
EOVs	are	generally	well	established,	those	working	on	bio-
geochemical and ecosystem EOVs are in most cases still 
in	 the	 concept	 or	 pilot	 phase.	 Nevertheless,	 acquisition	
of these data by regional and global observing systems is 
essential to the development of model-based forecasting 
capabilities. For further details on the on-going actions and 

the path forward to extend operational monitoring of these 
ocean	variables	see	Muller-Karger	et	al.	(2018).

Some marine services already go beyond the Ocean-ECV and 
EOV	 lists,	delivering	model	and	observation	products	 for	a	
broader set of variables. This is the case for the Copernicus 
Marine	Service	,	which	monitors	Ocean-ECVs	(as	described	in	
its	 “Ocean	 State	Report	 (OSR)”,	 Copernicus	Marine	 Service,	
2021b),	but	goes	even	further	than	the	common	list	delivering	
more variables and indicators of interest for a wide-ranging 
end user community through its Product Portfolio (Coperni-
cus	Marine	Service,	2021c).	A	summary	of	EOVs	and	parame-
ters delivered by the Copernicus Marine Service is shown in 
Figure 3.1. Copernicus Marine Service is a good example of 
what	occurs	across	most	of	 the	 trans-national,	national	or	
regional ocean monitoring and forecasting services.
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Ocean dynamics are described through equations of motion 
(the	Navier–Stokes	equations)	that	are	well	established	for	
ocean	physics	(mass,	momentum	and	heat).	However,	these	
equations	formally	apply	to	the	continuum	level,	whereas	in	
ocean forecasting they are solved on a computational grid 
with	 a	 finite	 number	 of	 cells	 and	 discrete	 resolution.	 Fur-
thermore,	in	virtually	all	computational	environmental	fluid	
dynamics	fields	approximations	are	made	to	the	governing	
equations to make their solution tractable. The trade-offs 
between	model	 resolution,	 ocean	 dynamical	 processes	 re-
solved,	and	computational	effort	are	discussed	elegantly	by	
Fox-Kemper	 (2018).	At	 the	outset,	ocean	modelers	are	con-
fronted with the key decision of choosing the appropriate 
spatial	resolution	for	each	specific	ocean	model	application.	
In	 global	 operational	model	 applications,	 relatively	 coarse	
resolutions	of	the	order	10s	to	100s	kilometers	are	common,	
whereas in coastal models far higher spatial resolution is 
needed	(perhaps	as	little	as	hundreds	of	meters).	The	choice	
of	spatial	resolution	inevitably	sacrifices	sub-grid-scale	dy-
namical processes that are impractical to explicitly resolve 
and must instead be somehow parameterized.

Over the past 30 years there has been a steady evolution in 
ocean	model	resolution,	in	a	direct	proportion	with	enhance-
ments and availability of computing resources. This resulted 
in	a	finer	spatial	resolution	that	allowed	significant	improve-
ment	in	the	simulation	of	oceanic	flows.	A	major	milestone	
in the evolution of ocean modeling was the introduction of 
eddy	resolving	models.	This	class	of	models,	with	spatial	res-
olution (less than 1/4º in latitude and longitude; or around 25 
km)	sufficient	to	allow	the	spontaneous	emergence	of	ocean	
mesoscale	eddies,	was	a	major	ocean	model	achievement,	
improving the quality of global simulations and opening the 
door	to	accurate	regional	ocean	modeling.	However,	as	de-
scribed	in	the	next	section,	this	resolution	is	now	eclipsed	in	
global operational systems. 

The continuous increase of resolution along with the pro-
gressive enhancement of models was also due to the more 
explicit	inclusion	of	higher	frequency	processes,	such	as	the	
representation of tidal motions and the better representation 
of turbulence and mixing processes in shallow waters. These 
improvements have pushed the use of ocean models into the 
mesoscale	 resolved	 and	 sub-mesoscale-permitting	 regime,	
allowing their uses also for coastal purposes. As a result of 
this	progressive	evolution	of	ocean	modeling,	we	have	today	
an	ocean	model	landscape	composed	of	global,	regional	and	
local	(coastal,	littoral	and	estuarine)	model	applications.

The	traditional,	 though	in	some	way	artificial,	partition	be-
tween	 spatial	 domain	 extent	 and	 model	 resolution,	 has	
been also favored by the fact that operational ocean fore-
casting	centres	generate	their	specific	ocean	model	products	
for coastal and regional seas following a typical dynamical 
downscaling	approach,	which	transfers	information	at	large	
scales from the global solutions to the interior of the nest-
ed	regional	domains	(Kourafalou	et	al.,	2015).		Spatial	scales	
are	directly	 linked	to	temporal	ones,	and	adequate	tempo-
ral resolution is also needed to simulate ocean processes at 
refined	spatial	 resolution.	Hydrodynamic	model	 time	steps	
are always matched to spatial resolution by virtue of nu-
merical	stability	constraints,	but	consideration	must	be	also	
given	to	adding	temporal	resolution	in	external	inputs,	such	
as	specifying	river	 inflow	data	at	daily	or	shorter	 intervals,	
and resolving in this way the diurnal cycle of solar heating. It 
should be emphasized that temporal and spatial scales play 
important	roles	in	ocean	model	performance,	and	inappro-
priate decisions on the spatial-temporal scales to be solved 
may result in modeling errors.

As	pointed	out	by	Holt	et	al.	(2017),	one	of	the	greater	chal-
lenges in Earth System Modeling science is to get an accu-
rate representation of coastal and shelf seas in global ocean 
models.	Furthermore,	applying	cutting-edge	scientific	prog-
ress	in	ocean	model	systems,	which	aim	at	solving	the	ocean	
state in the climate system or at supporting monitoring and 
forecasting	systems,	is	another	challenge	of	the	operational	
ocean services.

Next	sections	describe	ocean	 forecasting	at	 the	global,	 re-
gional and coastal scales: 

3.3.1. Global monitoring and  
forecasting systems

Numerous ocean modeling groups and individual research-
ers operate near real-time systems for the analysis and 
forecast of ocean mesoscale circulation in global and basin 
scale domains. They are gathered under the umbrella of the 
OceanPredict science network (🔗3)	 that	 evolved	 from	 the	
GODAE group established in 1999 at the behest of the GOOS 
sponsored	OOPC	panel.	As	a	forum	for	knowledge	exchange,	
OceanPredict fosters communication on best practices and 
new	developments	in	global	ocean	modeling,	engaging	also	
with regional domain activities and the generation of mod-

3. https://oceanpredict.org 

3.3.  
The spatial scales: downscaling for higher resolutions 
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el-based information products. A component of these ac-
tivities is the annual reporting on forecast systems run by 
national	centers	and	multi-national	consortia,	which	main-
tain a very high level of operational stability and reliability 
akin to national weather services. In many instances these 
ocean systems increasingly operate in strict collaboration 
with	weather	services,	a	trend	that	is	strengthening	with	the	
emergence of seasonal to sub-seasonal prediction efforts. 
From OceanPredict 🔗4 annual reports and system descrip-
tions,	 it	 can	 be	 noted	 that	 horizontal	 resolutions	 of	 order	
1/12º,	or	roughly	9	km	at	mid-latitudes,	are	widely	considered	
adequate for delivering forecasts useful to numerous stake-
holders	and	users,	and	to	inform	subsequent	down-scaling	
efforts. Running global simulations at much higher reso-
lution,	 such	 as	 the	 1/48º	 (~2-3	 km)	MITgcm	 LLC4320	model	
(Su	 et	 al.,	 2020),	 has	 proven	 feasible,	 and	 this	 resolution	
improves the representation of processes such as the me-
soscale to submesoscale turbulent cascade and submeso-
scale	modulated	vertical	mixing.	However,	for	global	forecast	
systems,	the	substantial	additional	cost	of	advanced	DA	in-
creases the computational demand of the analysis/forecast 
cycle	by	roughly	an	order	of	magnitude,	making	higher	res-
olutions	impractical	at	present.	Moreover,	there	is	evidence	
that existing global observing networks are not able to con-
strain	higher	resolutions.	Jacobs	et	al.	(2019)	suggest	that	the	
horizontal scales of motion that are effectively constrained 
by available sustained observations is of order 36 to 54 km or 
larger,	depending	on	the	metric.	When	shorter	length	scales	
that were notionally resolved by their model (~5 to 10 times 
the	grid	resolution)	but	unconstrained	by	observation	were	
filtered	out	of	the	model	prior	to	computing	Lagrangian	drift-
er	trajectories,	the	ensemble	trajectory	forecast	error	actu-
ally decreased.

3.3.2. Regional monitoring and  
forecasting systems

Many groups in the OceanPredict network also operate re-
gional domain models encompassing single ocean basins 
or large marginal seas with enhanced resolutions of about 
4	km	or	even	finer,	using	output	from	global	analysis/fore-
cast systems as open boundary conditions. There are many 
reasons for this downscaling approach. The familiarity of 
local experts with regional ocean dynamics allows them to 
make	choices	 in	model	configuration	 that	yield	more	skill-
ful	 results.	 For	data	assimilative	 systems,	 there	 is	also	 the	
opportunity to incorporate local observations that were not 
utilized	by	the	parent	model	operators.	Furthermore,	region-
al	 operators	 are	 often	 better	 acquainted	with,	 and	 can	 be	
more	 responsive	 to,	 the	 information	product	 requirements	
of regional stakeholders.

4. https://oceanpredict.org/science/operation-
al-ocean-forecasting-systems/system-descriptions 

The nominal resolutions of some typical regional systems 
within OceanPredict 🔗5 are for the seas around Korea of 1 
to	3	km	and	ports	at	 300	m,	 the	MedFS	at	 1/24º	 (~3.5	km),	
and	the	JMA	at	~2.5	km.	Numerous	sub-domains	in	the	Indian	
Ocean run by the INCOIS operate at similar resolutions.

Some of these systems include advanced DA in the forecast 
cycle	initialization,	such	as	the	JMA	regional	model	that	uses	
4-dimensional	variational	(4D-Var)	assimilation,	although	this	
is not the norm. Several Regional Associations of the US IOOS 
operate down-scaling forecast systems using 4D-Var to incor-
porate local high-resolution data from autonomous vehicles 
and surface current measuring HF-radar in domains of several 
hundred	kilometers	in	extent,	but	model	resolution	is	in	the	
range 4 to 10 km. The WCOFS operated by the US NOAA CO-OPS 
is an ambitious regional forecast system covering over 3000 
km of the US west coast. Originally conceived as a 2-km model 
(Kurapov	et	al.,	2017),	this	proved	impractical	for	real-time	DA.	
Operational	WCOFS	uses	a	4	km	grid,	for	which	a	complete	cy-
cle of 4D-Var takes 5 wall clock hours each day on 480 cores 
of the National Weather Service high performance computer. 

However,	 computational	 cost	 remains	 a	 major	 constraint	
on	regional	model	resolution,	and	the	question	of	whether	
coastal	ocean	observing	systems	have	sufficient	 resolution	
to	 inform	finer	 scales	 remains	open.	Mixed	 resolution	 sys-
tems	are	in	development,	wherein	the	forecast	model	is	run	
at a higher resolution than the DA analysis. In experimental 
systems	there	is	evidence	(Levin	et	al.,	2021)	that	submeso-
scale resolving nested models can extract added informa-
tion from closely spaced observing platforms that capture 
the unbalanced ageostrophic submesoscale. 

Sotillo	 et	 al.	 (2021)	 describe	 an	 operational	 system	 with	
a model grid downscaling approach. It employs regional 
downscaling to order 4 km with the purpose of delivering 
improved resolution for continental shelf seas of the Ibe-
rian	Peninsula,	with	subsequent	downscaling	to	~350	m	on	
selected coastal sectors and further to ~70 m in ports. This 
hierarchical	approach,	using	similar	models	at	each	level	of	
refinement	 raises	a	question:	what	are	 the	differences	be-
tween a coastal and a regional model? 

The regional forecasting system examples mentioned above 
mostly use model codes that solve the hydrostatic primitive 
equations on a structured grid. While the transition to very 
high-resolution	might	admit	submesoscale	stratified	dynam-
ics,	 shallow	 coastal	 waters	 are	 often	 well	 mixed	 vertically	
and the processes relevant to ocean prediction for maritime 
operations have horizontal scales that are long relative to 
the	depth,	and	consequently	the	hydrostatic	approximation	
remains	valid	(Fringer	et	al.,	2019).

5. https://oceanpredict.org/science/operational-ocean-fore-
casting-systems/system-reports 
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The distinction we have made in structuring this section is 
that coastal models differ from regional models in that sub-
mesoscale processes are dramatically constrained by ba-
thymetry while coastline scales are smaller than the Rossby 
deformation scale. Such processes include lateral and verti-
cal	flow	separation,	secondary	flows,	headland	eddies,	wakes,	
and frontal convergences. Resolution of topographic features 
that impact such processes is of paramount importance.

3.3.3. Coastal monitoring and  
forecasting systems

As	previously	noted,	Sotillo	et	al.	(2021)	used	a	set	of	struc-
tured grids in their limited area one-way downscaled nested 
coastal models for selected ports and coastal segments. One 
advantage of this strategy is that the computational burden 
of short time steps demanded by high resolution is limited 
to	the	finest	grid	nests	and	does	not	impact	the	efficiency	of	
the coarse parent grid.

More complex nested systems employ full coupling of parent 
and	child	nests	on	each	time	step,	including	two-way	commu-
nication	of	fine	scale	variability	back	to	the	parent,	a	feature	
supported in some models such as the Coastal and Region-
al Ocean COmmunity model (CROCO; 🔗6).	A	similar	nesting	
framework has been used in the Regional Ocean Modeling 
System (ROMS; 🔗7)	model	within	the	Coupled	Ocean-Atmo-
sphere-Wave-Sediment Transport system (COAWST; Warner 
et	al.	2008)	to	perform	numerous	research	studies	of	coastal	
and	nearshore	 circulation	 and	 geomorphology,	 though	 im-
plementation of this approach in operational systems is rare.

NOAA CO-OPS use the orthogonal curvilinear coordinate fa-
cility in ROMS to better represent details of irregular coast-
line shape and variable bathymetry in a number of estuaries 
of	the	U.S.	coastal	zone.	For	example,	the	Delaware	Bay	Oper-
ational Forecast System (DBOFS; 🔗8)	uses	a	curvilinear	grid	
that adapts the model domain to the general shape of the 
estuary	(Figure	3.2)	and	stretches	the	grid	resolution	from	4	
km offshore to 40 m within the tidal river.

However,	there	are	clear	limits	to	the	abilities	and	efficien-
cies of curvilinear structured grid models for coastal applica-
tions.	By	contrast,	unstructured	grid	models	(e.g.	FVCOM,	AD-
CIRC,	SELFE,	SUNTANS;	see	Fringer	et	al.	(2019)	for	references	
on	these	models)	have	enormous	flexibility	to	resolve	com-
plex	bathymetric	features.	They	efficiently	resolve	multiscale	
features by adapting grid orientation to follow the coastline 
or	the	isobaths,	telescoping	the	resolution	to	match	antici-
pated scales in the circulation.

6. https://www.croco-ocean.org
7. https://www.myroms.org
8. https://tidesandcurrents.noaa.gov/ofs/dbofs/dbofs_info.html

Figure 3.2.  NOAA CO-OPS Delaware Bay Oper-
ational	Forecast	System	(DBOFS)	curvilinear	grid	
domain	and	bathymetry	(top)	and	enlarged	view	
of	inset	area	(bottom)	showing	the	stretch	mesh	
~40 m resolution in the vicinity of the estuarine 
salt wedge and tidal river.
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Conventional	unstructured	grid	model	configurations	use	the	
same	time	step	throughout	the	domain,	so	regions	of	coarse	
resolution are often integrated with a time step vastly less 
than	necessary	 for	accuracy	or	stability,	 incurring	 in	a	 loss	
of	 efficiency.	 But	 a	well-crafted	mesh	will	 have	 a	 relative-
ly small proportion of cells where the resolution is coarse. 
For	example,	the	Great	Barrier	Reef	model	of	Legrand	et	al.	
(2006)	has	82%	of	the	cells	concentrated	close	to	reefs	and	
islands,	whereas	25%	of	the	area	of	the	domain	far	from	the	
coast is captured by less than 1% of cells.

As	 its	 name	 suggests,	 the	 SURF	 described	 by	 Trotta	 et	 al.	
(2021)	demonstrates	that	both	approaches	to	grid	design	can	
be implemented within a single system taking advantage of 
their respective strengths. 

The ability of unstructured grids to resolve exceptional de-
tail locally is illustrated by the application of the Stanford 
unstructured-grid,	 nonhydrostatic,	 parallel	 coastal	 ocean	
model	(SUNTANS)	to	achieve	~1	m	horizontal	resolution	at	a	
convergence zone between tidal channels in the Snohom-
ish	 River	 Estuary	 (Giddings	 et	 al.,	 2012).	 At	 this	 resolution,	
non-hydrostatic dynamics that are incorporated in the SUN-
TANS	computational	kernel	can	become	important.	However,	
in	operational	settings	that	encompass	much	larger	domains,	
fully resolving such coastal submesoscale detail is not feasi-
ble,	and	some	attempt	at	parameterization	is	necessary.

Approaches to parameterizing very high-resolution bathym-
etry in lower resolution models are discussed by Fringer et 
al.	(2019),	who	draw	particular	attention	to	the	sub-grid	ba-
thymetry	method	of	Casulli	(2009)	for	improved	representa-
tion of wetting and drying processes for coastal sea level in-
undation.	This	approach,	which	preserves	the	cross-section	
area of cell faces on the basis of bathymetric data available 
at	resolution	finer	than	the	model	mesh,	was	used	to	great	
effect	 by	MacWilliams	 et	 al.	 (2016)	 in	 simulations	with	 the	
UnTRIM	model	(Casulli	and	Zanoli,	2005)	of	the	San	Francisco	
Estuary	 (Figure	3.3).	Accuracy	similar	 to	the	high-resolution	
(~10	m)	version	of	the	model	was	achieved	with	an	order	of	
magnitude fewer cells and a 40-fold speed-up in run time. 
For coastal inundation forecasting – an important applica-
tion of operational coastal ocean modeling – is essential to 
follow these careful steps to represent coastal submesoscale 
bathymetric	detail,	as	well	as	to	achieve	acceptable	run-time	
for the timely delivery of forecast guidance.

The	 meaningful	 configuration	 of	 an	 operational	 system	 at	
such high resolution clearly requires the existence of compa-
rable resolution bathymetric data. These are becoming more 
widely available with the increasing use of airborne LIDAR 
and concerted efforts to merge independently acquired data 
sets	into	unified	gridded	products	with	harmonized	vertical	
datum.	For	example,	coastal	relief	(both	water	and	adjacent	
land)	is	digitized	at	1/3	arc	seconds	(~10	m)	for	many	sectors	

of the US East coast that are subject to frequent storm surge 
inundation	or	at	tsunami	risk,	and	for	most	estuaries	bathy-
metric data at 30 m resolution are available. 

In contrast to the great challenge of adequately representing 
horizontal	detail	in	coastal	ocean	models,	vertical	resolution	
is seldom a limitation in operational models. The widespread 
use in coastal models of terrain following coordinates retains 
vertical resolution in shallow water; in ROMS and CROCO this 
can	be	 further	 stretched	 toward	 the	 surface	or	 seafloor	 to	
give added resolution in frictional boundary layers. 

Vertical turbulence closure schemes for operational coast-
al	 models	 are	 mature,	 including	 the	 parameterization	 of	
wave-current	 interaction	 processes	 that	modify	 bed	 stress,	
wave	radiation	stress	and	Stokes	drift,	and	models	can	exploit	
wave data or a wave model if they are available in conjunction 
with	 the	 circulation	model.	 In	 this	 topic,	 there	 is	 active	 re-
search and development on parameterizing the roles of sub-
aquatic	vegetation	(Kalra	et	al.	2020)	and	semi-porous	reefs	
on drag and circulation to adequately represent the drag in 
flooded	areas	during	unusually	severe	inundation	events.

Summarizing,	the	current	best	practices	for	multi-scale	model-
ing from global to regional to coastal scales favor global and 
basin resolutions of order 1/12º,	with	downscaling	to	~4	km	in	

Figure 3.3.  Comparison between high-resolu-
tion	(left)	and	coarse-resolution	(right)	from	the	
Bay–Delta model grids by the UnTRIM model in 
the	region	of	Mildred	Island,	San	Francisco	Estu-
ary,	U.S.,	showing	the	savings	in	resolution	with	
little loss in accuracy by the application of sub-
grid-scale bathymetry parameterization – from 
MacWilliams	et	al.	(2016).
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regional	seas	and	sub-kilometer	scale	in	coastal	applications,	
estuaries and ports. This hierarchy of scales in typical applica-
tions	was	corroborated	also	in	reviews	such	as	Holt	et	al.	(2017).

For	coastal	domains,	unstructured	grid	models	remain	pop-
ular	for	the	substantial	flexibility	they	offer	in	representing	
complex	topographic	regimes.	At	regional	scales,	the	choice	
for	the	appropriate	model	is	wide	and	this	is	reflected	in	the	
diversity of model codes used by operational agencies. It 
should be kept in mind that resolution is only one constraint 
on	model	 fidelity.	 Forecast	 systems	benefit	 from	advanced	
data assimilation in the analysis step that informs the initial 
conditions of a forecast. While advanced data assimilation 
at global and basin scales is mature and widely employed in 
operational	systems,	these	methods	have	yet	to	be	applied	
seriously in operational coastal and estuarine environments. 

When	this	happens,	aided	by	the	emergence	of	comprehen-
sive	high-resolution	coastal	observing	networks,	they	place	
an added burden on computational effort and may demand 
reassessment of the resolution necessary to meet the infor-
mation requirements of stakeholders.

While it seems unlikely that very small scale nonhydrostatic 
vertical processes will be resolved in operational systems in 
the	near	future,	there	is	progress	on	their	parameterization	
within conventional primitive equation models (e.g. Dong et 
al.,	2021).	There	 is	 further	ongoing	research	 in	both	coastal	
modeling techniques and parameterization of other process-
es	 (Fringer	et	al.,	 2019)	 for	a	comprehensive	overview)	and	
many of these developments are expected to advance from 
research to operations in due course.

3.4.  
The temporal scales: different applications of numerical 
modeling to solve ocean problems 
The ocean displays variability of physical parameters across 
a	very	wide	range	of	spatial	and	temporal	scales,	from	min-
utes to centuries and millennia and from centimeters to the 
dimension	of	ocean	basins	 (Benway	et	al.,	 2019).	As	shown	
in	Figure	3.4,	this	feature	makes	the	ocean	a	greatly	complex	
system,	characterized	by	 interactions	between	a	great	deal	
of processes at many different time/space scales (in which 
small	scales	can	affect	large	ones	and	vice	versa).

Operational	 forecasting	 services,	 as	 defined	 in	 Section	 3.1,	
typically deal with problems with a forecast horizon from 
hours	to	days,	and	time	intervals	at	which	the	solutions	are	
presented to users can vary from hours to minutes. Neverthe-
less,	ocean	models	can	be	used	for	other	purposes	at	longer	
time	scales,	such	as	seasonal	prediction	and	climate	model-
ing. Climate models are based on well-established physical 
principles,	and	it	has	been	shown	that	they	can	reproduce	ob-
served features of recent climate and past climate changes.

There	is	considerable	confidence	that	AOGCMs	provide	cred-
ible	quantitative	estimates	of	future	climate	change,	partic-
ularly	at	large	scales,	although	uncertainties	still	remain.	As	
stated	in	the	Randall	et	al.	(2007)	contribution	to	the	Physical	
Science Basis Contribution of Working Group I to the Fourth 
Assessment	Report	of	the	IPCC,	there	are	different	levels	of	
skill in simulating the various ECVs.

Long-term	climate	change	projections	reflect	how	human	activ-
ities and/or natural effects can alter the climate over decades 
and centuries. The principal driver of long-term warming is the 
large cumulative emission of CO2 over time from many an-
thropogenic	 sources.	 In	 this	 context,	 it	 is	 important	 defin-
ing	scenarios,	using	specific	 time	series	of	emissions,	 land	
use,	atmospheric	concentrations	or	radiative	forcing	across	
multiple	models,	which	 allows	 for	 coherent	 climate	model	
intercomparisons and synthesis. As stated by Collins et al. 
(2013),	 for	 the	 above	 purpose	 is	 used	 information	 from	 a	
range	of	different	modeling	 tools,	 from	simple	energy	bal-
ance models to the highly complex Earth System dynamical 
climate models. The CMIP Phase 5 utilizes an unprecedented 
level	of	information	on	base	projections,	including	the	more	
complete	representation	of	forcings,	and	has	produced	new	
RCP	scenarios	(i.e.	RCP2.6,	RCP4.5,	RCP6,	and	RCP8.5).	Thanks	
to the coordination of model experiments and outputs by 
the	CMIP5	group,	 the	World	Climate	Research	Program	and	
its Working Group on Climate Models have been able to step 
up efforts to evaluate the ability of models to simulate past 
and current climate and to compare future climate change 
projections. This ‘multi-model’ approach is now a standard 
technique used by the climate science community to gen-
erate	and	assess	projections	of	a	specific	climate	variable.

Substantial progress has been made in understanding the 
climate	scales,	as	well	as	 in	simulating	important	modes	of	
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climate	variability;	as	a	consequence,	the	overall	confidence	
in the capacity of models to represent important climate pro-
cesses has increased. These improvements in AOGCMs are 
due in large part to the continuous development of the oce-
anic model component in recent years. There have been im-
provements	in	terms	of	resolution,	computational	methods,	
and	parametrizations;	furthermore,	additional	new	processes	
have been progressively added to the ocean models used to 
simulate	multi-year	periods	and	climate	projections,	enhanc-
ing the complexity of the ocean climate model component. 

As	 previously	 mentioned,	 ocean	 model	 resolution	 has	 in-
creased	 (currently,	 the	 state-of-the-art	 is	 eddy-resolving	
models)	and	ocean	climate	models,	especially	regional	mod-
els,	 are	 abandoning	 the	 ‘rigid	 lid’	 treatment	 of	 the	 ocean	
surface	that	filters	out	some	high	frequency	processes.	New	
physical	numerical	parametrizations,	including	true	freshwa-
ter	fluxes,	and/or	improved	river	and	estuary	mixing	schemes,	
better advection and mixing schemes are now widely used. 
All these improvements have led to the reduction of the 
uncertainty associated with the use of less sophisticated 
parametrizations.	Finally,	 it	should	be	mentioned	that	there	

has been substantial progress in developing the cryospheric 
components of AOGCMs. Almost all state-of-the-art AOGCMs 
now	include	sea	 ice,	with	more	elaborate	sea	 ice	dynamics,	
while many also include several sea ice thickness categories 
with relatively advanced thermodynamics and rheology.

Efforts to enhance the quality of climate projections are al-
ways related to the computational resources dedicated to 
the	 ocean	modeling	 component,	 but	 currently	 there	 is	 no	
consensus on the optimal way to divide computer resources 
among	 the	 following	 components:	 i)	 finer	 numerical	 grids,	
which	 allow	 for	 better	 simulations;	 ii)	 greater	 numbers	 of	
ensemble	members,	which	allow	 for	better	 statistical	 esti-
mates	of	uncertainty;	and	iii)	 inclusion	of	a	more	complete	
set	of	processes	(e.g.	carbon	feedbacks).	Finally,	it	has	to	be	
mentioned that there is also an important ongoing activity in 
terms	of	ocean	climate	regionalization,	which	has	been	de-
veloped in the framework of national and regional climate 
services initiatives with special emphasis on coastal climate 
impacts and applications.

Figure 3.4.  Temporal and spatial scales of selected ocean processes.
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An	OOFS,	with	a	global	to	regional	scale,	is	based	on	numer-
ical	modelling	of	the	ocean	dynamics,	biogeochemistry,	and	
wave and data assimilation schemes for blending observa-
tions into the model and for providing the most accurate ini-
tial	condition	for	the	forecast	 (Tonani	et	al.	2015).	An	OOFS	
at coastal scale may usually use information from global/
regional scales in terms of initial and boundary conditions to 
initialise and force its ocean model core in a very limited area 
in order to provide very accurate spatial-temporal solutions 
and may not necessarily use data assimilation methods.

In	general,	to	produce	a	forecast	we	need	to:

1. know	what	the	ocean	is	doing	now	(initial	condition);
2. calculate	how	the	ocean	will	change	in	future	(forecast);
3. use	 oceanographic	 expertise	 to	 validate	 and	 refine	
the	output	(products).

These	three	steps,	represented	in	Figure	4.1,	are	based	on	a	
few	basic	components:	observations,	numerical	model,	and	
oceanographic expertise. Most of the systems rely on data 
assimilation techniques (see Section 4.4 for a general intro-
duction and Section 5.5 for more details about numerical 
schemes)	 for	 blending	 observation	 and	models;	 therefore,	
data assimilation can be considered as one of the essential 

components of the system. In the case of coastal forecasting 
systems,	downscaling	from	global/regional	scale	is	the	pre-
ferred approach as described in Section 5.4.4.

Step 1 is the production of the most accurate initial condi-
tion about the variables the forecasting system is aiming to 
predict. This means that we need the best knowledge of the 
present status of each variable at every model grid point. This 
information	is	difficult	to	retrieve	from	observations	because	
their spatial/temporal coverage is usually very sparse. Model 
simulations instead provide a uniform coverage in space and 
time	and,	 thanks	 to	data	assimilation	 techniques	observa-
tions,	 they	 can	be	blended	 into	 the	model	 simulation,	 im-
proving	their	accuracy.	For	data	assimilation,	it	is	common	to	
use	observations	from	multiple	sources,	maximising	the	data	
coverage and the type of variables measured by in situ and 
satellite instruments. The initial condition for the forecast is 
usually the result of a complex set of multiple simulations 
with data assimilation covering past hours or days. For global 
and regional oceanographic systems it is common to have 
a data assimilation cycle of the order of a few days. These 
simulations of the past provide not only the best knowledge 
for initialising the forecast of the present but also valuable 
information on the near present that can be included in the 
final	product	delivered	to	the	users.

4.1.  
Modelling systems architecture

FORECAST

STEP 3STEP 2STEP 1

DATA ASSIMILATION
MODELLING SYSTEM NUMERICAL MODEL PRODUCTS

Output
Initial

conditions

Observations Forcing Fields Forcing Fields Verification

ANALYSIS

REANALYSIS

DISSEMINATION
& ARCHIVING

Figure 4.1.  Scheme of steps and main components of a forecasting system and of its architecture.
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The model usually needs some external forcing as input. 
The type of information needed at its boundaries (e.g. ocean/
atmosphere,	lateral	boundaries,	along	the	coast,	etc.)	can	
vary from model to model. An ocean dynamical model usu-
ally needs an atmospheric forcing from a real time weather 
prediction system to resolve the processes at the ocean/at-
mosphere interface. A regional/coastal model requires river 
runoff data at the interface with the coast and input values 
for its variables at the lateral boundaries. In case of coupled 
models (see Chapter 5 and Chapter 10,	for	example),	external	
forcing	fields	might	not	be	needed.

Step	2	is	the	projection	in	the	future,	the	production	of	the	
forecast that is done by running the numerical model for 
hours,	days	or	months	in	the	future.	The	forecast	lead	time	
can vary from hours to days. Many systems have a forecast 
lead	time	of	3-15	days.	The	same	forcing	fields	described	in	
Step 1 are needed also for the forecast. The forcing fields 
could	be	from	another	forecast	like	the	atmospheric	forcing,	
that	usually	is	from	a	weather	prediction	system,	or	they	can	
be provided by climatological values or persisting the last 
available value.

Once	the	model	has	produced	the	forecast,	 it	 is	validated	
and its output post processed to a standard format for the 
delivery	 to	 the	 users	 (Step	 3	 in	 Figure	 4.1).	 The	 validation	
of the forecast cannot be done via direct inter-comparison 
with observations but is based on the validation of its initial 
condition and on studies covering an extended period in the 
past of the model skills.

As	explained	before,	observations	are	a	key	component	but	
have to be made available in real time and in a standard for-
mat. Observations in real time are usually ready to be used 
within a few hours from their acquisition but sometimes they 
can have delays of more than 24 hours. Timing of data avail-
ability	will	influence	the	design	of	the	production	cycle	that	
has to compromise between using the maximum number of 
the observations and reducing the delay in the forecast re-
lease. The choice to be made has also to consider the need to 
release a new forecast as soon as possible even if this could 
imply a degradation of its accuracy.

The	timeliness	of	the	forcing	fields	is	another	limiting	factor	
in the design of the production chain. We can take as an ex-
ample a wave forecasting system in which the accuracy of the 
predicted	fields	 is	 strongly	 correlated	with	 the	accuracy	of	
the winds. We have to wait until the latest and more accurate 
wind forecast is made available before starting our produc-
tion. Different solutions can be implemented depending on 
the characteristics of each system. The computational time 
needed for running each of the three steps described is a 
very	important	aspect	as,	depending	on	the	cost	for	running	
a	specific	system,	it	could	be	a	limiting	factor.

Timeliness is of paramount importance for the users and the 
production time should be reasonably short to avoid deliv-
ering forecasts referring to the past. A rule of thumb is that 
the production time needs to be consistently less than the 
production frequency. It means that for a daily cycle (produc-
tion	of	a	forecast	once	a	day)	the	production	time	should	be	
of the order of a few hours.

Even if the information provided in this section is focused 
on	a	forecasting	system,	with	few	modifications	it	can	be	
also applied to a multi-year production system to produce 
a reanalysis. The main difference is that in this case you are 
not projecting in the future but in the past. This implies that 
you can blend observations and model simulations at each 
time step. The model is continuously corrected by the ob-
servations,	 increasing	 the	accuracy	of	 the	 simulations.	 The	
atmospheric forcing usually is also more accurate because it 
is	an	analysis	and	not	a	forecast,	and	hence	the	observations	
have been subject to a more restrictive data quality control 
compared to the real time ones. 

The multi-year production is composed only of Step 1 and 
Step	3.	In	this	case,	in	Step	1	the	model	and	data	assimila-
tion cover a few hours/days spans over multiple decades of 
years. As the multi-year products are not limited by the time-
liness,	usually	their	major	constraints	are	the	computational	
time that can be extremely expensive as well as the avail-
ability of homogenous sources of forcing. These differences 
with respect to other forecast products have to be taken into 
account in the design of the production cycle.

In the next subsections the architecture details at the basis 
of an OOFS will be introduced.

4.1.1. Step 1 processes

4.1.1.1. Data access and pre-processing

The data access and pre-processing component should make 
available all the needed dataset that will be used to perform 
the	analysis,	and	then	the	forecast	(Step	2).	Automatic	acqui-
sition of the data is mandatory for an operational system. 
It	could	be	quite	demanding	depending	on	the	dataset,	the	
centres	(or	data	providers)	involved	in	data	production	and	
treatment,	and	the	available	network	to	connect	the	centres.	
For	most	of	the	dataset	used	in	OOFS,	at	least	a	daily	update	
is needed. 

For	atmospheric	forcing	the	volume	of	the	dataset	can	be	big,	
and	 an	 efficient	 connection	 to	 Operational	 Meteorological	
Centres in charge of operational production of atmospheric 
analysis	and	forecast	is	critical.	For	example,	the	volume	of	
hourly	surface	forcing	fields	from	the	ECMWF	at	global	scale	
is	34	GB	per	day.	Then,	data	pre-processing	is	necessary	to	
interpolate	the	atmospheric	fields	to	the	ocean	grid,	if	there	
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is inhomogeneity between frequency of available forcings 
during	the	length	of	the	specific	run,	atmospheric	datasets	
must also be interpolated temporally. When a regional ocean 
model	 is	 employed	 instead	of	a	 global	model,	 the	 retreat-
ment of the atmospheric dataset may substantially reduce 
the volume of the atmospheric dataset and reduce the over-
all storage cost.

In-situ ocean observations can be downloaded in real time 
using WMO GTS or from dedicated interface such as the ser-
vice developed in the Copernicus Marine Service (Le Traon 
et	al.,	2019),	 in	which	in	situ	observations	are	made	avail-
able,	documented,	quality	controlled,	and	homogenised,	all	
very important tasks to be performed before assimilating 
such dataset in an OOFS. Satellite observations need to be 
pre-processed by a dedicated centre before their assimila-
tion in an ocean operational system. Satellite observations  
are processed at various levels ranging from Level 0 to Level 
4 which need to be made available depending on the data 
type.	For	example,	Copernicus	Marine	Service	also	provides	
a unique access point to download all the available satellite 
observations in real time.

4.1.1.2. Data assimilation: analysed fields

Ocean	analysis	is	based	on	a	model,	observations,	and	data	
assimilation scheme to provide the initial state of the fore-
cast	on	the	basis	of	a	minimum	error	principle,	i.e.	the	data	
assimilation	modelling	system	(Figure	4.1).	This	component	is	
central	processing	unit	(CPU)	consuming	and	should	be	per-
formed on a supercomputer. High performance computing 
power	is	one	of	the	most	important	constraints	to	define	the	
resolution	of	the	analysis	system,	along	with	the	number	of	
observations that will be assimilated in the system and the 
frequency and length of the analysis cycle. In an operation-
al	 framework,	 the	analysis	 cycle	 should	be	performed	 in	a	
range	of	 a	 few	minutes	 to	a	 few	hours	 (maximum),	 choos-
ing	the	best	compromise	between	performances,	quality	of	
the	analysis,	and	robustness	of	the	operational	system.	This	
component will provide the initial state for the ocean fore-
cast. The resulting time series of analysed ocean state is de-
fined	as	the	best	analysis	time	series.	

To	perform	an	ocean	analysis,	we	need	the	initial	state	of	the	
model,	based	on	the	prior	state	of	the	model	at	the	end	of	
the	previous	analysis	cycle,	in	situ	and	satellite	observations,	
and	 atmospheric	 forcing	 analysis	 fields,	 collected	 and	 for-
matted in the previous acquisition and pre-processing phase 
(including	all	the	static	files	that	are	necessary	for	the	data	
assimilation	modelling	system).	Outputs	of	this	component	
are	3D	fields	to	update	the	best	analysis	time	series	and	re-
start	files	 to	 initialise	 the	next	ocean	 forecast.	Other	diag-
nostics,	metrics	or	post-processing	may	be	computed	online	
directly	during	the	analysis	cycle	to	optimise	the	system,	and	
used as additional products for dissemination and archiving. 

Such products are also used during the validation phase (e.g. 
the	mixed	layer	depth,	the	collocation	between	model	out-
put	and	observations,	transports,	etc.).

Note that in some coastal forecasting systems there is no di-
rect	data	assimilation.	If	the	model	domain	is	small,	in	some	
occasions there is simply no available data to be assimilated. 
In	these	cases,	the	system	relies	totally	on	the	boundary	con-
ditions	and	initial	3D	fields	derived	from	a	larger	scale	model	
(see	Section	5.4.4	for	downscaling	examples).

4.1.2.  Step 2 processes

4.1.2.1. Forecast

The ocean forecast at some range is based on the numerical 
model initialised by the ocean analysis and forced by the 
atmospheric	forecast	fields	as	provided	by	the	operational	
atmospheric	centre.	In	most	cases,	the	same	model	is	used	
for both the forecast component and the analysis compo-
nent,	even	 if	differences	 in	terms	of	resolution	and	physi-
cal parameterizations could be envisaged especially in the 
framework of an ensemble forecast. The same constraints 
mentioned above about high performance computing ap-
ply in order to perform forecasts that are usually updated 
at least every day. Forecast range will also depend on the 
computing resources and on the main processes that have 
to	be	 forecasted	with	a	 reasonable	 skill	 (to	be	defined	by	
the	 developer	 of	 the	 forecasting	 system).	 The	 forecasting	
cycle should be performed in a range of a few minutes to 
a few hours. Inputs of the forecasting cycle are the initial 
state produced by the data assimilation modelling system 
(e.g.	ocean	analysis),	all	the	static	files	needed	to	integrate	
the	model,	and	the	atmospheric	forcing	for	the	full	forecast	
length. The forecast output is updated every day and con-
sists	of	3D	and	2D	ocean	fields;	it	may	include	diagnostics,	
metrics and other post-processed dataset that can be use-
ful	to	assess	the	quality	of	the	product,	to	highlight	specific	
features	of	the	forecasted	ocean	properties	and	for	the	final	
delivery to users.

4.1.3. Step 3 processes

4.1.3.1. Post-processing

The post processing phase is devoted to building all the 
products that will be delivered to the users. It consists of 
files	or	datasets	that	are	provided	according	to	a)	standard	
file	 format	 (e.g.	 according	 to	CF	Conventions,	🔗1);	 b)	on	a	
specific	grid;	and	c)	with	homogeneous	variables	and	meta-
data. Such products may be then used to compute new prod-
ucts	 as	 ocean	monitoring	 indicator	 (OMI),	 ensemble	mean	
and standard deviation in the framework of ensemble forecast. 

1. https://cfconventions.org/
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This post processing should be performed on a supercom-
puter in which all datasets provided by the analysis and 
forecast components are stored in order to save resources 
in the computing centre. Computing cost of this stage could 
be really high (for example, due to the interpolation proce-
dure in the case that the products are delivered on a specific 
grid) and would also include large data transfer and input/
output access. The inputs of the post-processing component 
are represented by all datasets produced during the analysis 
and forecast cycles, while the outputs are all the products 
that will be delivered for internal and external users.

4.1.3.2. Validation

The objective of the validation component is to provide in-
formation on the quality of the operational system. The qual-
ity of the analysis is compared to already known or expected 
results (based on literature or climatological datasets) or to 
available observations. Quality of the forecast is performed 
by computing forecast skill in comparison to the analysis 
with the observation in delayed mode. The final step is to 
provide all this information to forecasters and users. Input 
of this component are model products, diagnostics and met-
rics computed during previous steps and the output could be 
numerical fields, time series and/or interactive maps that al-
lows, through web interfaces or other kinds of applications, 
direct querying, comparison of different periods, and valida-
tion of the production.

To run an OOFS as part of Step 1, the following sources of 
information are needed:

• Observations of EOVs are extremely important for an 
OOFS as they are used for assimilation and validation 
purposes. The main sources of observations are:

• In-situ observations:

• Buoys. Typically used to measure directional 
waves, atmospheric parameters (wind, atmospher-
ic pressure and air temperature), EOVs (currents, 
temperature and salinity) and, less frequently, 
biogeochemical parameters. Some stations mea-
sure only on the surface, while others extend their 
observations to the whole water column. These 
variables are used for all kinds of OOFS: Wave in-

4.1.3.3. Dissemination

The goal of the dissemination phase is to make all the prod-
ucts available to users on a dedicated infrastructure. This 
phase may be complex and the associated cost is very depen-
dent on objectives and user needs. If the dissemination of 
the	model	is	only	internal,	outputs	could	be	made	available	
through	an	intranet,	using	in-place	storage	capacities.	Other	
approaches are mandatory for a more complex system pro-
viding a very large dataset and long-time series and designed 
to	 be	 accessed	 by	 several	 thousands	 of	 users,	 including	 a	
catalogue	of	products	continuously	maintained	and	updated,	
dedicated	 services	 for	 viewing,	 extracting	and	downloading	
the data. Cloud storage facilities are now the best infrastruc-
ture to disseminate operational ocean products.

4.1.3.4. Monitoring

The monitoring component is an important part of an op-
erational system as it allows operators and forecasters to 
monitor	the	performances	along	all	the	production	phases,	
from data access to dissemination. KPIs should be moni-
tored	during	this	phase,	including	availability	of	inputs	and	
outputs	during	each	phase,	timeliness,	time	of	delivery	and	
delay	of	each	component,	anomaly	and/or	errors	identified	
during each phase. Monitoring phase should be used to pro-
vide information to the users and to decide on a go/no-go 
to disseminate the products externally. Monitoring phase 
should be presented on a dedicated dashboard.

formation is critical for validation and is occasion-
ally used in assimilation; oceanographic data are 
widely used in circulation modelling and the scarse 
biogeochemical stations are critical to complement 
the existing climatological data;

• Tide gauges.	Measuring	sea	 level,	 tide	gauges	
are extremely useful for the validation of storm 
surge	and	circulation	models,	sometimes	also	used	
in	data	assimilation.	 In	 recent	 times,	with	 the	 in-
creased frequency sampling of modern tide gauges 
their use to validate wave models in coastal re-
gions has extended;

• Argo drifters. Typically measuring profiles of 
salinity	 and	 temperature.	 More	 recently,	 bio-geo-
chemical parameters are also being incorporated. 

4.2.  
Inputs required
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This is an essential source of information for large 
scale circulation modelling;

• Ship-of-opportunity. Usually measuring SST and 
SSS via thermosalinograph or releasing Expend-
able Bathythermograph to measure temperature 
throughout the water column. These data are usu-
ally employed for circulation modelling;

• Gliders.	Gliders	can	provide	a	3D	field	of	ocean	
structures that can be highly valuable for valida-
tion of circulation modelling and assimilation in re-
gional and coastal scales. Gliders can also provide 
valuable biogeochemical information;

• HF radars. The surface current fields are used 
for validation and data assimilation in circulation 
models.	Additionally,	the	wave	measurements	can	
be used for validation in wave forecasting systems;

• Marine Mammals CTDs. As in the case of the 
gliders,	this	is	an	increasingly	important	source	of	
information that allows us to gather detailed infor-
mation on small-scale ocean and coastal features.

• Satellite observations provide information on the 
following variables: 

• Sea level anomaly. These data are a critical 
variable for data assimilation in large scale circu-
lation models;

• Sea surface temperature.	 As	 the	previous,	usu-
ally it is employed in data assimilation as well as 
in validation of ocean circulation forecast systems;

• Sea ice concentration. Used for both validation 
and	data	assimilation	in	ice	models,	coupled	to	cir-
culation models;

• Waves. This variable is being used in large scale 
wave	 forecast	 systems	 for	 data	 assimilation	 and,	
on	some	occasions,	for	validation;

• Ocean colour. Mainly employed for assimilation 
and validation in biogeochemical models. Can also be 
used as a secondary source for validation in circula-
tions,	since	sometimes	coastal	structures	are	evident.

• Bathymetric datasets. Bathymetry is at the base 
of	every	OOFS	and,	therefore,	it	is	indispensable	for	
all systems;

• Surface forcing. Provided by operational NWP sys-
tems. These data are used for describing air-sea-sea 

ice	interactions.	Momentum,	heat	and	freshwater	flux-
es are of paramount importance for all the processes 
at sea. Therefore this forcing is needed in almost any 
OOFS,	with	only	a	few	exceptions	(for	example,	some	
very high resolution wave propagation systems can op-
erate	without	it,	because	the	influence	of	forcing	is	al-
ready	considered	on	other	larger	scales);

• Land forcing fields (i.e. discharge of water and nu-
trients	 from	 rivers).	 Mainly	 used	 in	 circulation	 and	
biogeochemical modelling. This source of data is very 
relevant to provide accurate solutions at the coastline. 
Unfortunately,	on	some	occasions	real	time	data	are	not	
available and the modellers must rely on climatologies;

• Ocean fields. They are provided by OOFS at larger 
scale to work as initial and boundary conditions (for 
example	3D	temperature	fields	 for	downscaling	appli-
cations	in	circulation	modelling).	When	nesting,	it	is	
indispensable	to	have	these	fields.	It	is	a	frequent	tech-
nique in all kinds of regional scale and coastal OOFS;

• Climatologies. Sometimes climatologies are em-
ployed for validation or initialization when no other 
data are available. These data sources are also em-
ployed	in	validation	processes,	to	check	that	the	mod-
els do not depart too much from real values in regions 
where measurements are not frequent.

The	following	sections	contain	first	an	introduction	on	how	
to deal with ocean data from the perspective of the data pro-
vider,	and	then	a	description	of	the	above	mentioned	data	
sources,	including	a	list	of	international	providers.

4.2.1. Obtaining and preparing ocean data

The quality of OOFS products is highly dependent on the 
availability of in situ and satellite observations; these are 
used,	 through	 data-assimilation,	 to	 constrain	 the	 analysis	
and	 the	 forecasting	 systems,	 and	 validate	 their	 outputs.	
However,	prior	 to	use	 these	observations,	 they	need	 to	be	
properly	retrieved,	efficiently	organised,	and	carefully	quali-
ty	controlled	(Le	Traon	et	al.,	2009).	In	the	architecture	of	an	
OOFS,	 this	 is	accomplished	by	 the	so-called	DMS,	 the	data	
management component. The ultimate goal of this system 
is	to	ease	the	use	of	oceanographic	observations,	providing	
consistent and harmonised products ready to be used for 
data assimilation and validation.

Figure	4.2	shows	how	data	flow	should	be	organised	in	a	DMS.	
To	get	the	most	out	of	information,	a	DMS	is	responsible	for	
gathering and organising the ocean observations (satellite 
and	 in-situ)	 in	 high-quality	 products	 and	 then	 to	 dissemi-
nate them in a timely fashion that meets the requirements 
of	modelling	and	data	assimilation	centres.	Once	acquired,	
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observation must be supplemented by uncertainty estimates 
and	quality	flags	(part	of	the	quality	control	process),	which	
are	key	for	validation	and	data	assimilation.	Then,	they	are	
prepared	according	to	the	specific	file	formats	and	distribut-
ed to users.

4.2.1.1. Data retrieval and characterization

First task of a DMS is to gather observations available from 
selected	 data	 providers	 (e.g.	 space	 agencies,	 international	
in-situ	data	networks,	etc.).	The	choice	of	observations	to	be	
retrieved,	 processed	 and	delivered	depends	on	 a	 previous	
analysis of the needs expressed by the prediction systems. 
In	general,	a	tight	coordination,	upstream	with	data	provid-
ers	and	downstream	with	prediction	systems,	is	necessary	to	
keep needs updated and ensure that the required observa-
tions are provided timely.

Ocean	observations	are	made	using	several	sensors,	includ-
ing	in	situ	and	remotely	sensed	ones,	covering	a	broad	range	
of spatial and temporal scales. Ocean observations made by 
remote sensing sensors usually include data for monitoring 
sea	level,	SST,	salinity,	surface	wind	and	currents,	sea	ice,	and	
ocean colour; these observations are acquired on a global 
basis and distributed at several different levels of process-
ing,	ranging	from	raw	data	to	detected	geophysical	variables.	
Space	Agencies	(e.g.	ESA,	NASA,	EUMETSAT,	JAXA)	are	respon-
sible for the provision of such observations.

In-situ observations are of paramount importance for OOFS 
because they provide information about the ocean interior 
that cannot be observed from space. In-situ observations 
can locally sample high-frequency and high-resolution ocean 

processes,	in	particular	in	the	coastal	zone,	that	are	essential	
for model and satellite validation activities. In-situ observa-
tions are acquired through various network programs at both 
global and regional scale.

Data	from	a	global	prediction	system,	to	be	used	to	define	
boundary	 conditions	 of	 a	 nested	 regional	 one,	 or	 terrain/
atmospheric forcing in certain scenarios will be part of the 
data to be inputted in the prediction system. 

Knowledge of the processes that have been undertaken to 
produce a given observation and its characteristics is of high 
importance,	as	it	allows	a	user	to	decide	upon	the	product’s	
fitness	for	a	particular	application.	To	this	end,	it	is	import-
ant to ensure that metadata associated with each of the 
retrieved dataset contain the appropriate information (e.g. 
instrument/platform	 characteristics,	 tests	 performed	 and	
failed,	 origins	 of	 the	 data	 stream,	 data	 processing	 history,	
and	information	about	the	datasets).

4.2.1.2. Quality Control

In	general,	a	Prediction	System	needs	two	types	of	input	data.	
Initially NRT data are needed for hourly to weekly forecasting 
activities; at a later stage and for applications in which long-
term	stability	is	needed	(e.g.	reanalysis,	climate	monitoring,	
and	seasonal	forecasting),	DM	data	comes	into	play.	Due	to	
their	different	utilisation,	quality	control	procedures	for	the	
two types of data are applied in different ways and with dif-
ferent methodologies.

NRT	 input	 data,	 delivered	within	 a	 few	hours	 to	maximum	
one	week	from	acquisition,	are	usually	automatically	quality	

Figure 4.2. 	 Typical	DMS	data	flow	from	upstream	international	networks	for	OOFS.	
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controlled using a priori agreed upon procedures. For in-si-
tu	observations,	quality	control	tests	aim	mainly	at	detect-
ing outliers; these procedures check for inconsistencies in 
the measurements often using local statistics built from a 
long time series of similar data. Quality control of remote-
ly sensed observations is performed by comparisons with 
in-situ	 observations	 when	 available,	 or	 by	 comparison	 to	
long-time	series	 (i.e.	 climatologies)	derived	 from	 the	same	
product.	 These	procedures	aim	at	defining	 the	accuracy	of	
the product and detecting anomalous observations. As a 
result,	 for	both	 in-situ	and	 remotely	 sensed	NRT	products,	
quality	 flags	 are	 positioned	 to	 inform	 the	 users	 about	 the	
level	of	confidence	and,	where	possible,	the	level	of	accuracy	
attached to the observations.

In-situ DM data are usually subject to an off-line quality con-
trol using statistical tests to check for spatial consistency 
and	 to	 a	much	more	 refined	 climatology	 test,	 usually	with	
strong	 involvement	of	scientific	experts	 in	the	quality-con-
trol process. Satellite observations delivered in DM usually 

2. https://doi.org/10.48670/moi-00036

benefit	from	improved	ancillary	data	(e.g.	more	precise	sat-
ellite	ephemerides,	meteorological	 reanalysis,	etc.)	used	 in	
the	retrieval	process,	resulting	in	a	more	accurate	product.

Besides the activities aimed at establishing the quality of 
the	required	observations,	a	DMS	shall	also	monitor	the	per-
formance	of	the	different	providers	in	terms	of	availability,	
possible	degradation	of	their	sampling,	and	timeliness.	This	
additional information also needs to be regularly provided 
to prediction systems making use of these observations.

A	DMS	should	also	set	up	a	procedure	to	gather,	in	form	of	
reports,	regular	information	on	the	data	that	have	not	been	
used	by	the	prediction	systems,	because	they	were	deemed	
to	 be	 of	 inadequate	 quality;	 this	 procedure,	 often	 called	
“Blacklisting”,	has	significant	value	for	improving	automated	
procedures for data quality control. 

Table	4.1	shows	the	standard	quality	control	(QC)	indexes	as-
signed to Copernicus Marine Service in-situ and satellite data.

Code Meaning Comment

0 No QC was performed -

1 Good data All real time QC tests passed.

2 Probably good data These data should be used with caution.

3 Bad data that are potentially 
correctable These	data	are	not	to	be	used	without	scientific	correction.

4 Bad data Data have failed one or more of the tests.

5 Value changed Data may be recovered after transmission error.

6 Value below  
detection/quantification

The level of the measured phenomenon was too small to be detected/ 
quantified	by	the	technique	employed	to	measure	it.	The	accompanying	
value	is	the	detection/quantification	limit	for	the	technique	or	zero	if	that	

value is unknown.

7 Nominal value -

8 Interpolated value Missing data may be interpolated from neighbouring data in space or time.

9 Missing value -

Table 4.1. Copernicus	Marine	quality	control	flags	as	applied	to	Global	Ocean	In-Situ	Near-Real-Time	Observa-
tions	product	(INSITU_GLO_NRT_OBSERVATIONS_013_030,	🔗2).	
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4.2.1.3. Data Formats

Observations	usually	arrive	at	a	DMS	in	a	variety	of	formats,	
depending on the platform being used to acquire and broad-
cast them or on the software used to retrieve the variables 
of	interest.	For	ease	of	use,	a	DMS	will	format	all	the	incom-
ing observations in data structures which satisfy the OOFS 
requirements.	Data	 formats	 are	usually	defined	during	 the	
development of the OOFS infrastructure in coordination 
with the prediction systems and detailed in dedicated docu-
ments. Besides a detailed description of the format in which 
the	data	or	products	will	be	stored,	key	subjects	to	be	ad-
dressed in such documentation include:

• standards that will be used to build the data struc-
tures hosting the incoming observations (e.g. NetCDF 
format);

• semantics,	 provided	 by	 a	 recognized	 common	 con-
vention	 (e.g.,	 CF),	which	are	 then	used	 to	write	meta-
data; and 

• a description of the transformation algorithms for all 
data handling (e.g. transformation algorithms to/from 
standards).

To	 enhance	 interoperability	 and	 sharing	 of	 data,	 non-pro-
prietary solutions commonly used by the community are fa-
voured during the selection of data format.

4.2.1.4. Data Delivery

The ultimate task of a DMS is to deliver datasets required 
for assimilation and validation activities to prediction sys-
tems,	including	uncertainty	estimates	that	are	critical	for	the	
effective use of the data. For the best possible exploitation 
of	this	data,	an	easy-to-access	and	robust	service	to	visual-
ise and access present and past available observations and 
associated metadata must be deployed. Metadata include 
latency information on data availability as a key parameter 
in	 the	data	flow.	 It	 is	 important	 that	new	observations	are	
made accessible to the prediction systems with the shortest 
possible delay. 

Access to data can be achieved in different ways:

• “Pull services” enable users to request data accord-
ing to their needs; this type of service should integrate 
tools that allow constraining the area of interest and 
time covered by the information; 

• “Push	 Services”	 are	 often	 based	 on	 subscription,	
which literally push the data to users following pre-
scribed	specific	requirements.

Beyond	 visual	 navigation	 of	 data,	 a	 dissemination	 service	
should also include utility tools allowing transformation (e.g. 
format	conversion	and	coordinate	transformation),	aggrega-
tion,	and	integration	of	a	given	variable	regardless	of	source.

Another aspect to be considered as key for a successful dis-
semination service is the ability to perform appropriate ex-
tractions according to different data geometries (e.g. gridded 
datasets,	unstructured	gridded	data,	vertical	profiles	etc.).	

4.2.2. Description of existing in-situ 
observational oceanographic data

In	 the	next	 sections,	 it	will	 be	 introduced	 the	main	obser-
vational oceanographic data from in-situ platforms used by 
OOFS. Details about their usage in numerical modelling and 
validation,	as	well	as	providers,	are	described	in	Chapters	5	
to 9.

4.2.2.1. Buoys

Operational drifting buoys are a primary source of data on 
ocean surface conditions. They are deployed and maintained 
by	autonomous	groups,	subject	to	different	intergovernmen-
tal	agreements,	under	the	coordination	of	the	Data	Buoy	Co-
operation	Panel	(DBCP,	🔗3).	The	Global	Drifter	Program	(GDP)	
works in collaboration with national meteorological/ocean-
ic agencies to routinely deploy large quantities of drifting 
buoys in support of their research and operational programs. 
Maintaining drifting buoy density distribution is a major chal-
lenge,	due	to	the	difficulty	of	high	latitude	deployments	and	
because Lagrangian drifting buoys follow ocean currents and 
tend to cluster together near convergence zones.

Moored	buoys	are	anchored	at	fixed	locations,	reporting	tem-
perature	and	salinity	profiles,	and	are	concentrated	mostly	in	
the	tropical	oceans	and	the	coastal	regions	of	Brazil,	Europe,	
India,	and	the	United	States	(🔗4).	The	different	programs/
agencies responsible for handling the tropical mooring net-
works are: 

• the Tropical Atmosphere-Ocean/Triangle Trans-Ocean 
Buoy	 Network	 in	 the	 equatorial	 Pacific	 (TAO/TRITON)	
(McPhaden	et	al.,	1998);	

• the Prediction and Research Moored Array in the 
Tropical	Atlantic	(PIRATA)	(Bourlès	et	al.,	2008);

• the Research Moored Array for African-Asian-Austra-
lian	Monsoon	Analysis	and	Prediction	(RAMA)	in	the	In-
dian	Ocean	(McPhaden	et	al.,	2009).	

3. https://www.ocean-ops.org/board
4. https://www.ocean-ops.org/dbcp/platforms/types.html
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The	TAO/TRITON,	PIRATA	and	RAMA	moored	arrays	are	part	
of the DBCP’s moored buoy network through the Tropical 
Moored	Buoy	Implementation	Panel	(TIP).

Data from the DBCP GBN is transmitted through the GTS of the 
WMO	and	archived	by	the	operational	agencies.	At	present,	
the	GBN	has	over	1,380	drifting	buoys	and	260	coastal/na-
tional moored buoys and 70 tropical arrays. While COVID-19 
restrictions	 imposed	stress	on	deployment	opportunities,	
the drifting and moored buoy networks successfully main-
tained	a	healthy	and	resilient	status	in	data	quantity,	quality,	
coverage	and	timeliness,	due	to	the	prolonged	lifetime	and	
improved performance of buoys (🔗5).

4.2.2.2. Tide gauges 

Tide	gauges	are	instruments	on	fixed	platforms,	located	usual-
ly	along	the	coastline,	that	measure	water	level	with	respect	to	
a local height reference. Their primary objective is to support 
coastal	zone	monitoring	and	management,	tide	prediction,	
datum	definition,	harbour	operations	and	navigation;	addi-
tionally,	they	are	used	in	sea	level	hazard	warning	systems,	for	
climate	monitoring,	model	validation	and	assimilation,	and	to	
detect errors and drifts in satellite altimetry. Tide gauge data 
complement the sea surface height data provided by the spa-
tial	altimeters,	by	providing	higher	temporal	sampling	(up	to	1	
min	or	less,	allowing	detection	of	higher	resolution	sea	level	
phenomena)	from	in-situ	data	at	the	coast,	where	the	quality	
of altimetry is lower. 

The Global Sea Level Observing System (GLOSS; 🔗6)	is	the	
main	international	program	responsible	for	collection,	quali-
ty-control and archiving of tide gauge observations. The fol-
lowing data centres contribute to GLOSS data services:

• PSMSL (🔗7),	 responsible	for	the	global	database	of	
monthly and annual mean sea levels for long-term sea 
level change studies from tide gauges (🔗8);

• UHSLC (🔗9),	 in	which	high-frequency	tide	gauge	data	
(hourly	and	daily)	can	be	found.	Two	datasets	are	provid-
ed,	with	different	levels	of	quality	control:	research	quali-
ty	(updated	annually)	and	Fast-Delivery	(updated	every	1-2	
months);

5. https://public.wmo.int/en/media/news/ocean-observ-
ing-system-report-card-2020
6. http://www.gloss-sealevel.org
7. https://www.psmsl.org/
8. https://www.psmsl.org/
9. http://uhslc.soest.hawaii.edu

• IOC Sea Level Station Monitoring Facility (IOC/
SLSMF: 🔗10),	maintained	by	Flanders	Marine	Institute	
(Belgium),	provides	access	to	real-time	raw	tide	gauge	
data,	with	shorter	time	sampling	(<	1min)	for	tsunami	
monitoring;

• SONEL (🔗11) is the GLOSS data centre for GNSS time se-
ries	at	tide	gauge	locations,	if	available.	This	information	
is the source of vertical land movement at the site and 
provides an ellipsoidal height reference of the tide gauge.  

Figure 4.3 shows the global distribution of tide gauges to-
gether with the total number of installed stations from 1800 
to	 2000s	 (Hamlington	 et	 al.	 2016),	 collected	 by	 the	 PSMSL.	
It shows the sparse distribution of tide gauges stations in 
some	areas,	such	as	Africa	and	South	America.	

The EuroGOOS launched an initiative through its dedicated 
Tide	Gauge	Task	Team	(TGTT)	working	group	(🔗12)	 to	capi-
talise	the	expertise,	usage	and	further	 improvement	of	the	
tide gauges network in the continent. This working group 
has launched several actions to enhance the connection be-
tween GLOSS and European data portals such as EMODnet 
and Copernicus Marine Service. These data portals integrate 
tide	gauge	data	with	other	in	situ,	satellite	and	model	data,	
and provide a one-point access for most of the tide gauges 
data	for	operational	and	scientific	activities.		

4.2.2.3. Argo

Argo	 is	 a	 global	 array	 of	 approximately	 4,000	 free-drifting	
profiling	 floats,	 designed	 to	measure	 the	 temperature	 and	
salinity	of	the	upper	2,000m	of	the	ocean.	The	array	covers	
the global ocean reasonably well and is one of the main 
in-situ observation data sources for ocean data assimilation 
and validation. 

Each	standard	float	has	a	resting	depth	of	1000m	for	9	days.	
Every 10 days it is programmed to descend to 2000 m and then 
ascend to the surface measuring temperature and salinity in 
the ocean column. Data is transmitted via satellite and distrib-
uted on the GTS in BUFR code. Similar real-time quality-con-
trolled	 Argo	 profiles	 can	 be	 obtained	 from	 two	Global	 Data	
Assembly	Centres	(GDACs)	-	based	one	in	Monterey,	USA,	and	
the	other	in	Brest,	France	-	that	were	set	up	as	part	of	the	in-
ternational	GODAE.	For	their	behind	real-time	analyses,	some	
operational	centres	use	 real-time	Argo	floats	 from	both	 the	
GTS and the two GDACs.

10. http://www.ioc-sealevelmonitoring.org
11. http://www.sonel.org
12. https://eurogoos.eu/tide-gauge-task-team/
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1 3 
By	2020,	Argo	is	collecting	12,000	data	profiles	each	month	
(400	a	day).	The	most	updated	picture	of	available	opera-
tional Argo at global scale is shown in Figure 4.4. Further de-
tails are available at 🔗14. There was a slight 10% decrease 
in	 daily	 data	 flow	 in	 early	 January	 2021,	 but	 overall	 spa-
tial-temporal coverage has progressed since 2020 despite 
the challenges of the worldwide pandemic.

13. https://climatedataguide.ucar.edu/climate-data/tide-
gauge-sea-level-data
14. https://argo.ucsd.edu

Satellite-tracked surface drifting buoys are extremely cheap 
and	useful	to	measure	mixed	layer	currents,	sea	surface	tem-
perature,	atmospheric	pressure,	winds,	and	salinity.	They	are	
part of the GDP and are able to reach a maximum 15 m depth. 
An updated map of operational surface drifters is shown in 
Figure 4.5. Further information is available at 🔗15.

15. https://www.aoml.noaa.gov/phod/gdp/index.php.

Figure 4.3.  Top: global spatial distribution of the 1420 tide gauges in the PSMSL RLR dataset.Bottom: number 
of	available	tide	gauges	in	the	PSMSL	RLR	dataset	through	time	(blue).	Available	gauges	for	the	Northern	Hemi-
sphere	(red)	and	Southern	Hemisphere	(black)	are	also	shown	for	comparison	(source:	🔗13).
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Figure 4.4. 	 Global	distribution	of	Argo	network	in	January	2021	(source:	🔗16).

Figure 4.5. 	 Global	distribution	of	drifting	buoys	and	moored	buoys	in	January	2021,	concentrated	mostly	in	
tropical	oceans	and	coastal	regions	of	Brazil,	Europe,	India,	and	the	United	States	(source:	🔗17).
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4.2.2.4.  Ship-of-opportunity program

The	SOOP,	promoted	by	the	JCOMM,	is	a	network	of	merchant	
and research ships equipped with sophisticated tools and 
technology that allow scientists to explore ocean environ-
ments. The instrumentation usually used are:161718

• XBT	🔗19,	 used	 to	 collect	 temperature	 observations	
of	the	upper	1	km	of	the	ocean	(Figure	4.6).	Data	from	
the	XBT	drop	is	automatically	generated,	transmitted	by	
satellite and distributed on the Global Telecommunica-
tions	System	(GTS)	in	the	Binary	Universal	Form	for	the	
Representation	of	meteorological	 data	 (BUFR)	 format.	
For	operational	use,	 these	messages	 from	around	 the	
globe are decoded and stored in real-time databases 
by	each	operational	centre.	Approximately	20,000	XBTs	
are	deployed	annually	by	the	scientific	and	operational	
communities;

• CTD 🔗20,	 which	 detects	 how	 the	 conductivity	 and	
temperature of the water column changes relative to 
depth. Conductivity is a measure of how well a solution 
conducts electricity and it is directly related to salinity. 
By	measuring	the	conductivity	of	seawater,	the	salinity	
can be derived from the temperature and pressure of 
the same water. The depth is then derived from the pres-
sure measurement by calculating the density of water 

16. https://www.ocean-ops.org/board
17. https://www.ocean-ops.org/board
18. https://www.ocean-ops.org/board
19. https://www.aoml.noaa.gov/phod/goos/xbt_network/ 
20. https://oceanexplorer.noaa.gov/facts/ctd.html 

from the temperature and the salinity. CTD are attached 
to	a	much	larger	metal	frame	called	a	rosette,	which	may	
hold water-sampling bottles that are used to collect wa-
ter	at	different	depths,	as	well	as	other	sensors	that	can	
measure additional physical or chemical properties;

• TSG 🔗21 are used for measuring sea surface tem-
perature and sea surface salinity; 

• ADCP 🔗22 are able to measure how fast water is mov-
ing	across	an	entire	water	column,	using	a	principle	of	
sound waves called the Doppler effect; 

• Research vessels and voluntary observing ships par-
ticipate in the SOOP 🔗23

The SOOP is directed primarily towards the continued opera-
tional	maintenance	and	co-ordination	of	the	XBT	ship-of-op-
portunity	network	but	other	types	of	measurements,	such	as	
CTD	probes,	are	also	being	made.	The	SOOP	XBT	program	has	
been greatly impacted by the global COVID-19 pandemic. In 
early	 2020,	 the	program	was	 temporarily	 suspended.	How-
ever,	 almost	half	 of	 lines	 resumed	after	 June	 2020,	 and	by	
December 2020 there were 37 ships active on 25 lines (Figure 
4.6),	with	4266	profiles	visible	on	GTS	(source:	🔗24).

4.2.2.5. Gliders 

Ocean gliders are autonomous underwater vehicles that 
move	through	the	water	column,	ascending	and	descending	
with changes in buoyancy. Observations from ocean gliders 
have recently become an important data source in regional 
ocean data assimilation systems. The gliders are reusable 
and	 can	 be	 remotely	 controlled,	 making	 them	 a	 relatively	
cost-effective method for collecting repeated subsurface 
ocean observations. They also allow data acquisition in se-
vere	weather	conditions.	Equipped	with	a	variety	of	sensors,	
the	gliders	are	designed	to	measure	ocean	temperature,	sa-
linity	and	current	profiles.	Furthermore,	the	unique	design	of	
the gliders enables them to move horizontally through the 
water	while	collecting	vertical	profiles.

The	OceanGliders	program	coordinates	27	nations’	efforts,	in-
cluding 76 national and institutional glider programs (Figure 
4.7).	Despite	the	difficult	context	of	Covid-19	restrictions,	the	
OceanGliders program was able to operate over 200 gliders 

21.  https://www.aoml.noaa.gov/phod/tsg/background.php 
22.  https://oceanexplorer.noaa.gov/technology/
acoust-doppler/acoust-doppler.html#:~:text=An%20acous-
tic%20Doppler%20current%20profiler,physical%20proper-
ties%20of%20the%20ocean. 
23.  https://www.ocean-ops.org/sot/soop/ 
24. https://public.wmo.int/en/media/news/ocean-observ-
ing-system-report-card-2020

Figure 4.6. 	 The	network	status	of	global	XBT	
lines provided from Ocean-OPS in December 2020. 
Purple	indicates	the	XBT	reference	lines	and	red	
indicates deployment in 2020 (source: 🔗18).
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in 2020 (source: 25🔗26).	Most	of	 the	glider	groups	share	their	
real-time data via the GTS network.

4.2.2.6. HF radars

HF radar systems measure the speed and direction of ocean 
surface currents in real time in coastal areas. They utilise high 
frequency radio waves for performing such measurements: a 
pair of radar antennas are positioned on shore and can mea-
sure	surface	currents	(over	1-2	m	in	the	water	column)	up	to	 
200 km offshore with a resolution spanning from 500 m to 
6 km depending on the radar frequency (🔗27). Figure 4.8  
shows	 a	 sketch	 (adapted	 from	 Mantovani	 et	 al.,	 2020)	 of	
mutual functioning of a pair of antennas - Radar A and Ra-
dar B: they measure the radial components (vector in blue 
from	Radar	 A	 and	 vector	 in	 green	 from	Radar	 B)	 that	may	

25. https://www.oceangliders.org/
26. https://public.wmo.int/en/media/news/ocean-observ-
ing-system-report-card-2020

be used to compute total velocity inside each discrete cell 
(vector	 in	 orange).	 This	 technology	 is	 increasingly	 used	 in	
many applications to support downstream services for coast 
guard	search	and	rescue	activities,	oil	spill	emergencies,	wa-
ter	quality	monitoring	and	marine	navigation.	Nevertheless,	
they are extremely useful for validating coastal models as 
well as assimilating OOFS at regional scale.  

At	 international	 level,	 the	 GHFRN	 has	 been	 established	 as	
part of the GEO to promote high-frequency radar technol-
ogy	for	scientific	and	operational	activities	along	the	coast.	
Roarty	et	al.	(2019)	include	an	updated	list	of	countries	and	
organisations providing surface current information to the 
GHFRN. Figure 4.9 shows the global distribution of HF radar 
stations organised within the three regions of the ITU. 27

27. https://tidesandcurrents.noaa.gov/hfradar/

Figure 4.7.  Active gliders in 2020-2021 (source: 🔗25).

Figure 4.8.  Concept	of	surface	current	derivation	from	a	two	HF	radar	site	network	(adapted	from	Mantovani	et	al.	2020).

Radar A Radar B Radial component
from Radar B

Radial component
from Radar A

Vector combination =
total velocity inside the cell
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An example of an operational HF radar network is provided by 
that	one	managed	by	Puertos	del	Estado,	operating	in	Spain,	to	
monitor coastal and harbour zones. Figure 4.10 shows on the 
left the current operational HF radar network: selecting one of 
the	regions	in	the	red	boxes	-	for	example	the	Ebro	Delta,	on	the	
right - the user may visualise the animation of the measure-
ments collected during the reference observing period. Data 
may be accessed through the EMODnet Physics webportal.

4.2.2.7. Marine Mammals CTDs28

Marine mammal CTD data are very important for ocean mod-
elling	and	sea	ice	verification	in	high	latitudes,	particularly	in	
the	marginal	sea	ice	zone.		Since	2004,	several	hundred	thou-
sand	profiles	of	temperature	and	salinity	have	been	collect-
ed	by	instrumented	animals	(Figure	4.11).	The	use	of	elephant	

28. http://www.puertos.es/

seals has been particularly effective to sample the Southern 
Ocean	and	the	North	Pacific.	These	hydrographic	data	have	
been assembled in quality controlled databases that can be 
accessed through the MEOP consortium29 (🔗30).	

Currently,	the	MEOP	data	portal	distributes	three	differ-
ent databases:

• the	MEOP-CTD	database:	quality-controlled	CTD	profiles;
• the MEOP-SMS database: submesoscale-resolving high 
density CTD data;
• the MEOP-TDR database: high spatial density tempera-
ture/light data.

Real-time marine mammal CTD data are uploaded to the GTS 
as shown at 🔗31.

4.2.2.8. Autonomous underwater vehicles

An	AUV	is	a	self-propelled,	unmanned,	untethered,	underwater	
vehicle capable of carrying out simple activities with little or no 
human supervision. Reasons for employing AUV range from the 
ability	to	obtain	superior	data	quality	(for	example,	obtaining	
high-resolution	maps	of	 the	deep	 seafloor)	 to	 establishing	 a	
pervasive	ocean	presence	(for	example,	using	many	small	AUV	
to	observe	oceanographic	fields)	(Bellingham,	2009).

4.2.2.9.  List of most relevant international in-situ  
data providers

Providers of international in-situ observations to be used for 
assimilation/validation are listed in Table 4.2.

29. https://www.cebc.cnrs.fr/wp-content/uploads/pub-
lipdf/2019/GC124006.pdf
30. http://www.meop.net/
31. http://www.meop.net/meop-portal/ctd-srdl-technology.html

Figure 4.9.  Global distribution of HFR stations: in 
green,	stations	that	share	their	data	with	global	data	
providers;	in	red,	those	that	are	private	and	do	not	
share	their	data	(Roarty	et	al.,	2019).

Figure 4.10.  An example of HF radar network: the 
case of the Ebro Delta monitored by Puertos del Estado 
(Spain)	(source:	🔗28).	

Figure 4.11. 		 Elephant	seal	with	CTD	tag	©JB	Pons,	in	
C.	Guinet,	2018,	CEBC/CNRS	(available	at	🔗29).	
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4.2.3. Description of satellite observational 
oceanographic data

Satellite altimetry is one of the most important techniques 
for	operational	oceanography.	Figure	4.12,	adapted	from	In-
ternational	Altimetry	Team	(2021),	shows	an	overview	of	the	
radar altimetry constellation and timeline as available from 
early 90’ and with a projection beyond 2030: it demonstrates 
how altimetry can be considered as a well-established Earth 
observation platform from space  and its evolution contrib-
utes	to	scientific	advances	in	ocean	dynamics.	Figure	4.12,	in	
particular,	 reports	 the	 main	 international	 missions	 opera-
tional	temporal	framework:	before	2020,	we	have	a	number	
of	satellites	that	are	not	operational	anymore	(in	orange)	but	

that provide a huge and valuable source of historical obser-
vations. Then there are modern operational satellites for the 
provisioning	of	near	real	time	altimetry	data	(in	yellow):	for	
some	of	them,	the	data	provider	is	also	able	to	report	the	de-
graded	quality	period.	New	missions	(e.g.,	SWOT,	Sentinel6)	
are planned to be launched starting from 2022. These mis-
sions should be  able to provide very high quality and high 
resolution	altimetry	products	(light	yellow	to	green).	Some	of	
the operational satellite platforms are also part of the DUACS 
(in	dark	blue):	these	consist	of	a	multi-mission	merged	data-
set	for	measuring,	in	particular,	ocean	mesoscale	dynamics	
(more details are also available at 🔗32).	

32. https://duacs.cls.fr/

Provider Description Website

WOD World	Ocean	Database	provides	uniformly	formatted,	quality	con-
trolled,	publicly	available	ocean	profiles https://www.ncei.noaa.gov/products/

world-ocean-database

Argo Argo provides data access to Global Data Assembly Centres in Brest 
(France)	and	in	Monterey	(USA)

https://argo.ucsd.edu/about/status/

Copernicus 
Marine 
Service

Copernicus Marine Service through the INS TAC for the operational pro-
visioning of near real time and reprocessed datasets used by the MFCs 
for assimilation and validation

https://marine.copernicus.eu/

SeaDataNet

SeaDataNet	infrastructure,	provides	aggregated	datasets	(ODV	collec-
tions of all unrestricted SeaDataNet measurements of temperature 
and	salinity	by	sea	basins)	and	climatologies	(regional	gridded	field	
products)	based	on	the	aggregated	datasets	and	data	from	external	
data sources such as the CORA and the WOD for all the European sea 
basins and the Global Ocean

https://www.seadatanet.org/

EMODnet

European	Marine	Observation	and	Data	Network	is	a	long-term,	marine	
data initiative funded by the European Maritime and Fisheries Fund 
which,	together	with	the	Copernicus	space	programme	and	the	Data	Col-
lection	Framework	for	fisheries,	implements	the	EU’s	Marine	Knowledge	
2020 strategy. EMODnet Physics provides a single point of access to vali-
dated	in-situ	datasets,	products	and	their	physical	parameter	metadata	
of	European	Seas	and	global	oceans.	More	specifically,	time	series	and	
datasets	are	made	available,	as	recorded	by	fixed	platforms	(moorings,	
tide	gauges,	HF	radars,	etc.),	moving	platforms	(Argo,	Lagrangian	buoys,	
ferryboxes,	etc.)	and	repeated	observations	(CTDs,	etc.) https://www.emodnet.eu/

www.emodnet-physics.eu

Table 4.2. List of most relevant international in-situ data providers.
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Figure 4.12. 		 Altimetry	satellites	timeline	(adapted	from	International	Altimetry	Team,	2021).
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Satellite altimetry has substantially advanced understanding 
of the oceans by providing unprecedented observations of 
the	 surface	 topography	 at	 scales	 larger	 than	 200	 km,	 thus	
increasing our knowledge of global ocean circulation from 
the role of mesoscale eddies in shaping ocean circulation to 
the global sea level rise. The following sections describe the 
variables measured by satellites.

4.2.3.1. Satellite sea surface temperature33

The SST is another important data source for ocean data 
assimilation and monitoring oceanic conditions. Since the 
beginning	of	operational	satellite	SST	observations	in	1981,	
the number and diversity of sensors have increased dramat-
ically	and	are	still	evolving	(O’Carroll,	et	al.	2019).	A	combina-
tion of infrared - onboard both LEO and geostationary orbit 
platforms	 -	 and	passive	microwave	 (LEO	only)	 radiometers	
provide a comprehensive global SST coverage to meet the 
minimum	data	specification	to	be	used	in	operational	ocean	
models	(as	defined	by	GODAE	in	Bell	et	al.,	2009).

Most satellite SST observations assimilated into ocean pre-
diction systems are processed in accordance with guidelines 
and	formats	specified	by	the	GHRSST	(Donlon	et	al.,	2009);	an	
example of a multi-product ensemble is shown in Figure 4.13. 

33. https://www.ghrsst.org/latest-sst-map/

GHRSST formatted products supply SST data either in satel-
lite	swath	coordinates	 level	2	preprocessed	(L2P)	or	 level	3	
composite	(L3)	gridded	netCDF4	format	files.	L2P	and	L3	data	
products provide satellite SST observations together with a 
measure of uncertainty for each observation in a common 
GHRSST	netCDF	format	 (GHRSST	Science	Team,	2012).	Auxil-
iary	fields	are	also	provided	for	each	pixel	as	dynamic	flags	
to	filter	and	help	interpret	the	SST	data.	These	data	are	ideal	
for data assimilation systems or as input to analysis systems. 
Gridding	 a	 single	 L2P	 file	 produces	 an	 “uncollated”	 L3	 file	
(L3U).	Multiple	L2P	files	are	gridded	to	produce	either	a	“col-
lated”	L3	file	(L3C)	from	a	single	sensor	or	a	“super-collated”	
L3	file	from	multiple	sensors	(L3S)	(source:	🔗34).

 There are a wide range of satellite SST products in L2P or 
L3 format provided by various GHRSST regional and data as-
sembly centres. The following is a list of SST products from 
different satellite sensors that are common to many ocean 
prediction systems:

• Passive Microwave Radiometers on LEO polar-orbiting 
satellites provide low spatial resolution SST at around 
1	mm	depth,	with	 global	 coverage	of	 the	 Earth	 at	 the	
equator up to twice daily and more frequently at higher 
latitudes. SST products obtained from passive micro-
wave radiometers are effective at detecting ocean front 
variability	 in	 regions	 at	 least	 50	 km	 from	 land,	 under	
either clear or cloudy conditions but not precipitation. 
Most ocean prediction systems assimilate SST obser-
vations at ~25 km spatial resolution from the AMSR2 
aboard	the	JAXA	polar-orbiting	satellite.	These	data	are	
made	 available	 via	 the	 JAXA	 EORC	 (🔗35)	 and	 Remote	
Sensing Systems (🔗36).	

• Infrared radiometers on LEO satellites provide high 
spatial	 resolution	 SST	 at	 around	 10	micrometer	 depth,	
with global coverage of the Earth under clear sky condi-
tions up to twice daily at the equator and more frequent-
ly at higher latitudes. SST products commonly used are 
measured by the Advanced Very High-Resolution Radi-
ometer	(AVHRR)	instrument	flown	by	the	Meteorological	
Operational	 satellite	 (MetOp)	 series	 of	 polar-orbiting	
environmental satellites launched by the ESA and oper-
ated by the EUMETSAT. Two types of AVHRR SST products 
used	in	ocean	prediction	systems	are:	1)	the	1.1	to	~4	km	
spatial	resolution	FRAC	AVHRR	L2P	and	2)	the	4.4	to	~18	
km	resolution	GAC	AVHRR	L2P,	produced	by	the	OSI	SAF	
within EUMETSAT (🔗37),	OSPO	 (🔗38),	and	NAVOCEANO.	

34. https://www.ghrsst.org/ghrsst-data-services/products/
35. https://www.eorc.jaxa.jp/en/
36. http://www.remss.com/missions/amsr/
37. http://www.osi-saf.org/?q=content/sst-products
38. https://www.ospo.noaa.gov/

Figure 4.13.   Example of SST maps as provided by 
GHRSST multi-product ensemble  (source: 🔗33)	
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The NAVOCEANO FRAC and GAC AVHRR L2P SST data are 
made available under the MISST (🔗39)	project	sponsor-
ship by the ONR and the PO.DAAC (🔗40)	operated	by	the	
NASA	JPL.	The	newest	NOAA	JPSS	satellites	 (Suomi-NPP	
and	NOAA-20)	are	now	equipped	with	the	VIIRS	sensors,	
that	have	a	wide	range	of	infrared	channels,	and	provide	
SST	at	0.75 km	to	1.5	km	resolution.	In	order	to	facilitate	
ingestion	into	real-time	operational	ocean	systems,	the	
VIIRS	level	3	Uncollated	(L3U)	data	are	produced	by	the	
NOAA OSPO (🔗41),	 and	 publicly	 available	 from	 NOAA	
OceanWatch (🔗42)		and	PO.DAAC.	

• Infrared radiometers on geostationary satellites 
above	the	equator	provide	high	spatial	 (2~5	km)	and	
temporal	 (10~60	minute)	resolution	SST	observations	
over	a	fixed	geographic	region.	There	are	several	GEO	
satellites distributed around the equator and oper-
ated	by	different	agencies	 (i.e.	ESA,	 ISRO,	NOAA,	 JMA,	
JAXA,	KMA	and	CMA);	they	provide	high	temporal	res-
olution SST that can improve clear-sky masking by 
using temporal information to separate the effects 
of faster moving clouds and other atmospheric fea-
tures	from	the	slower	evolving	SST	fields	(O’Carroll	et	
al.,	 2019).	One	 example	 is	 the	 AHI	 sensor	 of	 the	 JMA	
geostationary	satellite	“Himawari-8”,	which	allows	rel-
atively high-frequency measurement of SST (every 10 
minutes	 with	 horizontal	 resolution	 ~2	 km)	 in	 a	 wide	
area	of	the	Western	Pacific	(Kurihara	et	al.,	2016).	Data	
are	made	available	by	 JAXA	 	 (🔗43),	NOAA	 (🔗44)	 and	
the Australian Bureau of Meteorology via the National 
Computational Infrastructure (🔗45).		

Surface diurnal warming events occur in ocean regions of 
high	 solar	 radiation,	 clear	 skies,	 and	 calm	 seas.	 They	 are	
more	common	in	the	tropics	(Zhang	et	al.,	2016)	but	have	also	
been	observed	at	high	latitudes	(Eastwood	et	al.,	2011).	The	
warming events produce near-surface thermal gradients that 
create daytime near-surface or warm-layer temperatures up 
to	2-4°C	warmer	than	nighttime	(Donlon	et	al.,	2002).	Some	
operational centres exclude daytime satellite SST observa-
tions to reduce the diurnal warm bias and only use night-time 
satellite SST to assimilate into ocean analyses and forecast 
models. Most GHRSST L2P or L3U format SST data are cor-

39. https://www.nopp.org/projects/multi-sensor-improved-
sea-surface-temperature-misst
40. https://podaac.jpl.nasa.gov/
41. https://www.ospo.noaa.gov/
42. https://coastwatch.noaa.gov/cw/satellite-data-prod-
ucts/sea-surface-temperature.html
43. http://suzaku.eorc.jaxa.jp/GHRSST/
44. https://coastwatch.noaa.gov/cw/satellite-data-prod-
ucts/sea-surface-temperature/acspo-ahi.html
45. https://nci.org.au/

rected for bias by subtracting the SSES bias value associated 
with	each	SST	value	(GHRSST	Science	Team,	2012),	derived	by	
data providers using recent matchups with SST observations 
from	drifting	buoys	and	 tropical	moorings	 (Petrenko	et	al.,	
2016)	that	produce	SST	estimates	at	around	0.2	m	depth.	

4.2.3.2.  Satellite Altimeter

The main parameter that can be derived from satellite altim-
eters is SLA relative to a reference mean dynamic topogra-
phy.  SLA is fundamental for sea level monitoring and ocean 
data assimilation. Two freely available common data sources 
for real-time altimetry data retrieval are the RADS - which 
was developed by the DEOS and the NOAA Laboratory for 
Satellite	Altimetry	(Naeije	et	al.,	2000;	Scharroo,	2012)	-	and	
the	Copernicus	Marine	Service	(Figure	4.14). 

The DEOS is building and developing the RADS database 
that	 incorporates	 validated	 and	 verified	 altimetry	 data	
products.	 The	 database	 is	 consistent	 in	 accuracy,	 correc-
tion,	 format	 and	 reference	 system	 parameters.	 The	 ca-
pability of such a database has attracted users with less 
satellite	altimeter	expertise.	Currently,	RADS	enables	users	
to extract the data from several present and past satel-
lite	 altimeter	 missions	 like	 GEOSAT,	 ERS1,	 ERS2,	 ENVISAT,	
TOPEX/Poseidon	(T/P),	JASON1,	JASON2,	JASON3,	CRYOSAT2,	
SENTINEL-3A,	and	SARAL🔗46. 47

The Level 3 SLA product from Copernicus Marine Service is 
another open accessible data source for SLA. It shares many 
of	 the	most	 useful	 features	 of	 the	 RADS	 service,	 including	
adaptation	 to	 changes	 in	 the	 available	 satellite	 fleet	 and	

46. http://rads.tudelft.nl/rads/data/authentication.cgi
47. https://datastore.cls.fr/catalogues/global-ocean-along-
track-sea-level-anomalies/

Figure 4.14.  Global ocean along track sea level  
anomaly (source: 🔗47).
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maintaining	 homogeneity.	 Although	 superficially	 RADS	 and	
Copernicus Marine Service seem providing the same type of 
SLA observation they are not identical and a detailed expla-
nation	of	differences	is	non-trivial,	as	the	RADS	data	includes	
many	of	the	corrections	used	by	Copernicus	Marine	Service,	
as well as the corrections applied in its own processing. Us-
ers are encouraged to explore the differences between these 
two data streams and choose the suitable satellite altimeter 
data source for their own data assimilation system.

4.2.3.3. Satellite Sea Surface Salinity

Measuring SSS from space is a relatively recent technique that 
relies on L-band radiometry (which has evolved to a point 
where	useful	information	is	provided	every	few	days).	Satel-
lite SSS offers the advantages of global coverage and the abil-
ity to capture space and time scales not afforded by in-situ 
platforms	such	as	vessels,	moorings,	and	Argo	profiling	floats.	
Figure 4.15 shows a year of satellite SSS products from the 
ESA’s SMOS and NASA Aquarius and SMAP missions. It is worth 
noting that regions of high variability of >0.2 psu - including 
coastal	 oceans,	 western	 boundary	 currents,	 the	 Indonesian	
Seas,	 and	 the	 Southern	 and	 Arctic	 Oceans	 -	 are	 either	 not	
sampled	or	poorly	sampled	by	Argo	(Vinogradova	et	al.,	2019).	

Level 3 observations (L3 - provided on a grid but with no 
in-filling)	with	various	temporal	and	spatial	averaging	from	
the	SMOS,	Aquarius,	and	SMAP	satellites	are	available,	as	are	
level	2	data	(L2;	SSS	values	at	the	native	swath	resolution).	
For	SMOS	and	Aquarius,	L3	products	are	available	daily,	with	
separate	files	for	the	ascending	and	descending	parts	of	the	
orbit. The products used are from the LOCEAN (🔗48)	and	the	
JPL	(🔗49)	respectively	for	SMOS	and	Aquarius.	While	there	is	

48. www.catds.fr
49. https://podaac.jpl.nasa.gov/

a	daily	L3	SMAP	product,	it	is	based	on	observations	from	an	
8-day period that would require a complicated observation 
operator in the data assimilation.50

The	availability	of	SSS	 from	SMOS,	Aquarius	and	SMAP	has	
enabled	ocean	 forecast	 validation	 (e.g.,	 Vinogradova	 et	 al.,	
2014;	Martin,	2016).	In	recent	years,	efforts	have	been	put	into	
assimilating	satellite	SSS	data,	which	is	challenging	for	sev-
eral	reasons.	Largely,	these	are	related	to	the	magnitude	of	
errors	 in	 the	data,	particularly	 in	 the	SSS	products	needed 
for operational-style forecasting systems that are required at 
high	temporal	resolution	(Martin	et	al.,	2019).	Quality	control	
of satellite SSS has proved to be a very important process for 
ocean data assimilation. 

4.2.3.4. Satellite sea ice 

The sea ice concentrations from Nimbus-7 SMMR sensor 
and	 DMSP	 SSM/I	 passive	 microwave	 data,	 are	 accessible	
from the NASA NSIDC DAAC (🔗51)	(Figure	4.16).	This	sea	ice	
concentration dataset is generated from brightness tem-

50. https://earth.gsfc.nasa.gov/cryo/data/current-state-sea-
ice-cover
51. https://doi.org/10.5067/8GQ8LZQVL0VL

Figure 4.15.  Variability in space-borne sea 
surface	salinity	during	one	year	(colors)	superim-
posed with locations of currently operational Argo 
floats	(white	dots)	from	Vinogradova	et	al.	(2019).

Figure 4.16. Example of satellite-based product 
for sea ice extension in the Northern Hemisphere 
(source: 🔗50).	
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perature data and is designed to provide a consistent time 
series of sea ice concentrations spanning the coverage of 
several passive microwave instruments. The data are pro-
vided in the polar stereographic projection at a grid cell 
size of 25 x 25 km. This is then interpolated to 10 km reso-
lution,	level	3	composite	of	SSMIS	level	2	data,	on	a	polar	
stereographic grid (🔗52).	Daily	files	are	available	within	24-
48 hours after last satellite acquisition.

The same satellite sea ice concentration data originating 
from NSDIS SSM/I aboard the DMSP series of polar-orbiting 
sun-synchronous	satellites,	are	provided	by	the	OSI	SAF	
(🔗53).	The	global	daily	sea	ice	concentration	is	processed	by	
OSI SAF at 10 km resolution as level 3 composites of SSMIS 
level 2 data on a Polar Stereographic grid. Northern Hemi-
sphere	 and	 Southern	 Hemisphere	 daily	 files	 are	 available	
within 6 hours after last satellite acquisition. 

4.2.3.5. Ocean Colour

Ocean colour measurement consists of detecting spectral 
variations	 in	 the	 water-leaving	 radiance	 (or	 reflectance),	
which is the sunlight backscattered out of the ocean after in-
teraction	with	water	and	its	constituents	(Groom	et	al.,	2019).	
This	is	a	very	significant	measurement	for	the	monitoring	of	
ocean	 water	 quality,	 ocean	 acidification,	 or	 to	 understand	
the	global	carbon	cycle,	apart	from	using	it	for	assimilation	

52. https://nsidc.org/data/nsidc-0081
53. http://www.osi-saf.org/?q=content/sea-ice-products

and	validation.	In	the	open	ocean,	the	signal	is	largely	influ-
enced by the presence of phytoplankton and dissolved or-
ganic	matter;	in	coastal	waters,	it	is	also	influenced	by	resus-
pended particulate matter and river runoff that transports 
other kinds of anthropogenic particulate.  In the framework 
of	the	Copernicus	Marine	Service,	two	types	of	products	are	
delivered by the OC TAC (🔗54):	

• CHL is the phytoplankton chlorophyll concentration. 
For	 the	global	and	 regional	 seas,	OC	TAC	selected	 the	
state-of-the-art product algorithm on the basis of opti-
cal characteristics of the basin and round robin proce-
dure.	For	the	regional	seas,	daily	chlorophyll	fields	are	
produced by applying two different algorithms for open 
ocean	(Case	I)	and	coastal	waters	(Case	II).	The	data	are	
then	merged	 into	 a	 single	 chlorophyll	 field	 providing	
a regional product with an improved accuracy of esti-
mates in coastal waters.

• The OPTICS product includes all other variables re-
trieved	from	ocean	colour	sensors:	IOP,	such	as	absorp-
tion	and	scattering,	the	diffuse	attenuation	coefficient	
of	light	at	490	nm	(Kd490),	Secchi	depth	(transparency	
of	water),	spectral	Rrs,	PAR,	CDOM,	and	the	SPM.

Figure 4.17 shows an example of chlorophyll concentration at 
global scale from the MODIS Aqua satellite.55

54. https://marine.copernicus.eu/about/producers/oc-tac
55. https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/

Figure 4.17. MODIS Aqua chlor_a seasonal composite for Spring 2014 (source: 🔗55).
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4.2.3.6. Significant Wave Height

The	SWH	(or	Hs)	is	the	average	wave	height	(from	trough	to	
crest)	of	 the	highest	 third	 (33.33%)	of	 the	waves	 in	a	given	
sample period. The Sentinel-3 mission is able to monitor 
wave heights from 0 to 20 m. The marine sea state SWH prod-
uct is a critical product for all maritime safety and rescue 
operations (from 56🔗57). 

Figure 4.18 shows an example of SWH for the global ocean 
from Sentinel-3A measurements.

4.2.3.7.  Providers of satellite data

Providers of satellite observations to be used for assimila-
tion/validation are listed in Table 4.3.

4.2.4. Bathymetry 

The term “bathymetry” refers to the ocean’s depth relative to 
the	sea	level.	It	is	an	important	element	in	any	ocean	model,	
since it allows us to represent the geographical and topo-
graphical	peculiarities	of	the	sea	floor.	It	has	a	strong	influ-
ence	on	the	circulation,	notably	its	barotropic	and	depth-inte-
grated	features,	in	particular	(but	not	only)	at	sills	and	straits,	

56. https://www.eumetsat.int/new-S3-sral-wave-products
57. https://sentinels.copernicus.eu/web/sentinel/us-
er-guides/sentinel-3-altimetry/overview/geophysical-mea-
surements/significant-wave-height

on	coastal	and	in	shelf	seas.	For	this	reason,	its	accuracy	may	
determine	the	goodness	of	the	ocean	model,	although	there	
are issues of smoothing and grid mislocation that need to be 
considered and solved by using ad hoc spatial analysis.

58

58. https://www.emodnet-bathymetry.eu

Figure 4.18. Sentinel-3	SRAL	significant	wave	height	Level-2	global	map	(source:	🔗56).

Figure 4.19. An example of a bathymetric dataset: 
the EMODnet bathymetry (source: 🔗58).
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Provider Description Website

Copernicus 
Marine 
Service

Copernicus	Mawrine	Service	through	the	SL,	SST,	OC,	WAVE	TACs	
for the operational provisioning of near real time and reprocessed 
datasets	used	by	the	Monitoring	and	Forecasting	Centres	(MFCs)	
for assimilation and validation

https://marine.copernicus.eu/

GHRSST

The	Group	for	High-Resolution	Sea	Surface	Temperature	(SST)	
(GHRSST)	provides	a	new	generation	of	global	high-resolution	
(<10km)	SST	products	to	the	operational	oceanographic,	meteoro-
logical,	climate	and	general	scientific	community

https://www.ghrsst.org/ 

AVISO++ AVISO++ provides altimeter data
https://www.aviso.altimetry.fr/en/

home.html

EUMETSAT
EUMETSAT is the European operational satellite agency for 
monitoring	weather,	climate	and	the	environment	from	space.	In	
particular,	it	provides	SST	and	altimeter	data https://www.eumetsat.int/

NOAA NSIDC NOAA National Snow and Ice Data Centre provides sea ice concen-
tration in the polar region

https://nsidc.org/ 

Table 4.3. List of most relevant international satellite data providers.

A bathymetric dataset needs to be interpolated onto the 
model’s	grid.	Pre-processing	of	the	bathymetric	fields	should	
be necessary for numerical reasons: since bathymetry data-
sets	are	usually	finer	than	the	model	grid,	they	may	need	to	be	
smoothed before inserted on the model grid. Effective res-
olution and vertical coordinates of the ocean model could 
also constrain the smoothness of the bathymetry. 

Figure 4.19 shows an example of a bathymetric dataset as pro-
vided by EMODnet bathymetry.

Table 4.4 includes a list of public providers of bathymetric 
datasets	(Marks	and	Smith,	2006).

4.2.5. Atmospheric forcing

Typically,	NWP	systems	provide	atmospheric	surface	forcing	fields	
to	OOFS	in	order	to	compute	water,	heat,	and	momentum	flux-
es.	Such	fields	may	be	also	supplemented	by	real-time	or	near	
real-time observations and other averaged datasets including 
climatology.	Certainly,	in	a	more	complex	modelling	framework,	
an ad hoc atmospheric model can be developed at the same 

resolution of the ocean model in order to provide high resolu-
tion	atmospheric	fields	(coupled	systems,	see Chapter 10 for 
further	details).

In	 general,	 typical	 surface	data	 input	 required	by	 an	OOFS	
that is provided by an NWP model includes:

• Sea ice coverage;
• Downward surface longwave radiation;
• Upward surface longwave radiation;
• Downward surface shortwave radiation;
• Upward surface shortwave radiation;
• Dewpoint depression at 2 m;
• Surface latent heat;
• Mean sea level pressure;
• Surface sensible heat;
• Specific	humidity	at	2	m;
• Air temperature at 2 m;
• Cumulative precipitation rates;
• Zonal and meridional wind components and wind 
speed	at	10	m		(or	surface	wind	stresses);
• Short-wave	radiation	heat	flux	penetrating	through	ice;
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• Ice	freezing/melting	heat	flux;
• Zonal and meridional ice stress on ocean;
• Sea-Ice	basal	salt	flux.

The above list is not exhaustive and inputs can vary based 
on	the	needs	of	the	OOFS.	For	example,	 it	can	be	used	SST	
from the OOFS along with the air temperatures at 2 m to cal-
culate	sensible	heat	flux	 instead	of	using	 that	provided	by	
NWP. More details on thermodynamic and momentum forc-
ing	of	the	ocean	can	be	found	in	Barnier	(1998),	Barnier	et.	al.	
(1995),	Josey	et	al.	(1999).

Figure 4.20 shows an example of surface forcing atmospheric 
fields	from	the	ECMWF	IFS.

A list of global NWP systems is provided in Table 4.5.

Product Description Provider

DBDB2
Digital Bathymetric DataBase at 2 min by 2 min uniform grid global 
bathymetry and topography data developed for the ocean model. It 
was developed by the Naval Research Laboratory

https://www7320.nrlssc.navy.mil/
DBDB2_WWW/

ETOPO1

1 arc-minute global relief model of Earth’s surface that integrates 
land topography and ocean bathymetry. It was built from numerous 
global and regional data sets. Historic ETOPO2v2 and ETOPO5 global 
relief grids are depreciated but still available http://www.ngdc.noaa.gov/mgg/

global/

GEBCO
Gridded Bathymetry Data for the World’s oceans at 15 arc-second 
resolution. It operates under the joint auspices of the IHO and the 
UNESCO IOC

https://www.gebco.net/

SRTM+

Global bathymetry and topography. SRTM15+ is the last version at 
15	arc-second	resolution,	built	upon	the	latest	compilation	of	ship-
board sounding and satellite-derived predicted depths. V2.0 is part 
of	the	last	release	of	GEBCO_2020	(Tozer	et	al.,	2019) http://topex.ucsd.edu/marine_topo/ 

EMODnet 
Bathymetry

It	is	part	of	the	EMODnet	project,	funded	by	the	European	Commis-
sion,	which	brings	together	marine	data	into	interoperable,	contin-
uous and publicly available bathymetric dataset for all the maritime 
basins in European waters and for the global ocean

https://www.emodnet-bathymetry.eu/

Table 4.4. Bathymetric dataset products and providers.
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Dataset Description Provider

GFS
Global	Forecast	System,	produced	by	the	National	Centers	for	Envi-
ronmental	Prediction	(NCEP),	provides	analysis	and	forecast	atmo-
spheric	fields	for	the	global	ocean	at	the	resolution	of	about	28 km

  https://www.ncdc.noaa.gov/
data-access/model-data/
model-datasets/global-

forcast-system-gfs

NAVGEM Navy Global Environmental Model runs by the United States Navy’s 
Fleet	Numerical	Meteorology	and	Oceanography	Center	(FNMOC)

https://www.usno.navy.
mil/FNMOC/meteorology-

products-1m

ECMWF IFS 
and ERA5

European Center for Medium range Weather Forecasting that pro-
vides	reanalysis,	analysis	and	forecast	atmospheric	fields	at	medi-
um,	extended,	and	long	range

https://www.ecmwf.int/

Met Office 
UK

United	 Kingdom	 Meteorological	 Office	 that	 produces	 the	 Unified	
Model,	a	numerical	model	of	the	atmosphere	used	for	both	weather	
and climate applications

https://www.metoffice.gov.uk/

GEM

Global	 Environmental	Multiscale	model,	 an	 integrated	 forecasting	
and	data	assimilation	system	developed	in	the	Recherche	en	Prévi-
sion	Numérique	(RPN),	Meteorological	Research	Branch	(MRB),	and	
the	Canadian	Meteorological	Centre	(CMC)

https://collaboration.cmc.ec.gc.ca/

Table 4.5.  Atmospheric forcing products and providers.

Figure 4.20. 		 An	example	of	surface	forcing	fields:	rain	and	mean	sea	level	pressure	at	global	scale	from	ECMWF	(source: 🔗59).

a59

59. https://www.ecmwf.int/
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a60

60. https://www.bafg.de/GRDC/EN/Home/homepage_node.html

Figure 4.21. An example of river runoff discharge data provider: worldwide distribution of stations contribut-
ing to GRDC (source: 🔗60).

Figure 4.22. An	example	of	river	runoff	discharge	(monthly	data)	time	series	from	GRDC	related	to	Ceatal	
Izmail	station	(Romania)	that	monitors	the	Danube	basin	(source:	🔗61).

61

61. https://www.bafg.de/GRDC/EN/Home/homepage_node.html
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4.2.6. Land forcing

Rivers represent the natural element connecting land and 
ocean through the coastline. They impact both coastal and 
basin-wide circulation and dynamics through net freshwa-
ter	flux;	additionally,	they	are	responsible	for	biotic	diversity	
and	eutrophication,	particularly	in	coastal	waters.

Water	 discharges,	 nutrients,	 and	 organic	 materials	 repre-
sent	sources	of	freshwater	and	biogeochemical	fluxes	for	an	
OOFS,	and	we	have	to	account	for	them	once	we	set	a	numer-
ical model. This kind of data may come from observations or 
from	other	models	(hydrological	or	biogeochemical	models).	
In	particular,	information	about	discharge,	and	possibly	also	
salinity	and	temperature	if	available,	should	be	provided	for	
the river mouth at given coordinates.

As	 an	 example,	 in	 Figure	 4.21	 is	 shown	 the	 distribution	 at	
global scale of stations that operated/are operating in a cer-
tain temporal period contributing to the GRDC. Once the user 
selects	one	of	the	stations,	the	web	service	returns	the	water	
discharge	timeseries	(Figure	4.22)	allowing	to	download	and	
integrate it as an input dataset in the ocean model setup.

Table 4.6 provides a list of international databases for river data.

Below are listed some other initiatives for handling freshwa-
ter inputs with focus on icebergs and R&D project:

• Altiberg	 is	 a	 database	 for	 small	 icebergs	 (<	 3km	 in	
length),	detected	by	altimeters	using	 the	high-resolu-
tion	waveforms	(Tournadre	et	al.,	2016),🔗62; 

62. http://cersat.ifremer.fr/user-community/news/
item/473-altiberg-a-database-for-small-icebergs

Dataset Description Provider

GRDC
Global	Runoff	Data	Base,	built	on	an	initial	dataset	collected	in	the	
early 1980s from the responses to a WMO request to its member 
countries to provide global hydrological information

  https://www.bafg.de/GRDC/EN/01_
GRDC/13_dtbse/database_node.html

Dai and 
Trenberth

Dai and Trenberth Global River Flow and Continental Discharge 
Dataset	contains	time	series	of	all	available	monthly	river	flow	rates	
observed at the farthest downstream station for the world’s largest 
925	rivers,	plus	long-term	mean	river	flow	rates	and	continental	dis-
charge	into	the	individual	and	global	oceans,	produced	originally	by	
Dai	and	Trenberth	(2002)	and	Dai	et	al.	(2009)	and	Dai	(2021) https://rda.ucar.edu/datasets/ds551.0

EFAS

European Flood Awareness System developed and operational with-
in the Copernicus Emergency Management Service. It provides grid-
ded modelled daily hydrological time series forced by meteorologi-
cal	observations.	It	includes	river	discharge,	soil	moisture	for	three	
soil layers and snow water equivalent https://www.efas.eu/

GLOFAS

Global	Flood	Awareness	System,	operational	within	the	Copernicus	
Emergency Management Service. It couples state-of-the art weather 
forecasts with a hydrological model and with its continental scale 
set-up,	 providing	 downstream	 countries	 with	 information	 on	 up-
stream river conditions as well as continental and global overviews

https://www.globalfloods.eu/

EMODnet 
Physics

EMODnet	Physics	gathers,	harmonises	and	makes	available	near	real	
time river runoff and in-situ river runoff trends (monthly and annual 
means),	accessible	through	the	website	with	MapViewer	controllers

https://map.emodnet-physics.eu/

Table 4.6.  River data providers.
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produce spatially gridded dataset that can be easily used by 
a	numerical	model.	Numerical	model	results,	being	gridded,	
can be easily aggregated in time to produce a climatological 
field	to	be	used	as	initial	or	boundary	condition.65666768

Climatologies may be also computed from NWP products to 
modify	 or	 to	 formulate	ocean	 surface	fluxes	using	mean	mo-
mentum	conditions	from	a	reanalysis	product	(e.g.,	ECMWF	ERA5,	
etc.)	superposed	with	variability	from	the	NWP	fields.	Addition-
ally,	observations	such	SSS	and	SST	may	be	adopted	for	supple-
menting	climatological	data	for	surface	flux	relaxation	to	control	
model	drifts.	Finally,	climatologies	may	be	computed	also	from	
other ocean models to provide lateral open boundary condi-
tions (numerics and methods will be presented in Chapter 5).

Figure 4.25 provides as an example of climatology the annual 
sea surface temperature computed over the period 1955-2017 
for the global ocean by the WOA.

Table 4.7 provides a list of international atlases.

65. https://marine.copernicus.eu/
66. https://myocean.marine.copernicus.eu/
67. https://marine.copernicus.eu/
68. https://myocean.marine.copernicus.eu/

Figure 4.24.   The MedFS sea surface currents on 26 
May 2022 (source:  🔗67  through the Ocean Viewer 🔗68).

Figure 4.23. 	 	The	GLO-PHY	sea	surface	temperature	
on 26 May 2022 (source: 🔗65  through the Ocean 
Viewer 🔗66).

• BRONCO	 stands	 for	 “Benefits	 of	 dynamically	 mod-
elled river discharge input for ocean and coupled atmo-
sphere-land-ocean systems”: it is a Service Evolution 
Project run in the framework of Copernicus Marine Ser-
vice to improve and standardise input of river discharge 
into	global,	regional	and	coastal	models,	🔗63;

• LAMBDA stands for Land-Marine Boundary Develop-
ment & Analysis: it is another Service Evolution Project 
run in the framework of Copernicus Marine Service. It 
aims at improving the Copernicus Marine Service MFCs 
thermohaline circulation in coastal areas by better 
characterization of the land-marine boundary condi-
tions,	🔗64.

4.2.7. OOFS fields as input for downscaling

An OOFS may be set also using information from other OOFSs: 
this is the case of the so-called nesting models (for major de-
tails	see	Section	5.4.4).	For	example,	the	GLO-PHY	-	herein	re-
ferred to as parent model - provides lateral open boundary con-
ditions	to	the	Mediterranean	Sea	Forecasting	System	(MedFS)	
- herein referred to as child model. Both systems are part of the 
Copernicus Marine Service catalogue. Figure 4.23 shows a typi-
cal	ocean	field	at	global	scale	from	GLO-PHY	-	in	this	case,	we	
display sea surface temperature forecast product. The parent 
model	provides	temperature,	salinity,	sea	surface	height,	zonal	
and meridional velocity components to the Mediterranean Sea 
through 3 open boundaries located in the Atlantic Ocean. Ocean 
fields	from	the	parent	model	are	spatially	and	temporally	inter-
polated over the open boundary sections and provided to the 
ocean circulation model of the child domain. Figure 4.24 shows 
as example the Mediterranean Sea surface currents forecast 
product after integrating the numerical model accounting for 
the	GLO-PHY	ocean	fields	as	lateral	open	boundary	conditions.

For	major	details	 about	 the	 setup	of	both	 systems,	please	
refer to the Copernicus Marine Service web pages dedicated 
to each product.

4.2.8. Climatology from observations

To describe the general oceanographic conditions at differ-
ent	 time	scales	and	spatial	 resolutions,	climatological	fields	
computed	 from	observations	can	be	used.	They	are	defined	
as mean values of a certain variable in a certain period (e.g. 
month,	 season,	 etc.).	 They	 may	 be	 used	 for	 creating	 initial	
and/or	boundary	conditions	 for	an	ocean	model,	as	well	as	
validating numerical results and performing data assimilation.

Since	 observations	 are	 irregularly	 distributed	 in	 space,	 an	
objective	analysis	(Chang	et	al.	2009)	is	needed	in	order	to	

63. https://www.mercator-ocean.fr/en/portfolio/bronco-2
64. http://www.cmems-lambda.eu/
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Figure 4.25. An	example	of	climatology:	temperature	field	from	World	Ocean	Atlas	Climatology		(source:	🔗69).	

Dataset Description Provider

WOA

World	Ocean	Atlas	(Boyer	et	al.,	2019)	provides	climatological	tem-
perature	(ºC),	salinity	(unitless),	density	(kg/m3),	mixed	layer	depth	
(m)	and	other	biogeochemical	parameters	(for	the	latter,	major	de-
tails	are	provided	in	Chapter	9) https://www.ncei.noaa.gov/products/

world-ocean-atlas

WOD

World	Ocean	Database	(Boyer	et	al.,	2019),	 is	a	continuation	of	the	
Climatological	Atlas	of	the	World	Ocean	(Levitus,	1982)	and	at	pres-
ent represents one of the world’s largest collection of uniformly for-
matted,	quality	controlled,	and	publicly	available	ocean	profiles	data https://www.ncei.noaa.gov/products/

world-ocean-database

SeaDataNet

SeaDataNet is a distributed Marine Data Infrastructure for the man-
agement of large and diverse sets of data deriving from in situ of the 
seas and oceans. It provides an online access to data on regional cli-
matologies	products	–	gridded	fields	of	sea	temperature	and	salinity	
-	for	the	European	seas	(Arctic	Sea,	Baltic	Sea,	Black	Sea,	Mediterra-
nean	Sea,	North	Sea,	North	Atlantic	Ocean)	and	for	the	global	ocean

https://www.seadatanet.org/
Products/Climatologies

Table 4.7.  Climatology products and providers.

.69

69. https://www.ncei.noaa.gov/
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4.3.  
Data Assimilation 
Through	data	assimilation,	OOFS	combines	observations	and	
the numerical model solution with the scope of producing the 
best reconstruction of the ocean state to be used as initial 
condition of the forecasting cycle. According to Moore et al. 
(2019)	and	considering	Figure	4.27,	we	can	assume	that	a	pri-
ori state estimate of the ocean computed from the numerical 
model	 (blue	 line	 in	Figure	4.26)	 together	with	a	priori	direct	
but incomplete state estimate from ocean observations (black 
dots	in	Figure	4.26)	produce	a	posteriori	state	estimate	which	
“combines” all available information considering uncertain-
ties	in	both	model	and	observations	(green	line	in	Figure	4.26).

Ocean	 data	 assimilation	 is	 then	 defined	 mathematically	
through a rigorous process that combines ocean observation 
statistics with statistics of ocean model behaviour to extract 
the	 most	 useful	 information,	 possibly	 from	 sparse	 obser-
vations	 of	 time-varying	 ocean	 circulation	 (Cummings	 et	 al.,	
2009).	Broadening	Step	1	in	Figure	4.1,	the	main	characteristics	
of the data assimilation modelling system can be presented as 
in	Figure	4.27,	which	shows	the	major	components	of	the	data	
assimilation	modelling	system,	which	are	defined	by:

• access to observations;
• data quality control;
• data assimilation scheme.

Access	 to	observations,	quality,	providers	as	well	as	exam-
ples have been presented in Section 4.2. Data quality control 
is	performed	by	an	automatic	procedure,	native	 in	 the	as-

Figure 4.26. 		 Data	assimilation	models	(green)	are	
helped by observations to produce more realistic 
forecasts,	closer	to	real	observations	(source:	MEDCLIC	
project,	SOCIB-La	Caixa	Foundation).

similation	scheme	or	performed	in	offline	mode	at	the	sub-
mission	of	the	analysis	cycle,	which	selects	the	best	obser-
vational	dataset	from	the	one	accessed.	To	do	such	selection,	
the	procedure	 takes	as	 input	 the	quality	flag	value	associ-
ated	with	each	specific	observation	(see	Figure	4.3):	usually,	
observations	with	QC	flag	=	1	and/or	2	are	selected	and	make	
eligible to be used by the data assimilation scheme.

Depending	 on	 the	 specific	 characteristics	 of	 the	 basin	 on	
which	the	system	is	working,	the	data	quality	control	may	in-
clude	further	checks	to	reject	data	which	are	not	sufficiently	
good to be assimilated. Such criterion may be implement-
ed	 in	offline	mode	as	pre-processing	steps	of	 the	data	ac-
cess	and	management.	This	is	the	case,	for	example,	of	the	
Mediterranean	Forecasting	System	(MedFS)	delivered	in	the	
framework of Copernicus Marine Service: the system per-
forms additional checks for Argo and SLA observations rejec-
tion	based	on	specific	criteria,	which	are	listed	in	Table	4.8.

Data assimilation scheme is really the core of the system 
since it performs the mathematical work of combining model 
state and observations. Existing data assimilation methods 
are	classified	in	2	major	groups	(Bouttier	and	Courtier,	2002):

• sequential	 method,	 which	 considers	 past	 observa-
tions until the time of analysis: this is the case of NRT 
products	(analysis);

• non-sequential	method,	which	uses	 “future”	obser-
vation:	this	is	the	case	of	the	multi-year	products	(e.g.,	
reanalysis).

Another distinction can be made between continuous and 
intermittent assimilation in time:

• continuous assimilation: for a given period of time 
the observations are collected and the correction to 
the	analysed	state	is	smoothed	over	a	specific	assim-
ilation window;

• intermittent	assimilation:	for	a	given	period	of	time,	
the	observations	are	collected	within	a	specific	assimi-
lation window to compute a correction.
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Carrassi	et	al.	(2018)	and	De	Mey	(1997)	detail	more	the	nature	
of	the	assimilation	schemes	used	in	physical,	biogeochemical,	
ice	and	wave	 forecasting	systems,	describing	 the	 formulation	
of the problem and numerical approximation. These concepts 
are	detailed	in	the	theoretical	chapters	from	5	to	9,	which	are	
dedicated to show how such methods are used for setting up 
an OOFS.

From	the	scheme	in	Figure	4.27,	we	can	derive	some	key	defini-
tions	at	the	basis	of	the	assimilation	cycle:	the	innovation,	de-
fined	as	the	difference	between	the	first	guess	(or	forecast)	and	
the observation. The data assimilation method tries to estimate 
with less uncertainty than either the model prediction or obser-
vation:	it	deals	with	the	computation	of	the	increment,	defined	
as	the	analysis	minus	the	model	first	guess.	The	data	assimila-
tion system itself has been used to monitor observations and 
data	quality	 control	 (Hollingsworth	 et	 al.,	 1986)	 by	 computing	
statistics	 involving	 observations,	 such	 as	 observation	 incre-
ments used to setup the blacklisting; this is a list of observations 
that the data assimilation has rejected and represents valuable 
information	to	be	shared	also	with	data	providers	in	order	to	fix	
potential issues or bugs in the observational datasets.

Figure 4.27.   Major components of a data assimilation modelling system.
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4.4.  
Numerical Ocean models
4.4.1. Definition and types of models 

Ocean numerical models are the very core of the OOFS (see 
Figure	4.1).	A	numerical	ocean	model	is	a	computational	tool	
used	 to	 understand	 and	 predict	 oceanic	 variables	 (Griffies,	
2006).	A	set	of	equations	governing	the	dynamics	and	ther-
modynamics of the ocean are solved numerically to obtain a 
three	dimensional	dataset	of	simulated	variables,	which	typi-
cally	consist	of	EOV	such	as	wave	fields,	velocity	components,	
temperature,	salinity	and	sea	level,	at	any	instant	of	time.	

Depending	on	the	problem	and	variables	to	be	treated,	dif-
ferent numerical models are employed: 

• Temperature,	salinity	and	currents	fields	are	solved	by	
means of ocean circulation models (see also Chapter 5);		

• Ice models (see also Chapter 6);

• Sea	level	uses	ocean	circulation	models,	although	typically	
are	running	under	simplified	equations	(see also Chapter 7);

• Growth,	propagation	and	decay	of	waves	due	to	winds	
are calculated by wave models (see also Chapter 8).	
The rate of change of the wave spectrum is governed 
by	transfer	of	energy	from	wind,	wave-wave	interaction	
and dissipation. Interaction with ocean bottom is criti-
cal at high resolution coastal processes; different mod-
els,	 with	 different	 physics,	 are	 available	 to	 solve	 this	
scale	(mild-slope,	Boussinesq,	etc.);

• Biogeochemical processes in the ocean can be rep-
resented by biogeochemical models (see also Chapter 
9),	 using	 coupled	 differential	 equations.	 Examples	 of	
such	processes	include	cycles	of	carbon,	nitrogen,	iron,	
etc. Additional equations are used for time evolution 
of	phytoplankton,	zooplankton,	etc.,	at	varying	levels	of	
complexity. The chemistry and ecosystem equations are 
combined with the physical OGCM for the time-depen-
dent estimation of variables.70

70. https://medfs.cmcc.it/

ARGO QC1 Check	on	the	date	and	location	quality	flags:	only	the	profiles	with	both	flags	equal	to	1	are	taken	into	account

ARGO QC2 Out of the Mediterranean Sea region

ARGO QC3 Retain	only	ascending	profiles	(descending	are	rejected)

ARGO QC4 Check	on	the	values	of	the	quality	flags	of	pressure,	temperature	and	salinity	for	each	depth:	if	one	of	the	
flags	is	not	equal	to	1,	the	layer	is	deleted

ARGO QC5 Check	on	 the	 values	 of	 the	 temperature	 and	 salinity,	 data	 outside	 the	 following	 ranges	 are	 rejected:	
0<T<35	;	0<S<45

ARGO QC6 Check on the thermocline: if distance between two subsequent measurements of temperature and salin-
ity	in	the	first	300	meters	is	larger	than	40	m,	the	profile	is	rejected

ARGO QC7 Measurement between 0 and 2 m are rejected

SLA QC1
Check	on	the	values	of	date,	latitude,	longitude,	sea	level	anomaly	and	DAC:	if	one	of	these	values	is	equal	
to	missing	value	the	measurement	of	sea	level	anomaly	is	rejected.	Check	on	the	quality	flag	of	sea	level	
anomaly:	if	the	flag	is	not	equal	to	1	the	measurement	of	sea	level	anomaly	is	rejected

Table 4.8. 	 Quality	control	criteria	adopted	by	the	Mediterranean	Analysis	and	Forecasting	System	(MedFS,	🔗70)	
for	in-situ	(Argo)	and	SLA.		
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4.4.2. Coupled models 

Various	 dynamical	 components	 of	 the	 Earth	 system,	 such	
as	NWP	systems,	OOFS,	Sea	Ice	forecast	systems,	wave	fore-
cast	systems,	Land/Hydrological	 forecast	systems,	etc.,	 can	
be coupled together (see also Chapter 10).	 The	coupling	 is	
facilitated by using a common framework - like the ESMF - 
which allows the various dynamical components to exchange 
forcing data with other components. Couplers are then de-
signed to provide appropriate output/input information on 
model	grids	at	every	time	step,	as	required.	This	provides	a	
much	more	“tight”	exchange	of	forcing	data,	which	otherwise	

Operational ocean services provide routine marine products 
to an ever-widening community of users and stakeholders. 
Some of the products delivered are generated by means of 
ocean	models	(i.e.	forecasts,	analyses,	or	reanalyses).	Ocean	
models are powerful computational tools able to produce 
useful	information	in	the	absence	of	(or	in	between)	ground	
truth information.  The reliability of this information depends 
on	the	realism	of	the	model	itself,	but	also	on	the	accuracy	of	
its	initial	and	boundary	conditions,	as	well	as	on	the	capacity	
to constrain this model with contemporaneous high-quality 
observations. This information on models’ quality and per-
formance is almost more crucial for the end-users than the 
model	 solutions	 themselves.	 Thus,	 the	 reliability	 of	model	
solutions	must	be	assessed,	and	the	MPQ	must	be	quantified	
at	the	analysis,	forecast,	and	reanalysis	stages;	it	has	also	to	
be properly documented for end-users. 

The purpose of this section is to give a general overview of 
the commonly used methodology and processes applied by 
existing operational ocean services to validate and verify 
their	ocean	model	products.	In	particular,	standard	validation	
metrics and protocols were designed for oceanography mod-
el	analyses	and	forecasts,	and	agreed	among	the	community	
of	OceanPredict	forecasters	(Hernandez	et	al,	2015,	2018).	This	
section is focused on describing these validation method-
ologies	 and	 standards	 for	model	 products.	 Specific	 details	
on	the	thematic	 (process	oriented)	validation	 for	each	kind	
of	model	use	in	the	OO	community	(i.e.,	waves,	storm	surge,	
ocean	circulation,	biogeochemical,	etc.),	along	with	examples,	
illustrations	and	use	cases,	can	be	found	in	Chapters	5	to	9.

would be prohibitively expensive to provide using traditional 
file	I/O.	Different	couplers	allow	for	data	exchange	at	differ-
ent	 time	 scales.	 For	 example,	 atmosphere	 and	 sea	 ice	 can	
be coupled at smaller time intervals while ocean and sea-ice 
exchange information at much slower time intervals in the 
same coupled environment.

A	significant	application	of	such	“tight”	coupling	is	for	wind-
waves. Feedback from wave models in terms of radiation 
stress	can	be	used	to	modify	drag	coefficients	for	calculating	
wind stresses. These can be particularly useful for complex 
seas driven by hurricanes.

4.5.1. Basis statistical tools for time series 
validation 

Several metrics can be computed for a quantitative analy-
sis	of	the	model-data	time	series	validation:	bias,	maximum	
error MaxErr,	RMSE,	 Pearson	 correlation	 coefficient	 (R)	 or	
Scatter Index (SI)	are	some	of	the	most	common	examples	
and are obtained as:

(4.1)

(4.2)

(4.1)

(4.3)

(4.4)

(4.5)

4.5.  
Validation and Verification
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where Pi and Oi refer to the forecasted and observed signals 
respectively,	N	is	the	number	of	time	records,	and	(¯)	is	the	
mean	operator.	Other	type	of	skill	scores	can	be	used,	such	
as	the	Coefficient	of	Efficiency	(COE )	(Legates	and	McCabe,	
1999,	2013)	obtained	as:	

(4.6)

A perfect model has a COE = 1.0,	COE = 0.0: this implies 
that the model is no more able to predict the measured val-
ues than the measured mean; a negative COE value would 
indicate that the computed signal performs worse than the 
measured mean.

4.5.2. Ocean forecasting standard metrics for 
validation and intercomparison

There	 are	 different	 types	 of	 model	 products	 (i.e.	 forecast,	
analysis,	reanalysis)	and	different	types	of	model	evaluation	
methodologies,	which	are	mostly	based	on	the	comparison	
with	 reference	values,	 aiming	at	building	performance	and	
skill	scores.	Among	others,	some	of	the	most	applied	meth-
ods to assess OO models are:

1. Analysis	(or	forecast	at	various	forecast	lengths)	ver-
sus	 contemporaneous	 observations	 (in	 situ,	 but	 also	
satellite)	in	the	observations’	space.	This	type	of	com-
parison to observations is also performed by the data 
assimilation	system,	so	it	is	usually	extensively	used	in	
operational oceanography. Since ocean in-situ obser-
vations	are	sparse	and	unevenly	distributed,	represen-
tativeness issues are frequent. Depending on the ob-
servation’s	coverage,	 the	comparisons	are	either	 local	
(at	one	given	observation	location)	or	the	statistics	of	
the differences between model solutions and the ob-
servations are computed over rather large areas or long 
periods of time.

2. Model forecast versus model analysis (or observation 
only).	In	this	case,	the	model	forecast	for	a	specific	day	
is	compared	to	the	analysis	of	the	same	day,	assuming	
that the analysis is the best available estimate of the 
ocean state for that day; this methodology can be ap-
plied	only	in	delayed	mode,	when	the	analysis	is	avail-
able. The forecast can also be compared with gridded 
observations	(an	analysis	of	observations	only,	for	 in-
stance	satellite	L4	observations).

3. Forecast	 versus	persistence.	Model	fields	at	 various	
forecast lengths are compared to their initial condition. 
The forecast is compared with the persistence of the 
last	analysis	available	(or	observations),	in	other	words	
it is compared to what would have been the best esti-
mate of the ocean state of that day if no model forecast 
were available. This comparison is performed expect-

ing that the model forecast is more accurate than per-
sistence and allows to quantify the skill of the forecast.

4. Analysis	 (or	 forecast)	 versus	 climatology	 or	 versus	
literature estimates for less observed quantities. This 
approach is commonly used with currents or transports.

5. Observed versus modelled feature structure. In this 
case,	the	structure	(location	or	intensity)	of	an	observed	
feature	 (such	as	an	ocean	 front	or	eddy)	 is	 compared	
to its modelled counterpart. Categorical scores can be 
defined	from	this	type	of	model	validation,	possibly	in-
troducing space and/or time lags.

The results of these comparisons between model outputs 
and reference values can be combined in different ways to 
derive MPQ monitoring scores or metrics. In the numerical 
weather	 prediction	 community,	 there	 is	 a	 long	 tradition	 in	
model	 forecast	 verification	 methods	 with	 vigorous	 pro-
gresses related to the advent of probabilistic methods into 
operational	numerical	weather	prediction	 (Jolliffe	and	Ste-
phenson,	 2003;	 Nurmi,	 2003).	 On	 the	 other	 hand,	 the	 OO	
forecasting	community,	 conditioned	by	 the	 limited	number	
of oceanic observations and their uneven distribution (most-
ly	of	them,	surface	ones),	has	shown	that	quality	assessment	

Figure 4.28. Classes of metrics currently used 
in the OceanPredict community to monitor the 
quality of ocean analyses and forecasts: a com-
plete range of statistics and comparisons in space 
and	time	are	necessary	to	assess	the	consistency,	
representativeness,	accuracy,	performance,	and	
robustness of ocean model outputs.
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must include four types of metrics to properly assess the 
consistency,	representativeness,	accuracy,	performance,	and	
robustness	of	ocean	model	outputs	(Crosnier	and	Le	Provost,	
2007;	Hernandez	et	al.,	2009).	These	four	classes	of	metrics	
(Figure	4.28)	were	adopted	by	GODAE	OceanPredict	and	they	
have been extensively used in different OO initiatives. For in-
stance,	these	four	classes	(with	specific	computation	meth-
ods	and	definition	of	reference	geographical	areas)	have	al-
lowed regular intercomparison exercises between global and 
regional	ocean	forecasts	(see	Ryan	et	al.	(2015)	for	a	global	
ocean	forecasts	intercomparison).	A	last	type	of	metrics,	de-
fined	from	user	feedback	and	called	“user	oriented”	(such	as	
categorical	scores	point 5),	is	also	instrumental	for	the	quan-
tification	of	uncertainties	dedicated	to	specific	applications	
(Maksymczuk	et	al.,	2016).	Categorical	scores	using	space	and	
time	lags	or	specific	case	studies,	can	also	help	considering	
the double penalty effect that can lower statistical perfor-
mance while comparing high resolution model outputs with 
observations,	as	pointed	out	by	Crocker,	et	al.	(2020).	

4.5.3. Qualification, validation and verification 
processes in support of operational ocean 
models’ production 

Qualification,	 validation	 and	 verification	 are	 terms	 com-
monly used in the quality control of OO model products. 
Usually,	 qualification	 refers	 to	 model	 quality	 assessment	
at	the	development	stage,	during	which	model	parameters	
are	optimised.	In	OO	services,	such	as	the	Copernicus	Ma-
rine	Service,	the	qualification	phase	refers	to	a	comprehen-
sive	scientific	assessment	of	any	new/updated	operational	

Figure 4.29.   Schematic view of different Model Product Quality assessment processes applied along the life of an Oper-
ational	Oceanography	(OO)	service	product	in	the	development	and	dissemination	stages.	All	processes	rely	on	the	use	of	
the	standard	metrics	(Figure	4.28)	to	compare	the	model	product	with	observations	as	well	as	with	other	model	solutions.

ocean	model	 application,	 which	 is	 performed	 before	 the	
entry	 into	 service	 of	 the	 proposed	 system	 (Sotillo	 et	 al.,	
2021).	This	qualification	phase	is	often	used	to	quantify	the	
added value of the updated model system with respect to 
its	previous	existing	version,	comparing	the	performances	
of both system versions (Vn+1 versus Vn)	against	a	well-de-
fined	list	of	metrics,	and	using	the	same	referential	obser-
vational	data.	On	 the	other	hand,	validation	 refers	 to	 the	
operational ocean analyses and forecast performance as-
sessment,	while	in	operation.	Finally,	verification	is	defined	
by	Hernandez	et	al.	(2015)	as	the	a	posteriori	quantification	
of	operational	ocean	forecast	skill,	preferentially	based	on	
independent	 data,	 which	 means	 observational	 products	
not	used	to	constrain	the	model	products;	for	instance,	by	
means of any kind of data assimilation.

Achieving the best possible MPQ is a major objective for OO 
centres,	and	a	MPQ	itself	is	a	key	performance	indicator	for	
any OO service. Several model quality assessment stages can 
be	defined	along	the	life	of	an	OO	model	product.	Figure	4.29	
illustrates the typical MPQ assurance loop adopted by OO 
services to ensure and quantify the quality of their model 
products. This approach is becoming popular across OO ser-
vices to deal with MPQ at each major stage of development 
of	 an	 operational	 oceanography	 model	 (i.e.	 development,	
transition	 into	 operations,	 operational	 routine,	 and	 “after	
sales service” including delayed mode validation and exper-
tise),	 using	dedicated	model	 assessment	processes,	 and	 it	
counts with a long tradition in the operational meteorologi-
cal and climate community.
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As	shown	in	Figure	4.29,	six	main	steps	or	phases	can	be	dis-
tinguished	within	the	MPQ	assurance	process.	The	first	one,	
focused	 on	 research	 and	 development	 activities,	 supports	
the implementation/update of new/existing model products 
to be operationally delivered. At this research and develop-
ment	phase,	relevant	scientific	quality	information	is	devel-
oped - and that can also later published in peer reviewed 
publications - mostly ensuring that the ocean model appli-
cation is state-of-the-art and based as much as possible on 
cutting-edge science. Both model versus observations (mod-
el-obs)	comparisons	and	intercomparisons	with	other	avail-
able	model	 solutions	 (model-model	 intercomparisons)	 can	
be performed in support of this forecasting system devel-
opment	phase,	and	they	are	the	basis	for	the	evaluation	of	
model	sensitivity	tests	and	scenarios.	User	oriented	metrics,	
such	 as	 categorical	 scores	 or	 Lagrangian	 drift	 evaluations,	
(Drévillon	et	al,	2013)	can	be	used	in	specific	case	studies	to	
quantify	the	impact	of	changes	in	the	model	system,	either	
during	the	system	development	phase	or	to	prepare	specific	
OSEs and OSSEs. 

When	 the	 new	 model	 set-up	 application	 is	 scientifically	
tested and before the model system is scheduled for entry 
into	 service,	 there	 is	 a	 pre-operational	 qualification	 stage,	
along	 which	 the	 expected	 (reference)	 products’	 quality	 is	
established.	In	the	qualification	phase,	it	is	critical	that	the	
model solution tested is generated in a pre-operational 
environment that ensures analogous conditions (i.e. same 
model	 applications,	 same	 type	of	 forcing	data,	 and	 analo-
gous	 observational	 data	 sources	 to	 be	 assimilated)	 to	 the	
ones that are later applied in operations. It is also important 
to compare the quality of the product with its previous ver-
sions to ensure that there is no regression in terms of MPQ. 
The stability in time of the performance of the model is also 
assessed,	 using	 a	 data	 record	 of	 at	 least	 one	 year.	 Finally,	
as	an	outcome	 from	 this	phase,	 the	OO	services	 can	 issue	
the “static” reference documentation on the quality of the 
product using the different assessment metrics computed. 
The document can be later delivered to end-users together 
with	the	product	itself;	for	instance,	see	the	QUID	delivered	
together with any Copernicus Marine Service ocean product. 

Once	the	model	system	is	in	operation,	the	OO	centres	per-
form	the	scientific	validation	and	verification	of	the	mod-
el products delivered on a routine online near-real-time 
basis,	 together	 with	 the	 control	 of	 the	 operational	 pro-
duction. This on-line validation usually includes forecast 
model assessments with the available observational data 
sources	 (specially	 from	NRT	operational	products)	or	with	
other	model	solutions	(more	recent	available	analysis	or,	in	
the	case	of	regional	models,	comparisons	with	the	parent	
solution	 in	which	are	nested).	This	first	on-line	validation	
process is later completed with an extra assessment done 
in	delayed	mode.	This	delayed-mode	validation,	performed	
typically	monthly,	 allows	 to	 generate	more	 complete	 and	

robust	 validation	metrics,	 extending	 the	 obs-model	 com-
parisons using observational information from extra data 
sources or more quality-controlled ones and more com-
plete series of analyses and forecast cycles.

Finally,	 user	 feedback	 focused	 on	 specific	 processes,	 ar-
eas	or	events,	as	well	as	extra	model	product	assessments	
performed by the producers themselves or by producers in 
collaborative	frameworks	(such	as	scientific	research	proj-
ects	or	other	 initiatives	with	 targeted	end-users)	can	sig-
nificantly	enhance	the	knowledge	of	the	model	products.	

OO services are continuously progressing towards the reg-
ular	 delivery	 of	 up-to-date	 quality	 information,	 although	
there are remaining gaps in operational capacities to as-
sess	model	solutions,	mostly	linked	to	shortcoming	in	the	
availability	of	ocean	observations,	and	specially	in	NRT.	Ob-
servational data used for model skill assessment and val-
idation	are	mainly	originating	from	drifting	profilers,	fixed	
mooring	platforms,	tide	gauges,	and	remote	sensing	data.	
In their review on the operational modelling capacity in the 
European	Seas,	Capet	et	al.	(2020),	point	out	that	only	20%	
of operational model services provide a dynamic uncer-
tainty together with the forecast products. This uncertainty 
would	be	required	for	a	real-time	provision	of	confidence	
levels	associated	with	the	forecasts	as,	for	instance,	is	usual	
in	weather	forecasts.	This	lack	of	uncertainty	information,	
associated	with	a	lack	of	observations,	affects	also	the	data	
assimilation	 capacity	 (Capet	 et	 al.	 (2020)	 noted	 that	 data	
assimilation is only implemented for 23% of the surveyed 
models,	remaining	exceptional	in	biogeochemical	systems).	
The development of ensemble forecasting and that of prob-
abilistic	uncertainty	information	may	help	to	fill	this	gap	in	
the	future.	Peng	et	al.	(2021)	stressed	the	need	for	findabil-
ity,	accessibility,	interoperability	and	reusability	(FAIR	data	
principles)	 of	 the	 information	 in	 earth	 science	 datasets.	
This	 confirms	 that	 pertinent	 product	 quality	 information	
has to be developed further as part of OO services.
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4.6.1. Introduction

The	OOFSs	aim	at	delivering,	by	means	of	numerical	ocean	
models,	essential	information	on	the	ocean	state	to	a	wide	
community of stakeholders and users.

To	meet	 users’	 requirements,	 the	 variables	 to	 be	 supplied	
must be carefully selected among the large amount of data 
produced	 by	 the	 OOFSs.	 In	 addition,	 spatial	 and	 temporal	
resolution at which these variables are obtained must also 
be	 well	 defined.	 Furthermore	 to	 these	 specifications,	 the	
efficient	 storage	 and	 delivery	 of	 the	 information	 supplied	
by the OOFS is of paramount importance to allow later ma-
nipulation.	For	this	purpose,	the	outputs	obtained	from	the	
modelling systems should be saved in standard formats that 
enable	their	easy	use,	treatment,	and	exchange.

The purpose of this section is to provide information and 
recommendations on the characteristics of the outputs to 
be	delivered	in	the	frame	of	OOFSs,	to	maximise	their	utility	
and ensure that they meet the requirements demanded by 
the users.

4.6.2. Products and datasets

The data related to forecast systems are provided through 
products and datasets.

A	“product”	is	a	usable	set	of	data	(or	one	or	more	datasets)	
with	its	descriptive	information	(metadata).	A	product	is	the	
association of one or several datasets with some static and/
or dynamic metadata.

A “dataset” is the aggregation of analysis and forecast with 
the	same	geospatial	structure	or	feature	type:	profiles,	point	
series,	 trajectories,	points,	grids,	grid	series,	etc.	A	dataset	
is	composed	of	one	or	several	data	files.	The	aggregation	is	
done so that the content of the dataset is predictable for 
the	user	 (list	of	 variables,	predefined	geographical	bound-
ing	box)	and	expandable	when	the	product	is	updated	(time	
axis).	A	dataset	can	be	accessed	through	an	“Access	service”.	
A dataset is gridded when the data are stored in raster data 
files	(e.g.	in	NetCDF	format),	and	each	file	of	the	dataset	con-
tains some variables on the same geographical coverage. The 
difference	between	 two	files	 composing	 a	 gridded	dataset	
shall	be	the	time	coverage	of	the	variable(s).

4.6.3. Variables

The	EOVs	identified	by	the	GOOS	Expert	Panels	as	fundamen-
tal	measurements	needed	 to	address	 the	current	scientific	
and	 societal	 ocean-related	 issues,	 can	 play	 an	 overriding	
role as guidelines to incorporate the most relevant ocean 
information	in	the	final	OOFS	output	products	and	their	in-
clusion is thus strongly encouraged.

These variables provide an optimal global representation of 
the	state	of	the	ocean	(Lindstrom	et	al.,	2012)	and	the	afford-
able and technically feasible to generate information they 
give is particularly relevant for main ocean themes such as 
ocean health or climate.

Among	these	EOVs,	the	most	important	ones	regarding	ocean	
physics	are	mainly	surface	and	subsurface	temperature,	sa-
linity,	currents,	sea	surface	height,	sea	ice,	and	surface	stress.	
In	biogeochemistry,	some	of	the	most	relevant	are	nutrients,	
oxygen,	 dissolved	 organic	 carbon,	 and	 particulate	 matter,	
whereas	phytoplankton,	zooplankton,	and	algal	cover	stand	
for major variables for biology and ecosystems. 

4.6.4. Spatial resolution

Ocean modelling systems deliver outputs over discretized 
grids	at	 specific	horizontal	 and	vertical	 resolutions.	Usual-
ly,	the	most	used	horizontal	grids	are	structured	Arakawa	B	
or	C,	which	avoid	the	existence	of	a	singularity	point	in	the	
computational domain by locating north mesh poles on land 
instead. This particularity entails that those models gener-
ate data in non-regular meshes that can be more complex 
to handle. Other models can also produce unstructured data 
gridded in irregular patterns composed by simple shapes 
such as triangles or tetrahedra that allow the mesh to adjust 
to	more	complex	geographical	areas.	Likewise,	spatial	reso-
lution	 can	be	 increased	 in	 specific	 regions	presenting	 fea-
tures	or	events	of	particular	 interest	 (e.g.	coastal	areas)	by	
way of nesting techniques that allow the dynamic exchange 
of information between model parent and child domains.

Three dimensional grids of ocean circulation models are 
vertically discretized following different vertical coordinate 
systems. These coordinate systems are based on different 
ways	of	discretizing,	 such	as	 the	cartesian	depth-following	
z-coordinate,	the	isopycnal	ρ-coordinate,	the	terrain-follow-
ing	σ-coordinate,	or	the	pressure	p-coordinate.	Their	choice	
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is especially important since each of them has advantages 
and disadvantages in accurately representing the different 
ocean layers features.

To slightly simplify the managing of outputs for the model 
users,	some	later	horizontal	interpolation	can	be	performed	
to	generate	final	outputs	in	easier	regular	user-defined	coor-
dinate	systems,	although	this	must	be	achieved	always	en-
suring that the information loss is minimised and the highest 
possible product quality is reached.

4.6.5. Time resolution

Final model outputs are typically distributed as time-aver-
aged means or instantaneous values encompassing a wide 
range of time frequencies. The selected frequencies may de-
pend on the variability of each variable and on the scope 
of	the	study	for	which	the	outputs	would	be	employed,	but	
hourly,	daily,	or	monthly	means	are	the	most	demanded	out-
puts.	Anyway,	this	feature	is	configurable	in	the	models	and	
hence	can	be	modified	as	needed;	for	consistency,	increases	
in spatial resolution usually should go hand in hand with ris-
es of temporal resolution and therefore also higher-frequen-
cy	outputs.	 In	any	case,	 later	procedures	can	be	applied	to	
organize	the	final	outputs	as	wished,	splitting,	or	gathering	
the	produced	variables	 in	different	datasets,	or	 computing	
averages	for	specific	time	periods.

4.6.6. Data format

Outputs formats constitute an essential aspect of the OOFS 
production. Formats highly depend on the models employed 
to	generate	outputs.	In	that	sense,	the	utilisation	of	standard	
formats	is	especially	significant	to	ease	the	data	reading	or	
processing	with	specific	software	or	to	improve	the	exchange	
between	different	systems,	since	they	structure	data	in	set-
ups	easily	interpretable	according	to	well-defined	rules.

Among	 these	 formats,	 the	most	 recommended	 is	 certainly	
the	Network	Common	Data	Form	(NetCDF),	a	set	of	free	soft-
ware libraries and data interfaces widely applied in mete-
orology,	oceanography,	and	earth	sciences,	and	specifically	
designed	for	creating,	accessing,	and	sharing	array-oriented	
scientific	data	(🔗71).

NetCDF format features are:

• Self-Describing:	netCDF	files	show	information	(meta-
data)	on	the	contained	data;
• Appendable: Data may be added to an already exist-
ing	netCDF	file	without	altering	its	structure;

71. https://www.unidata.ucar.edu/software/netcdf/

• Scalable:	 Datasets	 from	 netCDF	 files	 can	 be	 easily	
subset through interfaces;
• Portable:	 netCDF	 files	 can	 be	 effectively	 retrieved	
from computing machines with different architectures;
• Shareable:	netCDF	files	allow	simultaneous	access;
• Archivable: The access to earlier forms of netCDF data 
is possible with newer versions.

NetCDF	also	includes	data	access	libraries	for,	among	other	
programming	languages,	Fortran,	Java,	C,	C++,	as	well	as	utility	
programs	to	open	and	manipulate	the	data	files.

Metadata	contained	in	the	netCDF	files	are	a	key	component	
since they supply major information on the data character-
istics.	 To	promote	 the	 sharing	of	 such	files,	 there	are	 con-
ventions	specifically	designed	for	defining	common	climate	
and	forecast	metadata,	such	as	the	COARDS	CF	conventions.	
These	conventions	allow	the	NetCDF	files	to	accurately	de-
scribe	each	variable	data,	as	well	as	define	their	spatial	and	
temporal	properties.	Thus,	they	simplify	the	process	of	com-
paring quantities between different sources and enhance 
the	design	of	specific	applications.

In	particular,	 the	CF	metadata	convention	 is	an	extension	of	
the COARDS conventions especially intended for model-gen-
erated	data.	According	to	this	convention,	specific	attributes	
provide	 a	 general	 explanation	 of	 the	 netCDF	 file	 contents,	
whereas others deliver associated descriptions of each vari-
able	included	in	the	file.	Furthermore,	when	following	the	CF	
convention,	a	special	treatment	is	given	to	the	essential	mod-
el	outputs	coordinates	(latitude,	longitude,	vertical	and	time).	
More information on CF conventions can be found at 🔗72.

4.6.7. Display and analysis tools

Numerous	tools	are	available	for	displaying,	analysing,	and	
handling	 ocean	 modelling	 output	 data,	 particularly	 when	
data are structured according to common formats such as 
NetCDF. Its libraries include helpful command lines such as 
“ncdump” that allows to quickly view a text representation of 
data	and	metadata	information	included	in	the	file.	Another	
command,	“ncgen”,	 is	used	to	generate	a	netCDF	file	or	the	
C/Fortran programs needed to create it from a description 
of	 the	netCDF	file	previously	obtained	 in	 a	 small	 language	
known	as	Compiler	Description	Language	(CDL).

Aside from the previously mentioned netCDF libraries com-
mands,	many	well-known	 packages	 and	 programming	 lan-
guages	can	open,	manipulate	(e.g.	for	modifying	information,	
calculating	arithmetic	operations,	computing	statistics,	etc.),	
or	visualize	netCDF	files.	

72. https://www.unidata.ucar.edu/software/netcdf/
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Among	them,	the	most	popular	are:

• Ferret (https://www.unidata.ucar.edu/software/netcdf/), 
• NCO (http://nco.sourceforge.net), 
• CDO (https://code.mpimet.mpg.de/projects/cdo), 
• Python (https://www.python.org/),  
• Matlab (https://www.mathworks.com/),  
• GrADS (http://cola.gmu.edu/grads),
• IDL (ttps://www.harrisgeospatial.com/Soft-
ware-Technology/IDL), 
• IDV (https://www.unidata.ucar.edu/software/idv), 
• Panoply (https://www.giss.nasa.gov/tools/panoply), 
• NCL (http://www.ncl.ucar.edu), 
• ncview (ttp://cirrus.ucsd.edu/ncview), 
• ncBrowse (https://www.pmel.noaa.gov/epic/java/
ncBrowse).

4.6.8. Output dissemination

The OOFSs require an accessible and reliable service to ef-
fectively distribute the data generated. This service must 
implement interfaces interoperable with the oceanography 
community	(NetCDF	outputs	following	CF	convention,	quality	
control	procedures,	etc.),	and	use	common	tools	and	proto-
cols	(e.g.	Thredds-OpenDAP)	for	accessing	the	data.

The service mentioned should be based on systems that 
have	been	effectively	serving	users	for	years,	ensuring	that	
the outputs are provided considering the user requirements. 
In	addition,	all	service	components	should	be	properly	man-
aged and maintained.

The model outputs should be archived in easy-to-access ser-
vices	from	where	users	may	obtain	them,	either	requesting	
them	through	dedicated	interfaces	(pull	service)	or,	for	sub-
scribed	users,	receiving	the	files	via	any	well-known	protocol	
such	as	ftp,	ssh,	etc.	These	services	should	also	allow	the	
users to subset the requested data from the original outputs.

A marine service is the provision of marine information to 
assist decision making. The service must respond to user 
needs,	must	be	based	on	scientifically	credible	information	
and	expertise,	and	requires	appropriate	engagement	between	
users and providers. It should be an integrated service gath-
ering all ocean products into a single catalogue sustained on 
the long term.

The	first	mandatory	step	is	to	define	the	service	to	be	provid-
ed and answer the following questions:

• What is the target audience of the service? It can in-
clude one or all the following users: national/local pub-
lic	environmental	agencies,	scientists	and	academia,	
citizens,	private	companies,	etc.

• Which data policy is applied to the service? It can be 
an open service (open to all users with or without reg-
istration)	or	a	restricted	access	service.	It	can	also	be	a	
free of charge or a paid service.

• Which operational commitments and service level 
agreement are available to users? To engage through a 

transparent	and	trust	relationship	with	users,	service	
commitments should be made publicly available.

Depending	on	the	answers	to	the	3	above	questions,	the	ser-
vice will develop a patchwork of the following assets:

• Communication	assets	(both	on	and	offline),	ocean	
literacy	tools,	and	societal	awareness	can	for	example	
include the activities below. These are designed to de-
liver the operational oceanography service expertise to 
a	wider	audience	through	the	translation	from	scientific	
language	 and	 findings	 for	 different	 target	 audiences,	
and to distribute the tools to drive uptake. 

• Digital	website,	digital	tools,	social	media	(Twit-
ter,	Linkedin,	Youtube,	etc.);
• Editorial	 (News,	 Events	web	section,	 etc.)	 and	
press	relations	(Newsletters,	etc.);
• Ocean Literacy and Outreach activities (outreach 
events,	partner	initiatives,	museum	exhibitions,	etc.).	

• An ocean data portal including the catalogue of ocean 
products should be made available online to download 
and visualise marine data. 
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• A searchable online catalogue of products should 
be made available including product metadata de-
scription	 and	 search	 parameters	 such	 as:	 free	 text,	
geographical	 areas,	 marine	 parameters,	 models	 or	
observations	(satellite	or	in	situ),	resolution	(spatial	
and	 temporal),	 coverage	 (spatial	and	 temporal),	up-
date	frequency,	etc.	 It	should	also	allow	the	user	to	
download the selected data product (with or without 
registration,	and	with	or	without	charges,	depending	
on	the	definition	of	the	service).	The	online	catalogue	
should be compliant with the highest standards of 
usability and interoperability.

• Another major asset includes viewing tools to vi-
sually explore the different ocean products. Such 
tools	can	include	the	ability	to	create	2D	maps,	cross	
sections,	select	regions,	and	generate	graphs	with	se-
lected variables. Layering and superimposing layers 
with different opacities can be made possible allow-
ing	users	to	compare	multiple	datasets.	 In	addition,	
the selected maps and time frames can be exported 
as	videos,	images	or	embedded	elsewhere.	

• Such ocean data portal encompasses product 
management activities to carefully and closely man-
age the product portfolio and each product life cy-
cle. Product management allows to carefully track all 
product changes impacting users along with product 
metadata	updates	and	homogenisation,	which	in	turn	
need to be carefully communicated to the users.

• The user support desk is the point of contact for all 
questions and comments from users and its objective 
is to optimise user experience throughout the service. 
Various means can be used to initiate or conduct ex-
changes	with	users	(e.g.	chat	box,	e-mail	address,	on-
line	 forms,	 phone,	 video-conferencing,	 etc.).	 The	 user	
support desk is also responsible for informing users 
of	 operational	 issues	 on	 products	 and	 services,	 such	
as	 incidents,	maintenance,	 and	 improvements.	 In	 ad-
dition,	 it	also	provides	an	 internal	 link	between	users	
and	 	scientific	and	technical	experts.	Finally,	 it	 is	also	
very involved in the training activity described below 
and participates in all such events. A client-oriented 
approach	for	specific	users	can	be	developed	if	needed	
for	specific	major	accounts.

• User learning services or training activities allow to 
strengthen	user	uptake:	its	objective	is	to	train,	answer	
questions,	 facilitate	 user	 experience,	 share	 knowledge,	
and collect requirements. Training workshops are de-
signed	to	train	existing,	new	or	beginner	users.	The	target	
audience	needs	to	be	clearly	defined	and	the	training	re-
sources	need	to	be	developed	accordingly.	For	example,	
participants can learn about products and services and 

their possible applications across a wide range of sub-
jects during plenary and practical training sessions. Par-
ticipants should be enabled to share their experiences 
as well as express their needs and requirements for fu-
ture	new	products	to	be	included	in	the	portfolio.	Finally,	
tutorial videos and jupyter notebooks (i.e. open-source 
web application that allows experts to create practical 
exercises	and	share	codes)	can	be	shared	with	partici-
pants to help them for their own code programming and 
understanding of how to use products.  

• A service monitoring activity: the service should be 
monitored	 through	 key	performance	 indicators	 (KPIs),	
reported quarterly and annually. Such KPIs assess the 
service reliability against operational commitments 
and	 service	 level	 agreement	 (timeliness,	 robustness,	
etc.).	 The	 service	 monitoring	 activity	 encompasses	
many	KPIs	to	steer	the	service	and	its	uptake,	and	for	
example	 provides	 figures	 about	 the	 product	 portfolio	
evolution,	variation	 in	 the	number	of	subscribers	and	
their	detailed	characteristics,	as	well	as	monitoring	of	
the service availability and product timeliness.

• User feedback and user satisfaction should be mea-
sured,	monitored,	analysed,	and	injected	back	into	the	
service through the implementation of new or updated 
products	and	services	to	better	fit	user’s	demand.	

• User engagement and market expansion activities 
can	be	developed	to	foster	uptake	of	marine	products,	
develop	market	intelligence,	and	seek	novel	opportu-
nities for data use in new communities. Such activities 
include	targeting	developing	blue	markets,	explaining	
the	 marine	 offer	 to	 new	 audiences,	 showcasing	 the	
use	 of	 data	 through	 use	 cases,	 launching	marketing	
campaigns,	organising	or	participating	in	events	advo-
cating the marine services and liaising with new part-
ners and communities.
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5.1.  
General introduction to circulation models
5.1.1. Objective, applications and beneficiaries

The main objective of any OOFS is to provide users with the best 
reliable and easy access information available on the state of 
the	ocean	in	near	real-time.	The	service	is	meant	for	any	user,	
and especially downstream service providers who use the infor-
mation as an input to their own value-added services.

A	forecasting	system	relies	on	a	numerical	ocean	model	and,	
in	many	cases,	on	a	data	assimilation	component	able	to	as-
similate the available observations and provide a complete 
dataset that can be used as initial conditions by the ocean 
circulation model. The availability of relevant observations 
is crucial to the success of an OOFS and the development of 
models	and	numerical	 techniques,	along	with	data	assimi-
lation schemes that combine all the information taking into 
account the uncertainties of the observations and models. 

The circulation modelling component represents one of the 
main cores of operational marine monitoring and forecasting 
systems: it provides an overall description of ocean physical 
essential	 variables	 (i.e.	 temperature,	 salinity,	 currents,	 sea	
surface	height,	etc.)	for	ocean	predictions	and	for	supporting	
climate studies. Ocean models are able to describe the sea 
state from global to coastal scales and to predict its variabil-
ity and evolution in time (from short to mid-term to long-
term).	 This	 is	 done	 by	 numerically	 solving	 a	 set	 of	 partial	
differential	equations,	based	on	an	approximated	version	of	
the Navier-Stokes equations.

At	the	beginning	of	the	XX	century,	Bjerknes	(1914)	described	
a practical method that could solve the mathematical dynam-
ic	and	thermodynamic	equations	at	least	for	a	finite	amount	
of	time.	He	defined	two	factors	that	were	necessary	to	make	
predictions	a	reality:	(1)	knowledge	of	the	initial	conditions	as	
accurately	as	possible,	and	 (2)	 the	development	of	an	accu-
rate predictive model. The latter consisted of discretizing the 
equations and using numerical methods to solve for the time 
derivative.	Based	on	this	approach,	the	first	successful	meteo-
rological	forecast	became	operational	at	the	end	of	the	1960s,	
while ocean forecasting began in the 1980s; a joint venture be-
tween Harvard University and the Naval Postgraduate School 
in	 Monterey,	 both	 in	 the	 United	 States,	 completed	 the	 first	
successful forecast of ocean mesoscales in a limited ocean 
area	(see	Pinardi	et	al.,	2017,	for	an	overview	of	the	ocean	pre-
diction	science).	Earlier	examples	of	wave	forecasting	during	
the second World War responded to the need to know the sea 
state	during	landing	operations	(O'Brien	and	Johnson,	1947).

During	the	last	decades	of	the	20th	century	and	the	first	de-
cades	of	the	21st	century,	ocean	forecasting	has	become	an	

operational	activity	and,	thanks	to	the	increase	of	computing	
power,	 today	we	are	able	to	numerically	 integrate	the	gov-
erning	equations	at	very	high	resolution	in	space	and	time,	
to	study	multi-scale	ocean	processes,	physical	properties	
and	their	impacts	on	the	climate,	and	human	activities	af-
fecting	the	environment.	In	modern	ocean	prediction,	sto-
chastic approaches and ensemble estimates complement 
deterministic	solutions,	accounting	for	the	different	sources	
of	uncertainties	 (e.g.	 errors	 in	 the	 initial	 conditions,	 in	 the	
forcing	functions,	in	the	physics	of	the	numerical	model,	and	
in	the	bathymetry)	that	unavoidably	affects	the	final	solution	
and tends to increase over the forecast period. 

To	 improve	the	quality	of	predictions,	data	assimilation	and	
ensemble	techniques	are	widely	used,	and	their	primary	scope	
is to rigorously and systematically combine available observa-
tions	 (in	 situ	and	satellite)	with	numerical	ocean	models	 to	
provide	the	best	estimate	of	the	forecasting	cycle.	However,	in	
case of very high-resolution nested models and when obser-
vation	availability	is	limited,	operational	systems	do	not	use	a	
data	assimilation	procedure.	When	possible,	an	OOFS	system	
needs to retrieve data observations from a wide variety of ob-
serving platforms and systems over the domain of interest for 
prediction. Satellite based observing systems provide a large 
source of observational data for an OOFS as well.

An OOFS needs to access information from a numerical 
weather prediction system in order to provide surface bound-
ary forcing information. The OOFS will also require informa-
tion	on	other	parameters	 that	 influence	the	ocean	such	as	
river	outflows,	etc.	Depending	on	the	domain	of	interest,	the	
OOFS may also require information about sea ice (see Section 
4.2 for the input data and Chapter 6 for understanding sea 
ice	modelling	basics).	Observations	are	also	used	to	provide	
a quantitative understanding of the capacity of the ocean 
model to make predictions by means of validation and cali-
bration	techniques	and,	consequently,	to	measure	and	mon-
itor	the	accuracy	of	the	forecasting	product	(see	Section	4.5).	
Routine	validation	and	verification	information	will	tell	the	
OOFS operators when a model is not performing well. The 
errors	 identified	through	validation	and	verification	can	be	
used to set priorities for further development of the OOFS. 
Despite the enormous improvements reached nowadays 
by operational forecasting systems ranging from global to 
coastal	scales,	much	research	 is	still	needed	to	advance	 in	
ocean prediction. Developments include access to additional 
innovative autonomous multi-scale observing technologies 
observations,	both	remote	and	in	situ	(Le	Traon	et	al.,	2019),	
to	new	model	developments	(Fox-Kemper	et	al.,	2019),	up	to	
next-generation computational methods and data assimila-
tion schemes supported by the recently expanding applica-
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tions	of	machine	learning	techniques	in	this	field	(De	Mey-
Frémaux	et	al.,	2019).

The ultimate purpose for operating an OOFS is the produc-
tion,	preparation,	and	delivery	of	operational	ocean	forecasts	
to users in forms that meet their needs. There is a growing 
list of users relying on the products and services from op-
erational ocean forecasting systems. Ocean predictions will 
continue to produce an increasing number of marine ap-
plications	and	services:	e.g.	 for	maritime	safety,	marine	re-
sources,	coastal	and	marine	environment	(Chapter 11).	This	is	
because the new systems allow informed management and 
emergency decisions to be made based on physical knowl-
edge	resolved	at	unprecedented	space	and	time	resolution,	
with known quality and accuracy. 

The emergence of operational organisations for delivering 
real-time forecasts and analyses will encourage the develop-
ment	of	value-added	products,	including	forecasts	for	extreme	
weather	driven	events	(such	as	storm	surges),	pollution,	oil	
spills,	acoustic	properties	(e.g.	the	speed	of	sound),	sea	ice,	
ecosystem	 management,	 safe	 offshore	 activities,	 search	
and	 rescue	 operations,	 optimal	 energy	 extraction,	 and	
maritime	safety	and	transport.	In	addition,	ocean	forecast	
products and services can also be providers of informa-
tion	for	aquaculture,	fishery	research,	and	regional	fishery	
organisations,	contributing	to	 the	protection	and	sustain-
able management of living marine resources. Availability 
of predictions on the ocean helps to limit damages in the 
case	of	floods,	storm	surges,	heat	waves	and	other	dangers	
associated	with	sea	conditions.	Furthermore,	detailed	and	
accurate forecasts are also useful to assist decision making 
to plan long-term strategies aiming at managing the risks as-
sociated with the impacts of climate change on the sea and 
coasts,	such	as	sea	level	rise	and	marine	heat	waves.

A predicted ocean where society has the capacity to un-
derstand current and future ocean conditions is one of the 
proposed seven outcomes of the United Nations Decade of 
Ocean Sciences for Sustainable Development.

Scope of this chapter is to present all elements that make an 
OOFS and provides a detailed understanding of the main cir-
culation	modelling	components.	For	each	component,	a	com-
prehensive description is provided in dedicated chapter sub-
sections,	including	the	presentation	of	some	state-of-the-art	
examples of ocean models currently working in operational 
frameworks.	 In	addition,	basic	concepts	of	data	assimilation	
systems	and	validation	strategies	will	be	presented	as	well,	
since an essential part of operating a model is to conduct the 
necessary	validation	and	verification	procedures	to	maintain	a	
continuous quality control of the system outputs.

5.1.2. Circulation Physics

The	 physical	 processes,	 properties	 and	 circulation	 of	 the	
ocean are described numerically by the approximated Navi-
er-Stokes	equations	(details	in	Section	5.4.1).	The	equations	
allow the spatial and temporal distribution of the tempera-
ture,	salinity,	density,	pressure,	and	currents	to	be	described.	
Numerical ocean models are the building block of opera-
tional oceanography and fundamental for near real time to 
seasonal to decadal forecasts and climate projections. In 
operational	oceanography,	they	are	used	alongside	data	as-
similation techniques to accurately represent the state of the 
ocean	at	a	particular	point	in	time	and	space,	and	to	produce	
the initial condition of the forecasting system.

The	governing	equations	for	a	real	fluid	are	the	Navier-Stokes	
equations,	together	with	conservation	of	salt	and	heat	and	
an equation of state; these equations support fast acoustic 
modes and involve nonlinearities in many terms that make 
their	 solution	both	difficult	 and	expensive.	A	 series	of	 ap-
proximations are made to simplify and yield the “primitive 
equations”,	which	are	the	basis	of	most	general	circulation	
models. The assumptions that are made in ocean models are 
described in Section 5.4.

Ocean circulation models aim to represent key processes. These 
include:	1)	transport	of	heat	by	the	ocean;	2)	the	effect	of	evap-
oration,	precipitation	and	runoff	on	ocean	salinity	and	density;	
and	3)	the	role	of	ocean	currents	which,	along	with	wind	waves	
and	tides,	drive	ocean	mixing	and	water	mass	transformation.	
Ocean circulation models discretize the governing equations on 
a	horizontal	and	vertical	grid	(Section	5.4	expands	on	this).	The	
details of whether processes can be explicitly resolved in mod-
els or they must be parameterised depend on the resolution of 
the grid used to solve the approximate numerical system.

Figure 3.4 (see Chapter 3)	 shows	 the	 order	 of	magnitude	 of	
spatial	and	temporal	scales	of	specific	ocean	processes.	If	the	
model	resolves	scales	of	100	km,	ocean	models	should	be	able	
to	resolve	Kelvin	and	Rossby	waves;	 indeed,	the	representa-
tion of Equatorial dynamics has been shown to be important 
for forecasting the evolution of El Nino on seasonal timescales 
(Latif	et	al.,	1994).	On	shorter	timescales	but	with	similar	spa-
tial	scales,	surface	tides	are	key	processes	to	represent.	Mov-
ing	to	spatial	scales	of	~10	km	to	100	km,	the	ocean	mesoscale	
can start to be represented; this scale includes boundary cur-
rents	and	mesoscale	eddies	(Hewitt	et	al.,	2020).	At	even	finer	
scales,	 coastal	 upwelling,	 internal	 tides,	 and	 internal	 waves	
can be represented. Interactions with bathymetry can be im-
portant	 at	 the	 scale	 of	 the	 bathymetry.	 For	 example,	 choke	
points can determine the exchange between the deep ocean 
and	inland	seas,	such	as	the	Gibraltar	Strait.	Horizontal	reso-
lution choices are discussed further in Section 5.4.
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While a primary consideration is the horizontal scales (Figure 
3.4),	the	choice	of	vertical	resolution	and	coordinate	is	also	
an important consideration. These choices are discussed fur-
ther	 in	Section	5.4,	along	with	 the	numerical	methods	that	
are employed to solve the equations and some of the param-
eterisation choices to be made.

The ocean has strong links to other aspects of the Earth sys-
tem,	such	as	sea	ice,	which	is	particularly	important	for	modu-
lating temperature and salinity at high latitudes. Global ocean 
models include a sea ice component. State-of-the-art sea ice 
models represent the ice thermodynamics including melt-
ponds	and	the	ice	dynamics,	with	a	representation	of	the	ice	
rheology. Many sea ice models also capture the variations in 
ice thickness or ice age within a typical ocean grid box. Current 
status of sea ice modelling and the applicability of models for 
operational	forecasting	is	discussed	in	Hunke	et	al.	(2020).	

This chapter provides complementary information on the 
way	to	set	an	OOFS,	which	core	is	the	circulation	model.	Sec-
tion 5.3 will provide a list of input data needed for setting up 
an	ocean	model,	from	static	datasets	such	the	bathymetry	
to	operational	products	such	atmospheric	forcing,	to	other	
OOFS for the provisioning of initial/boundary conditions in 
case	of	regional/coastal	models,	 to	observations	used	for	
assimilation and validation. Section 5.4 focuses on the math-
ematical	formulation	of	the	primitive	equations,	providing	
some basic information to numerical methods for discreti-
zation and numerical integration of such equations. Section 
5.5 is devoted to presenting the basic mathematics for the 
data assimilation schemes commonly used in global and 
regional OOFS. Section 5.6 deals with ensemble modelling 
and,	finally,	Sections	5.7	and	5.8	provide	major	details	on	the	
validation approaches and the OOFS output. The last part of 
this	chapter	provides	an	inventory	of	OOFS,	including	multi-
year	systems,	operating	at	international	level,	from	global	to	
coastal scale.

5.2.  
Circulation forecast and multi-year systems

mentum	instead,	we	express	the	kinematic	boundary	
condition.	Additionally,	the	ocean	exchanges	momen-
tum with the Earth through friction; this needs to be pa-
rameterized	 in	 terms	of	 turbulent	fluxes	using	bottom	
and lateral boundary conditions.

These connections will be detailed along this chapter and 
represent the core of the OOFS architecture introduced in the 
next subsection.

5.2.2. Architecture singularities

An	OOFS	 that	would	provide	 the	prediction,	 as	well	 as	 the	
past	reconstruction	of	the	past	state	of	the	ocean,	is	based	
on several components that are strongly linked. A general in-
troduction to OOFS architecture singularities is provided in 
Chapter 4,	which	includes	for	each	system	component,	input	
and	output	data,	as	well	as	links	between	some	of	the	com-
ponents,	 are	 described.	 Complexity	 of	 the	 system,	 compo-
nents	of	the	system,	infrastructure,	maintenance	of	the	code,	
and	monitoring	of	the	whole	data	flow	should	be	defined	de-
pending	on	needs,	robustness	and	operationality.	Of	course,	
the	cost	of	the	development,	maintenance	and	evolution	of	
the system depends on operational constraints. 

5.2.1. Ocean-Earth system as basis for OOFS

The ocean is a system that interacts with other systems. Fig-
ure	5.1	shows	a	simplified	representation	of	the	Earth	system	
interaction in weather and ocean forecasting. Focusing on 
the	ocean,	we	can	identify	(Madec	et	al.,	2022):

• Connection with land: in particular with rivers and 
lakes	which	exchange	freshwater	flux	with	the	ocean;

• Connection with the atmosphere: the ocean receives 
precipitation and returns evaporation. The atmosphere 
and the ocean also exchange horizontal momentum 
(wind	stress)	and	heat;

• Connection with sea ice:	the	ocean	exchanges	heat,	
salt,	 freshwater	and	momentum	with	sea	 ice.	 The	sea	
surface temperature is constrained to be at the freezing 
point of the interface. Sea ice salinity is very low (~4-6 
PSU)	compared	to	that	of	the	ocean	(~34	PSU).	The	cycle	
of freezing/melting is associated with freshwater and 
salt	fluxes	and	cannot	be	neglected;

• Connection with solid earth: heat and salt fluxes 
through	the	seafloor	are	small,	hence	no	flux	of	heat	
and salt is considered across solid boundaries. For mo-
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Figure 5.1.  Representation of the ocean processes and connections with the Earth.

Elements needed to run a circulation model for operational 
forecasting:

• Observations. These are used for: 

• Validation	(including	forecast	verification)	and	cali-
bration,	further	described	in	Section	5.7;	
• Data	assimilation,	which	basic	concepts	are	intro-
duced in Section 5.5;

Sources of observations are:

• In-situ observations for the following variables: tem-
perature,	salinity,	sea	surface	height,	and	sea	surface	
currents. See Section 4.2.2. for more information on 
in-situ ocean observations;
• Satellite observations for the following list of vari-
ables:	sea	level	anomaly,	sea	surface	temperature,	and	
sea	ice	concentration.	Recently,	other	parameters	such	
as sea surface salinity and sea ice thickness have been 
remotely measured. See Section 4.2.2. for more informa-
tion on in-situ ocean observations.

• Bathymetry. It is an indispensable topographical infor-
mation for an Ocean Circulation Forecasting System. Its 
resolution	may	significantly	drive	the	modeller	during	the	

setup	of	the	circulation	model	to	address	specific	scales	
and	resolution.	For	example,	in	coastal	models	we	may	
need	bathymetric	datasets,	whose	resolution	can	be	even	
lower	than	100	m,	to	properly	represent	the	physical	struc-
tural	peculiarities	of	both	coastline	and	shelf	area,	allow-
ing the representation of small-scale physics. See more 
information on bathymetric data sets in Section 4.2.4.

• Atmospheric forcing.	Generated	by	NWP	services,	it	is	
vital	to	provide	momentum,	heat,	and	freshwater	fluxes	to	
the OOFS. More info on atmospheric forcing can be found 
in Section 4.2.5.

• Land forcing.	Provides	freshwater	fluxes	from	rivers.	
More details on this data source are in Section 4.2.6. 

• Initial and boundary conditions from other OOFS. 
3D	fields	from	parent	models	are	required	when	down-
scaling to obtain higher resolutions (see Sections 4.2.7. 
and	5.4.4.	for	more	information).	

• Climatological fields. These serve as complement to the 
other data sources or might be used to substitute the pre-
vious if no other data are available. See Section 4.2.8 for 
more information on climatologies.

5.3.  
Input data
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5.4.  
Modelling component: general circulation models
An ocean model is a numerical and computational tool used 
to	understand	and	predict	ocean	variables	(Griffies,	2006),	
providing	a	discrete	solution	of	the	geophysical	fluid	dynamic	
equations. It represents a rigorous way of linking the ocean 
state parameters through mathematical equations represent-
ing the physics that governs the oceans. 

In	the	next	subsections,	we	will	introduce	the	different	com-
ponents	of	an	OGCM,	that	is	part	of	the	OOFS	(steps	1	and	2	
as	in	Figure	4.1),	focusing	on	mathematical	equations,	numer-
ical	methods,	and	spatial	discretization	techniques.	A	list	of	
available numerical ocean models is provided in Table 5.1 in 
Section 5.4.3. Data assimilation methods used in OOFSs are 
instead presented in Section 5.5.

5.4.1. Mathematical model

The Navier-Stokes equations represent the fundamental laws 
of	fluid	dynamics;	they	are	based	on	conservation	of	momen-
tum,	conservation	of	mass,	and	an	equation	of	state.	

Oceans are also represented by the following equations (al-
though	with	some	significant	simplifications	as	explained	in	
Madec	et	al.,	2022):

• Spherical Earth approximation: the geopotential sur-
faces are assumed to be oblate spheroids that follow 
the	Earth’s	bulge,	and	are	approximated	by	spheres	
which gravity is locally vertical (parallel to the Earth’s 
radius)	and	independent	from	latitude;

• Thin-shell approximation: the ocean depth is neglect-
ed compared to the Earth’s radius;

• Turbulent closure hypothesis:	the	turbulent	fluxes	-	
which represent the effect of small-scale processes on the 
large scale - are expressed in terms of large scale features;

• Boussinesq hypothesis: density variations are ne-
glected,	except	in	their	contribution	to	buoyancy	force:

(5.1)

• Hydrostatic hypothesis: the vertical momentum equa-
tion is reduced to a balance between the vertical pressure 
gradient and the buoyancy force (this removes convective 
processes from the initial Navier-Stokes equations and so 
convective	processes	must	be	parameterized	instead):

(5.2)

• Incompressibility hypothesis: the 3D divergence of 
the velocity vector U is assumed to be zero:

(5.3)

• Neglect of additional Coriolis terms: the Coriolis terms 
that vary with the cosine of latitude are neglected.

Because the gravitational force dominates in the equations 
of	large-scale	motions,	it	is	useful	to	choose	an	orthogonal	
set of unit vectors (i,j,k)	linked	to	the	Earth	such	that	k	is	the	
local upward vector and (i,j)	are	2	vectors	orthogonal	to	k. Let 
us	define	additionally:	U	the	vector	velocity,	T the potential 
temperature,	S	the	salinity,	ρ the insitu density. The vector 
invariant form of the primitive equations in the (i,j,k)	vector	
system provides the following equations:

• The momentum balance:

(5.4)

• The heat and salt conservation equations:

(5.5)

(5.6)

where ∇ is the generalised derivative vector operator in (i,-
j,k)		directions,	t	is	the	time,	z	is	the	vertical	coordinate,	ρ is 
the	in-situ	density	given	by	Eq.	5.1,	ρ0	is	the	reference	density,	
p	is		the	pressure,	f=2Ω ∙k is the Coriolis acceleration (where 
Ω	is	the	Earth’s	angular	velocity	vector)	and	g is the gravita-
tional acceleration. DU,	DT and DS are the parameterizations 
of	small-scale	physics	for	momentum,	temperature	and	sa-
linity,	while	FU,	FT and FS are surface forcing terms.

OGCMs are able to resolve the mesoscale in some regions but 
not	in	others;	additionally,	once	applied	for	climate	research,	
they cannot entirely reproduce the rich mesoscale eddy ac-
tivity	we	observe	in	reality.	For	this	reason,	mixing	associated	
with sub-grid scale turbulence needs to be parameterized. 
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A common problem an ocean modeller is facing when he/
she deals with primitive equations is the numerical discret-
ization	 in	 space	 and	 time.	 As	 described	 in	Hallberg	 (2013),	
numerical ocean models need to represent the effects of me-
soscale	eddies,	which	are	the	typical	horizontal	scales	of	less	
than 100 km and timescales in the order of a month. When 
defining	the	spatial	grid	for	the	numerical	integration	of	the	
primitive	equations,	it	is	important	to	account	for	the	ratio	of	
a	model’s	grid	spacing	to	the	deformation	radius,	defined	as:

 
(5.7) 

where cg	 is	 the	first-mode	 internal	gravity	wave	speed,	f is 
again	the	Coriolis	parameter,	and	β is its meridional gradient 
(Chelton	et	al.,	1998).

Figure 5.2 shows the ocean model resolution required for the 
baroclinic	deformation	radius	 to	be	twice	 the	grid	spacing,	
based on an eddy-permitting ocean model after one year of 
spin-up	from	climatology	(Hallberg,	2013).

5.4.2. Basic discretization techniques

The next step towards the setup of a numerical model is the 
discretization	 phase,	 which	 involves	 the	 spatial	 discretiza-
tion and the equation discretization.

The	spatial	discretization	consists	in	defining	a	grid	or	mesh	
that	would	represent	the	space	continuum	with	a	finite	num-
ber of points where the numerical values of the physical vari-
ables	must	be	determined.	In	Section	5.4.2.1-2,	basic	concepts	
for dealing with horizontal grids and vertical discretization 
will	be	introduced.	Once	the	mesh	is	defined,	we	move	to	the	
final	 step	 related	 to	 the	 primitive	 equations	 discretization	
by	using	numerical	methods,	which	consist	in	transforming	
the	 mathematical	 model	 into	 an	 algebraic,	 nonlinear	 sys-
tem of equations for the mesh-related unknown quantities. 
The concepts on the basis of the time stepping are treated 
in	Section	5.4.2.3.	With	the	definition	of	the	time-dependent	
numerical	 formulation,	 we	 finally	 select	 the	 discretization	
method	to	use	for	the	equations,	described	in	Section	5.4.2.4.

Figure 5.2. 	 The	horizontal	resolution	needed	to	resolve	the	first	baroclinic	deformation	radius	with	two	
grid	points,	based	on	a	1/8º	model	on	a	Mercator	grid	on	Jan	1	after	one	year	of	spinup	from	climatology	(from	
Hallberg,	2013).
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5.4.2.1. Horizontal grids

In	numerical	methods,	we	can	use:

• Structured grids
• Unstructured grids

A mesh is structured when the grid cells have the same num-
ber of sides and the same number of neighbouring cells. 
Typically,	in	ocean	models	three	kinds	of	grids	may	be	used	
(Figure	5.3):	the	Arakawa-A	grid,	the	Arakawa-B	grid	and	the	
Arakawa	C-grid.	In	the	Arakawa-A	grid	(Figure	5.3A),	all	vari-
ables	are	evaluated	at	the	same	location.	Then,	the	B	and	C	
grids	have	been	developed	respectively	for	coarse	and	fine	
resolution	models.	In	the	Arakawa-B	grid	(Figure	5.3B)	both	u	
(Northwards	current	component,	in	orange)	and	v	(Eastwards	
current	component,	in	green),	for	example,	are	evaluated	at	
the same point and the velocity points are situated at the 
point that is equidistant from the four nearest elevation 
points	(Elevation,	in	blue).	In	the	Arakawa-C	grid	(Figure	5.3C),	
the	u	points	lie	east	and	west	of	elevation	points,	while	the	
vpoints lie north and south of the elevation points .

Unstructured	grids	(Figure	5.4C)	allow	one	to	tile	a	domain	
using more general geometrical shapes (most commonly tri-
angles)	that	are	pieced	together	to	optimally	fit	details	of	the	
geometry.	They	are	extremely	attractive	for	ocean	modelling,	
especially	for	coastal	models,	in	which	the	high-quality	rep-
resentation of geometrical features of a given domain is es-
sential,	and	from	the	numerical	point	of	view	they	may	reach	
a	significant	level	of	complexity	(Griffies	et	al.,	2000).

Besides	their	ability	to	better	represent	coastlines,	unstruc-
tured grid approaches also offer the possibility to smoothly 
increase the resolution over a region of interest or depend-
ing	on	physical	parameters	(Sein	et	al.,	2017).	This	is	also	pos-
sible	with	structured	curvilinear	grids	(for	example,	see	the	
BLUElink Australian prediction model grid in Brassington et 
al.,	2005,	and	Figure	5.4A),	though	with	likely	more	constraints	
on	the	grid	deformation	properties.	However,	 in	any	of	the	
two	cases,	numerical	stability	is	dictated	by	the	smallest	grid	
element,	which	substantially	increases	the	computational	
problem.	An	additional	difficulty	is	that	sub-grid	parameter-
izations	have	to	be	valid	throughout	the	domain,	whatever	
the	grid	size	and	eddy	resolution	regime	are	(Hallberg,	2013).	
In	the	structured	grid	case,	block	structured	refinement	tech-
niques enable to circumvent some of the aforementioned 
difficulties	by	allowing	a	stepwise	change	(over	a	given	grid	
patch)	of	the	space	and	time	resolutions	(by	integer	factors,	
Figure	5.5B).	Parameterizations	and	numerical	schemes	can	
also be changed accordingly. Grid exchanges can either be 
“one-way”	if	finer	grids	only	receive	information	at	their	dy-
namical	boundaries	from	the	outer	grid,	or	“two-way”	if	they	
also feed information back to the underlying mesh. In the 
latter	case,	data	transferred	at	each	model	time	step	allows	
for a nearly seamless transition at the interface and possi-
bly guarantees perfect conservation of prognostic quantities 
(Debreu	et	al.,	2012).

Several libraries do facilitate the implementation of block struc-
tured	refinement.	Among	them,	the	AGRIF	library	(Debreu	et	al.,	
2008)	has	been	successfully	used	in	HYCOM,	MARS,	NEMO	and	
ROMS	models.	It	is	noteworthy	that	refinement	techniques	can	
eventually	be	adaptive,	hence	refinement	regions	can	move	

Figure 5.3. 	 The	three	Arakawa	types	of	grids	(adapted	from	Dyke,	2016).

Northwards current
Eastwards current
Elevation

Legend:

A) Arakawa A grid B) Arakawa B grid C) Arakawa C grid

CHAPTER 5. CIRCULATION MODELLING 86



over	the	course	of	the	model	integration	(Blayo	and	Debreu,	
1999).	Resolution	is	in	that	case	increased	only	where	need-
ed,	depending	on	a	local	numerical	or	physical	criterion,	to	
save computing resources. The use of AMR techniques in re-
alistic ocean models is nevertheless still poorly documented.

5.4.2.2. Vertical discretization

The problem of vertical discretization is connected to phys-
ical processes that the modeler wants to resolve and it 
must	address	questions	related	to:	a)	the	representation	
of	pressure	gradients;	b)	 the	 representation	of	 sub-grid	
scale	processes;	c)	the	need	to	concentrate	the	resolution	
in	a	specific	region	(e.g.	the	shelf,	the	coastal	areas,	etc.);	
and	d)	 the	 comparison	with	observations.	Griffies	 et	 al.	
(2000)	distinguished	among	three	traditional	approaches	
(Figure	5.5):

• Depth/geopotential vertical coordinates;
• Terrain-following;
• Potential	density	(isopycnic)	vertical	coordinates.

Geopotential	(z-)	coordinates	(Figure	5.5A)	have	been	large-
ly used in ocean and atmospheric models because of their 
simplicity and straightforward nature for parameterizing 
the	surface	boundary	layer.	On	the	contrary,	they	are	not	able	
to adequately represent the effect of topography on the 
large-scale ocean models. Terrain-following coordinate sys-
tems	(Figure	5.5B)	are	used	especially	in	coastal	applications,	
where bottom boundary layers and topography need to be 
well	resolved.	As	z-coordinates,	they	suffer	from	spurious	di-

apycnal mixing due to problems with numerical advection. 
In	isopycnic	vertical	coordinates	(Figure	5.5C),	the	potential	
density is referred to a given pressure. This system basically 
divides	the	water	column	into	distinct	homogeneous	layers,	
which thicknesses can vary from place to place and from one 
time step to the next. This choice of coordinate works well for 
modelling	tracer	transport,	which	tends	to	be	along	surfaces	
of constant density. While both layered and isopycnal mod-
els	use	density	as	 the	vertical	 coordinate,	 there	are	subtle	
differences	between	the	two	types.	Griffies	et.	al.	(2000)	and	
Chassignet	et	al.	(2006),	provide	a	discussion	on	the	advan-
tages and disadvantages of each vertical coordinate system.

5.4.2.3. Time stepping

Once the model is set from the spatial point of view and 
discretization	in	horizontal	and	vertical	is	defined,	the	time	
step for the computation needs to be considered as well. In 
the numerical schemes used to integrate the primitive equa-
tions,	the	time	step	must	be	small	enough	to	guarantee	com-
putational stability. The Courant-Friedrichs-Lewy criterion 
(CFL)	is	the	stability	condition	that	states	that	the	velocity	
c at which the information is propagating at times the time 
step	∆t	must	be	less	than	the	horizontal	grid	spacing	∆x: 

(5.8)

where C is the Courant number and Cmax depends on the spe-
cific	used	scheme:	explicit	schemes	allow	to	advance	the	solu-
tion	to	the	next	time	level,	one	spatial	grid	point	at	a	time,	and	
are	quite	simple	to	implement	(Kantha	and	Clayson,	2000);	

Resolution level 0
Resolution level 1
Resolution level 2

Legend:

A) Swiss cross B) Block-structured C) Unstructured

Figure 5.4. 	 Possible	ways	to	get	a	local	increase	of	resolution:	a)	Progressive	deformation	of	a	structured	
grid;	b)	Block	structured	refinement;	and	c)	Stretching	of	unstructured	grid	cells	(adapted	from	Gerya,	2019).
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in	an	implicit	time-stepping	scheme,	the	solution	at	the	next	
time level must be derived for all grid points simultaneously. 
These	schemes	are	computationally	more	intensive,	but	are	
unconditionally	stable,	thus	permitting	larger	time	steps	to	be	
taken than would otherwise be required.

5.4.2.4. Numerical techniques 

Three families of methods are available for discretizing the 
space derivatives that enters in the primitive equations: 

• Finite	difference	Method	(FDM);
• Finite	Volume	Method	(FVM);
• Finite	Elements	Method	(FEM).

Here we provide an introduction to each method but for 
more	detailed	explanation	refer	to	Hirsch,	2007.

The FDM is based on the properties of the Taylor expansions: 
it corresponds to an estimation of a derivative by the ratio of 
two	differences	according	to	the	theoretical	definition	of	the	
derivative,	like	the	following:

(5.9)

If	we	remove	the	limit	in	Eq.	5.9,	we	obtain	a	finite	difference:	
additionally,	if	∆x	is	“small”	but	finite,	the	expression	on	the	
RHS of Eq. 5.9 is an approximation of the exact value of ux. 
Since	∆x	is	finite,	an	error	is	introduced,	called	truncation	
error,	which	goes	to	zero	for	∆x tending to zero. The power of 
∆x	with	which	this	error	tends	to	zero,	is	caller	order	of	accu-
racy of the difference approximation and can be obtained by 
a Taylor series of u(x+∆x)	around	point	x	(Eqq.	5.10	and	5.11):

 
 

(5.10)

(5.11)

Equation 5.11 shows that:

• The	RHS	of	Eq.	5.9	is	an	approximation	of	the	first	de-
rivative ux in the point x;
• The remaining terms in the RHS represent the error 
associated with this formula.

If	we	restrict	the	truncation	error	to	its	dominant	term,	that	
is	the	lower	power	of	∆x,	we	see	that	this	approximation	for	
u(x)	goes	to	zero	like	the	first	power	of	∆x and is said to be 
the	first	order	in	∆x:

(5.12)

where O(∆x)	is	the	truncation	error.

The FVM is a numerical technique by which the integral for-
mulation of the conservation laws is discretized directly in 
the	physical	space.	It	is	based	on	cell-averaged	values,	which	
makes this method totally different from FDM and FEM where 
the main numerical quantities are the local function values 
at	the	mesh	points.	For	each	cell,	a	local	finite	volume,	also	
called	control	volume,	is	associated	to	each	mesh	point	and	
applies the integral conservation law to this local volume. 
For	this	reason,	the	FVM	is	considered	a	conservative	meth-
od. The essential property of this formulation is the presence 
of the surface integral and the fact that the time variation of 
a generic variable u inside the volume only depends on the 
surface	values	of	the	fluxes.

A) B) C)

ρ1

ρ2

ρn-1

ρn

Figure 5.5. 	 Vertical	grid	types:	a)	depth/geopotential	vertical	coordinates;	b)	terrain-following;	and	c)	poten-
tial	density	(isopycnic)	vertical	coordinates.
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The FVM requires:

• The	subdivision	of	the	mesh,	obtained	from	the	space	
discretization,	into	finite	small	volumes,	one	control	vol-
ume being associated to each mesh point;
• The application of the integral conservation law to each 
of	these	finite	volumes.

The	FEM	originates	from	the	field	of	structural	analysis	and	it	
has two common points with the FVM:

• The space discretization is considered a set of volumes 
or	cells,	called	elements;

• It requires an integral formulation as a starting point 
that can be considered as a generalisation of the FVM.

The FEM requires:

• Discretization of the spatial domain into a set of ele-
ments of arbitrary shapes;
• In	each	element,	a	parametric	representation	of	the	
unknown	variables,	based	on	families	for	interpolating	
or	shape	functions,	associated	to	each	element	or	cell	
is	defined.

WebsiteNesting capabilitiesNumerical methodsGrid topologyModel

https://www.nemo-ocean.eu/ 

https://mitgcm.org/

https://www.croco-ocean.org/

https://sites.google.com/site/
shyfem/project-definition

https://fesom.de/

https://www.gfdl.noaa.gov/
ocean-model

http://ccrm.vims.edu/schism-
web/

https://mpas-dev.github.io/

https://www.hycom.org/ 

https://www.myroms.org/

http://fvcom.smast.umassd.
edu/

NEMO

MITgcm

CROCO

SHYFEM

FESOM

MOM

SCHISM

MPAS

HYCOM

ROMS

FVCOM

Structured grid

Structured grid

Structured grid

Unstructured grid

Unstructured grid

Structured grid

Unstructured grid

Unstructured grid

Structured grid

Structured grid

Unstructured grid

Finite Difference

Finite Difference

Finite Difference

Finite Element

Finite Element

Finite Volume

Finite Element

Finite Element

Finite Volume

Finite Volume

Finite Volume

Yes,	with	AGRIF

Yes

Yes,	with	AGRIF

Yes,	with	AGRIF

Yes,	with	AGRIF

Yes,	with	AGRIF

Table 5.1. List of available ocean models used from global to coastal scales.
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Such	nice	properties	of	the	FEM	as	conservation	of	energy,	that	
is common for all variational methods of solving differential 
equations,	treatment	of	boundary	conditions,	and	flexibility	of	
irregular	meshes	have	made	them	quite	attractive,	since	they	
are	also	well	suited	to	parallel	computing.	For	this	reason,	it	
is considered as an interesting alternative to FDM commonly 
used	in	ocean	modelling	(Danilov	et	al.,	2004).

5.4.3. List of Ocean General Circulation Models

In	Table	5.1,	are	summarised	some	of	the	most	used	ocean	
models that integrate numerically the primitive equations 
for	a	wide	range	of	spatial	domains,	from	global	ocean	to	
coastal scales.

5.4.4. Downscaling large-scale solutions to 
regional/coastal circulation models

The need to resolve the small scales of ocean circulation in 
coastal	seas,	as	well	as	the	impracticability	to	run	models	at	suf-

ficiently	high	resolution	and	detailed	physics	at	global	scales,	
led to the development of downscaling approaches for both the 
direct modelling and the data assimilation problems.

Two families of modelling approaches can be distinguished: 
(1)	models	 running	at	global	scales	with	mesh	refinement	
in	the	coastal	areas	of	interest;	and	(2)	one-way	or	two-way	
nesting of coastal models into regional or global ones. In 
practice,	the	first	one	is	achieved	by	setting	variable-mesh	
grids,	such	as	unstructured	or	curvilinear	structured	grids	
(as	discussed	in	5.4.2.1).	To	our	knowledge,	only	2D	(i.e.	baro-
tropic)	unstructured	models	dedicated	to	storm	surges	and/
or	tides	modelling,	such	as	the	tidal	atlas	FES2014	(Lyard	et	
al.,	2021),	are	running	over	the	global	ocean	and	satisfy	the	
resolution requirements in shallow waters. In the second 
approach,	 the	 large-scale	global	 (or	 regional)	model,	 i.e.	
the	‘parent’	model,	provides	open-boundary	conditions	to	
the	coastal	(‘child’)	model;	in	case	of	two-way	nesting,	both	
models are coupled and the child model returns an estimate 
of	the	ocean	state	at	its	boundary,	which	is	used	in	turn	to	

Figure 5.6.  Spectral nudging in the Gulf of Maine; top: spatial domain; bottom:  snapshots of sea surface 
temperature	on	22	Jul	2012	from	observations,	global	system,	regional	configuration	and	regional	configuration	
with	spectral	nudging	(from	Katavouta	and	Thompson,	2016).
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force the parent simulation. General resolution issues for 
both approaches and practical considerations are discussed 
in	Greenberg	et	al.	(2007).

However,	 nesting	 methods	 do	 not	 just	 consist	 in	 repro-
ducing	the	large-scale	solution	with	more	details.	 Indeed,	
the child model may represent different processes from 
those	solved	by	the	parent	model	(e.g.	tides,	surface	gravity	
waves,	etc.)	or	may	rely	on	different	parameterizations	or	
parameters.	Besides,	due	to	the	strong	nonlinearity	of	the	
ocean	flow,	the	internal	variability	of	the	child	model	may	
decouple	from	that	of	the	parent,	leading	to	divergent	solu-
tions	(Katavouta	and	Thompson,	2016).	Figure	5.6	shows	an	
example of spectral nudging in the Gulf of Maine as in Kat-
avouta	and	Thompson	(2016).	The	spatial	domain	is	given	in	
Figure 5.6-top: the black box represents the bounding box 
of	the	regional	model	GoMSS	(NEMO,	1/36°	horizontal	reso-
lution),	which	is	nested	into	the	HYCOM+NCODA	global	1/12°	
analysis	system.	GoMSS+	is	the	regional	configuration	with	
spectral nudging where temperature and salinity variables 
are	directly	updated.	By	adopting	such	a	nesting	approach,	
the	regional	configuration	significantly	improves	the	qual-
ity of the solution as shown in Figure 5.6-bottom: it rep-
resents	the	sea	surface	temperature	snapshots	for	22	July	
2012	based	on	satellite	(“Obs”),	the	global	system	(“Global	
system”),	 the	 regional	 system	 (“GoMSS”),	 and	 that	 imple-
menting	 the	 spectral	 nudging	 (“GoMSS+”).	 The	 GoMSS+	
exhibits an improved version of the coastal sea surface 
temperature	 representation,	 which	 is	 typical	 for	 a	 higher	
resolution model that takes into account coastal processes 
(e.g.,	tides).	At	the	same	time,	it	is	able	to	capture	the	warm	
slope water and cold shelf waters as shown in the obser-
vations,	 which	 are	 well	 represented	 in	 the	 global	 model	
thanks	to	data	assimilation.	For	further	details,	please	refer	
to	Katavouta	and	Thompson	(2016).

In	 2007,	 the	 GODAE	 Coastal	 and	 Shelf	 seas	Working	 Group	
(De	Mey	et	al.,	2007)	noted	that:	“It	is	becoming	increasing-
ly clear that specifying the offshore boundary conditions of 
coastal models by using forecasts from a hydrodynamical 
large-scale	ocean	model	has	the	potential	(1)	to	provide	bet-
ter	local	estimates	by	adding	value	to	GODAE	products,	(2)	to	
extend	predictability	on	shelves,	and	(3)	to	enhance	the	rep-
resentativeness of local observations.” Despite considerable 
efforts since 2007 on both coastal modelling capabilities and 
nesting	methods,	downscaling	still	raises	obvious	numerical	
and physical issues. In the following paragraphs an attempt 
has	been	made,	but	not	exhaustively,	to	present	the	various	
difficulties	that	arise	and	the	solutions	found	in	the	litera-
ture to address them. 

The	coastal	ocean	is	subject	to	both	local	(e.g.	atmosphere,	
river	mouths)	and	remote	forcings	(e.g.	astronomical	poten-
tial,	coastal	waveguide,	wind	fetch,	biogeochemical	connec-
tivity).	Therefore,	the	boundaries	of	a	coastal	model,	which	

also	 intercept	 strong	 bathymetry	 gradients,	 play	 a	 critical	
role.	 In	 addition,	 solving	 primitive	 equations	 on	 a	 limited	
area domain with OBC does not lead to a unique physically 
realistic	solution.	Consequently,	a	variety	of	ad	hoc	methods	
to set-up practical OBC have been developed with a depen-
dence	upon	flow	dynamics,	model	resolution,	types	of	infor-
mation	at	 the	open	boundaries,	etc.,	 as	 reviewed	by	Blayo	
and	Debreu	(2005).	A	simple	view	of	the	OBC	issues	consists	
in viewing the problem because of inconsistencies between 
the	parent	and	child	models	which,	as	mentioned	previously,	
arise	due	to	different	physics	of	the	model,	to	different	forc-
ing	(e.g.	atmospheric,	runoff,	bathymetry),	and	to	truncated	
information at the open boundary. The last refers to the fact 
that	the	parent	information	is	provided	as	discrete	fields	in	
space	and	time	(e.g.	daily	or	hourly	averages);	high-frequen-
cy	motions	are	therefore	filtered	out	or	aliased.

The example of tides is particularly enlightening on these 
limitations.	 Even	 though	 the	 parent	 model	 resolves	 tides,	
forcing the child with the parent tidal waves (either baro-
tropic	or	both	barotropic	and	baroclinic)	 implies	 the	avail-
ability of the large-scale forcing at very high frequency (a few 
minutes).	In	practice,	especially	for	operational	systems,	this	
is	very	difficult	to	achieve	as	it	requires	huge	storage	capaci-
ties.	Therefore,	coastal	models	are	usually	forced	by	low-fre-
quency	dynamics	and	tidal	constituents,	both	of	which	not	
necessarily stemming from the same parent models (tidal 
constituents are often chosen from accurate global tidal at-
lases).	Herzfeld	and	Gillibrand	(2015)	noted	that	conditions	
for	 incoming	 tidal	waves	may	be	 reflective	 for	 the	 low-fre-
quency external data and propose OBC based on dual relax-
ation	time	scales.	Furthermore,	the	difference	of	bathymetry	
and representation of the coastline between the parent and 
child models may lead to large inconsistencies between the 
tidal	solutions	in	both	models,	with	a	risk	of	spurious	pat-
terns developing in the coastal domain close to the open 
boundaries	 (e.g.	 rim	 currents).	 Toublanc	 et	 al.	 (2018)	 pro-
posed a simple approach that reduces such inconsistencies 
by pre-processing the tidal forcing using a 2D simulation with 
a	dedicated	2D	tidal	model.	At	last,	filtering	out	the	high-fre-
quency 3D incoming information by using for instance hourly 
or	daily	averages	from	the	parent	simulation,	may	lead	to	a	
loss	of	energy	in	the	coastal	domain,	in	particular	because	of	
the	missing	internal	waves	forcing,	as	recently	evidenced	by	
Mazloff	et	al.	(2020).

Another	difficulty	in	one-way	nesting	arises	from	the	possibil-
ity that the child model develops an internal variability that 
diverges	from	the	parent’s	one.	In	many	operational	systems,	
global or large-scale solutions stem from a data assimilation 
system in which the mesoscale dynamics are constrained by 
satellite	data	 (e.g.	altimetry).	 If	no	data	assimilation	 is	per-
formed	in	the	coastal	domain,	the	developing	mesoscale	(and	
a	fortiori	submesoscale)	may	deviate	from	reality	leading	to	
the undesirable case in which the parent solution is closer 
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to observations at large-scale and mesoscale than the child. 
Sandery	and	Sakov	(2017)	report	that	even	with	data	assim-
ilation,	increasing	the	resolution	does	not	automatically	im-
prove	the	skill	of	the	forecast,	because	of	the	inverse	cascade	
of unconstrained submesoscale towards mesoscale. Methods 
such as spectral nudging are developed to ensure that the 
large-scale	patterns,	e.g.	eddies	or	meandering	jets	that	are	
accurately	represented	in	the	parent	model,	are	maintained	
in the child; an example of such method can be found in Kat-
avouta	and	Thompson	(2016).

A last but not least issue concerns quantifying the errors in 
the child simulations due to the nesting process. The errors 
originate from the OBC scheme (numerical implementation 
and	physical	assumptions)	and	from	the	uncertainties	on	the	
parent	forcing	fields.	In	the	latter	case,	the	question	is	how	the	
parent model errors are downscaled. Ensemble approaches 
can help to characterise and estimate the downscaling of par-
ent	errors,	as	for	instance	explored	in	Ghantous	et	al.	(2020).

Figure 5.7 shows an example of ensemble downscaling of a 
coastal	 ocean	model	 (Symphonie	model,	 500	m	 resolution)	
for the south-east Bay of Biscay in an ensemble of a region-
al	model	 (NEMO,	 1/36°)	 (Ghantous	 et	 al.,	 2020).	 Figure	 5.7a	
presents	 the	 regional	 domain,	 in	 particular	 the	 parent	 do-
main	over	the	map,	while	the	blue	box	is	the	domain	of	the	
child model. Figures 5.7b-d show the ensemble spread (stan-
dard-deviation)	in	sea	surface	height	(SSH)	in	the	domain	of	
the	child	model	for	ensembles	of	50	members.	In	particular,	
Figure	5.7b	is	the	parent	ensemble,	generated	by	perturbing	
the wind in the parent domain; Figure 5.7c is the child ensem-
ble,	 generated	by	perturbing	 the	wind	 in	 the	 child	domain;	
Figure 5.7d is the child ensemble generated by perturbing 
both the wind and the OBC conditions (the OBC perturbations 
stem	from	the	parent	ensemble).	The	numerical	experiment	
reveals	that,	on	average	over	the	period	of	study,	the	spread	
in SSH is greatest where the mesoscale eddies are present (in 
the	deeper	area	of	the	domain).	It	also	reveals	that	the	con-
tribution from the OBC uncertainties is larger than the impact 

Figure 5.7. 	 A	case	study	in	the	south-east	Bay	of	Biscay:	a)	bathymetry	of	the	parent	model	and	bounding	
box	(black	box)	of	the	child	domain;	ensemble	spread	in	SSH	over	3	months	period	(Jan-Feb-Mar)	from	50	en-
semble	members	perturbing;	b)	wind	in	parent	model;	c)	wind	in	the	child	domain;	and	d)	wind	and	OBC	in	the	
child	domain	(from	Ghantous	et	al.,	2020).
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of local wind uncertainties. It is a valuable result for the next 
generation of ensemble data assimilation systems.

An example of nesting capacities of circulation modelling in 
short-term forecast is shown in Figure 5.8. This is the result 
of downscaling the Copernicus Marine Service Iberia-Bis-
cay-Ireland	–	Monitoring	and	Forecasting	Centre	(IBI-MFC,	
🔗1)	product	on	a	higher	spatial	grid;	in	the	bottom	panel	it	
can be seen a detail of surface currents in the Gulf of Cadiz 
and Alborán Sea.

1. https://resources.marine.copernicus.eu/product-detail/
IBI_ANALYSISFORECAST_PHY_005_001/INFORMATION

The downscaling approach is extremely powerful to allow 
the	modeller	to	set	up	an	OOFS	at	high	resolution,	and	every	
OOFS may be used to build another OOFS in a seamless way. 
In Section 5.9 can be found an initial but exhaustive list of 
OOFSs’ providers from which the modeller may select to nest 
her/his new OOFS.

Figure 5.8.  Gulf of Cadiz and the Alborán Sea: example of downscaling capacities. Source: Puertos del Estado 
and Universidad de Málaga.
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5.5.  
Data assimilation systems 
An introduction to the data assimilation concept can be found 
in Section 4.3. This Section focuses on the numerical charac-
teristics of the DAS largely used in circulation modelling.

5.5.1. Basic concepts

In ocean forecasting the objective is to produce an es-
timate xa of the true state xt of the ocean at initial time 
to	initialise	forecasts.	Ide	et	al.,	1997,	De	Mey-Frémaux	et	
al.	(1998),	and	Bouttier	and	Courtier	(2002)	provide	an	ex-
tensive introduction to DAS basic concepts and herein are 
recalled and summarised. 

DA consists in calculating the «best» estimate of the state of 
a	physical	system,	of	its	evolution	in	time,	given	observations	
and a prognostic numerical model.

The basic objective information that can be used to produce 
the analysis is a collection of observed values provided by 
observations of the true state. If the model state is overde-
termined	by	the	observations,	then	the	analysis	is	reduced	
to an interpolation problem. In most cases the analysis prob-
lem is under-determined because data are sparse and only 
indirectly related to the model variables. In order to make it 
a	well-posed	problem,	it	is	necessary	to	rely	on	some	back-
ground information in the form of an a priori estimate of the 
model state. 

A discrete model for the evolution of the ocean from ti to t i+1 
is governed by the following Eq. 5.13:

(5.13)

where x	is	the	so-called	state	vector	(velocities,	temperature,	
salinity,	etc.,	at	model	grid	positions)	and	M is the corre-
sponding dynamics operator. The state vector has dimension 
n. The dynamic operator in Eq. 5.13 is commonly non linear 
and	deterministic,	while	the	true	ocean	state	may	differ	from	
Eq. 5.13 by random and systematic error. 

Observations yo
t at time ti	are	defined	by	Eq.	5.14:

(5.14)

where H is an observation operator and ϵ is a noise process. 
The observation vector has dimension pi. A major problem 
of data assimilation is that typically pi<<n. The observation 
operator H can be also non-linear like M and both can con-
tain explicit time dependence in addition to the implicit de-

pendence via the state vector x f
i ≡ xf(ti).	The	noise	process	

ϵ is commonly used to have zero mean and we denote its 
covariance matrix by R: it consists of instrumental and rep-
resentativeness errors which covariance matrices are E and 
F,	respectively,	with	R=E+F.

The key of the analysis is the use of discrepancies between 
observations and state vector:

(5.15)

When calculated with the background xb it is called innova-
tions and with the analysis xa analysis residuals.

In	the	following,	we	present	two	data	assimilation	types	of	ap-
proaches: the sequential methods and the variational methods.

5.5.2. Sequential methods

Several schemes have been proven useful and implement-
ed using a sequential-estimation approach including the 
Bluelink	Ocean	Data	Assimilation	System	(BODAS)	(Oke	et	
al.,	2008)	and	the	Singular	Evolutive	Extended	Kalman	(SEEK)	
filter	(Pham	et	al.,	1998).	An	extensive	literature	is	available	
on	related	methods,	such	as	OI	(Daley,	1991),	EnOI,	and	EnKF	
(Evensen,	2003).

Following	Ide	et	al.,	(1997),	the	true	ocean	fluid	xf is assumed 
to	differ	 from	 that	of	 the	numerical	model	 (Eq.	 13)	by	 sto-
chastic perturbations:

(5.16)

where η is a noise process with zero mean and covariance 
matrix Q. The EKF consists of a forecast step based on pre-
viously	obtained	state	variables,	which	include	previous	as-
similation	steps, x f(ti+1)	and	an	updated	probability	function	
described by P f(ti):

(5.17)

(5.18)

The core of the Kalman Filter method is an update step in 
which the observations available at time i is blended with 
the	previous	information,	taking	account	of	their	joint	prob-
ability distributions and carried forward by the forecast step:

(5.19)
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(5.20)

where the observation residual or innovation vector is de-
fined	by:

(5.21)

The Kalman gain Ki	is	defined	by:

(5.22)

The innovation vector di is evidently a displacement of the 
modelled	forecast	toward	the	observed	data,	scaled	by	the	
Kalman gain. The Kalman gain accounts for the weighting re-
quired by the joint probability function for the model and 
observation	variability.	In	practice,	various	simplifications	
are introduced to describe P to overcome the computational 
burden	involved	in	the	matrix	calculation	(Oke	et	al.,	2008;	
Pham	et	al.,	1998).

Another example is the OI that is quite frequently used in 
oceanography and meteorology. It is a particular subopti-
mal	filter,	 in	which	 the	EKF’s	error	covariance	matrix	Pf is 
replaced	by	an	approximation,	B,	 computed	as	a	product	
of variances placed in the diagonal matrix D and of cor-
relations placed in a matrix C with unit diagonal (Ghil and 
Malanotte-Rizzoli,	1991):

(5.23)

The state vector is still given by Eq. 5.13. The OI gain writes:

(5.24)

where HiB f (ti)HT
i	is	evaluated	from	the	correlation	model,	

and the state update is given by:

(5.25)

5.5.3. Variational methods

Several schemes have been implemented using variational 
methods	such	as	3D-Var,	e.g.	 the	Navy	Coupled	Ocean	Data	
Assimilation	(NCODA)	(Cummings,	2005)	and	the	Forecasting	
Ocean	Assimilation	Model	(FOAM)	(Martin	et	al.,	2007).	4D-Var	
methods are used extensively in Numerical Weather Predic-
tion and are one of the future directions for ocean prediction 
systems.	The	NEMOVAR	system	(Mogensen	et	al.,	2012)	is	able	
to handle both categories of variational approaches for the 
NEMO modelling system.

Following	Ide	et	al.	(1997),	4D-Var	minimises	the	objective	
function J that measures the weighted sum of distance Jb to 
the background state xb and Jo to the observation yo distrib-
uted over a time interval [t0 , tn ]:

 
(5.26) 

where yi ≡ Hi[x(ti)].	Here	B-1	is	an	a	priori	weight	matrix,	with	
B meant to approximate the error covariance matrix xb,	and	
a minimization is done with respect to the initial state x(t0).	

Equation	5.25	reflects	the	imposition	of	a	strong	constraint	
(Sasaki,	 1970).	Alternative	 formulations	based	on	a	weak	
constraint	are	given	by	Bennett	(1992)	and	by	Menard	and	
Daley	(1996).	Efficient	methods	for	performing	the	minimi-
zation of J require its partial derivatives with respect to the 
elements of x(t0)	given	by:

 
(5.27) 

where:

(5.28)

This follows from:

(5.29)

 
(5.30)

M(ti+1 , ti)T is usually called adjoint model and HT
i is the ad-

joint observation operator. 4D-Var reduces to three-dimen-
sional	variational	assimilation	(3D-Var)	if	the	time	dimension	
is taken out.

Figure 5.9 shows an example of 4D-Var capacity: xa is used as 
the	initial	state	for	a	forecast,	then	by	construction	of	4D-Var	
one is sure that the forecast will be completely consistent with 
the model equations and the 4D distribution of observations 
until the end of the 4D-Var time interval n	(the	cutoff	time).
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5.5.4. Modelling errors

As	reported	in	Bouttier	and	Courtier	(2002),	to	represent	the	
fact that there is some uncertainty in the background and in 
the	analysis,	we	need	to	assume	some	model	of	the	errors	
between these vectors.

Given	a	background	field	xb	just	before	doing	an	analysis,	we	
define	the	vector	of	errors	that	separates	it	from	the	true	state:

(5.31)

If we are able to repeat each analysis experiment a large 
number	 of	 times,	 under	 exactly	 same	 conditions	 but	 with	
different realisation of errors generated by unknown caus-
es,	 b	would	be	different	 every	 time.	 It	 can	be	 represented	
through	a	probability	density	function	(PDF),	able	to	provide	
all	statistics,	 including	 the	average	 (or	expectation)	 -b	and	
the variances. A popular model of scalar pdf is the Gaussian 
function,	that	can	be	generalised	to	a	multivariate	PDF.

The errors in the background and in the observations are 
modelled as follows:

• Background errors. They are the estimation errors of 
the	background	state,	given	by	the	difference	between	
the background state vector and its true value;
• Observation errors. They contain errors in the obser-
vation	 process	 (i.e	 instrumental	 errors),	 errors	 in	 the	
design of the operator H,	and	representativeness	errors	
(i.e. discretization errors which prevent x t from being a 
perfect image of the true state;

• Analysis	error.	Defined	through	the	trace	of	the	cova-
riance matrix A:

(5.32)

They	are	 the	estimation	errors	of	 the	analysis	state,	which	
is	what	we	want	 to	minimize.	 In	a	scalar	system,	 the	back-
ground error covariance is the variance:

(5.33)

In	a	multidimensional	system,	B is a square symmetric ma-
trix with n×n dimension. The diagonal of B contains the vari-
ances,	while	the	off-diagonal	contains	the	cross-covariances	
between a pair of variables in the model. The off-diagonal 
terms can be transformed into error correlations:

 
(5.34) 

The error statistics are functions of the physical processes 
governing the meteorological or the ocean state and the ob-
serving network. They depend on a priori knowledge of the 
errors:	 variances	 reflect	 our	 uncertainty	 in	 features	 of	 the	
background	or	the	observations.	To	estimate	statistics,	it	is	
necessary to assume that they are stationary over a period 
and	uniform	over	a	domain,	so	that	one	can	take	a	number	of	
error realisations and make empirical statistics.

Figure 5.9.  Example of 4D-Var intermittent assimilation in a numerical forecasting system (adapted from 
Bouttier	and	Courtier	2002).
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In	setting	a	DAS,	the	estimated	statistics	is	very	difficult	and	
we can rely on diagnostics of an existing data assimilation 
system using the observational method.

5.5.5. Overview of current data assimilation 
systems in operational forecasting

Data	 assimilation	 techniques,	 schematically	 introduced	 in	
previous paragraphs and that are widely documented in 
Daley	(1991),	Evensen	(2003)	and	Zaron	(2011),	represent	the	
baseline of the modelling framework with general circula-
tion models for operational forecasting and reanalysis. At 
international	level,	the	GODAE’s	OceanView	(Bell	et	al.,	2015)	
and OceanPredict initiatives have promoted strong syner-
gies	with	GOOS,	ETOOFS	and	GEO	BluePlanet	contributing	to	
a	value	chain	from	observations,	data,	information	systems,	
predictions,	 and	 scientific	 assessments	 to	 end	 users,	 with	
the aim to promote the use and impact of observations and 
ocean	predictions	for	societal	benefit,	and	increasing	visibil-
ity of operational oceanography advances.

Martin	et	al.	(2015)	presents	an	overview	of	the	main	character-
istics of the data assimilation used in each GODAE OceanView 
systems; this is a list of the adopted numerical techniques:

• Bluelink	(Oke	et	al.,	2013)	adopts	MOM4	ocean	model	
and EnOI algorithm;
• GIOPS	 (Smith	 et	 al.,	 2016)	 uses	 NEMO	 ocean	model	
and	SEEK	 (with	fixed	basis)	 for	 the	ocean	component,	
and 3DVar for assimilation in the ice component;
• ECMWF	 (Balmaseda	 et	 al.,	 2013)	 uses	 NEMO	 ocean	
model and 3DVar for the assimilation component (+ 
bias	correction	technique);
• FOAM	 (Waters	 et	 al.,	 2014)	 uses	NEMO	ocean	model	
and 3DVar for the assimilation component (+ bias cor-
rection	technique);
• GOFS	 (Cummings	 and	 Smedstad,	 2013)	 uses	 HYCOM	
ocean model with 3DVar data assimilation scheme;
• Mercator	 Ocean	 (Lellouche	 et	 al.,	 2013)	 uses	 NEMO	
ocean	model	with	SEEK-FGAT	(with	fixed	basis)	and	3DVar	
bias correction;
• MOVE	 (Usui	 et	 al.,	 2006)	 uses	 MRI	 COM	 model	 and	
3DVar data assimilation scheme;
• TOPAZ	 (Sakov	 et	 al.,	 2012)	 uses	 HYCOM	 with	 EnKF	
techniques.

Description of the operational initiatives is also provided at GO-
DAE OceanView website (🔗2)	and	OceanPredict	website	(🔗3).

5.6.  
Ensemble modelling 
Numerical	 models,	 applied	 to	 nonlinear	 dynamical	 systems	
such	as	the	ocean,	inevitably	approximate	the	solution	of	the	
so-called	 Navier-Stokes	 shallow-water	 equations,	 because	 of	
limitations in computer power to resolve the whole spectrum of 
geophysical	processes.	In	addition,	numerical	modelling	is	sub-
ject to numerous inherent uncertainties related to modelling 
parameters,	to	forcing	functions,	to	 initial	and	boundary	con-
ditions.	This	is	why	a	single	forecast	is,	to	some	extent,	uncer-
tain,	and	we	use	ensemble	modelling	to	answer	how	uncertain	
a	forecast	is.	Ensemble	prediction	systems	(EPS)	are	well-known	
in atmospheric science communities for more than 25 years 
(Palmer,	2018)	but	are	more	recent	in	operational	oceanography,	
with	marked	advances	in	the	last	decade	(e.g.,	TOPAZ	system,	
Sakov	et	al.,	2012).	EPS	uses	ensemble	modelling	and	adds	other	
components,	such	as	probabilistic	outputs	and	soon	machine	
learning	under	varying	flavours,	with	prediction	as	objective.	In	
most	cases,	EPS	also	incorporates	ensemble-based	data	assim-
ilation	(DA)	to	decrease	forecast	errors.23

2. https://www.godae-oceanview.org/
3. http://oceanpredict19.org

Due	to	the	chaotic	nature	of	the	ocean,	the	probabilistic	ap-
proach is an interesting alternative beyond the classic deter-
ministic	 approach,	 and	 it	 can	 help	 users	 to	 interpret	model	
predictions supplemented by their uncertainties. Ensemble 
modelling consists of possible ocean states using Monte Carlo 
techniques	to	sample	the	probability	density	function	(pdf)	of	
the model forecast. Each model simulation is called an ensem-
ble member. This approach is illustrated in Figure 5.10a. The en-
semble is initialised by a sample of different initial conditions 
(e.g.	perturbed	analyses	in	DA).	The	model	operator	(which	can	
be	also	perturbed	during	integration)	is	then	used	to	bring	for-
ward in time each member and produce an ensemble of model 
simulations. The ensemble members may diverge radically or 
remain	broadly	 similar,	 resulting	 in	a	 forecast	PDF.	A	quanti-
tative assessment of the ensemble is depicted in Figure 5.10b. 
The ensemble mean and spread (estimating model uncertain-
ty)	are	calculated	as	first	and	second	order	statistical	moments	
from	the	members,	and	can	be	compared	with	the	unperturbed	
deterministic simulation and the climatology (and to observa-
tions,	 if	 available).	 The	 ensemble	 spread	 is	 flow-dependent	
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Figure 5.10. (a)	Schematic	of	an	ensemble	simulation	with	equiprobable	forecasts	(blue	trajectories);	the	
forecast	pdf	gives	an	indication	of	the	likelihood	of	occurrence	of	the	different	states;	(b)	Schematic	of	the	
flow-dependent	ensemble	spread	in	relation	to	the	ensemble	mean,	an	individual	member,	the	unperturbed	
deterministic	run,	and	the	climatology	(credits:	🔗4).

and varies for different state variables. Ensemble forecasting 
aims	at	quantifying	this	flow-dependent	uncertainty.	EPS	are	
highly demanding systems in terms of computational resourc-
es	and	can	be	run	efficiently	in	HPC	facilities.	A	major	challenge	
for the next generation of OOFSs is to improve their services by 
integrating ensemble capabilities in their systems.

5.6.1. Basic concepts

There are three main categories of ocean model ensembles: 
(a)	 multi-model	 ensembles,	 e.g.	 Copernicus	 Marine	 Service	
multi-model products and CMIP6 coupled models for climate 
studies 4(🔗5);	 (b)	 stochastic	 model	 ensembles,	 used	 in	 re-
search	e.g.	the	OCCIPUT	project	(Penduff	et	al.,	2014),	and	less	
frequently in operational oceanography due to their computa-
tional	cost;	and	(c)	ocean	model	response	to	an	atmospheric	
EPS,	e.g.	using	the	ECMWF-EPS	atmospheric	forcing(🔗6).	

4.https://confluence.ecmwf.int/
5. https://www.wcrp-climate.org
6. https://www.ecmwf.int/en/forecasts

The focus here is on the practical aspects for the implemen-
tation	of	a	stochastic	ocean	model,	mainly	for	short-	to	me-
dium-range forecasting applications. The notion “stochastic 
model” for a system exhibiting chaotic behaviour can be de-
fined	by	 the	partial	differential	 Fokker-Planck	equation,	de-
scribing	the	temporal	evolution	of	the	state	pdf,	controlled	by	
stochastic	diffusion	and	advection	processes,	and	local	model	
tendencies. Stochastic modelling is used to represent mod-
el errors and as an ulterior step can be integrated in ensem-
ble-based DA. Several methods and tools to produce stochas-
tic model ensembles have been discussed in the literature 
following the SANGOMA project (🔗7).	

The	main	objectives	of	(ensemble)	stochastic	modelling	are:	
(a)	 the	estimation	of	model	uncertainties	providing	 realis-
tic	error	bars	and	confidence	 intervals	at	useful	ranges	for	
ocean	 predictions;	 and	 (b)	 using	model	 uncertainties	 in	 a	
DA framework to enrich background error covariances with 
flow-dependent	errors	and	improve	model	prediction	at	the	
range of the outer loop of the DA scheme. The most useful 

7. http://www.data-assimilation.net
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statistical	properties	are	the	ensemble	mean,	the	covarianc-
es	and	spread	given	by	the	diagonal	of	the	covariance	matrix,	
and	sometimes	the	higher	order	moments	(Quattrocchi	et	al.,	
2014).	Stochastic	ensembles	are	not	used	solely	for	DA	but	
can	be	applied	also	as	a	machine	learning	base	for	artificial	
intelligence	 applications,	 guiding	 observational	 strategies	
based	on	array	design	(Charria	et	al.,	2016;	Lamouroux	et	al.,	
2016),	 and	 enabling	 probabilistic	 forecasting	 (Cheng	 et	 al.,	
2020),	e.g.	occurrence	of	ocean	upwelling	or	bloom	events,	
occurrence of sea level and storm surge exceeding a particu-
lar	threshold,	sea	ice	concentration,	etc.

The	main	elements	to	be	decided	and	identified	when	gen-
erating	an	ocean	model	ensemble	are:	(a)	the	relevant	quan-
tities	 to	 perturb;	 (b)	 the	 stochastic	 parameterizations;	 and	
(c)	 the	 dynamical	 balances	 that	must	 be	 preserved,	 if	 any	
(which	in	turn	influence	choices	in	(a)).	These	notions	are	of-
ten combined under the term “stochastic physics”.

The	ensemble	verification	is	an	important	integral	part	of	the	
ensemble modelling and EPS-developing process. An ensem-
ble empirical consistency aims at verifying a posteriori the 
model	pdf	approximated	by	the	ensemble	of	forecasts,	with	
respect to existing observations and their pdfs. The under-
lying notion is the model and data joint probability on the 
right-hand-side of the equal sign in the Bayes theorem. Em-
pirical	consistency	can	be	explored	by	specific	criteria	and	
analysis	tools,	e.g.	from	rank	histograms	being	the	simplest	
measuring	“reliability”	(Candille	and	Talagrand,	2005)	to	Des-
roziers	et	al.	 (2005)	consistency	diagnostics	on	innovations	
and ensemble pattern-selective consistency analysis (Verva-
tis	et	al.,	2021a).	The	“reliability”	measures	to	which	degree	
the forecast probabilities agree with outcome frequencies 
and is an important attribute for the development of prob-
abilistic scores. Such scores are for example the Continuous 
Rank	Probability	Score	(CRPS)	(Hersbach,	2000;	Candille	and	
Talagrand,	2005)	and	the	Brier	Score	measuring,	in	addition	
to	 “reliability”,	 the	 attribute	 of	 “resolution”.	 For	 a	 reliable	
EPS,	 “resolution”	 is	 the	 ability	 to	 separate	 cases	 when	 an	
event	occurs	or	not,	 i.e.	probabilities	being	close	to	0	or	1.	
The ensemble consistency evaluation framework provides 
important information to test the relevance of an EPS when 
the	system	is	set-up	(e.g.	the	ensemble	size).

5.6.2. Ocean model uncertainties

Ocean model uncertainties emerge from sources of errors rel-
evant	to	the	ocean	state,	including	physics,	biogeochemistry,	
and	sea	ice,	as	well	as	errors	in	the	initial	state	and	boundary	
conditions (i.e. atmospheric forcing and lateral open bound-
ary	 conditions).	 Model	 uncertainties	 in	 ocean	 physics	 have	
a	significant	 impact	 in	all	other	system	components	as,	 for	
example,	in	biogeochemistry	and	sea	ice.	The	choice	of	the	
perturbed	model	quantities	depends:	 (a)	on	the	ocean	ap-
plication,	e.g.	global	vs	regional	and	coastal	configurations,	

and	short-	 to	medium-	or	 seasonal-range	 forecasts;	 (b)	on	
the	processes	 resolved	by	 the	model	 (or	not,	such	as	sub-
grid	scale	processes);	(c)	on	choices	in	the	DA	framework,	e.g.	
variational	and	Kalman	filter	approaches,	variables	and	pa-
rameters	included	in	the	control	vector,	assimilated	observa-
tions	etc.;	and	(d)	on	the	dynamical	balances	the	user	wants	
to	preserve	in	the	perturbation	space,	e.g.	leaving	velocities	
unperturbed tends to preserve the degree of geostrophy of 
the ocean state.

Recent advances in NEMO incorporated an easy-to-use mod-
elling framework for the production of ocean model ensem-
bles	(Brankart	et	al.,	2015),	including	the	following	schemes	
applied	also	in	NWP	systems:	SPPT	(Buizza	et	al.,	1999),	SPUF	
(Brankart,	2013),	SPP	(Ollinaho,	et	al.,	2017)	and	SKEB	(Berner	
et	al.,	2009).	The	stochastic	parameterizations	in	all	schemes	
are	implemented	via	first-order	autoregressive	Markov	pro-
cesses,	i.e.	a	statistical	model	based	on	the	assumption	that	
the past value of uncertainty determines the present with-
in some error. Several studies expand the NEMO ensemble 
framework	(Bessières	et	al.,	2017;	Vervatis	et	al.,	2021b),	 in-
corporating a stochastic ocean physics package (Storto and 
Andriopoulos,	2021).

The	SPPT	perturbs	the	net	parameterized	model	tendencies,	
assumed to contain upscaled ocean model errors due to sub-
grid parameterizations. The SPUF scheme is based on random 
walks sampling gradients (which represent the sub-grid unre-
solved	scales)	from	the	state	vector	and	adding	them	to	the	
models’ solution; the random walks consist of independent 
consecutive steps in all directions. The SPP introduces per-
turbations at each time step to parameters within the model 
parameterization schemes. The SKEB adds perturbations to 
the	barotropic	stream	function,	upscaling	a	fraction	of	the	dis-
sipated	energy	back	to	the	resolved	flow,	which	is	often	useful	
assuming that the inverse cascade of energy is underestimat-
ed in ocean models due to unresolved sub-grid processes.

Selecting the appropriate perturbation scheme and properly 
tuning the stochastic parameterizations for the autoregressive 
processes	(for	each	of	the	perturbed	model	quantities)	are	es-
sential steps to produce meaningful stochastic ensembles. All 
stochastic perturbation schemes have their advantages and 
disadvantages	 (e.g.	 energy	 and	mass	 conservation	 laws,	 pro-
duction	of	over/under-dispersive	ensembles,	etc.),	though	the	
SPPT scheme appears to be the most effective (in terms of gen-
erating	sufficient	model	spread)	and	easiest	to	use	(in	terms	of	
stochastic	parameterizations)	for	many	model	quantities.

A common approach to generate stochastic ocean model en-
sembles is by using a pseudorandom combination of multivar-
iate	empirical	orthogonal	functions	(EOFs)	to	perturb	the	wind	
forcing	 (Vervatis	et	al.,	2016).	The	wind	has	a	 large	 impact	on	
upper-ocean model uncertainties because it controls the Ek-
man and geostrophic components of the Sverdrup dynamics; it 
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also largely drives the shelf-seas dynamics in addition to tides. 
In	general,	all	surface	atmospheric	forcing	variables	constitute	
major	sources	of	ocean	model	uncertainties.	Momentum,	heat,	
and	 freshwater	fluxes	are	key	quantities	coupling	 the	air-sea	
processes	and	are	parametrized	 in	terms	of	bulk	coefficients.	
These model parameters can also be stochastically perturbed 
(in	addition	to	atmospheric	forcing)	with	spatiotemporal	vary-
ing	patterns	(or	by	applying	simple	Gaussian	noise,	if	there	is	no	
information	available	regarding	their	scales).

Complementary	 to	 stochastic	 approaches,	 ocean	 model	
uncertainties can be introduced by making use of an at-
mospheric ensemble. Using an atmospheric EPS does not 
necessarily outperform the stochastic modelling approach 
in	terms	of	ocean	model	spread.	 In	general,	 it	takes	longer	
for	the	ensemble	to	spin-up	and	increase	its	spread,	and	the	
method also requires a large amount of data to process. On 
the	other	hand,	the	main	advantage	of	using	an	atmospheric	
EPS	is	the	realism	of	the	fields	in	terms	of	conserved	quan-
tities. A common approach of a marine EPS generated by an 
atmospheric	EPS,	used	successfully	at	operational	centres,	is	
the	ocean	wind-wave	ensemble	forecasting	(Janssen,	2004).

In	the	ocean	interior	below	the	seasonal	thermocline,	model	
uncertainties can be introduced effectively by perturbing the 
ocean boundary conditions and the water column proper-
ties.	 Such	 perturbations	 are	 usually	 difficult	 to	 implement	
because of the need to ensure physical consistency in the 
water	column,	and	because	errors	in	the	prescribed	bound-
ary	 fields	 are	 usually	 unknown.	 A	 favourable	 solution	 for	
the open boundaries is when a coarse parent ensemble is 
available providing uncertainty estimates to the nested child 
model	(Ghantous	et	al.,	2020).

Methods incorporating polynomial chaos expansions along 
with EOF-based perturbations of temperature and salinity 
profiles	 in	 isopycnal	coordinate	space,	can	be	applied	effi-
ciently in estimating model error propagation in the open 
boundaries	(Thacker	et	al.,	2012).	Model	uncertainties	affect-
ing also the water column properties can be applied in the 
equation of state by perturbing the temperature and salinity 
state,	using	the	SPUF	method	aimed	at	representing	sub-grid	
unresolved scales. Other quantities that can be perturbed in 
the ocean interior and its boundaries are the model bathym-
etry	influencing	the	barotropic	and	baroclinic	states	(Lima	et	
al.,	 2019),	 the	bottom	drag	coefficient	affecting	 the	bottom	
Ekman	flow	transport	and	tidal	mixing	in	shelf-seas	(Vervatis	
et	al.,	2021b),	and	the	SSH	together	with	depth	integrated	ve-
locities	in	tidal	open	boundaries	(Barth	et	al.,	2009).

Inflation	methods	 and	 bred	 vectors	 for	 short-range	 ocean	
prediction systems can be used to initialise an ensemble of 
forecasts. The choice of perturbing initial conditions is also 
relevant	to	DA,	for	example	using	ensemble-based	hybrid	vari-

ational methods such as the 4D-EnsVar controlling (possibly 
among	other	quantities)	the	initial	conditions.

Ensemble-based DA methods are used to improve the predic-
tive skill of biogeochemical and sea-ice models. In these Earth 
system	components,	model	errors	stem	from	unresolved	diver-
sity,	unresolved	scales,	and	multiple	model	parameterizations.	
The unresolved diversity refers for example to the biodiversity 
restriction,	including	only	a	few	species	in	the	biogeochemical	
model,	and	to	restrictions	in	the	categorization	of	sea-ice	in	
an effort to reduce complexity and state variables. These di-
versity restrictions often lead to missing model processes that 
are instead approximated by parameterizations. On the other 
hand,	the	unresolved	scales	depend	on	the	model	resolution	
(in	a	way	similar	to	the	unresolved	scales	for	physics).

In	 this	 context,	 the	 most	 common	 quantities	 to	 perturb	 in	
biogeochemical models are the sources and sinks (e.g. pho-
tosynthesis,	respiration,	death,	and	grazing),	and	the	biogeo-
chemical parameters controlling some of these processes (e.g. 
growth	and	mortality	rates,	nutrient	limitations,	grazing,	etc.)	
(Santana-Falcón	 et	 al.,	 2020).	 Other	 biogeochemical	 model	
state uncertainties depend on the water column optical prop-
erties	and	the	penetrative	solar	radiation,	affecting	photosyn-
thesis	and	primary	production	(Ciavatta	et	al.,	2014).	An	ana-
morphosis transformation in lognormal space is required for 
any use of the stochastic biogeochemical outputs that involve 
Gaussian	distributions,	such	as	variance	analysis	or	DA	(Simon	
and	Bertino,	 2009).	 This	 latter	 attribute	 of	 selecting	 a	 posi-
tive distribution function to introduce model uncertainties is 
also	 followed	 for	 sea-ice	perturbations,	 e.g.	 using	 a	 gamma	
distribution for the sea-ice strength variable to improve DA 
and model performance for sea-ice concentration and sea-ice 
thickness	(Juricke	et	al.,		2013).

5.6.3. Towards ocean EPS

A summary of the practical aspects and challenges of a road-
map towards ocean probabilistic forecasting for the next gen-
eration	of	OOFS	 is	as	 follows.	 Initially,	ensemble	 forecasting	
should be developed and tested without the use of DA. This 
will	 allow	 operational	 centres	 to	 coordinate	 their	 activities,	
such	as:	(a)	preparing	OGCM	platforms	for	the	production	of	
ensembles,	e.g.	several	choices	among	regional	centres	tuning	
the	 stochastic	 parameterizations;	 (b)	 integrating	 ensembles	
in their operational chain assessing the computational cost 
(doubled	for	DA)	and	which	variables	are	essential	to	archive;	
and	 (c)	 providing	 tools	 for	 the	 interpretation	of	 uncertainty	
estimates as well as guiding users to extract information from 
ensembles,	e.g.	ocean	indices	for	the	probabilistic	detection	of	
events.	An	open	issue	in	this	first	step,	without	DA,	is	how	en-
sembles are going to be initialised in an operational context. 
In	a	second	step,	within	a	DA	framework,	the	initialization	of	
the ensemble is part of the DA process.
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5.7.  
Validation strategies
As	explained	in	Section	4.5.2,	four	classes	of	metrics	(Figure	
4.30)	were	defined	and	adopted	by	GODAE	OceanPredict	and	
have been extensively used for the validation of OO mod-
el	products	since	 the	first	validation	and	 intercomparisons	
exercises	 (Crosnier	and	Le	Provost,	2007;	Ryan	et	al.,	 2015).	
It is indeed necessary to use a complete range of statistics 
and comparisons in space and time to properly assess the 
consistency,	representativeness,	accuracy,	performance,	and	
robustness	of	ocean	model	outputs.	One	of	the	first	steps	at	
all stages of the validation procedure is usually to compare 
the	surface	 temperature	 (analysed,	and	at	various	 forecast	
length)	with	contemporaneous	satellite	observations,	which	
is	a	good	example	of	CLASS1	metrics	(Figure	5.11).	Sea	surface	
temperature is a signature of ocean-atmosphere interactions 
and	 it	 is	 critical	 for	many	maritime	applications,	while	be-
ing one of the major sources of uncertainty for ocean mod-
el analyses and forecasts. This type of comparison allows a 
day-to-day control of atmospheric forcing inconsistencies 

and large scale features of the systematic biases can also be 
monitored on the longer terms.

Another important step is to check the local behaviour of 
the model analyses and forecast for several time frequencies 
(tidal,	non-tidal)	using	fixed	buoys	observations,	for	instance	
for	sea	surface	height	against	tide	gauges	(CLASS2	metrics,	
Figure	5.12).	This	type	of	metrics	 is	essential	 for	the	overall	
assessment of the representativeness of a physical model 
solution. Many statistical estimators can be used to compare 
models to observations within this CLASS1 and CLASS2 frame-
work,	but	also	spectral	analysis,	extreme	events	characteri-
zation,	and	mesoscale	feature	detection	can	be	performed	at	
this stage. This surface “satellite” approach (2-dimensional 
with	time)	and	local	approach	(1-dimension	with	time)	must	
be combined with the monitoring of the basin scale or global  
scale	behaviour	of	 the	ocean,	 integrated	 in	space	 (3-dimen-
sions)	and/or	time,	such	as	the	validation	and	intercomparison

Figure 5.11. Copernicus Marine Service global model SST analysis minus gridded supercollated SST observa-
tions	on	03/30/2021	(°C).
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8.https://marine.copernicus.eu/access-data/ocean-monitor-
ing-indicators/mean-heat-transport-across-sections

Figure 5.12. 	Correlation	(left)	and	RMS	difference	(cm)(right)	between	the	Iberia-Biscay-Ireland	model	
analyses by Copernicus Marine Service and the observations of the residual elevation at tide gauges´ locations 
(January	2017	to	December	2018)	(courtesy	of	Bruno	Levier,	Mercator	Océan).

Figure 5.13. 	Heat	transport	(PW)	from	Copernicus	Marine	Service	global	reanalysis	ensemble	product	(🔗8)	
compared	with	estimates	of	Lumpkin	and	Speer	(2007).	Uncertainty	ranges	are	derived	from	the	ensemble	
standard	deviation.	Arrows	indicate	the	direction	of	the	mean	flow	through	the	sections.
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of ocean monitoring indicators. The intercomparison of inte-
grated	heat	transports	(CLASS3	metrics,	Figure	5.12)	with	val-
ues	 from	the	 literature	 (Lumpkin	and	Speer,	2007)	 is	a	good	
example	of	diagnostic	which	 can	help	 identify	biases,	drifts	
or limitations in the model’s representation of the ocean cir-
culation,	while	 it	 also	provides	 valuable	 information	on	 the	

ocean	 state	 and	 variability.	 Additionally,	 the	 intercompari-
son	 of	 several	 model	 estimates,	 whenever	 possible,	 allows	
to derive a range of likely values for ocean monitoring indi-
cators,	and	 to	assess	 the	 robustness	of	 the	model	 solution.	 
In Figure 5.13 the standard deviation between four ocean re-
analyses	(varying	in	their	configuration	and	data	assimilation	

Figure 5.14. 	Performance	of	GODAE	OceanPredict	global	forecasting	systems,	in	terms	of	global	mean	depar-
tures	from	salinity	in-situ	profiles	observations	(psu)	in	the	0-500m	layer.	The	time	evolution	of	the	mean	bias	
between	the	model	forecast	(12h)	and	the	observations	is	shown	by	dotted	lines,	and	the	root	mean	square	
difference	is	shown	by	solid	lines	(courtesy	of	Charly	Régnier,	Mercator	Ocean).

Figure 5.15. 	Results	of	a	Lagrangian	experiment.	Panels:	a)	the	metric	corresponds	to	the	distance	sepa-
rating	the	true	position	of	the	particle	in	NR	with	that	of	the	OSSE1	(3Nadir)	after	7	days,	averaged	in	5-de-
gree	bins;	b)	and	c)	show	the	average	change	in	separation	distance	(reduction	in	blue)	obtained	when	using	
instead	OSSE2	and	OSSE3	surface	currents,	with	an	overall	improvement;	and	d)	global	distributions	of	the	
separation	distance	in	each	experiment	(courtesy	of	Simon	van	Gennip,	Mercator	Ocean).

CHAPTER 5. CIRCULATION MODELLING 103



settings)	based	on	the	same	model	(NEMO)	were	used	to	derive	
the uncertainty associated with each heat transport estimate.

Finally,	CLASS1-2-3	must	be	complemented	by	quality	indica-
tors	averaged	in	space	at	basin	scale,	and	possibly	in	time,	
in order to monitor and quantify the individual performance 
of	model	solutions.	To	this	aim,	data	assimilation	misfits	(in-
novations	and	 residuals)	are	extensively	used,	as	observa-
tion	operators,	developed	within	data	assimilation	schemes,	
usually provide the most adequate transposition of the model 
solution into the observations’ space. CLASS4 metrics can be 
computed	offline	in	delayed	time,	outside	of	the	data	assimi-
lation	process,	to	add	the	possibility	to	compare	residual	dif-
ferences with one given observation between various forecast 
lengths,	 to	 compare	 with	 climatology	 and	 persistence,	 and	
finally	to	derive	forecast	skill	scores.	Hence,	independent	ob-
servations	(not	assimilated)	can	be	used	to	compute	CLASS4	
metrics,	and	reference	datasets	can	be	defined	to	build	robust	

intercomparison	frameworks.	For	instance,	ARGO	floats	mea-
surements are only used by the GODAE OceanPredict commu-
nity in order to measure performance in salinity as illustrated 
by	Figure	5.14	(Ryan	et	al.,	2015).	A	spike	in	the	statistics	corre-
sponds	to	a	campaign	at	sea	in	the	Arctic	in	2018,	which	shows	
that,	 despite	 a	 growing	 observing	 network,	 these	 statistics	
suffer from representativeness issues.

As	at	high	resolution	(a	few	km	or	less)	the	small	scales	are	not	
constrained	by	observations,	the	performance	measured	by	di-
rect or statistical comparisons to observations may not be as 
good	as	for	coarser	model	solutions,	which	is	referred	to	as	the	
“double	 penalty”	 effect	 (Ebert,	 2009).	 Neighbourhood	 metrics	
(Mittermaier	et	al.,	2013,	2021)	focus	on	the	ability	of	a	model	to	
forecast a range of events within a neighbourhood in space and 
time,	and	for	which	the	direct	or	statistical	comparisons	to	ob-
servations at all time and space scales would not be informative.  

Figure 5.16. 	a)	SLA	along	track	L3	observation	distribution	(in	meters)	and	two	model	ensembles	in	data	
space;	(b)	"Observation	minus	Ensemble"	map	for	a	period	starting	on	25	February	2012	and	for	three	consecu-
tive	weeks;	(c)	box-whisker	plots	and	observation	error	bars	averaged	over	the	abyssal	plain;	(d)	the	Armorican	
shelf;	and	(e)	the	English	Channel.
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5.8.  
Outputs
Information on formats and types of outputs of all kinds of 
OOFS can be found in Chapter 4. The following section treats 
only	some	specific	aspects	related	to	circulation	modelling.

5.8.1. Variables/EOV

The circulation modelling variables describe any system re-
lated to the production of 3D ocean dynamics variables.

The main physics variables (with their abbreviation or acro-
nym)	are:

• Temperature

• temperature	[T]
• sea	surface	temperature	[SST]
• bottom	temperature	bottom	[bottomT]

• Density	[D]
• Salinity	[S]
• Sea	Surface	Height	[SSH]

• above sea level
• above geoid
• geopotential height

• Velocity
• Velocity	[UV/W]

• geostrophic	velocity	[UV/UVG]
• barotropic	velocity	[UVB]

• Mixed	Layer	Depth	[MLD]
• Sea Ice

• sea	ice	concentration	[SIC]
• sea	ice	edge	[SIE]
• sea	ice	extent	[SIE]
• sea	ice	thickness	[SIT]
• sea	ice	velocity	[SIUV]
• sea	ice	drift	[SIUV]
• snow	[SNOW]
• iceberg	[ICBG]
• sea	ice	age	[SIAGE]
• sea	ice	albedo	[SIALB]
• sea	ice	temperature	[IST]

The variables follow the CF standards. The CF Metadata Con-
ventions	are	a	widely	used	standard	for	atmospheric,	ocean,	
and	climate	data.	Standard	names	are	defined	in	a	CF	Stan-
dard Name Table (see 🔗9).

9. http://cfconventions.org/standard-names.html

Additionally,	 “user	oriented”	metrics	 focusing	on	processes	
or using downstream applications can reduce this effect and 
allow	to	better	assess	the	fit-for-purpose	of	ocean	analyses	
and	forecasts,	among	which	we	can	cite	eddies	(Mason	et	al.,	
2014),	fronts	detection	(Ren	et	al.,	2021),	and	lagrangian	drift	
scores. Lagrangian separation distance scores and distribu-
tions	(shown	in	Figure	5.15)	are	a	primary	validation	diagnos-
tic when studying the impact of changes in the observations 
network	(Tchonang	et	al.,	2021).	Figure	5.15	shows,	in	particular,	
results of a Lagrangian experiment wherein particles seeded 
in	every	model	grid	cell	(1/12	degree	resolution)	and	advected	
for 7 days in the Nature Run and three different OSSEs sur-
face currents (OSSE1 collecting and assimilating 3 nadir-like 
satellite	altimeters,	and	OSSE2	SWOT-like	satellite	altimeter,	
and	OSSE3	nadir-like	and	one	SWOT-like	satellite	altimeters).	

Ensemble scores applied to ensemble forecasts (see Section 
5.6)	also	allow	better	study	of	predictability	and,	eventually,	to	
validate and quantify the skill of the forecast. This is needed 

in	particular	for	mesoscale	features	(Thoppil	et	al,.	2021).	In	the	
near	future,	it	 is	essential	to	add	this	type	of	verification	and	
quantification	of	uncertainty	to	the	range	of	validation	metrics.	
Figure 5.16 illustrates examples of ensemble diagnostics (Ver-
vatis	et	al.,	2021a)	important	to	be	checked	in	the	development	
phase and during the production to verify consistency between 
ensemble model distribution and observation. Figure 5.16a 
compares	 the	distribution	of	observations	 (light	 grey)	 and	of	
two	ensemble	simulations	(dark	grey);	a	good	quality	criterion	
is the distribution of ensemble members overlapping the dis-
tribution	of	the	observations,	if	this	should	not	be	investigated.	
Figure 5.16b shows the bias between ensemble members and 
observations in the observations’ space for a dedicated period. 
Errors	can	also	be	quantified	in	physically	consistent	domains	
as	 illustrated	 in	 Figure	 5.16c,	 where	 the	 consistency	 between	
box-whisker plots of the ensemble members distributions and 
error bars can be assessed for observations in the same area.
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5.9.  
Inventories

The purpose of this section is to provide an initial inventory 
of	the	operational	Near	Real	Time	(NRT)	and		Multi	Year	(MY)	
systems operating at international level. Details about the 
specific	 system,	 resolution,	 implemented	 circulation	 mod-
el,	and	data	assimilation	are	provided	in	the	following	lists,	
along with the observations used for assimilation and as-
sessment,	 summary	of	 the	main	offered	product	catalogue	
and,	where	existing,	 the	website	address	to	directly	 link	to	
systems products and other relevant information.

5.9.1. Inventory of operational global to 
regional to coastal to local forecasting systems

The present state-of-the-art operational systems for NRT 
products from global to local scale is presented in Table 5.2. 
This proposed inventory has been prepared in collaboration 
with	 the	 Coastal	 and	 Shelf	 Seas	 (COSS-TT)	Working	 Group,	
one of the OceanPredict Task Teams. An evolutive list of Re-
gional/Coastal	Ocean	Forecasting	Systems	(R/COFS)	is	main-
tained	by	the	COSS-TT	in	the	System	Information	Table	(SIT)	
(latest version available at 🔗10).	Due	to	the	shorter	lifespan	
and more frequent updates in coastal systems compared 
to	global	and	basin-scale	systems,	the	SIT	 is	frequently	re-
freshed and then please refer to the latest online version 
for up-to-date information. In addition to operational/NRT 
systems,	the	online	SIT	contains	also	tools	(e.g.	used	for	ap-
plications,	crisis-time	scenarios,	etc.),	research	and	pre-op-
erational	models,	etc.

5.9.2. Inventory of multi-year systems

Starting	from	the	list	in	Balmaseda	et	al.	2015,	an	initial	in-
ventory	 of	 state-of-the-art	MY	 systems	has	been	prepared	
(Table	5.3).	As	in	Table	5.2,	for	each	system	is	provided	scale	
(from	global	to	regional),	resolution,	models,	and	providers,	
as well as relevant links to web pages that the reader may 
consult for further details. 

10. https://oceanpredict.org/science/task-team-activities/
coastal-ocean-and-shelf-seas/#section-sit
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Table 5.2. Initial	inventory	of	global	(G)	to	regional	(R)	to	coastal	(C)	to	local	(L)	operational	forecasting	systems.

WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://re-
search.csiro.
au/bluelink/
global/fore-
cast/

https://
science.
gc.ca/eic/
site/063.nsf/
eng/h_97631.
html

https://ec-
co-group.org/
products-EC-
CO-V4r4.htm

https://www.
metoffice.gov.
uk/research/
weather/
ocean-fore-
casting

https://www.
metoffice.gov.
uk/research/
weather/
ocean-fore-
casting

https://in-
cois.gov.in/

G

G

G

G

G

G

OceanMAPS,	
BLUElink (Bureau 
of	Meteorology)

CONCEPTS GIOPS 
(Government of 

Canada)

ECCO: Estimating 
the Circulation 
and Climate of 

the Ocean

FOAM: Forecast 
Ocean Assim-
ilation Model 

system

NAVOCEANO,	
the US Naval 

Oceanographic 
Office	(US)

INCOIS,	the	
Indian National 

Centre for Ocean 
Information 

Service

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

Global 
ocean

0.1 degree grid 
spacing at 

the Australia 
region

1/4° horizon-
tal resolution

The horizontal 
resolution 

varies spatial-
ly from 22 km 

to 110 km

1/4° horizon-
tal resolution

1/12° horizon-
tal resolution

horizontal 
resolution at 
1/4° with 40 

vertical sigma 
levels

MOM4

NEMO

MITgcm

NEMO

HYCOM

ROMS

BODAS is an en-
semble optimal 

interpolation 
system used to 

assimilate avail-
able in-situ and 

satellite obs.

SEEK	scheme,	
using	INS,	SLA,	

SST obs.

Assimilation of 
INS,	SLA,	SST	

obs.

NEMOVAR 
(3D-Var	scheme)	
using	INS,	SLA,	

SST obs.

Hybrid data 
assimilation 

scheme

N/A

N/A

N/A

N/A

N/A

N/A

N/A

Daily	T,	S,	SSH	
and UV

Daily 10-days 
forecast	for	T,	S,	
SSH,	UV,	sea	ice	
concentration

Daily forecast 
for	T,	S,	SSH,	UV,	
fluxes,	sea	ice

Daily	mean,	
analysis and 

five-day	forecast	
for	T,	S,	SSH,	UV,	

sea ice

Daily forecast 
for	ocean	fields

Daily 5 days 
forecast for 

surface	UV,	SST,	
MLD,	waves	and	

winds
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://gofs.
cmcc.it/

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.
eu,	https://
medfs.cmcc.
it/

https://
ds.data.jma.
go.jp/tcc/tcc/
products/
elnino/move_
mricom-g2_
doc.html

G

G

R

R

R

G/R

GOFS16 CMCC 
Global Ocean 
Forecasting 

System

Global MFC by 
Copernicus 

Marine Service  
(MOI,	France)

Arctic MFC by Co-
pernicus Marine 
Service	(NERSC,	

Norway)

Baltic MFC by Co-
pernicus Marine 
Service	(SHMI,	

Sweden)

Mediterranean 
Sea MFC by Co-
pernicus Marine 
Service	(CMCC,	

Italy)

MOVE/MRI.COM-
JPN	(MRI,	Japan)

Global 
ocean

Global 
ocean

Arctic 
Region

Baltic 
Sea

Medi-
terra-
nean 
Sea

Global,	
North 
Pacific,	
Japan

1/16° horizontal 
resolution and 98 

vertical levels

1/12° horizontal 
resolution and 50 

vertical levels

12.5 km at the 
North Pole

0.028 degrees x 
0.017 degrees in 

horizontal and 56 
levels

1/24° in horizontal 
and 141 vertical 
levels,	2-way	cou-
pled to WW3 wave 

model

Double nested 
system consisting 
of	global	(GLB),	
North	Pacific	(NP)	
and	Japan	area	
(JPN)	models

Ocean model : MRI.
COM with resolu-
tions:	(JPN)	1/33°	
x	1/50°,	60	levels;	
(NP)	1/11°	x	1/10°,	
60	levels;	(GLB)	
1°x1/2°	(tripolar),	

60 levels

NEMO

NEMO

HYCOM

NEMO

NEMO

MRI.COM

OceanVar 
(3D-Var	scheme)	
using	INS,	SL,	
SST,	SICE	obs.

SAM2 (SEEK 
scheme)	using	
INS,	SLA,	SST	

obs.

EnKF assimi-
lation scheme 
using	INS,	SLA,	
SST and SICE 

obs.

PDAF LESTKF 
univariate for 

SST

OceanVar 
(3D-Var	scheme)	
using	INS,	SL,	

SST obs.

4DVAR (applied 
to a reduced 

grid version of 
NP	model).	As-
sessment: Tide 
gauge,	In-situ	
observations 
(buoy,	T-S	pro-
files),	HF	radars,	
satellite	(SST,	
SSH,	sea	ice	

concentration),	
volume trans-

port at repeated 
hydrographic 

sections.

N/A

N/A

N/A

1-way nested 
into NWS-MFC 

Copernicus 
Marine Service 

regional 
product

1-way nested 
into GLO-MFC 
Copernicus 

Marine Service 
(1/12°,	50	ver-
tical	levels)

Downscaling: 
one/two-

way nesting 
with IAU 

initialization

Daily analysis 
and 7 days fore-
cast	for	T,	S,	SSH,	

UV,	sea	ice

Daily analysis 
and 10 days 

forecast	for	T,	S,	
SSH,	UV,	sea	ice

Daily analysis 
and 10 days 

forecast	for	T,	S,	
SSH,	UV,	sea	ice

Daily analysis 
and 6 days 

forecast	for	T,	S,	
SSH,	MLD,	UV

Analysis and 10 
days forecast 

for	T,	S,	SSH,	UV,	
MLD,	fluxes,	sea	

icea

Real time 
monitoring and 
prediction,	re-
analysis	of:	T,	S,	
UV,	SSH,	sea	ice	
concentration,	

tropical cyclone 
heat potential 

(TCHP)
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

R

R

R

R

Irish-Biscay-Ibe-
rian shelves MFC 

by Copernicus 
Marine Service 

(Mercator Ocean 
International,	
France	/	Spain)

North-West shelf 
MFC by Coper-
nicus Marine 
Service (Met 
Office,	UK)

Black Sea MFC 
by Copernicus 
Marine Service 
(CMCC,	Italy)

High Resolution 
Data Assimila-
tive Model for 

Coastal and Shelf 
Seas around 

China (Institute 
of Atmospheric 
Physics/Chinese 
Academy of Sci-
ences,	China)

Irish-Bis-
cay-Iberian 

shelves

European 
North-West 
shelf Seas

Black Sea

Northwest 
Pacific,	

coastal seas 
around 
China

1/36° in hori-
zontal and 50 
vertical levels

1.5 km in 
horizontal 

and 51 hybrid 
s-sigma ter-

rain-following 
coordinates 

on the vertical

1/40° in hori-
zontal and 121 
vertical levels

NEMO

NEMO

NEMO

SEEK	scheme,	
using	INS,	SL,	

SST obs.

NEMOVAR 
(3D-Var	scheme)	
using	INS,	SL,	

SST obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SL,	

SST obs.

Assessment: 
SST,	SLA,	tem-
perature,	buoys,	

ship cruises

1-way nested 
into GLO-MFC 
Copernicus 

Marine Service 
(1/12°,	50	ver-
tical	levels)

1-way nested 
into	Met	Office	

FOAM NATL 
(1/12°; 6 hourly 
fields)	and

Baltic Sea 
physics by 
Copernicus 

Marine Service 
(2	km,	1	hourly	

fields)

Lateral open 
boundary con-

ditions from 
the Unstruc-
tured Turkish 
Straits System 
(U-TSS,	Ilicak	
et	al.	2021)

2-way nesting

Analysis and 5 
days forecast 

for	T,	S,	SSH,	UV,	
MLD

Analysis and 5 
days forecast 

for	T,	S,	SSH,	UV,	
MLD

Analysis and 10 
days forecast 

for	T,	S,	SSH,	UV,	
MLD

Daily averaged 
3-D	fields	of	

UV,	T,	S
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

MARC: http://
marc.ifremer.
fr

ILICO: https://
www.ir-ilico.
fr/en

http://ocim-
stest.ocean.
gov.za/aloga_
bay_model

http://
omgsrv1.
meas.ncsu.
edu:8080/
CNAPS/

https://www. 
marinha.mil. 
br/chm/
dados 
-do-smm- 
modelagem- 
numerica-te-
la-de-chama-
da/modela-
gem-numerica

R/C

R/C

R/C

R/C

MARC: Modelling 
and Analyses for 
Coastal Research 

and ILICO: 
Coastal Ocean 
and Nearshore 

Observation 
Research 

Infrastructure 
(Ifremer,	France)

SOMISANA (SAE-
ON/DFFE,	South	

Africa)

CNAPS Coupled 
Northwest At-

lantic Prediction 
System (North 
Carolina State 
University,	USA)

REMO Oceano-
graphic Modeling 

and Observa-
tion Network 

(Brazilian Navy 
Hydrographic 
Center,	Brazil)

Bay of Bis-
cay / English 

Channel / 
Northwest-

ern Mediter-
ranean Sea

Algoa	Bay,	
south	coast,	
South Africa

Northwest 
Atlantic 

coast	ocean,	
including 
the entire 
east coast 
of	U.S.,	

the Gulf of 
Mexico and 
Caribbean 

seas

Region 
between 
latitudes 

35.5°S and 
7°N and 

longitude 
20°W to the 

Brazilian 
coast

2.5 km hor-
izontal resolu-

tion and 40 
levels

Horizontal 
grid that 

decreases 
from ~3km at 
the edges to 
500 m within 

the bay

Horizontal 
resolution	<	

7 km

2	grids,	at	
1/12° and 

1/24° horizon-
tal resolu-
tions for 

the	eastern,	
southeastern 
and southern 

regions

MARS3D

CROCO

ROMS

HYCOM

SST,	HF	Radar	
(sea state + cur-
rents),	Moored	
buoys	(T,S)

No DA. Assess-
ment is based 
on Underwater 
Temperature 
Recorder	(UTR)	
and ADCP data

HF	Radar,	buoy,	
ship,	satellite	
observations

The system 
assimilates 

vertical	profiles	
of temperature 
(T)	and	salinity	
(S)	from	the	
ARGO	system,	
XBTs,	CTDs,	Sea	
Level	Anomaly,	

SST; assessment 
using	AVISO	SL,	

SST,	INS

Spectral 
nudging,	one-
way nesting 

using GLO-MFC 
products and 
2D models for 

tides

1-way nested 
into	GLO-PHY	
(1/12°,	50	ver-
tical	levels)

1-way nesting 
with Mercator 
Ocean GLO-
PHY;	Global	

HyCOM; WWIII

TPXO	7.1	for	
tides; one-way 
nesting from 

the 1/12° 
resolution to 

the 1/24° reso-
lution grid

1 hr output in 
Bay	of	Biscay,	
3 hr output in 
Mediterranean 
Sea,	HF	observa-
tions	(20min)

SSH,	3D	T,	S	and	
UV,	trajectories	
from hypotheti-

cal oil spills

Daily nowcast 
and 3-day fore-
cast	for	UV,	T,	
S,	ocean	waves	

and atmospheric 
variables

4-day forecasts 
(T,	UV	and	

SSH)	at	6-hour	
intervals updat-

ed daily on 2 
different grids
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://www.
bsh.de/EN/
DATA/Predic-
tions/predic-
tions_node.
html

http://codm.
hzg.de/codm

https://
dreams-c1.
riam.ky-
ushu-u.ac.jp/
vwp

R/C

R 
to L

R 
to L

DREAMS: Data 
assimilation 

Research of the 
East Asian Marine 
System	(RIAM,	

Kyushu Universi-
ty,	Japan)

BSH Operational 
Model System 
(BSH,	Germany)

COSYNA

Northwest-
ern	Pacific	
with focus 

on marginal 
seas

North and 
Baltic	Sea,	

German 
coastal 
waters

North	Sea,	
German 
Bight,	

German 
Wadden Sea

DREAMS_mar-
ginal seas 
model at 

~7.4km hor-
izontal resolu-
tion. Coastal 

models at 
~1.5km along 
the	Japan	Sea	
coast nested 
in DREAMS_

marginal seas 
model

Horizontal 
resolution is 
3 km for the 
North and 

Baltic	Sea,	0.5	
km for Ger-
man coastal 

waters

3 nested mod-
els:	i)	North	

Sea Baltic Sea 
model	(5	km),	
ii)	German	

Bight model 
(1	km,	varying	

unstruc-
tured-grid,	

1km),	iii)	Estu-
arine model 

(varying 
unstruc-
tured-grid,	
20-200	m)

RIAM

HBM

GETM

Assessment: 
Volume trans-
port through 
the Tsushima 

Strait,	U,	V	and	T	
measurements 

by	fishing	
vessels

Assimilation 
with PDAF 

scheme using 
AVHRR SST/

Sentinel-3 SST 
and validation 
using Coper-
nicus Marine 
Service data

Assessment 
with indepen-

dent ADCP 
observations,	
FerryBox	data,	

dedicated 
profile	mea-
surements,	in-
tercomparison 
with products 

from other 
operational 

systems

OBC from 
climatological 

run

2-way nesting 
among region-
al and coastal 

models

MyOcean 
ECOOP,	OSTIA,	
MERIS color 

data

Downscaling 
using 3 differ-

ent grids

T,	S,	U,	V,	sea	lev-
el,	mixed	layer	
depth,	density

120-hour 
forecast from 0 

and 12 UTC and a 
78-hour forecast 

from 6 and 
18 UTC; water 
level,	T,	S,	UV,	

ice products and 
biogeochemical 

variables

Surface	UV,	T,	S,	
suspended mat-
ter,	wind	wave	
characteristics 
in the German 

Bight
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

http://sanifs.
cmcc.it

http://
opendap.
puertos.es/
thredds/
catalog.html 
; http://www.
puertos.
es/es-es/
proyectos/
Paginas/SA-
MOA.aspx

http://fore-
cast.maretec.
org

C

C

C/L

PCOMS: Portu-
guese Coastal 
Operational 

Modelling Sys-
tem	(MARETEC,	

Portugal)

SANIFS	(CMCC,	
Italy)

SAMOA (Puertos 
del	Estado,	
Spain)

Western 
Iberia region 
and subre-

gions

Southern 
Adriatic 

Northern Io-
nian coastal 
Forecasting 

System

Regional 
areas at ~ 2 
km resolu-
tion; model 
applications 

consist of 
2 nested 

regular grids 
with spatial 
resolution 
of ~350 m 
and ~70 

m for the 
coastal and 

harbour 
domains

5.6 km in hor-
izontal and 50 
vertical layers

Horizontal 
resolution 

from 3 km in 
open-sea to 
100-20 m in 

coastal areas

Regional 
areas at ~ 2 

km resolution; 
model 

applications 
consist of 2 

nested regular 
grids with 

spatial reso-
lution of ~350 
m and ~70 m 

for the coastal 
and harbour 

domains

MOHID 3D

SHYFEM

ROMS

N/A

No DA. Assess-
ment using 

available ob-
servations from 

Copernicus 
Marine	Service,	
EMODnet and 
national ob-

serving network

No DA. Assess-
ment using 
in-situ obs. 

from mooring 
buoys,	ADCPs,	

tide gauges and 
drifter buoys; 
SST satellite 

data and 
surface currents 

from HF radar

1-way nesting 
into Merca-
tor-Ocean 

PSY2V4	in	the	
North Atlantic; 

tidal levels 
computed by a 
2D version of 
MOHID,	forced	
by	FES2004,	
running on a 
wider region.

Climatological 
profiles	from	
WOA09 for 
nutrients.

1-way nesting 
using the 

Copernicus 
Marine Service 
Mediterranean 
MFC regional 

forecast 
products (at 

1/24°)

1-way nesting 
using the 

IBI-MFC Re-
gional Forecast 

products (at 
1/36°)

Hindcasts and 
3-day forecasts 
of SSH and 3D 
UV,	T,	S	and	

biogeochemical 
model

Short term fore-
cast	(3	days)	of	
SSH,	3D	UV,	T,	S

Daily operation-
al short-term 
(+72h)	met-

ocean forecast
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WebsiteProductsData used for 
assimilation 

and assessment

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://hud-
son.dl.ste-
vens-tech.
edu/mari-
timeforecast/
index.shtml

https://
savannah.
cmcc.it

http://
forecast.
maretec.org/
tagusmouth

C/L

C/L

L

NYHOPS:	New	
York	Harbor	
Observation 

and Prediction 
System	(Jupiter	
Intelligence,	USA)

SWITCH – Georgia 
Coasts (CMCC / 

GeorgiaTech,	Italy	
/	USA)

Tagus Mouth op-
erational model 
(MARETEC	/	IST,	

Portugal)

New	York	
and East 

Coast of US

Georgia 
coast,	US

Tagus 
Estuary 

and Mouth 
region

7.5 km at the 
open ocean 
boundary to 

less than 50 m

1km in open 
ocean to 
100m in 

coastal areas 
to 10m in the 

rivers

Variable 
horizontal 
resolution,	

ranging from 
2 km off the 
coast up to 

400 m inside 
the	estuary,	
50 layers in 
the vertical

POM

SHYFEM

MOHID 3D

N/A

No	DA,	assess-
ment is based 
on tide gauges 

at coast and 
along rivers

No DA. Assess-
ment: Argo and 
buoys data from 

IBI-ROOS and 
the Portuguese 

hydrograph-
ic	institute,	

satellite images 
(ODYSSEA,	

Ocean Colour 
and	HF	radar)

Offshore 
boundary 

tides,	surges,	
waves. Real 

time data from 
Ntl Ocean 

Service,	Adv.	
Hydrologic 
Prediction 
Service,	Ntl.	

Climatic Data 
Center.

1-way nested 
into	GLO-PHY	
(1/12°,	50	ver-
tical	levels)

1-way nesting 
using the 

PCOMS

72	hr	forecasts,	
nowcasts,	24	hr	
hindcasts initi-

ated every 6 hrs; 
Variables:	SSH,	
T,	S,	UV,	winds,	
coastal waves - 
height,	period	
and	direction,	

biogeochemical 
variables

3-days forecast 
for	SSH,	3D	UV,	

T,	S

Hindcasts and 
3-day forecasts 
of SSH and 3D 
UV,	T,	S	and	

biogeochemical 
model
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Table 5.3. Initial	inventory	of	global	(G)	to	regional	(R)	to	coastal	(C)	to	local	(L)	multi-year	systems.

WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
rda.ucar.
edu/#!lfd?n-
b=y&b=pro-
j&v=NCEP%20
Climate%20
Forecast%20
System%20
Reanalysis

http://c-glors.
cmcc.it/
index/index.
html

www.ec-
co-group.org

http://
www.gfdl.
noaa.gov/
ocean-da-
ta-assimila-
tion

https://www.
metoffice.gov.
uk/research/

www.ec-
co-group.org

G

G

G

G

G

G

CFSR by the Cli-
mate Prediction 

Center

C-GLORS by the 
Euro-Mediterra-
nean Center on 
Climate Change 

Foundation

ECCO	by	JPL-NASA

ECDA by the 
Geophysical 

Fluid Dynamics 
Laboratory

GloSea5 (UK 
MetOffice,	UK)

GECCO by Univer-
sity of Hamburg

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

~ 38 km hor-
izontal resolu-

tion and 64 
vertical levels

1/4° horizon-
tal resolution 
and 50 to 75 

levels

The horizontal 
resolution 

varies spatial-
ly from 22 km 

to 110 km

1° horizontal 
resolution 

and 50 verti-
cal levels

1/4° horizon-
tal resolution 
and 75 levels

MOM4

NEMO

MitGCM

MOM4

NEMO

MitGCM

3D-Var scheme 
for the assim-
ilation	of	SST,	
INS,	SICE	obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SLA,	
SST and SICE 

obs.

4D-Var scheme 
for the assim-
ilation	of	SLA,	
SST and INS 

obs.

EnKF scheme 
using	INS,	SST	
and SLA obs.

3D-Var scheme 
using	SLA,	SST,	

INS and SICE obs.

4D-Var scheme 
for the assim-
ilation	of	SLA,	
SST and INS 

obs.

N/A

N/A

N/A

N/A

N/A

N/A

1979-2010

1990-2016

1992-2017

Integration for 
the 20th Century

1993-2015

1948-2018
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WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

http://www.
godac.jam-
stec.go.jp/
estoc/e/

https://www.
cawcr.gov.
au/

https://www.
ecmwf.int/
en/research/
climate-re-
analysis/
ocean-re-
analysis

https://clima-
tedataguide.
ucar.edu/
climate-data/
soda-sim-
ple-ocean-da-
ta-assimila-
tion

https://www.
mri-jma.
go.jp/

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

G

G

G

G

G

G

R

K7-ODA	(Japan	
Agency for 

Marine-Earth 
Science and 
Technology)

PEODAS (Centre 
for Australian 
Weather and 

Climate Research 
- Bureau of 
Meteorology)

ORAS5	(ECMWF,	
UK)

SODA (National 
Center for Atmo-
spheric Research 

Staff,	US)

MOVE-C	RA	(Ja-
pan Meteorologi-

cal	Agency)

Global Ocean 
MFC by Coper-
nicus Marine 
Service	(MOI,	

France)

Arctic MFC by Co-
pernicus Marine 
Service	(NERSC,	

Norway)

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Global 
Ocean

Arctic 
Region

1° horizontal 
resolution 

and 45 levels

1° x 2° 
horizontal 
resolution

1° horizontal 
resolution

1/4° horizon-
tal resolution

1° horizontal 
resolution

1/12° horizon-
tal	resolution,	

50 vertical 
levels

12.5 km 
horizontal 
resolution 

and 12 levels

MOM3

MOM2

NEMO

POP2.1

MRI.COM2

NEMO

HYCOM

4D-Var adjont 
method for the 
assimilation of 
INS,	SLA,	SST	

obs.

EnKF for the 
assimilation 

of INS and SST 
obs.

3D-Var scheme 
using	SLA,	INS	
and SST obs.

OI for INS and 
SST obs.

3D-Var scheme 
using	SLA,	INS	
and SST obs.

Reduced-order 
Kalman	filter	

for assimilating 
SLA,	SST,	INS	
and SICE obs.

DEnKF for 
assimilating 
satellite and 

INS obs.

N/A

N/A

N/A

N/A

N/A

N/A

N/A

1957-2009

2000-2010

1979-present

1869-2010

1950-2011

1993-2019

1991-2019
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WebsiteTimeseriesData 
Assimilation 

scheme

Downscaling/
nesting

Circulation 
model

ResolutionAreaSystemScale

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

https://
marine.
copernicus.eu

R

R

R

R

R

Baltic MFC by 
Copernicus 

Marine 
Service	(SHMI,	

Sweden)

North-West 
shelf MFC by 
Copernicus 

Marine 
Service (Met 
Office,	UK)

Irish-Bis-
cay-Iberian 
shelves MFC 

by Copernicus 
Marine Ser-

vice (Puertos 
del	Estado,	
Spain)

Mediterra-
nean Sea MFC 
by Copernicus 

Marine Ser-
vice	(CMCC,	

Italy)

Black Sea MFC 
by Copernicus 

Marine Ser-
vice	(CMCC,	

Italy)

Baltic Sea

North 
West 
Shelf 
Seas

Irish-Bis-
cay-Ibe-

rian 
shelves

Mediter-
ranean 

Sea

Black Sea

0.05556 
degrees x 

0.03333 de-
grees horizon-
tal resolution 
and 56 verti-

cal levels

7 km horizon-
tal resolution 
and 24 verti-

cal levels

1/12° horizon-
tal resolution

1/24° in hori-
zontal and 141 
vertical levels

3 km horizon-
tal resolution 
and 31 vertical 

levels

NEMO

NEMO

NEMO

NEMO

NEMO

LSEIK data 
assimilation 

scheme

NEMOVAR 
(3D-Var	scheme)	

using SST and 
INS obs.

SEEK	scheme,	
using	INS,	SL,	

SST obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SLA,	

SST obs.

OceanVar 
(3D-Var	scheme)	
using	INS,	SLA,	

SST obs.

At the lateral boundaries 
in the western English 
Channel and along the 

Scotland-Norway	boundary,

the sea levels are pre-
scribed using a coarse (24 
nautical	miles	resolution)	
storm-surge model called

NOAMOD (North Atlantic 
Model).	Climatological	

monthly mean values of 
salinity and temperature

are	used	at	the	boundary,	
and it is assumed there is 

no sea ice

1-way nested into the Glob-
al Ocean MFC and Baltic 
MFC reanalysis products

1-way nested into the Glob-
al Ocean MFC reanalysis 

product at 1/4° horizontal 
resolution

1-way nested into C-GLORS

N/A

1993-2019

1993-2019

1993-2019

1993-2019

1993-2019
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6.1.  
General introduction to sea ice models 

6.1.1. Objective, applications and beneficiaries

The main objective of an operational sea ice forecasting sys-
tem is to provide users with a reliable estimate of the state 
of the ice cover and its temporal evolution. To meet this pur-
pose,	the	system	needs	to	be	coupled	to,	or	use	data	from,	
ocean and atmosphere forecasting systems. Some form of 
data assimilation is also required to counteract errors due 
to the chaotic nature of the atmosphere-ocean-ice system. 
Users of sea ice forecasting systems are either stakeholders 
operating in the Arctic or downstream service providers who 
use the information as an input to their own services. With a 
changing	climate	and	a	warming	Arctic,	the	number	of	stake-
holders interested in operating in that region is growing.

The Arctic is getting warmer with temperatures rising at ap-
proximately twice the rate of the global average (Overland et 
al.,	2016)	but	also	more	attractive	for	business	as	its	natural	
resources are becoming available for exploitation and trans-
port	for	the	first	time	in	our	history.	These	include	about	13%	
of the world’s oil and gas resources as estimated by the Unit-
ed	States	Geological	Survey	(Gautier	et	al.,	2009),	gold	and	
other	metals,	and	5.5%	of	the	freshwater	resources	stored	on	
Greenland	(Kundzewicz	et	al.,	2007).	Changing	environmental	
conditions are modifying ecosystems in diverse ways. In the 
Barents	Sea,	the	cod	are	thriving	thanks	to	warming	condi-
tions	(Kjesbu	et	al.,	2014).	A	migration	behaviour	of	boreal	

generalist	fishes	to	cooler	waters	is	also	observed	in	the	Ber-
ing	Sea	(Mueter	and	Litzow,	2008).	These	changes	have	impli-
cations	for	fisheries	management	and	more	generally	for	the	
Arctic ecosystem. Cruise tourism in the Arctic is also devel-
oping fast since operators can offer comfortable icebreaker 
cruises all the way to the North Pole. 

The	NSR	along	the	Russian	coast	of	the	Arctic,	which	was	
heavily	used	by	the	Soviet	Union	until	the	1990’s,	could	again	
become an attractive alternative to reach East Asia from West-
ern Europe. The route is indeed shorter than the one crossing 
Suez Passage (17000 km instead of 22000 km for a Rotter-
dam-Shanghai	voyage)	and	would	save	fuel.	However,	in	case	
of	accidents,	cargo	and	fuel	would	pose	serious	threats	for	
the Arctic environment. Coastguards and navies of the Arctic 
nations	must	then	be	prepared	for	assisting	vessels,	perform-
ing	search	and	rescue	operations,	and	remediating	oil	spills	
in	ice-infested	waters,	with	frequently	poor	communication	
capabilities that may hinder access to new information.

The oil and gas exploration and production need sea ice fore-
casting	both	on	local	scales,	to	simulate	individual	ice	floes	
on	the	theatre	of	their	operations,	and	on	large	scales,	to	pre-
dict the time of the freeze up and break-up of the ice. It is 
expected that the exploration and production activities will be 
more active in relatively mild ice conditions than in severe ice 
conditions,	which	means	that	forecasts	will	have	higher	value	

Figure 6.1. 	 Pack	ice	showing	a	pressure	ridge	on	the	left;	Marginal	Ice	Zone	with	ice	floes	on	the	right.	(Pho-
tos:	E.	Storheim,	INTAROS/NERSC).	
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for	the	MIZ	than	for	the	ice	pack.	The	MIZ,	defined	as	the	
ice-covered	region	under	the	influence	of	surface	waves	from	
the	open	ocean,	is	particularly	in	need	of	forecasts	to	prevent	
risks	such	as	ice	floe’s	projections	under	the	action	of	waves.

There	are	fewer	stakeholder	interests	in	the	Southern	Ocean,	
due to the reduced commercial activities in that region. How-
ever,	ice-ocean	predictions	can	provide	information	for	tour-
ism	or	scientific	operations	in	the	region,	including	access	to	
Antarctic	research	stations	and	support	for	scientific	research	
vessels. The complex rescue of a joint tourist-research vessel 
stuck within the Antarctic sea ice in December 2013 (A. 
Luck-Baker,	BBC	News,	21	January	2014,	🔗1),	requiring	assis-
tance	from	two	icebreakers	and	a	helicopter,	highlighted	the	
need for reliable predictions even in such a remote region. 
On	longer	timescales,	changing	sea	ice	conditions	have	im-
plications	for	ice-dependent	wildlife	in	the	region,	such	as	
emperor	penguins	(e.g.,	Jenouvrier	et	al.,	2012),	which	raises	
associated wildlife management concerns. 

The shipping industry is primarily concerned with very de-
tailed	ice	concentration,	thickness	and	compression	(and	mar-
ginally	snow	depths,	because	deep	snow	can	also	impede	the 

 

1. https://www.bbc.com/news/science-environment-25833307

progression	of	an	icebreaker).	On	the	other	hand,	in	the	af-
termath	of	oil	spills	in	ice-infested	waters,	search	and	rescue	
operations and forecasting are both dependent on ice motion 
and their diffusive properties that increase the search radi-
us with time. The question of spatial and temporal resolution 
is especially critical for the latter case because of the strong 
scale-dependence	of	sea	ice	deformation	rates	(Rampal	et	al.,	
2008).	In	addition,	the	diffusion	is	higher	in	the	chaotic	MIZ	
than	in	the	ice	pack	(Figure	6.1).	The	oil	industry	would	ulti-
mately	need	a	detailed	forecast	of	the	position	of	each	ice	floe	
surrounding their operations for the day-to-day management 
of	their	activities,	which	can	be	only	delivered	by	discrete-el-
ement	models	(Herman	2015,	Rabatel	et	al.,	2015).	How	to	nest	
discrete-element	models	into	the	continuum	sea	ice	models,	
considered	in	this	chapter,	remains	an	open	question.

6.1.2. Fundamental theoretical background

The physical processes simulated by sea ice models are com-
monly	split	into	two:	vertical	processes,	related	to	thermody-
namic	growth	and	melt,	and	mechanical	and	dynamical	pro-
cesses	giving	rise	to	horizontal	movement	of	ice	(Figure	6.2).2

2. https://www.lanl.gov/discover/science-briefs/2021/
March/0322-cice.php

Figure 6.2.   A CICE Consortium graphic of sea-ice physics illustrates the complexity and breadth of variables 
at play (From 🔗2).
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The thermodynamic growth and melt of ice can be thought of 
as the result of the diffusion of heat between ocean and atmo-
sphere,	through	the	ice.	Additional	complications	arise	primar-
ily	due	to	the	presence	of	salt	or	brine	pockets	in	the	ice,	and	
the presence of snow. The brine pockets affect the heat conduc-
tivity	and	heat	capacity	of	the	ice,	while	both	heat	conductivity	
and	heat	capacity	of	the	snow,	as	well	as	its	density,	are	affected	
by	the	state	and	type	of	snow,	as	well	as	snow	metamorphosis.

The basics of thermodynamic modelling of sea ice have been 
well	established	since	the	early	70s	(Maykut	and	Untersteiner,	
1971),	with	the	notable	improvement	in	theoretical	understand-
ing brought by the application of mushy-layer theory to sea ice 
(Feltham	et	al.,	2006),	and	substantial	work	relating	to	the	dy-
namics of brine drainage and the multi-phase nature of sea ice 
(Vancoppenolle	et	al.,	2007;	Notz	and	Worster,	2009;	Griewank	
and	Notz,	2013).	In	terms	of	model	development	though,	prog-
ress has been made in improving numerical performance and 
in	technical	aspects,	such	as	conservation	of	heat,	energy,	and	
enthalpy	(e.g.,	Semtner,	1976;	Bitz	and	Libscomb,	1999;	Winton,	
2000;	Huwald	et	al.,	2005).	Recently,	the	more	advanced	multi-
phase physics have also found its way into large-scale sea-ice 
models	(Turner	et	al.,	2013;	Turner	and	Hunke,	2015).

The	fundamentals	of	ice	dynamics	modelling	are	less	firmly	
rooted in basic theoretical understanding. While most of the 
terms of the momentum equation are well understood and fol-
low the basic formulation of the Navier-Stokes equation on a 
rotating	sphere,	the	formulation	of	internal	stresses	is	less	cer-
tain. These describe the response of the ice to external forcing 
and	are,	as	such,	at	the	heart	of	sea	ice	dynamical	modelling.

Sea	ice	is	a	solid	material	and,	as	such,	can	only	move	once	
fractured or broken. In most sea ice models this is taken into 

account	by	assuming	a	 rate-independent	 (von	Mises)	plas-
ticity. This approach was originally proposed by Coon et al. 
(1974)	 but	 reshaped	 into	 a	more	 computationally	 tractable	
form	in	the	viscous-plastic	model	proposed	by	Hibler	(1979),	
in which the ice is assumed to deform in a linear-viscous 
manner	until	it	reaches	a	plastic	threshold,	representing	the	
fracturing	or	breaking	of	the	ice.	The	fracturing	process	is,	as	
such,	simulated	explicitly	at	the	grid	scale.

However,	the	process	of	ice	fracturing	has	been	shown	to	be	the	
result of the propagation of fracturing events from small spatial 
scales	to	large	ones	(Weiss	and	Marsan,	2004).	This	results	 in	
fractal	characteristics	of	the	deformation	rates	(e.g.,	Marsan	et	
al.,	2004;	Rampal	et	al.,	2008;	Stern	and	Lindsay,	2009¸	Schulson	
and	Hibler,	2017).	It	means	that	a	sea	ice	model	hoping	to	cor-
rectly capture the deformation of the ice must account for this 
propagation of fracturing events from small to large scales. As 
the propagation starts at very small spatial and temporal scales 
(Oikkonen	et	al.,	2017),	a	geophysical	scale	model	must	account	
for this through a sub-grid scale parameterisation.

The role and importance of fracture dynamics is still a hotly 
debated subject within the sea ice modelling community. The 
fractal nature of sea ice deformation is generally accepted and 
the scaling of deformation rates is recognised as a potential tool 
and metric for model evaluation and improvement (Rampal et 
al.,	2016;	Spreen	et	al.,	2017;	Hutter	et	al.,	2018;	Rampal	et	al.,	2019;	
Bouchat	et	al.,	2021).	At	the	same	time,	it	is	still	unresolved	the	
question of whether to explicitly simulate the fracturing process 
at	a	very	high	resolution	(Hutter	et	al.,	2019)	or	to	use	a	sub-grid	
scale parameterisation of the fracturing process at a more mod-
est	resolution	(Dansereau	et	al.,	2016;	Rampal	et	al.,	2016).

6.2.  
Sea Ice forecast and multi-year systems
6.2.1. Architecture singularities

This section and the next one focus on the “forward integra-
tion”	spot	in	the	centre	of	Figure	4.1,	designing	the	architec-
ture of an OOFS.

Sea ice drift forecasts are affected by multiple sources of 
uncertainties. The surface winds are one of the most im-
portant external forces driving the motion of the sea ice 
in	the	central	Arctic	(Thorndike	and	Colony,	1982).	More-

over,	 the	uncertainties	 in	 the	atmospheric	 reanalysis	 in	
the	Arctic	are	higher	than	those	at	the	mid-latitudes,	and	
observations are insufficient to estimate the statistical 
characteristics	(scale,	amplitudes)	of	the	errors. Rabatel 
et	al.	(2018)	investigated	the	sensitivity	of	sea	ice	drift	us-
ing	neXtSIM-EB	for	the	uncertainties	of	the	surface	winds.
They	concluded	that,	in	regions	of	highly	compact	ice	cov-
er,	the	accuracy	of	surface	wind	forcing	and	sea	ice	rheol-
ogy are both important for the probabilistic forecast skill 
of sea ice trajectories.
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The ocean below the ice contains large quantities of heat 
and	momentum,	enough	to	melt	the	sea	ice	and	to	cause	ice	
drift	and	deformations.	Uncertainties	in	ocean	temperature,	
vertical	mixing,	and	currents	are	then	very	meaningful	for	the	
sea	ice.	The	surface	ocean	salinity	is	important,	as	the	melt-
ing	point	temperature	depends	on	it.	However,	measuring	
ocean properties and particularly currents below the sea ice 
is challenging and uncertainties are rather high. 

Uncertain	initial	conditions,	particularly	the	sea	ice	thick-
ness,	persist	a	long	time	(Chevallier	and	Salas-Mélia,	2012).	
Blockley	and	Peterson	 (2018)	showed	that	 the	sea	 ice	con-
ditions in spring persist typically a few months into the 
summer and are an important source of large-scale predict-
ability. Errors in the position of the ice edge at the beginning 
of a forecast are usually persistent throughout the forecast 
run and ought to be post-processed for practical use. 

Finally,	sea	ice	models	are	dependent	on	their	numerous	
model	parameters,	both	in	the	sea	ice	dynamics	and	ther-
modynamics	(Urrego-Blanco	et	al.	2016).

6.2.2. Input data: available sources and data 
handling

Initialized forecasts are critically dependent on the observa-
tions used for their initialization. To be useful for operational 
systems,	observations	are	needed	in	near	real-time	for	short-
term forecasts and with limited time lag for seasonal and lon-
ger forecasts. There are unique challenges involved in polar 
observations	 because	 of	 its	 remoteness,	 harsh	 conditions,	
and	long	polar	night.	However,	forecasting	systems	are	making	
use	of	satellite	observations	for	initialization,	most	routinely	
for	sea	ice	concentration.	Additionally,	new	products,	such	as	
sea	 ice	thickness	and	drift,	are	becoming	available	and	may	
ultimately improve the predictive capabilities.

Sea	ice	reconnaissance	flights	were	mostly	occasional	until	
after	the	second	world	war,	with	the	exception	of	the	USSR	
which	started	systematic	flights	with	Polar	Aviation	as	ear-
ly as 1929 to monitor the Northern Sea Route. The USA and 
Japan	gradually	increased	the	frequency	of	their	flights	at	
the turn of the 1950’s and adopted the WMO sea ice charting 
standard	proposed	in	1952	(WMO,	1970).	These	flights	are	still	
used	nowadays,	mostly	in	Canada,	but	have	elsewhere	been	
superseded by satellite data. 

Passive-μwaves Scatterometer SAR Altimeter Spectrometer InfraredRadi-
ometer

SMOS Metop-B/C ASCAT Sentinel-1A/B CRYOSAT-2 Sentinel-3  A/B Sentinel-3  A/B

Sentinel-3  A/B Sentinel-2  A/B Metop AVHRR

AMSR-2 CFOSAT Radarsat2 Altika Aqua MODIS Aqua MODIS

SMAP Oceansat2 Radarsat  
constellation

ICESat/ICESat 2

CFOSAT*

CIMR Sentinel-1 C/D SWOT Sentinel-3 C/D Sentinel-3 C/D

Rose-L Cristal Sentinel-2 C/D

HARMONY**

Table 6.1.  Overview of operating and approved satellites and sensors for the sea ice observations grouped 
into:	ESA	and	Eumetsat	missions	(yellow),	3rd	Party	Missions	(green)	and	new	approved	missions	from	ESA	and	
NASA/CNES	(blue).	Spectrometers	and	infrared	radiometers	are	only	sensing	in	cloud	free	conditions.		Note	
(	*)		that	CFOSAT	flies	a	combined	altimeter	and	real	aperture	radar	at	five	distinct	incidence	angles	up	to	10	
degrees.	Harmony	(**)	comprises	two	bi-static	satellites	that	will	fly	in	convoy	with	Sentinel-1.

Metop second 
generation

BIOMASS

CFOSAT*
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25	km,	which	is	consistent	with	current	operational	models	of	
the whole Arctic but still coarse with respect to the needs of 
any operational users navigating in ice-infested waters. SAR 
and	satellite	data	in	the	visible	channels	(VIIRS,	AVHRR,	MODIS,	
SPOT)	provide	much	more	detail	at	spatial	resolutions	finer	
than	1	km,	which	is	what	the		ship	captain	would	need,	for	
example	to	detect	and	sail	along	a	lead.	However,	both	types	
of	data	suffer	from	poor	coverage,	SAR	images	because	the	ac-
quisition	frequency	may	be	limited,	and	visible	data	because	
they are impaired by the frequent cloud coverage and by Arctic 
winter darkness.

For	short-term	forecasts,	it	is	important	to	assess	how	the	sea	
ice is moving. Various sea ice drift products are obtained from 
different	satellites	and	can	be	split	in	two	types:	1)	the	coarse	
resolution,	full	spatial	coverage	products	using	passive	micro-
wave radiometers and scatterometers (most accurate retriev-
als in winter because of the aforementioned limitations of 
passive microwave data during summer; see review by Sumata 
et	al.,	2014);	and	2)	the	high	resolution	but	reduced	coverage	
SAR-based	products	(Kwok	2006).	The	SAR	coverage	has	re-
cently	significantly	improved	by	the	launch	of	the	ESA	Senti-
nel-1 A/B missions offering full daily coverage in high latitudes 
(Korosov	and	Rampal.	2017).	In	comparison,	drifting	buoys	on	
sea	ice	still	provide	the	longest	(more	than	40	years)	data	re-
cord of the IABP but with limited spatial coverage.

Regular and routine sea ice observations are today performed 
by a variety of satellite-based measurements provided by sev-
eral space agencies (as grouped in the matrix in Table 6.1 and 
organised	by	satellite	sensor	classes).	This	has	been	accom-
plished thanks to a large number of major technical and sci-
entific	milestones	and	achievements	over	more	than	40	years,	
as further addressed below. Note that spectrometers and ra-
diometers are only sensing in cloud free conditions.

Started	in	1978,	the	longest	satellite	record	to	cover	the	whole	
Arctic comes from polar orbiting passive microwave sensors 
onboard	the	satellites	SMMR,	SSM/I,	AMSR-E	and	AMSR2	(Cav-
alieri	and	Parkinson,	2012)	which	provide	the	sea	ice	areal	con-
centration. Their main advantage is that they can see through 
clouds	but	still	a	few	issues	remain,	especially	with	the	sum-
mer	ice,	because	the	sensor	does	not	properly	discriminate	
between open water and signatures from wet snow and melt 
ponds. This and other technical issues are accommodated 
differently in a multitude of algorithms that calculate sea ice 
concentrations from the raw passive microwave retrievals (Iva-
nova	et	al.,	2014,	2015).	This	is	an	important	matter	for	data	
assimilation as we will see in Section 6.2.5. The resolution of 
passive	microwaves	depends	on	the	frequency	band	used,	
with the most precise low-frequency channels having the 
largest	footprint	(as	large	as	60	km).	However,	gridded	sea	ice	
concentration data can be found at resolutions between 6 and 

Satellite 
Sensors

Extent and 
concentration

Sea Ice 
type

Sea Ice 
thickness

Snow 
depth

Sea Ice 
drift

Open 
leads

Melt 
ponds

Waves 
in ice

Passive 
microwaves

Scatterometer

SAR

Altimeter  
(radar, laser)

Spectrometer *

Infrared 
Radiometer *

X
First and 

multi-year 
ice

Less than 
50 cm thick 
from L-band

X

(X) (X)

(X) (X)

X

X X X X

Thicker than    
~ 50  cm

X X

Ridges,	
rough and  
flat	ice

(X) (X) (X)X X

Table 6.2. 	 Overview	of	sea	ice	variables	observed	per	group	of	satellite	sensors	listed	in	Table	6.1.	Note	(*)	
that spectrometers and radiometers are only sensing in cloud free conditions. 

(X) X (X)
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Sea ice thickness observations from satellites have recently 
become routinely available. These use different principles 
to	obtain	either:	sea	ice	freeboard	of	thick	ice,	for	example	
from	the	satellite	altimetry	missions	ICESat,	ICESat2	(Kwok	
et	al.,	2007),	CryoSat-2	(Laxon	et	al.,	2013)	and	Sentinel-3;	and	
the	thickness	of	thin	ice,	derived	from	the	SMOS	(Tian-Kunze	
et	al.,	2014).	These	observations	are	quite	complex	and	come	
with	relatively	high	uncertainties	(Zygmuntowska	et	al,	2014,	
Tian-Kunze	et	al.,	2014).	As	discussed	above,	sea	ice	thickness	
is an important source of sea ice predictability on seasonal 
and	longer	timescales.	Other	aspects	of	the	sea	ice,	such	as	
snow	cover,	snow	thickness	and	melt	pond	characteristics,	
may also be important for sea ice forecasts on seasonal and 
longer timescales. Remote sensing is used to characterise 
these	aspects	of	the	sea	ice.	For	example,	snow	depth	infor-
mation is being provided through the NASA Operation Ice-
Bridge	airborne	campaign	(Kurtz	et	al.,	2013),	and	melt	pond	
fractions have been derived from satellite data in the visible 
channels	(Rösel	et	al.,	2012).	Combined	use	of	IceSAT-2,	Cryo-
Sat-2 and Altika has also demonstrated promising capabilities 
to recover reliable snow depth estimates during winter (Guer-
reiro	et	al.,	2016).	Ice	mass	buoys	are	also	providing	in-situ	
measurements of snow depth and other sea ice characteris-
tics	(Richter-Menge	et	al.,	2006;	Perovich	et	al.,	2008).	However,	
only limited work has been done to quantify the possible in-
fluence	of	these	types	of	observations	for	forecasting	systems.	

As	already	indicated	in	Table	6.1,	the	continuity	of	sea	ice	ob-
servations from satellites are indeed assured by the approved 
future	satellite	missions	such	as	CIMR,	Cristal,	and	ROSE-L	Co-
pernicus Sentinel Expansion missions under preparation by 
ESA.	However,	more	dedicated	field	campaigns	are	still	needed	
to	assess	the	uncertainties	of	the	satellite-based	retrievals,	as	
well as to harvest the multi-sensor synergies as can be noted 

from	Table	6.2.	In	turn,	this	would	improve	the	quality	and	use	
of	satellite	data,	and	expectedly	advance	the	forecast	skill	of	
sea ice on seasonal to interannual timescales.

6.2.3. Modelling component

6.2.3.1. Basic equations and modelling choices

Most modern large-scale sea ice models are based on very 
similar foundations. The ice is generally modelled as a contin-
uum	using	a	Eulerian	perspective,	with	the	sea	ice	moving	in	a	
horizontal	plane,	subject	to	both	external	and	internal	forces.	
The dynamic evolution of the sea ice cover is described using 
two continuity equations and the momentum equation. The 
thermodynamic evolution is modelled within each column of 
the grid and is modelled as a heat diffusion process within 
the slab of sea ice. There are substantially varying degrees of 
complexity	in	the	treatment	of	the	thermodynamic	processes,	
ranging from treating all the ice as being of a single thickness 
(Hibler,	1979)	and	treating	the	heat	diffusion	without	resolv-
ing	the	temperature	profile	(Semtner,	1976),	to	using	multiple	
thickness	categories	(Hibler,	1979,	and	numerous	later	varia-
tions)	and	treating	the	heat	diffusion	using	mushy-layer	dy-
namics	(Feltham,	et	al.,	2006).

The main equations for a simple dynamic model of sea ice 
with	two	categories	(ice	and	open	water)	are	the	two	conti-
nuity equations and the momentum equation. The continuity 
equation for mass is:

(6.1)

where m	is	the	sea	ice	mass	per	unit	area,	Sm is a thermo-
dynamic source/sink term and v is velocity. In the case of a 
single sea ice category the continuity equation for the sea ice 
distribution takes the basic form:

(6.2)

with A is the sea ice concentration and SA is a source/sink 
term.	In	addition,	the	condition	A≤1 is imposed. This can 
be interpreted as a ridging condition since m can increase 
even if A	does	not	(Hibler,	1979).	Together	these	equations	
describe	the	advection	of	the	sea	ice	in	a	given	velocity	field.	

The momentum equation is generally written as (Connolley 
et	al.,	2004):

(6.3)

Here k̂	is	a	unit	vector	normal	to	the	surface,	τa and τw are the 
air	and	water	stresses,	f	 is	the	Coriolis	parameter,	g is the grav-
itational	acceleration,	∇H is the gradient of the sea surface 
height and σ is the sea ice stress tensor. The acceleration 
term	on	the	left-hand	side	may	be	set	to	zero,	depending	on	

Figure 6.3.  Illustration of a vertical temperature 
profile	in	a	column	consisting	of	sea	ice	of	thick-
ness hi and topped by snow of depth hs. The heat 
conduction equation is discretized in the vertical 
by	Δz-thick	levels.	(adapted	from	Lisæter	2009).
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Figure 6.4. 	 Left:	a	schematic	example	of	an	ice	thickness	distribution,	the	thickness	classes	are	in	x-axis	and	
the	y-axis	relates	to	the	area	concentrations.	The	continuous	distribution	is	shown	with	a	solid	line,	while	the	
discretized	version	is	shown	in	filled	bars.	Right:	illustration	of	the	subgrid-scale	ice	thickness	distribution	in	a	
sea	ice	model	(only	two	classes	of	3	and	4	m	thickness	for	the	sake	of	illustration)	(adapted	from	Lisæter,	2009).	

the model implementation. The last term on the right hand 
side ∇·σ,	describes	forces	due	to	internal	stress	while	the	
other terms are all external factors. Wind and water stresses 
are	generally	treated	as	quadratic	drag	(e.g.,	McPhee,	1975).	
In	the	absence	of	internal	stress,	the	sea	ice	is	in	“free	drift”	
and	the	model	simplifies	drastically.	Free	drift	forecasts	have	
therefore	been	used	for	a	long	time	(Grumbine	1998)	are	still	
used operationally. 

The thermodynamic equation is the heat diffusion equation:

(6.4)

where ρc is the heat capacity of sea ice or snow and k is 
the heat conductivity. This equation can be solved in var-
ious	ways	(see	Figure	6.3)	(e.g.,	Maykut	and	Untersteiner,	
1971;	Semtner,	1976;	Bitz	and	Libscomb,	1999;	Winton,	2000;	
Huwald	et	al.,	2005),	discretized	in	the	vertical	(Figure	6.3).	
These take into account different physical properties and nu-
merical solutions in solving the equation.

In	addition	to	these	grid-scale	quantities,	many	models	con-
sider various sub-grid scale information and parameterisa-
tions. The most important of those is arguably the ice thick-
ness	distribution	(ITD).	This	assumes	that	each	grid	cell	of	

the	model	contains	not	is	of	uniform	thickness,	but	of	varying	
thicknesses described by an ice thickness distribution g (see 
Figure	6.3).	This	is	in	principle	a	continuous	distribution	of	
thicknesses,	which	is	modified	through	dynamic	and	thermo-
dynamic processes. The governing equation of evolution of 
the	ice	thickness	distribution	is	(e.g.,	Thorndike	et	al.,	1975):

(6.5)

where f	is	the	thermodynamic	growth	or	melt	rate,	h is the 
ice	thickness,	and	𝚿 is a mechanical redistribution function.

In	practice,	sea	ice	models	must	use	a	discretized	version	
of	the	ice	thickness	distribution,	resulting	in	models	with	
several	distinct	thickness	categories	(Figure	6.4	right,	for	a	
top	view	of	a	grid	cell).	The	thickness	distribution	then	be-
comes	(Bitz	et	al.,	2001):

(6.6)

where M	is	the	number	of	thickness	categories,	Mi is the 
thickness of category i,	and	δ(h)	is	the	Dirac	delta	func-
tion.	Various	implementations	exist,	but	the	one	from	Bitz	
et	al.,	(2001)	with	five	thickness	categories	remains	a	pop-
ular choice.

CHAPTER 6. SEA ICE MODELLING 132



In	addition	to	these	two	basic	components,	a	large	number	
of	sub-grid	scale	processes	can	and	should	be	represented,	
depending on the use cases for each model. These include 
simulation	of	melt	points	(Flocco	et	al.,	2010;	Hunke	et	al.,	
2013),	changes	in	atmospheric	and	oceanic	drag	due	to	sea	
ice	roughness	(Tsamados	et	al.,	2014),	and	salt	rejection	
from	freezing	sea	ice	(Vancoppenolle	et	al.	2009).

6.2.3.2.  Sea ice rheology

The relationship between the internal stress and resulting 
deformation	is	referred	to	as	rheology.	Basically,	all	con-
tinuum,	geophysical-scale	sea	ice	models	currently	employ	
the	VP	rheology	proposed	by	Hibler	(1979)	or	some	direct	
descendant of that work. The VP rheology treats the sea ice 
as a continuum and assumes it deforms in a viscous man-
ner with a high viscosity until the internal stress reaches a 
plastic	threshold,	determined	by	a	yield	curve	which	usually	
has	an	elliptic	shape	(see	Figure	6.5).	Several	important	im-
provements have been made to the original VP rheology (e.g. 
Hunke	and	Dukowicz,	1997;	Lemieux	et	al.,	2010;	Bouillon	et	
al.,	2013;	Kimmritz	et	al.,	2017),	but	the	physical	principles	re-
main the same.

The VP rheology has enjoyed tremendous success and is used 
for time scales from days to centuries and spatial scales from 
tens	of	kilometres	to	basin	scales.	However,	the	VP	rheology	
is not without faults when it comes to both the underlying 
assumptions	(see	in	particular	Coon	et	al.,	2007)	and	the	re-
sults	it	produces.	In	model	inter-comparison	studies,	there	
is generally a very large spread - well beyond observed vari-
ability	-	in	key	prognostic	variables	such	as	sea	ice	thickness,	
concentration,	and	drift	(Chevallier	et	al.,	2017;	Tandon	et	al.,	
2018).	The	sharp	gradients	in	velocities,	which	are	known	as	
LKFs	that	are	related	to	ridge	and	lead	formation,	are	also	
poorly reproduced in any VP-based model running at a coars-
er resolution than about 2 km - a resolution that is an order 
of magnitude higher than the observational data (Spreen et 
al.,	2017;	Hutter	et	al.,	2019).

Therefore,	several	authors,	such	as	Tremblay	and	Mysak	
(1997),	Wilchinsky	and	Feltham	(2004),	Schreyer	et	al.	(2006),	
Girard-Ardhuin	and	Ezraty	(2012),	Dansereau	et	al.	(2016),	and	
Ólason	et	al.	(2022),	have	suggested	alternative	approaches	
to the VP rheology. The EAP rheology of Wilchinsky and 
Feltham	(2004)	was	implemented	in	the	CICE	model	(Tsama-
dos	et	al.,	2013)	and	has	been	used	in	several	studies,	al-
though	it	was	not	widely	adopted	yet	(Bouchat	et	al.,	2021;	
Hutter	et	al.	2021).	The	brittle	rheologies	of	Girard	et	al.	(2011),	
Dansereau	et	al.	(2016),	and	Ólason	et	al.	(2022)	have	all	been	
implemented	in	the	neXtSIM	model	(Bouillon	and	Rampal	
2015;	Rampal	et	al.,	2019;	Ólason	et	al.,	2022)	and	used	for	
forecasting	and	scientific	research	by	the	team	involved	in	
the	model.	The	current	neXtSIM	version	uses	the	BBM	rheol-
ogy	of	Ólason	et	al.	(2022).

6.2.3.3. Community sea-ice models

Practically all sea ice models used in modern forecasting 
platforms are based on the principles described above. They 
use a Eulerian reference frame and use some version of the 
VP	or	the	Elastic-Viscous-Plastic	(EVP)	rheologies.	The	ther-
modynamic growth and melt of ice are described through the 
diffusion	of	heat	between	ocean	and	atmosphere,	through	
the	ice.	As	such,	they	all	follow	the	same	general	design	phi-
losophy. The main differences exist in the form of different 
choices of parameterisation and differences in data assimi-
lation approaches.

Today,	the	CICE	model	(e.g.	Hunke	et	al.,	2021)	is	likely	the	
most widely used sea ice model for operational forecasts. 
This model was developed at the Los Alamos National Lab-
oratory and was originally designed to be part of the CCSM. 
Thanks	to	its	clean	and	modular	design,	the	model	has	been	
used	in	other	multiple	modelling	systems,	as	a	stand-alone	
model,	part	of	sea	ice-ocean	models,	and	part	of	climate	and	
earth-system models. The LIM and SI3 models (Rousset et 
al.,	2015),	which	are	part	of	the	NEMO	modelling	system,	are	
also	very	widely	used,	but	only	within	the	NEMO	modelling	
system. Other sea-ice models include the SIS (Adcroft et 
al.,	2019),	which	is	part	of	the	GFDL	ocean	modelling	system	
MOM,	the	MITgcm	sea-ice	model	(Losch	et	al.,	2010)	and	the	
FESOM	sea-ice	model	(FESIM,	Danilov	et	al.,	2015).

In	contrast,	only	a	few	stand-alone	sea	ice	models	have	
used	moving	Lagrangian	coordinates	(Hopkins	2004),	among	
which	the	neXtSIM	model	(Rampal	et	al.,	2016;	Rampal	et	al.,	
2019;	Ólason	et	al.,	2022)	and	the	DEMSI	model	(Turner	et	al.,	
2022).	neXtSIM-F	is	unique	among	forecasting	models	as	it	
uses both a moving Lagrangian mesh and a newly developed 
brittle	rheology,	the	Brittle	Bingham-Maxwell	(Williams	et	al.,	
2021;	Ólason	et	al.,	2022).	This	setup	gives	results	that	are	
clearly	different	from	the	classical	systems,	and	arguably	
more	realistic	(Rampal	et	al.,	2016;	Rampal	et	al.,	2019;	Ólason	
et	al.,	2020;	Ólason	et	al.,	2022).	The	key	improvement	is	a	

Figure 6.5.  Two yield curves commonly asso-
ciated with sea ice rheology: in red the elliptic 
yield	curve	used	in	the	(E)VP	models,	and	in	blue	a	
Mohr-Coulomb	yield	curve,	for	instance	used	in	the	
brittle	rheology	of	neXtSIM.
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much more realistic representation of the deformation sta-
tistics	of	the	ice	cover,	which	gives	more	realistic	leads	and	
ridges	in	the	model.	Sea	ice	drift	simulated	by	neXtSIM	is	also	
very	realistic,	and	the	pan-Arctic	ice-thickness	distribution	is	
also	quite	good	(Williams	et	al.,	2021).

6.2.3.4. Coupling of sea ice to atmosphere and ocean 

Sea ice models are integral parts of Earth system models. 
The reason for this is that at high latitudes sea ice insulates 
the relatively warm ocean from the cold atmosphere. Over an 
unbroken	sea	ice	cover,	the	atmosphere	can	therefore	cool	
much more than it could if it was not insulated by the pres-
ence of sea ice. This has an impact on all ocean-atmosphere 
interactions	in	the	polar	regions,	and	therefore	a	global	cli-
mate or Earth system model without a sea ice model can 
simply not function.

Sea	ice	interacts	with	the	atmosphere	through	heat,	mois-
ture,	and	momentum	exchanges.	In	summer	incoming	short-
wave radiation melts the ice surface but would warm up 
the	ocean	surface	in	the	absence	of	sea	ice.	In	winter,	heat	
conduction from the ocean and through the ice only results 
in a very modest amount of heat flux to the atmosphere. 
However,	the	dominant	heat	flux	source	is	radiant	cooling	
through long wave radiation from the surface. This happens 
because surface cooling through long wave radiation is much 
more	efficient	than	the	heat	conduction	through	ice	from	the	
ocean,	resulting	in	a	surface	that	is	colder	than	the	lowest	
layers of the atmosphere. The result is a predominant tem-
perature inversion and a stable atmospheric boundary layer. 
This	reduces	even	further	the	latent	and	sensible	heat	fluxes	
from	the	surface.	However,	openings	in	the	ice	(leads	and	po-
lynyas)	expose	the	relatively	warm	ocean	surface	to	the	at-
mospheric	boundary	layer,	which	causes	mixing	and	breaks	
down the stable boundary layer.

Momentum transfer between ice and atmosphere happens 
through wind stress at the surface of the ice. This is the main 
driver	of	ice	movement	and	exerts	a	drag	on	the	atmosphere,	
slowing down the wind. The amount of momentum transferred 
between ice and atmosphere is determined primarily by the 
stability of the atmospheric boundary layer (Gryanik and 
Lüpkes,	2017)	and	the	roughness	of	the	ice.	While	parameter-
isations and studies on the ice surface roughness have been 
proposed	(Lüpkes	et	al.,	2012,	Castellani	et	al.,	2014),	consis-
tent and basin-scale observations of the atmospheric drag 
coefficient	over	sea	ice	are	currently	unavailable	(Petty	et	al.,	
2017).	In	a	modelling	context,	our	ability	to	predict	ice	surface	
roughness	is	severely	limited,	as	most	ice-atmosphere	cou-
pled models do not take surface roughness into account when 
calculating atmosphere-ice momentum exchanges.

Sea	ice	interacts	with	the	ocean	through	heat,	fresh-water,	
and	salt	exchanges,	as	well	as	momentum	exchanges.	During	

summer,	the	mixed	layer	may	warm	up	due	to	shortwave	
heating through openings in the ice. This makes the ice melt-
ing	from	below,	causing	release	of	both	freshwater	and	salt	
into	the	ocean.	In	winter,	the	atmosphere	extracts	heat	from	
the	ocean	through	the	ice,	causing	new	ice	to	form	at	the	
bottom of the existing ice pack. This causes a net heat and 
freshwater	flux	out	of	the	ocean.	However,	most	of	the	salt	
present	in	the	ocean	cannot	enter	the	ice,	since	the	ice	is	
much fresher than the ocean (ca. 15 vs 30 PSS  for newly 
formed	ice	in	the	Arctic).	This	results	in	a	layer	of	very	salty	
water	forming	below	the	ice,	which	then	sinks	into	the	mixed	
layer. The resulting salt plumes generally reach the bottom of 
the halocline but may also be mixed into the mixed layer in 
the presence of turbulence.

Momentum transfer between ice and ocean happens through 
interface stress between ocean and ice. The momentum cou-
pling of ice and ocean is much stronger than that of ice and 
atmosphere,	and	the	ice	can	be	considered	as	the	first	lay-
er in the ocean’s Ekman spiral. Ice-ocean stress drives most 
geostrophic	flows	in	ice	covered	areas,	as	well	as	some	larger	
scale circulation patterns.

It is also worth mentioning the interaction between sea ice 
and ocean waves. Waves entering the ice pack may mechani-
cally	fracture	it	into	smaller	sea	ice	floes.	This	can	widen	the	
MIZ,	which	may	also	be	viewed	as	the	area	where	the	ice	is	
fractured	by	waves.	Fracturing	the	ice	into	smaller	floes	in-
creases	the	mobility	of	the	ice	cover,	the	momentum	transfer	
between	atmosphere,	ocean,	and	ice,	and	this	may	cause	en-
hanced melting of the ice through lateral melt. The ice in turn 
dampens the waves causing an attenuation of the wave am-
plitude,	so	that	waves	will	only	penetrate	a	limited	distance	
into	the	ice	pack,	depending	on	the	size	of	the	waves	and	the	
compactness of the pack. Wave-ice interactions are of major 
importance	in	the	Southern	Ocean,	but	less	so	in	the	Arctic,	
where much less of the ice edge is exposed to open ocean.

Virtually all climate or earth-system models today include 
sea-ice	models	of	the	classical	description	above,	i.e.,	a	Eule-
rian	reference	frame,	VP	or	EVP	rheology,	and	thermodynam-
ics and column physics of varying complexity. They gener-
ally include very simplistic formulations for the momentum 
transfer	between	atmosphere,	ocean,	and	ice,	and	no	ice-
wave interactions. This is true for all the CMIP6 models. In 
fact,	the	sea	ice	models	used	in	today's	forecasting	models	
were	all	designed	for	climate	modelling,	the	only	current	
exception	is	the	above	mentioned	neXtSIM	model.	It	is	not	
clear how this lineage of the models affects the quality of 
their short-term predictions. It could be argued that a good 
large-scale sea ice model should be able to represent scales 
from ca. 1 km up to the basin scales and from hours to centu-
ries.	This	is	not	the	current	case,	but	the	discussion	of	why	it	
is this way and how to address it is still in its infancy (Hunke 
et	al.,	2020;	Blockley	et	al.,	2020).
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6.2.3.5. Model setup

In	nearly	all	forecasting	platforms,	the	sea	ice	model	is	cou-
pled to an ocean model. There are platforms that use fully 
coupled atmosphere-ocean-sea ice models and only a few 
platforms using a stand-alone sea ice model. The reasons 
for this are partly historical: most sea ice models are written 
as parts of ocean models. Ocean forecasting and re-analysis 
platforms have tended to include a sea ice model from the 
start,	making	a	dedicated	sea	ice	forecasting	platform	redun-
dant.	In	addition,	the	coupling	between	sea	ice	and	ocean	is	
quite	strong,	so	running	a	separate	sea	ice	forecasting	plat-
form	can	bring	its	own	set	of	challenges.	On	the	other	hand,	
a stand-alone sea ice forecasting platform can be run at a 
higher	resolution	and	can	be	used	as	a	technology	preview,	
as	in	the	case	of	the	neXtSIM-F	platform.

6.2.4. Ensemble Modelling

Probabilistic	forecasts,	which	are	widely	used	in	weather	fore-
casting	(Molteni	et	al.,	1996;	Leutbecher	and	Palmer,	2008),	
are still in their infancy in sea ice forecasting. Probabilistic 
predictions rely on an ensemble of model simulations (e.g. a 
Monte	Carlo	simulation)	used	to	describe	the	forecast	uncer-
tainty	stemming	from	errors	in	the	model	parameters,	initial	
and	boundary	conditions,	and	any	external	forcing.	The	re-
sulting range of model outputs is used to retrieve statistical 
information,	such	as	the	ensemble	mean	and	its	spread	(i.e.	
the	standard	deviation),	which	are	thus	used	instead	of	the	
deterministic forecast to estimate the associated uncertainty 
(see	Figure	6.6).	The	multiple	simultaneous	sources	of	errors	
usually make the forecast accuracy of the ensemble mean ex-

ceed	that	of	the	single	deterministic	prediction	(Leith,	1974),	
although the spread often underestimates the actual fore-
cast error when the sources of error are not all adequately 
accounted	for	(Buizza	et	al.,	2005).	Monte	Carlo	techniques	are	
already	common	practice	in	different	areas	(e.g.	Dobney	et	al.,	
2000;	Hackett	et	al.,	2006;	Breivik	and	Allen,	2008;	Melsom	et	
al.,	2012;	Motra	et	al.,	2016;	Duraisamy	and	Iaccarino,	2017)	and	
a common tool for sensitivity analysis.

6.2.5. Data Assimilation systems 

As	introduced	in	the	previous	section,	a	sea	ice	forecast	needs	
to	regularly	assimilate	operational	observations,	which,	at	
present,	are	mostly	satellite	data.	The	most	tempting	way	for-
ward is to insert directly the satellite observed concentrations 
and	thicknesses	into	the	model.	However,	this	is	not	as	easy	as	
it sounds in a complex sea ice code where a large number of 
model	variables	are	dependent	on	each	other.	Hence,	various	
data	assimilation	methods	are	used	for	sea	ice	models,	similar	
to	those	used	for	ocean	physical,	biogeochemical	models	or	
weather	models.	The	most	common	method	is	nudging,	which	
is less disruptive than direct insertion: the data are introduced 
gradually	over	a	given	time	scale	(Lindsay	and	Zhang,	2006).	
The nudged model is then assumed to adjust itself progres-
sively using its own equations. But how much can we rely on 
such adjustments?

When the ocean mixed layer is too warm to sustain sea ice 
but	observations	show	the	presence	of	sea	ice,	a	data	assim-
ilation system updating only sea ice would add sea ice on top 
of	the	warm	waters,	but	the	huge	heat	capacity	of	the	ocean	
would then melt the added sea ice almost immediately. The 

Figure 6.6.  Left: example of ice trajectories from an ensemble of 10 members of 7-days sea ice drift of syn-
thetic	floats	in	an	area	of	the	Barents	Sea	from	the	TOPAZ	system	using	randomly	perturbed	winds.	The	mean	sea	
ice thickness is indicated above. Right: illustration of the ensemble spread in end point positions increasing as a 
function	of	the	forecast	length.	The	uncertainty	growth	depends	strongly	on	the	region	(from	Bertino	et	al.,	2015).	
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ocean mixed layer temperature and salinity must be adjust-
ed accordingly. This suggests that when used in a coupled 
ice-ocean	system,	assimilation	of	sea	ice	observations	ought	
to be coupled in the sense that it should update both the sea 
ice and the ocean properties consistently. In data assimila-
tion	jargon,	this	means	that	the	sea	ice	observation	should	
be projected down to the ocean column using a multivariate 
forecast error covariance matrix.

6.2.5.1. Ensemble-based methods

Dynamical model ensembles are a practical way to estimate 
the covariances mentioned above. In data assimilation ter-
minology,	the	state	vector	must	include	all	prognostic	vari-
ables	of	the	coupled	model	(ocean	and	sea	ice	variables)	
and the ensemble of model runs can be used to calculate 
empirically the cross-covariances between sea ice and ocean 
variables.	Similarly,	observations	of	the	ocean	are	used	to	
update	sea	ice	variables,	although	this	situation	is	less	com-
mon.	Using	an	EnKF	(see	section	5.5.2),	Lisæter	et	al.	(2003)	
demonstrated that the coupled assimilation of sea ice prop-
erties can modify the ocean surface temperatures in rather 
systematic	ways	(adding	sea	ice	cools	down	the	water),	but	
not	ocean	salinities.	However,	according	to	sea	ice	halody-
namics,	the	freezing	of	sea	ice	injects	salty	brines	to	the	
ocean	mixed	layer	and	the	melting	releases	fresher	water,	
but these simple relationships explain only a part of the sea 
ice-salinity cross-covariances and a relationship may arise in 
other situations without the intervention of sea ice thermo-
dynamics: the wind may occasionally blow the sea ice on top 
of	more	saline	water.	Sakov	et	al.	(2012)	showed	how	the	sea	
ice-salinity cross-covariance can change sign on either side 
of the ice edge in the Barents Sea: the sea ice-salinity cor-
relation turns negative on the ocean side because the main 
process responsible for melting is the advection of warm and 
saline	Atlantic	water	near	the	surface,	thus	the	sea	ice-salin-
ity correlation is made through the intermediate of the sur-
face	temperature	variable.	The	last	finding	does	not	hold	in	
locations where the sea ice is isolated from the Atlantic wa-
ter,	but	such	isolation	may	not	remain	forever	if	the	open	
water	mixing	reaches	these	warm	waters	(Rippeth	et	al.,	
2015).	The	assimilation	of	sea	ice	concentrations	with	the	
EnKF	described	in	Lisæter	et	al.	(2003)	was	included	in	the	
near-real-time TOPAZ forecasts in 2003.

6.2.5.2. Variational methods

An alternative to ensemble methods is the use of an adjoint 
model	as	in	the	4D-variational	(4D-Var)	data	assimilation	
method. The adjoint model and the tangent linear model cal-
culate the sensitivity of observed variables to the control 
variables within the duration of the assimilation window. If 
tangent linear and adjoint models are available both for the 
ocean	and	the	sea	ice	models,	they	can	exchange	informa-
tion	about	the	interface	variables,	like	the	heat,	salt,	and	mo-

mentum	fluxes.	Since	these	correlations	are	usually	mono-
variate	at	the	beginning	of	the	assimilation	window,	the	
length of the assimilation window should be as long as pos-
sible. The most recent experiments report successful appli-
cations	of	the	4D4D-VarVAR	in	an	Arctic	regional	configuration	
for durations of one year or longer (Fenty and Heimbach 
2013;	Fenty	et	al.,	2015);	an	adjoint	model	for	the	EVP	sea	ice	
rheology	has	been	introduced	later	(Toyoda	et	al.	2019).	The	
advantage of the 4D-Var method is that it returns one opti-
mised	model	trajectory,	which	is	very	useful	for	oceano-
graphic	interpretation	(Kauker	et	al.,	2009)	and	quantitative	
network	design	(Kaminski	et	al.,	2015)	but,	to	our	knowledge,	
4D-Var is not used for operational sea ice-ocean forecasting.

A	computationally	simplified	variant	of	4D-Var	is	known	as	
3D-Var,	in	which	the	same	increment	is	used	to	compute	the	
model equivalent of the observation-minus-reference state 
differences at all times in the assimilation. Owing to the rel-
atively	low	cost	of	the	scheme	compared	with	the	full	4D-Var,	
3D-Var is commonly used by operational forecasting centres 
around	the	world	(Usui	et	al.,	2006;	Mogensen	et	al.,	2012;	
Hebert	et	al.,	2015;	Tonani	et	al.,	2015;	Waters	et	al.,	2015;	
Smith	et	al.,	2016,	see	Table	6.3	below).

6.2.5.3. Challenges with coupled data assimilation

Coupled multivariate covariances do not necessarily cure all 
the troubles of assimilating sea ice observations. Another 
source of problems is the lack of respect of the traditional 
Gauss-linear assumptions underlying classical data assimi-
lation	methods.	By	definition,	sea	ice	concentrations	have	
bounded	values	between	zero	and	one,	while	other	sea	ice	
tracer	variables	(thickness,	snow	depth)	have	positive	values	
only. Ocean temperatures are not allowed below the freezing 
point. While it should be easy for a monovariate assimilation 
method,	based	on	a	heuristic	covariance	function,	to	pre-
serve monotonicity and therefore the bounds of variables 
(Wackernagel,	2003),	an	ensemble-based	covariance	(or	a	
tangent	linear	model)	may	generate	values	out	of	bounds.	
Honouring	the	bounds	can	be	forced	by	different	means,	ei-
ther by nonlinear transformations of the variables (a method 
called	Gaussian	anamorphosis	in	geostatistics;	Bertino	et	al.,	
2003,	Barth	et	al.,	2015)	or	by	including	inequality	constraints	
in	the	cost	function	(Lauvernet	et	al.,	2009;	Simon	et	al.,	2012;	
Janjic	et	al.,	2014).	Altogether,	the	benefits	of	multivariate	
flow-dependent	covariances	still	outbeat	the	inconvenience	
of values out of bounds.

There are continuous improvements to data assimilation 
methods	in	chaotic	high-dimensional	systems,	such	as	cou-
pled sea ice-ocean models. But new models and new obser-
vations always call for further developments in data assimi-
lation.	In	particular,	sea	ice	models	expressed	in	Lagrangian	
grids with automatic remeshing are uncommon targets for 
data assimilation. Ensemble Kalman Filtering techniques rely 
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on cross-covariances between observed and unobserved 
variables,	which	implies	that	the	grid	cells	have	to	be	unique-
ly	identified	across	different	members	of	the	ensemble.	This	
also	 becomes	 difficult	 when	 adaptive	 remeshing	 is	 turned	
on,	unless	 the	Lagrangian	model	output	 is	 interpolated	on	
a	fixed	grid,	at	the	risk	of	smoothing	the	very	localised	kine-
matic	features	(long	cracks,	ridges	and	leads)	that	they	are	
meant	to	simulate	(Aydoǧdu	et	al.,	2019).	Lagrangian	models	
do not offer any easy differentiation/automatic adjoint ca-
pabilities,	thus	preventing	the	use	of	variational	techniques.	
It should also be noted that a coupling framework such as 
CESM	 is	 sufficiently	flexible	 to	allow	several	 instances	of	a	
model	component	to	be	run	(for	example,	the	atmosphere)	
for	each	instance	of	another	(for	example,	the	ocean),	thus	
allowing to use different data assimilation methods for the 
sea	ice,	ocean,	land,	and	atmosphere.	An	important	aspect	in	
view of coupled data assimilation and ensemble forecasting 
is that the uncertainties are consistent across these com-
partments; the error statistics at the base of the atmosphere 
are consistent with those at the surface of the sea ice and 
similarly between the bottom of the sea ice and the ocean 
surface. This is possible to enforce if all components of the 
coupled system use an ensemble to represent the errors.3

3. https://cmems.met.no/ARC-MFC/

6.2.6. Validation strategies

Since a measure of RMS errors of sea ice concentrations de-
pend on arbitrary choices made by the person doing the 
scoring (these errors diminish as more open ocean is includ-
ed	in	the	validation	area),	more	targeted	sea	ice	validation	
metrics express the skill as distance of the forecast from the 
observed	ice	edge	(Dukhovskoy	et	al.,	2015).	In	the	Arctic,	the	
skill of the 24-hour forecast of ice edge location is about 50 
km for the TOPAZ (including both seasonal biases and RMS 
errors,	updated	at	http://cmems.met.no/ARC-MFC/)	and	40	
km down to 30 km depending on the input data sources in 
the	ACNFS	(Hebert	et	al.	2015;	Posey	et	al.,	2015),	although	
both	methods	may	differ	and	be	sensitive	to	special	configu-
rations of the ice edge. The area of discrepancy is accepted 
as an objective metric with the IIEE introduced by Goessling 
et	al.	(2016).	The	dependence	of	such	metrics	on	spatial	
scales can be further included in the evaluation using the 
FSS	(Melsom	et	al.,	2019)	and	an	extension	of	the	IIEE	metric	
proposed	by	Goessling	and	Jung	(2018)	for	the	evaluation	of	
ensemble forecasts of the ice edge. Examples of IIEE and FSS 
are shown in Figure 6.7.

It should be noted that the metrics related to isolines (like 
the	ice	edge,	classically	defined	at	the	15%	ice	concentration	
isoline,	or	at	other	critical	values	such	as	50%	and	85%)	ap-

Figure 6.7. 	 Left:	example	of	areas	of	excess	ice	(A+)	and	missing	ice	(A-)	for	a	given	TOPAZ	forecast	in	the	Euro-
pean Arctic; the validation data is the Norwegian Ice Charts. Right: associated Fraction Skill Scores showing that 
the	forecast	beats	persistence	at	+5	and	+9	days	lead	time	irrespective	of	spatial	scales	for	that	specific	forecast	
(both from 🔗3	of	Copernicus	Marine	Service).	
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ply	also	to	other	isolines,	like	the	frontier	between	FYI	and	
MYI,	or	to	theMIZ/pack	boundary.	Contingency	tables	are	
also a valuable approach to the validation of sea ice concen-
trations	(Smith	et	al.,	2016),	as	well	as	the	threat	scores	or	the	
Heidke Skill Score.

The forecast skills for sea ice drift have received compara-
tively	less	attention	but	errors	in	sea	ice	drift	are	important,	
both for their contribution to the displacement of the sea ice 
edge and for their cumulative contribution to the sea ice 
thickness distribution. Long climate simulations hint for a 
seasonal	dependence	of	the	forecast	skills,	also	noted	in	
free	drift	simulations	(Grumbine	1998).	Biases	of	sea	ice	drift	
have	been	revealed	in	IPCC	simulations	(Tandon	et	al.,	2018)	
related	to	the	seasonal	cycle.	To	our	knowledge,	there	are	no	
signs that these shortcomings are corrected in recent forecast 
models	(Xie	et	al.,	2017,	for	the	TOPAZ	system;	Hebert	et	al.,	2015	
for	the	ACNFS),	although	a	review	of	global	reanalysis	systems	
shows that some models simulate correctly the minimum sea 
ice	drift	in	March	(Chevallier	et	al.,	2017).	Hebert	et	al.	(2015)	also	
noted that the forecast of drifter positions beats persistence 
although	the	forecast	of	drift	speed	does	not,	indicating	that	the	
drift direction is better forecasted than the drift speed. How to 
remedy these shortcomings? Although adjusting the mean 
speed of sea ice can be easily achieved by tuning the drag coef-
ficients,	there	is	no	simple	tuning	that	can	make	the	sea	ice	ac-
celerate over years or shift its seasonal cycle.

The assimilation of sea ice drift data has been so far less 
successful than that of sea ice concentrations: Stark et al. 
(2008)	showed	a	50%	reduction	of	errors	in	ice	speed	but	no	

benefit	to	ice	concentrations	and	Sakov	et	al.	(2012)	indicated	
a low sensitivity of the sea ice drift to external perturbations 
in	the	wind	forcing,	which	points	to	a	shortcoming	of	the	TO-
PAZ4	version	of	the	EVP	sea	ice	rheology.	Qualitatively,	the	
large-scale patterns of sea ice drift can be reproduced by 
such	a	model	(see	a	typical	situation	in	Figure	6.8)	but	the	
observed gradients between areas of low sea ice drift (North 
of	Greenland)	and	strong	sea	ice	drift	(North	of	the	Barents	
Sea)	are	smoothed	by	the	model,	which	tends	to	simulate	
intermediate values of the sea ice drift speed. The forecast of 
24-hours ice trajectories and locations exhibits an RMS error 
of	6.3	km	in	TOPAZ4	(Melsom	et	al.,	2015),	which	does	not	
seem	to	beat	a	simple	free	drift	predictor	(5	km	in	Grumbine,	
1998).	It	should	be	noted	that	the	validation	is	done	against	
different data sources (sea ice drift from satellite SAR images 
versus	IABP	buoys)	and	at	different	periods	(years	2012-2015	
versus	80’s	and	90’s	decades).	The	SIDFEx	(Goessling	et	al.,	
2020),	carried	out	in	the	framework	of	the	Multidisciplinary	
drifting	Observatory	for	the	Study	of	Arctic	Climate	(MOSAiC)	
ice	camp,	has	been	the	first	to	collect	forecasts	from	interna-
tional systems and has shown that a consensus forecast 
could be successfully used to order detailed satellite images 
of	the	ice	camp	in	advance.	Beyond	the	use	of	RMS	errors,	
several alternative metrics for sea ice drift validation have 
been	reviewed	by	Grumbine	(2013).	Validation	metrics	for	an	
ensemble of trajectories from a probabilistic ice drift fore-
cast	have	been	proposed	by	Rabatel	et	al.	(2018)	and	refined	
in	Cheng	et	al.	(2020)	based	on	an	analogy	with	Search	and	
Rescue	operations,	in	which	the	ensemble	of	trajectories	de-
fine	a	search	ellipse;	the	success	of	the	forecast	is	the	prob-
ability of containment of the target inside the ellipse.  

Figure 6.8. 	 Typical	Example	of	a	two-day	sea	ice	drift	from	satellite	observations	(OSI-SAF,	left)	and	a	model	
(TOPAZ4,	right)	(courtesy	of	A.	Melsom,	MET	Norway).	
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The forecast of sea ice thickness also suffers from excessive 
smoothness: thick sea ice is too thin and thin sea ice is too 
thick	(Johnson	et	al.,	2012)	and	errors	reach	easily	one	to	two	
metres. There is a dynamical contribution to these errors 
with the too high sea ice drift speed North of Greenland ex-
aggerating the transport of thick sea ice into the Beaufort 
Gyre.	However,	thermodynamic	contributions	cannot	be	ex-
cluded	either	(in	particular	from	snow	and	melt	ponds).	More	
generally,	any	error	in	the	model	initial	conditions,	atmo-
spheric and ocean boundary conditions or its inherent param-
eters	will	eventually	accumulate	in	sea	ice	thickness	biases,	
which means that different errors can cancel each other 
and yield a correct sea ice thickness for the wrong reasons. It 
is worth stressing the important role of snow on sea ice as an 
effective	insulator,	its	presence	can	inhibit	both	the	growth	
and melt of sea ice and thus reduce its seasonal cycle. Snow 
predictions in sea ice-ocean models are very dependent on 
the quality of precipitation from weather analyses and fore-
casts	which	are	difficult	to	validate	and	usually	vary	from	one	
product	to	another	(Lindsay	et	al.,	2014).

6.2.7. Outputs

Information on formats and types of outputs by all kinds of 
OOFS can be found in Chapter 4.	In	this	Section,	we	list	the	
variables related to sea ice forecasts:

• sea	ice	concentration	(SIC)
• sea	ice	thickness	(SIT)

• sea	ice	drift	velocity	in	x-	and	y-	directions	(SIUV)	
• snow	depth	(SNOW)
• sea ice age 
• sea	ice	albedo	(SIALB)
• sea ice temperature 

Sea ice forecasting systems generally comply with CF standards. 
The CF metadata conventions are a widely used standard for 
atmospheric,	ocean,	and	climate	data.	Standard	names	are	de-
fined	in	a	CF	Standard	Name	Table	(see	🔗4 ).	Standard	vari-
able names from the CMIP nomenclature can be found in 
Notz	et	al.	(2016).

6.2.8. Examples of  operational sea ice 
forecasting systems

Most present day short-term forecast systems (listed in Table 
6.3)	assimilate	sea	ice	concentration	and	are	therefore	expect-
ed to perform well at forecasting the ice edge. These systems 
include	 the	Canadian	RIOPS	 (Smith	et	 al.,	 2021),	 the	United	
States	 ACNFS/GOFS3.1	 (Hebert	 et	 al.,	 2015),	 the	 Italian	
GOFS16	(Iovino	et	al,.	2016)	the	Global	and	the	Arctic	Marine	
Forecasting	System	(TOPAZ,	Sakov	et	al.	2012)	by	the	Coperni-
cus	Marine	Services.	Stand-alone	sea	ice	models,	like	neXtSIM-F	
(Williams	et	al.,	2021),	are	also	used	for	forecasting	purposes	
and,	given	that	their	control	vector	excludes	the	ocean,	they	
can	be	initialised	more	flexibly	than	coupled	ice-ocean	sys-
tems. Baltic forecasting systems are omitted for brevity. 
Ocean data assimilated are also omitted from Table 6.3.

4. http://cfconventions.org/standard-names.html

Table 6.3.  List of present-day short-term global and Arctic forecast systems. Note that the output spatial 
resolution may differ from the native resolution.

WebsiteVariablesAssimilation (method 
and sea ice data)

ModelResolution 
(km)

SystemArea

http://www.oceanguide.org.cn/
IceIndexHome/ThicknessIce

https://polar.ncep.noaa.gov/
global/

https://mag.ncep.noaa.gov/
model-guidance-model-
parameter.php?group=Model%20
Guidance&model=ICE-
DRIFT&area=POLAR&ps=area#

Arctic

Global

Arctic

ArcIOPS

RTOFS

NOAA (Bob 
Grumbine)

18 km

3.5 km

N/A

MITgcm

HYCOM-CICE5

Free drift

LESTKF	SIC,	SIT

3DVAR SIC

N/A

SIC,	SID,	SIT

SIC,	SIT,	SIUV

SIUV
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WebsiteVariablesAssimilation (method 
and sea ice data)

ModelResolution 
(km)

SystemArea

https://marine.copernicus.eu/

https://www.ecmwf.int/en/
forecasts/datasets/set-i

https://marine.copernicus.eu/

https://ads.nipr.ac.jp/venus.
mirai/#/mirai

https://science.gc.ca/eic/
site/063.nsf/eng/h_97620.html

CONCEPTS - Science.gc.ca

https://www7320.nrlssc.navy.
mil/GLBhycomcice1-12

http://ocean.dmi.dk/models/
hycom.uk.php

Global

Global

Global

Arctic**

Arctic

Global

Global

Arctic

Global

MOi

ECMWF

Met	Office	
coupled DA

VENUS

RIOPS

GIOPS

GOFS3.1

DMI

Met	Office	
FOAM

3.5 km

12 km

12 km

2.5km

3.5 km

12 km

3.5 km

10 km

3.5 km

NEMO-LIM2

NEMO-LIM2

NEMO-CICE5

IcePOM

NEMO-CICE4

NEMO-CICE4

HYCOM-CICE4

HYCOM-CICE4

NEMO-CICE5

SEEK SIC

3DVAR SIC

3DVAR SIC

N/A

3DVAR SIC

3DVAR SIC

3DVAR SIC

Nudging SIC

3DVAR SIC

SIC,	SIT,	SIUV

SIC,	SIT

SIC,	SIT,	SIUV

SIC,	SIT

N/A

N/A

SIC,	SIT,	SIUV

N/A

N/A

*	Note	that	the	resolution	of	a	Lagrangian	triangular	mesh	is	not	comparable	to	square	grids,	thus	the	output	resolution	is	3	km.	 
** VENUS is deployed on demand.

https://marine.copernicus.eu/Arctic neXtSIM-F 7.5 km* neXtSIM Nudging SIC SIC,	SIT,	SIUV,	
SNOW

https://marine.copernicus.eu/Arctic TOPAZ4 12.5 km HYCOM-CICE3 EnKF	SIC,	SIUV,	SIT SIC,	SIT,	SIUV.	
SNOW,	SIALB
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7.1.  
General introduction to storm surge
Many	natural	phenomena	can	cause	the	sea	to	rise	and	fall,	
such	as	wind,	air	pressure,	celestial	gravity,	earthquakes,	etc.	
The sea level changes caused by different phenomena have 
different	periods.	For	example,	wind	waves	have	a	period	of	
several	 seconds,	 tsunami	waves	 of	 few	minutes	 to	 tens	 of	
minutes,	 and	 the	 period	 of	 storm	 surge	 and	 astronomical	
tide	is	about	several	hours	to	several	days	(Figure	7.1).

Among	them,	the	storm	surge	brings	huge	economic	losses	
and	risks	to	coastal	countries	every	year	(Murty,	1988).	In	or-
der to reduce the impact of storm surge disasters on coastal 
residents,	understanding	and	forecasting	storm	surge	have	
always been an important objective for marine forecasters.

This chapter will introduce the main overview and elements 
of	 storm	 surge	modelling,	 to	 guide	 technical	 personnel	 to	
engage in related work and give full play to the role of storm 
surge	numerical	models	in	various	fields.

7.1.1. Overview of storm surge disaster

7.1.1.1. Disasters and forecasting

Storm surge refers to the phenomenon of abnormal water 
level rise in a coastal or inland body caused by strong atmo-
spheric	 disturbances,	 such	 as	 tropical	 cyclones	 (typhoons,	
hurricanes),	 extratropical	 cyclones,	 strong	winds	 from	 cold	
fronts,	and	sudden	change	in	atmospheric	pressure.

As a complex coastal dynamic process of major coastal marine 
disasters,	storm	surge	has	received	much	attention	by	major	
affected countries all over the world. Storm surge disasters 
are mainly caused by the abnormal water level rise and by 
flooding.	 The	 disaster	 causing	 factors	 include	 not	 only	 the	
storm	surge,	but	also	coupling	with	the	effect	of	astronomical	
tide	and	nearshore	waves.	Storm	surge	disasters	 (Figure	7.2,	
Figure	7.3,	and	Figure	7.4)	not	only	include	the	damage	to	ports,	
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Figure 7.1. 	 Frequencies	and	periods	of	the	vertical	motions	of	the	ocean	surface	(adapted	from	Pérez	et	al.,	2013).

Figure 7.2.  The impact of the storm surge caused 
by	the	super	typhoon	Haiyan	on	the	Philippines,	the	
coastal villages of Tacloban were destroyed (Credits: 
Photography	Marcel	Crozet,	ILO,	11-2013).
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wharfs,	dykes,	but	also	include	the	disasters	caused	by	flood-
ing	houses,	farmland,	and	aquaculture	facilities.	

Areas with severe storm surges are shown on a global map 
(Figure	7.5).	The	Gulf	Coast	of	North	America	and	the	eastern	
coast of the United States are affected by storm surges gen-
erated	by	Atlantic	hurricanes.	In	Europe,	the	North	Sea	coast	
is	often	affected	by	extratropical	cyclones,	which	bring	storm	
surge disaster. The coast of the Bay of Bengal in the Indian 
Ocean is threatened by storm surges caused by typhoons in 
the	Indian	Ocean.	On	the	western	Pacific	Ocean	coast,	China,	
Japan,	and	the	Philippines	are	frequently	affected	by	storm	
surges	caused	by	typhoons,	and	the	north	coast	of	China	is	
also affected by extratropical cyclones.

In addition to the areas severely affected by the storm surge 
mentioned	 above,	 other	 countries	 or	 regions	may	 also	 be	
affected by the storm surge. Areas with low elevation may 
face	the	threat	of	storm	surge	inundation,	and	the	approach-
ing channel may not meet the navigation requirements due 
to	the	drop	in	water	 level.	For	example,	20%	of	the	land	in	
the	Netherlands	is	below	mean	sea	level,	and	large	areas	of	
flooding	may	be	caused	without	a	very	severe	storm	surge.	
For	this	reason,	they	built	the	famous	Storm	Surge	Barriers	

(Mooyaart	and	Jonkman,	2017).	In	Spain,	surges	of	60	cm	con-
tribute	significantly	to	inundation	processes.

Figure 7.3.  People walk among debris next to a ship washed ashore in the aftermath of super typhoon Haiyan 
in	Tacloban,	Philippines,	11	November	2013.	(Credits:	ILO,	11-2013).

Figure 7.4.  The impact of the storm surge caused 
by	the	super	typhoon	Haiyan	on	the	Philippines,	the	
coastal villages of Tacloban were inundated with wa-
ter	(Credits:	Photography	Marcel	Crozet,	ILO,	11-2013).
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Figure 7.5.  Areas severely affected by storm surge.

Storm surge forecasting is an important means of reducing 
disasters	 and	 losses,	 and	a	 very	necessary	 link	 in	disaster	
prevention and mitigation. The methods of storm surge fore-
casting can be divided into two categories: empirical statis-
tical forecasting and numerical forecasting. With the rapid 
development	 of	 computer	 technology,	 numerical	 models	
play an increasingly important role in storm surge forecast-
ing. The establishment of a storm surge numerical model 
will provide strong support for storm surge forecasting. In 
addition to providing help for disaster prevention and miti-
gation,	the	numerical	model	of	storm	surge	can	also	be	used	
in offshore engineering design and marine disaster risk as-
sessment of coastal cities.

In	 recent	 years,	 with	 the	 rapid	 economic	 development	 of	
coastal cities and the urgent needs of disaster prevention 
and	 mitigation,	 more	 and	 more	 ocean	 forecasting	 centres	
have started to establish operational storm surge models to 
provide relevant services for the above activities and pur-
poses	(more	information	in	Section	7.2.8).

7.1.1.2. The impact of climate change on storm surge

Coastal	cities	are	directly	affected	by	global	warming,	sea	
temperature	continues	to	increase,	sea	level	fluctuates	and	
rises,	and	natural	disasters	such	as	storm	surges	and	huge	
waves show an increasing trend. Statistics show that there 
is	a	significant	increase	in	global	super	typhoons	(or	cate-
gory	4	and	5	hurricanes).	In	the	1970s,	the	number	of	super	

typhoons	accounted	for	20%	of	the	total	tropical	cyclones,	
while	 it	 rose	 to	 35%	 in	 the	 1990s.	 Among	 them,	 the	most	
evident	increase	was	in	the	North	Pacific,	Indian	Ocean,	and	
Southwest	 Indian	Ocean,	while	 the	 increase	was	the	 least	
in	the	North	Atlantic	(Webster	et	al.,	2005).	Therefore,	storm	
surge disasters caused by typhoons showed an increasing 
trend,	as	well	as	the	risk	of	storm	surge	disasters	in	coastal	
cities. The tide observation data also shows this charac-
teristic.	After	 the	storm	surge	of	 typhoon	Hato	 (2017)	and	
typhoon	 Mangkhut	 (2018)	 affected	 coastal	 cities	 such	 as	
Zhuhai	and	Shenzhen	in	China,	the	return	period	of	coast-
al	 tide	 levels	changed	significantly.	The	Hengmen	Station,	
located on the west bank of the Pearl River Estuary (Chi-
na),	has	shown	that	the	tide	level	return	period	has	been	
reduced	from	200	years	to	50	years,	as	well	as	the	original	
100 years tide level return period been reduced to 50 years 
at	the	Sanzao	Station,	and	the	Chiwan	Station	on	the	east	
bank of the Pearl River Estuary.

Sea level rise directly leads to the expansion of storm surge in-
undation	area,	increases	the	mean	sea	level,	and	various	char-
acteristic tide levels. The increased water depth and enhanced 
nearshore waves further strengthen the impact of storm surges.

7.1.2. Basic description of storm surge 
phenomena

Storm	surges	have	periods	of	several	hours	to	several	days,	
and	 are	 usually	 superimposed	 on	 tides,	 wind	 waves	 and	
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swells	 (with	 a	 period	 of	 several	 seconds).	 Combination	 of	
these three factors causes extreme rise of coastal water lev-
el	and	often	leads	to	huge	storm	surge	disasters.	However,	
sometimes the opposite situation can also be encountered: 
the wind blowing away from the direction of the open coast 
for a long time causes the water level to drop sharply along 
the	shore	and	shoals	exposed.	In	this	case,	the	normal	nav-
igation	 is	seriously	affected,	as	well	as	anchoring	of	ships,	
especially large oil tankers.

The spatial range of storm surges is generally between tens 
and	thousands	of	kilometres,	and	the	time	scale	or	period	
is	about	several	to	hundreds	hours,	which	is	between	a	tsu-
nami and the astronomical tide. Since the area affected by 
storm surges moves with the movement of meteorological 
forcing,	sometimes	a	storm	surge	process	can	affect	a	coast-
al	area	of	1000-2000km,	and	the	 impact	 time	can	be	up	to	
several	days.	 In	addition,	 the	period	of	water	 level	 change	
by	a	 storm	surge	 ranges	 from	some	hours	 to	 several	days,	
excluding	seiches,	tsunamis	and	wind	waves.

According	to	its	standard	definition,	a	storm	surge	is	caused	by	
atmospheric	disturbance,	specifically	abnormal	alterations	in	
water surface due to strong winds and atmospheric pressure 
changes.	Storm	surge	can	also	occur	in	inland	bodies,	such	as	
the	Great	Lakes	in	the	US.	In	recent	years,	studies	have	shown	
that the nearshore waves breaking can also cause rise of the 
water	 level,	 in	 the	 range	 of	 tens	 of	 centimetres	 to	 metres,	
called wave setup. With the perspective of changes occurred 
in	 modern	 times,	 the	 definition	 of	 storm	 surges	 should	 be	
revised as the following: “storm surge refers to strong atmo-
spheric	disturbances,	such	as	tropical	cyclones	(typhoons	and	
hurricanes),	 extratropical	 cyclones,	 strong	wind	 due	 to	 cold	
fronts,	and	sudden	changes	in	atmospheric	pressure	inducing	

abnormal water level rise combined with nearshore wave set-
up”	(Yu	et	al.,	2020).	See	representation	of	storm	surge	compo-
nents and drivers in Figure 7.6.

Meteorological	tsunami,	or	meteotsunami,	is	caused	by	strong	
winds and sudden changes in atmospheric pressure and its 
period is equivalent to a tsunami. In the Tsunami Glossary  
(🔗1)	by	the	IOC’s	ITIC,	meteotsunami	is	defined	as	following:	
“Tsunami-like phenomena generated by meteorological or 
atmospheric disturbances. These waves can be produced by 
atmospheric	gravity	waves,	pressure	jumps,	frontal	passages,	
squalls,	gales,	typhoons,	hurricanes	and	other	atmospheric	
sources. Meteotsunamis have the same temporal and spatial 
scales as tsunami waves and can similarly devastate coastal 
areas,	especially	in	bays	and	inlets	with	strong	amplification	
and	well	 defined	 resonant	properties	 (e.g.	 Ciutadella	 Inlet,	
Baleric	Islands;	Nagasaki	Bay,	Japan;	Longkou	Harbour,	China;	
Vela	Luka,	Stari	Grad	and	Mali	Ston	Bays,	Croatia).”	

The water level recorded at coastal or estuarine tide sta-
tions usually include a combination of changes caused by 
astronomical	tides,	storm	surges,	 tsunamis,	and	other	 long	
waves.	Generally,	tide	gauges	filter	out	sea	surface	fluctua-
tions caused by short-period waves in the order of seconds. 
The separation of storm surge phases is obtained by linear 
subtracting the harmonic analysis forecast astronomical tide 
from	the	hourly	data	(Figure	7.7	and	Figure	7.8).

1. http://itic.ioc-unesco.org/index.php?option=com_con-
tent&view=category&id=2339&Itemid=2433

Figure 7.6.  Storm surge components and drivers.
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Figure 7.7. 	 Observed	water	level,	astronomical	tide,	and	storm	surge	(water	level	subtracting	astronomical	
tide);	data	from	Zhanjiang	tide	station	(China).

Figure 7.8. 	 Observed	water	level,	astronomical	tide,	and	storm	surge	(water	level	subtracting	astronomical	
tide);	data	from	Nandu	tide	station	(China).
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7.1.3. Physics of storm surge

7.1.3.1. Meteorological forcing

Meteorological forcing is the main driver for storm surges. 
When	a	storm	passes	over	the	open	sea,	the	low	centre	pres-
sure of the storm will cause the water level to rise. The height 
of the surge is related to the barometric pressure drop of the 
storm,	 i.e.	 1	mbar	decrease	corresponds	approximately	 to	 1	
cm	increase	in	sea	level	(Schalkwijk,	1948;	Myers,	1954;	Pore,	
1964).	The	raised	sea	surface	will	propagate	with	the	move-
ment.	At	the	same	time,	a	kind	of	free	long	wave,	induced	by	
raised	sea	surface,	could	spread	outward	from	the	storm	cen-
tre. This process will typically take place near the coast when 
interactions with bathymetry changes become relevant. If the 
pressure disturbance is moving at a speed comparable to the 
shallow	water	wave	speed,	the	water	level	disturbance	may	
be	greatly	amplified	by	resonance	(Harris,	1957).

Compared	with	the	long	wave	effect,	the	wind	shear	stress	is	
the dominating forcing of storm surges in shallow water of 
nearshore	and	estuaries	 (Miller,	 1958;	Pore,	 1964).	With	 the	
wind	blowing	continuously,	water	accumulates	at	the	coast-
al line causing the water level to rise. This phenomenon is 
referred to as "wind set-up" and its magnitude is inversely 
proportional to water depth. The wind set-up is particularly 
evident	in	semi-enclosed	seas,	such	as	Bohai	Bay	in	China.

7.1.3.2. The influence of topography and bathymetry

Storm	surge	is	not	only	influenced	by	astronomical	tide	and	
waves,	but	also	by	topography	and	bathymetry.	Due	to	the	
shoreline	block,	storm	surge	propagates	from	ocean	to	near-
shore. The surge is generated by water accumulation at the 
shoreline. The magnitude of the surge is controlled by the 

shape	of	the	shoreline.	In	case	of	onshore	direction,	semi-en-
closed bays or estuaries contribute to intensify storm surge 
than straight shoreline. That is because the shape of the 
semi-enclosed	bay	and	estuary	hinder	water	flow	out.	 The	
water accumulates in the semi-enclosed bay or estuary con-
tinuously,	resulting	in	a	greater	storm	surge.

Another factor that can impact storm surge is the variation 
of bathymetry from the continental shelf to estuaries and 
coasts.	 Generally,	 the	water	 depth	 of	 estuaries	 and	 coasts	
is	shallower	than	the	continental	shelf,	and	the	propagation	
speed of the storm surge wave is approximately proportional 
to	the	square	root	of	the	water	depth.	Therefore,	the	speed	of	
the wave propagation at estuaries and coasts is slower than 
at the continental shelf. The storm surge waves converge at 
estuaries	and	coasts,	causing	the	water	level	to	increase.	

On	the	other	hand,	in	the	process	of	storm	surge	wave	propaga-
tion,	the	water	depth	at	the	crest	is	greater	than	at	the	preced-
ing	trough,	and	the	movement	of	the	crest	is	faster.	So,	the	more	
waves	move	inland,	the	smaller	the	interval	between	the	crests.	
This	is	more	pronounced	where	the	continental	shelf	is	longer,	
for	example	in	the	North	Sea,	and	hence	larger	storm	surges	will	
be caused due to the long continental shelf extension.

The propagation speed of storm surge waves is controlled by 
the water depth: it moves faster at high tide than at low tide. 
The wind effect is inversely proportional to the total water 
depth,	and	the	same	wind	speed	will	produce	a	greater	surge	
at	low	tide	than	at	high	tide.	Combining	the	two	effects	above,	
surge in an estuary tends to be greater on the rising stage of 
the	tide	(Doodson,	1929;	Doodson,	1956;	Rossiter,	1961).

Extremely	 accurate	 topography	 and	 bathymetry,	 especially	
for	shallow	water	areas,	is	key	to	storm	surge	modelling.

7.2.  
Storm surge modelling
7.2.1. Architecture components and 
singularities

Storm surge models are generally based on the two-di-
mensional shallow water equation to compute the water 
level and velocity. According to different modelling pur-
poses,	the	storm	surge	model	can	be	divided	into:	i)	storm	
surge	model	without	 tide;	 ii)	 storm	 surge	model	 includ-
ing	astronomical	tide;	and	iii)	storm	surge	flooding	model	
considering inundation.

In	a	storm	surge	model	without	tide,	only	the	effect	of	the	
meteorological forcing needs to be considered. Obtained re-
sult is only the water level rising and falling under the effect 
of atmospheric pressure and wind. The role of this model is 
generally to provide forecasters with a reference for the mag-
nitude	of	storm	surge	when	making	forecasts,	and	it	cannot	
truly	reflect	the	fluctuations	of	water	level.	

Based	on	the	former	model,	the	tidal	boundary	conditions	and	
tidal potential are introduced in the total water level storm 
surge	 model,	 in	 which	 the	 nonlinear	 interaction	 between	
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storm surge and astronomical tide can be fully considered 
in the model. This model can be used for releasing storm 
surge numerical forecast products and providing reference for 
coastal response to storm surge disasters. It can also provide 
the	water	level	changes	in	the	target	area	under	the	influence	
of extreme weather conditions for coastal engineering (such 
as	harbours,	wharfs,	seawalls,	offshore	wind	farms,	etc.).	

The	 storm	 surge	 flooding	model	 considering	 inundation	 is	
more complicated than the previous two models. The inter-
action	of	storm	surge	and	astronomical	tide,	and	the	interac-
tion of storm surge and wave are also considered in the model. 
The inundation range and depth of the coastal area can be 
obtained by a storm surge simulation. Figure 7.9 shows the 
main storm surge modelling components used by a forecast-
ing system and that will be detailed in the next sections.

7.2.2. Input data: available sources and data 
handling

7.2.2.1. Bathymetry and geometry

Reliable and accurate shoreline and bathymetry data are the 
basis	 for	modelling	 of	 storm	 surge,	 tidal,	 and	 storm	 surge	
flooding	models.	In	the	process	of	model	setup,	the	compu-
tational	grid	should	be	determined	according	to	the	demand,	
and then the data of shoreline and bathymetry should be 
collected according to the location and scope.

Sources of bathymetric data can be found on Section 4.2.4. 
These data need to be used with caution when establishing 
high-resolution storm surge models. As the bathymetry of 
coastal	or	estuary	changes	rapidly	over	time,	these	upstream	
data	may	not	be	able	to	be	updated	in	time.	Therefore,	the	
correctness	of	the	data	needs	to	be	verified	before	it	is	used.	
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Figure 7.9. 	 Storm	surge	modelling	flow	chart.
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When the published upstream data do not meet the require-
ments,	it	is	preferable	to	use	the	latest	sea	chart	or	high-res-
olution	DEM	data.	In	addition,	the	datum	of	the	data	needs	to	
be	confirmed	as,	due	to	different	sources	of	data,	the	datum	
could	be	different.	In	order	to	truly	reflect	the	effects	of	ba-
thymetry	on	storm	surges,	data	from	different	sources	need	
to	be	unified	on	the	same	datum.

7.2.2.2. Tidal boundaries

In	the	storm	surge	and	storm	surge	flooding	modelling,	tid-
al waves are generally used as open boundary conditions. 
Open	 boundary	 conditions	 can	 be	 velocity,	 water	 level,	 or	
harmonic constant.

Tidal height at any location and time can be written as a 
function of harmonic constituents according to the following 
general relationship:

(7.1)

where

H(t ) = height of the tide at any time t

H0	 =	mean	water	 level	above	some	defined	datum	such	as	
mean sea level

Hn = mean amplitude of tidal constituent n

fn = factor for adjusting mean amplitude Hn values for spe-
cific	times

an = speed of constituent n in degrees/unit time

t	=	time	measured	from	some	initial	epoch	or	time,	i.e.,	t=0 
at t0

(V0 + u)n = value of the equilibrium argument for constituent 
n at Greenwich and when t=0

gn= epoch of constituent n,	 i.e.,	phase	shift	 from	tide-pro-
ducing force to high tide from t0

In	Eq.	7.1,	for	a	tidal	component,	the	fn and the (V0 + u)n will 
change	with	 time,	 and	 the	Hn and the gn will change with 
the	geographical	 location.	Therefore,	according	to	the	start	
time	of	simulation,	the	fn and (V0 + u)n of the proposed tidal 
component	should	be	set	in	the	model,	and	the	Hn and the 
gn  boundary conditions should be given according to the po-
sition of the boundary grid node.

The	location	of	the	tidal	open	boundary	is	critical.	First	of	all,	
it is necessary to ensure that the grid can completely cov-
er	the	definition	area.	Secondly,	it	is	better	to	set	the	open	

boundary	near	the	tidal	station,	because	the	tidal	constitu-
ent	data	near	the	tidal	station	is	more	accurate.	Finally,	it	is	
preferable not to set the open boundary at the amphidromic 
point	nearby,	because	too	small	amplitude	will	bring	uncer-
tainty to the simulation.

The data for tidal boundaries can be obtained by download-
ing publicly available data on tidal harmonic constants cov-
ering	most	of	 the	oceans.	 TPXO	 (Egbert	 et	 al.,	 1994;	 Egbert	
and	Erofeeva,	2002)	is	a	widely	used	global	tidal	data.	It	is	a	
series	of	fully	global	models	of	ocean	tides,	which	best	fits,	
in	 a	 least	 squares	 sense,	 the	 Laplace	 Tidal	 Equations	 and	
altimetry	data.	The	TPXO	models	include	eight	primary	(M2,	
S2,	 N2,	 K2,	 K1,	 O1,	 P1,	 Q1),	 two	 long	 period	 (Mf,	Mm)	 and	 3	
non-linear	(M4,	MS4,	MN4)	harmonic	constituents	(plus	2N2	
and	 S1	 for	 TPXO9	 only).	 More	 detailed	 information	 can	 be	
found at 🔗2.	In	addition,	also	the	NAO.99b	tide	model	(Mat-
sumoto	et	al.,	2000	and	2001),	which	is	developed	by	assimi-
lating	TOPEX/POSEIDON	Altimeter	Data	into	Hydrodynamical	
Model,	can	provide	global	tide	data.	This	model	provides	16	
short-period	harmonic	constituents	(M2,	S2,	K1,	O1,	N1,	N2,	P1,	
K2,	Q1,	M1,	J1,	OO1,	2N2,	Mu2,	Nu2,	L2,	L2,	and	T2),	7	long-period	
harmonic	constituents	(Mf,	Mm,	Msf,	Msm,	Mtm,	Sa,	Ssa)	data	
with	of	0.5	degrees,	and	provides	16	short-period	harmonic	
constants	around	Japan	with	a	resolution	of	5	minutes.	More	
detailed information can be found at 🔗3.

Once	the	model	and	tidal	boundaries	have	been	established,	
they need to be tuned and calibrated before using. The mod-
el can be run with tidal boundaries and tidal potential. The 
tidal results are more sensitive to changes in the bottom fric-
tion	coefficient	and	the	bathymetry.	By	calibrating	the	tidal	
simulation,	a	reasonable	bottom	friction	coefficient	can	be	
set	for	the	model.	At	the	same	time,	the	difference	in	the	tid-
al results caused by the bathymetry from dissimilar sources 
helps	to	find	more	suitable	bathymetry	data	for	the	model.

7.2.2.3. Meteorological inputs

In	storm	surge	or	storm	surge	flooding	modelling,	the	input	
from meteorological forcing mainly includes surface wind 
shear stress and atmospheric pressure at sea surface lev-
el.	 In	deep	water,	 the	sea	 level	 rises	are	mainly	 caused	by	
the	atmospheric	pressure	gradient,	i.e.	the	water	level	rises	
approximately 1 cm at every reduction in pressure of 1 mbar. 
In	shallow	water,	estuary	and	nearshore,	wind	shear	stress	
is	the	dominant	force	of	the	storm	surge,	and	the	sea	level	
rise	is	proportional	to	the	square	of	wind	speed.	Therefore,	
accurate	meteorological	inputs,	especially	sea	surface	wind,	
is essential for storm surge modelling. The accuracy of storm 
surge results depends largely on the quality of meteorolog-
ical data.

2. https://www.tpxo.net/global
3. https://www.miz.nao.ac.jp/staffs/nao99/index_En.html
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Depending	on	the	storm	surge	modelling	purposes,	the	types	of	
meteorological	forcing	input	are	different.	At	present,	there	are	
two	main	sources	of	wind	field	for	storm	surge	modelling:	at-
mospheric model and empirical formula. Atmospheric models 
can	provide	global	or	regional	meteorological	fields;	the	main	
elements required for storm surge calculation are sea level 
pressure and 10 metres wind. The horizontal resolution of these 
data	 is	between	ten	and	tens	of	kilometres,	and	the	 forecast	
period can reach up to 240 hours. This kind of meteorological 
field	is	mainly	used	in	the	calculation	of	storm	surge	caused	by	
extratropical	 cyclones.	 Compared	 with	 extratropical	 cyclones,	
tropical	cyclones	are	smaller	in	scale	but	stronger	in	intensity,	
and atmospheric models cannot resolve the structure of trop-
ical	cyclones	well.	Therefore,	the	meteorological	field	from	at-
mospheric models is not applicable to the typhoon storm surge 
calculation. Empirical formulas for tropical cyclone pressure 
and wind are often applied to create meteorological forcing 
fields	 for	 tropical	 storm	surge	models.	 Since	 the	wind	 speed	
and pressure structure of tropical cyclones are close to axisym-
metric,	their	distribution	can	be	reasonably	represented	with	an	
empirical formula for the radial distribution of wind or pressure.

The commonly used empirical formulas for pressure distri-
bution mainly include the following:

Takahashi	(1939):

(7.2)

Myers	(1954):

(7.3)

Myers	(1954):

(7.4)

Jelesnianski	(1965):

(7.5)

Bjerknes	(1921):

(7.6)

Holland	(1980):

(7.7)

where:

P∞= the ambient pressure;

P0 = the pressure at the tropical cyclone centre;

P( r ) = the pressure at r from tropical cyclone centre;

A and B = empirical parameters that control the tropical cy-
clone size.

The	tropical	cyclone	wind	field	is	formed	by	the	superposi-
tion	of	two	vector	fields	(Ueno,	1981).	The	first	vector	field	is	a	
wind	field	symmetrical	to	the	centre	of	the	cyclone.	The	wind	
vector passes through the isobar and points to the left with 
a	20°	deflection	angle.	

The	wind	speed	is	proportional	to	the	gradient	wind,	which	
can be expressed by the following formula:

(7.8)

Vr = the maximum wind speed;

R = the radius of the maximum wind.

The	second	vector	field	caused	by	the	movement	of	cyclone	
is superimposed on the wind system for the stationary sym-
metric	cyclone,	and	that	the	wind	velocity	V→f is:

(7.9)

V→t = velocity of typhoon;

R = the radius of the maximum wind.

Consequently,	the	wind	velocity	W→ is:

(7.10)

The	typhoon	centre	pressure,	maximum	wind	speed,	moving	
speed and other parameters can be obtained from websites 
of national meteorological agencies.

7.2.3. Modelling component

7.2.3.1. Governing equations

The governing equations of numerical simulation were de-
termined	by	the	flow	dynamic	theory.

The	three-dimensional	flow	equations	are	as	follows:
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• Continuity equation:

(7.11)

• Momentum equation:

(7.12a)

(7.12b)

(7.12c)

Based on hydrostatic approximations and incompressible 
assumption	of	fluid,	 the	depth	 integrated	 two-dimensional	
storm surge governing equations can be written as:

• Continuity equation:

(7.13)

• Momentum equation:

(7.14a)

(7.14b)

where:

ξ= free surface elevation relative to the geoid;

h = water depth;

f	=	Coriolis	coefficient;

ρ = density of water;

g = gravitational acceleration;

(τx,S  ,	τx,b)	=	free-surface	shear	stress	in	x and y direction;

W_  = wind speed at 10 metres above sea surface;

Wx  ,	Wy = wind speed components in x and y direction;

Cd	=	wind	Drag	coefficient	which	is	relevant	to	wind	speed;

τx,b,	τy,b = bottom shear stress in x and y direction;

C	=	Chezy	coefficient,	  n	 is	 roughness	 coeffi-
cient;

u,	v = depth-averaged horizontal velocity components in x 
and y direction;

P = atmospheric pressure at the free surface; 

ε = depth-averaged horizontal eddy viscosity.

7.2.3.2. 2D barotropic and 3D baroclinic models for  
storm surge

Hydrodynamic models are generally divided into vertical-
ly	 averaged	 2D	 barotropic,	 3D	 barotropic,	 or	 3D	 baroclinic	
models. These types of models can be used for storm surge 
modelling.	 Minato	 (1998)	 first	 studied	 the	 effect	 of	 a	 3D	
model on storm surge results and simulated the water level 
change	caused	by	Typhoon	7010	in	Tosa	Bay,	Japan.	The	re-
sults showed that the difference between the 3D model and 
the	2D	model	is	about	2	to	10%.	Weisberg	and	Zheng	(2008)	
found that under the condition of setting the same bottom 
friction	coefficient,	 the	3D	model	simulates	higher	extreme	
water	level	than	the	2D	model.	Subsequently,	simulating	the	
storm	surge	of	Hurricane	Ike	in	the	Gulf	of	Mexico,	Zheng	et	
al.	(2013)	pointed	out	that	the	2D	and	the	3D	models	have	dif-
ferences	in	the	trend	and	peak	values	of	water	level,	but	the	
calibration	of	the	bottom	friction	is	more	important.	Ye	et	al.	
(2020)	studied	the	influence	of	baroclinic	models	on	storm	
surge simulation results. Sensitivity tests show that the im-
pact	of	the	baroclinic	model	on	storm	surge	is	not	significant,	
but it has a greater impact on current.
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Since the vertical velocity distribution structure of the 2D 
model	is	different	from	that	of	the	3D	model,	the	vertical	av-
erage	velocity	is	greater	than	that	near	the	bottom	layer,	so	
that the bottom shear stress of the 2D model will be greater. 
Satisfactory results can be obtained for both types of models 
by calibrating the bottom friction.

Regarding	operational	storm	surge	modelling,	computational	
efficiency	is	a	factor	that	must	be	considered.	3D	models	gen-
erally	divide	the	water	body	into	multiple	layers	vertically,	so	
they require more computing time than 2D models. If the pur-
pose	of	storm	surge	modelling	is	to	obtain	water	level,	rather	
than	currents,	the	2D	models	are	the	best	choice	for	balanc-
ing	calculation	efficiency	and	accuracy.	Most	of	 the	existing	
operational storm surge forecasting systems are 2D models.

7.2.3.3. Wetting and drying scheme

During	 the	 simulation	 of	 storm	 surge	 inundation,	 the	 grid	
points close to the coastline in the model will be either wet 
or	dry	due	 to	 the	fluctuation	of	water	 level.	 Therefore,	 the	
model needs to determine the dry and wet state of a grid 
point according to the state of the surrounding grid points.

Assuming	that	the	state	of	a	certain	grid	point	is	wet,	if	the	
calculated water level makes the water volume less than 
zero,	 then	this	grid	point	will	become	a	dry	grid	point	and	
will not participate in the next calculation. In practical cal-
culations,	to	prevent	the	negative	value	of	the	water	volume	
at	a	grid	point,	which	makes	the	momentum	equation	and	
continuity	equation	meaningless,	a	threshold	value	greater	
than zero is usually selected. When the water volume is less 
than	the	threshold	value,	 the	state	of	 the	grid	point	 is	de-
fined	as	dry.	

Assuming	that	the	state	of	a	certain	grid	point	is	dry,	the	first	
step is to check how many of the surrounding grid points 
are	wet	grid	points.	If	more	than	one	is	wet	grid	point,	then	
the water level is averaged over these wet grid points. If the 
averaged water level is greater than the threshold water lev-
el,	the	state	of	this	grid	point	may	become	wet,	otherwise	it	
still	remains	as	a	dry	one.	In	the	second	step,	it	is	necessary	
to further check the transport over the cross-section area 
between the grid point and the surrounding wet grid points. 
If	 these	transport	cross-section	areas	are	all	positive,	 then	
the dry grid point becomes a wet grid point and participates 
in	the	next	calculation;	otherwise,	it	is	still	a	dry	grid	point.

7.2.3.4. Grid types

The grids used in most sea level models are mainly divided 
into two categories: structured and unstructured grids. The 
structured	grid	nodes	are	arranged	in	an	orderly	manner,	and	
the	connection	relationship	between	adjacent	nodes	is	fixed.	
In	contrast,	the	unstructured	grid	nodes	are	arranged	in	an	

unordered	 manner	 and	 the	 adjacent	 nodes	 have	 no	 fixed	
connection	 relationship.	 Differently	 from	 structured	 grids,	
unstructured grids with triangular elements allow to adjust 
the	resolution	flexibly	to	depict	complex	shapes	of	coastline	
and	estuary	(Figure	7.10).

Structured grids mainly have two forms: rectangular grids 
and	 curvilinear	 grids.	 Relatively	 speaking,	 the	 curvilinear	
grid	can	adapt	better	to	the	complex	shape	of	the	coastline,	
and it can also realise the change of grid resolution that is 
more advantageous for storm surge simulation in estuary 
area	(Figure	7.11).

Triangular grids were the main forms of unstructured grids un-
til	a	new	form	of	unstructured	grids,	the	SCVTs	(Figure	7.12),	ap-
peared	in	ocean	modelling	a	decade	ago	(Ringler	et	al.,	2013).	
Like	the	triangular	grids,	the	SCVTs	can	adapt	well	to	complex	
coastline,	and	facilitate	a	smooth	transition	from	coarse	res-
olution	grid	cell	to	high	resolution	grid	cell.	In	addition,	they	
also solve the computational instability problem caused by 
small	acute	angles	in	the	triangular	grid.	At	present,	the	SCVTs	
model	has	been	used	in	the	China	Sea	(as	shown	in	Figure	7.13).

Figure 7.10.  Structured grid and unstructured 
grid at coastal area.

Figure 7.11.  An example of curvilinear grid.
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7.2.3.5. Discretization method

The	 main	 discretization	 methods	 include	 finite	 difference	
method,	 finite	 element	 method,	 and	 finite	 volume	 meth-
od. Discretization methods also correspond to the types of 
grids	used.	The	finite	difference	method	is	generally	used	for	
structured	grids,	while	the	finite	element	method	and	finite	
volume method are generally used for unstructured grids.

The FDM is one of the simplest and oldest methods to solve 
the	 storm	 surge	 problems,	 and	 it	 is	 still	 widely	 used.	 This	
method	divides	the	solution	domain	into	differential	grids,	
replacing	the	continuous	solution	domain	with	a	finite	num-
ber	of	grid	nodes.	By	using	the	Taylor	series	expansion,	the	
derivative of the governing equation is discretized by the 
difference	quotient	of	the	function	value	on	the	grid	node,	
so as to establish the algebraic equations with the value on 
the grid node as the unknown quantity. This method is an 
approximate numerical solution that directly transforms a 
differential problem into an algebraic problem. The mathe-
matical concept is intuitive and simple to express. It is an 
earlier and relatively mature numerical method.

Figure 7.13.  A storm surge model grid based on SCVTs applied to the China Sea.

Figure 7.12.  An example of Voronoi tessellation 
schematic	diagram:	centroid	in	red,	Voronoi	circle	
in	green,	edges	in	grey.
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The basic difference expression mainly has three forms (Fig-
ure	7.14):	forward	difference,	backward	difference,	and	centre	
difference.	The	first	 two	formats	are	first-order	derivatives,	
while the last format is second-order derivatives. Different 
computational schemes can be obtained through the combi-
nation of several different formats of time and space.

According	to	the	precision	of	the	scheme,	we	can	distinguish	
among	 first-order,	 second-order,	 and	 high-order	 accuracy	
schemes.	Depending	on	the	influence	of	the	time	factor,	the	
difference	scheme	can	also	be	divided	into	explicit	scheme,	
implicit	scheme,	explicit	and	implicit	alternate	scheme.

The FEM is based on variational principle and weighted re-
sidual method. The basic solution idea is to divide the com-
putational	domain	into	a	finite	number	of	non-overlapping	
elements.	In	each	element,	some	appropriate	nodes	are	se-
lected as interpolation points of the solution function. The 
variable in the differential equation is changed into a linear 
expression composed of the node value of each variable or 
its derivative and the selected interpolation function. The 
differential equation is solved discretely by means of varia-
tional principle or weighted residual method.

According to the difference of the weight function and the in-
terpolation	function,	the	finite	element	method	is	divided	into	
several computational schemes. For the choice of weight func-
tion,	 there	 are	 collocation	methods,	moment	method,	 least	
square	method,	and	Galerkin	method.	According	to	the	shape	
of	the	computing	cell	grid,	there	are	triangular	grid,	quadrilat-
eral	grid,	and	polygonal	grid.	Triangular	grids	are	commonly	
used in storm surge modelling. The accuracy of the interpola-
tion function is divided into linear interpolation functions and 
high-order interpolation functions. Different combinations 
also	constitute	different	finite	element	calculation	schemes.

The FVM is also called the control volume method. The basic 
idea is to divide the computational domain into a series of 
non-overlapping	 control	 volumes,	 and	make	a	 control	 vol-
ume around each grid point. Integrate the differential equa-

tions to be solved for each control volume to obtain a set of 
discrete equations. The unknown is the value of the depen-
dent variable at the grid point. In order to obtain the integral 
of	the	control	volume,	it	is	necessary	to	assume	the	changing	
law	of	the	value	between	grid	points,	i.e.	the	distribution	pro-
file	(continuous	or	segmented)	of	the	assumed	value.	From	
the	selection	method	of	the	integral	region,	the	finite	volume	
method belongs to the subregion method in the weighted 
residual method. From the approximate method of the un-
known	solution,	the	finite	volume	method	is	a	discrete	meth-
od using local approximation. The physical meaning of the 
discrete equation is the conservation principle of the depen-
dent	variable	in	a	finite	controlled	volume,	just	as	the	differ-
ential equation expresses the conservation principle of the 
dependent	variable	in	an	infinitely	small	controlled	volume.	
The	discrete	equation	obtained	by	the	finite	volume	method	
requires the integral conservation of the dependent variable 
to	be	satisfied	for	any	set	of	control	volumes,	and	naturally	
also for the entire computation area. This is the attractive 
advantage	of	the	finite	volume	method.	Some	discrete	meth-
ods,	 such	 as	 the	 finite	 difference	method,	 only	 satisfy	 the	
integral	conservation	if	the	grid	is	extremely	fine.	The	finite	
volume method shows accurate integral conservation even 
in the case of coarse grids. As far as the discrete method is 
concerned,	the	finite	volume	method	can	be	regarded	as	an	
intermediate	between	the	finite	element	method	and	the	fi-
nite difference method.

7.2.3.6. Existing models for storm surge modelling

Numerical simulation of storm surges began in the 1950s. 
After	 decades	 of	 development,	 it	 has	 emerged	 that	 many	
numerical models can be used to storm surge simulations. 
Commercial	models	include	MIKE21	and	TuFlow,	while	exam-
ples	of	free	models	are:	ADCIRC,	Delft3D-FLOW,	POM,	FVCOM,	
ROMS,	and	SCHISM.	Free	numerical	models	generally	provide	
the	source	code	of	the	model,	so	that	the	model	can	be	mod-
ified	as	needed	when	establishing	a	forecasting	system.	The	
models listed in Table 7.1.can be used to establish a complete 
operational storm surge forecasting system.

Figure 7.14.  Geometric interpretation of difference expression.
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WebsiteNesting capabilitiesNumerical methodsGrid topologyModel

https://www.
mikepoweredbydhi.com/
products/mike-21-3

https://adcirc.org/

http://www.ccpo.odu.edu/
POMWEB/index.html

https://www.myroms.org/

https://www.tuflow.com/

https://oss.deltares.nl/web/
delft3d/

http://codfish.smast.umassd.
edu/fvcom/

http://ccrm.vims.edu/
schismweb/

MIKE21

ADCIRC

POM

ROMS

TuFlow

Delft3D-FLOW

FVCOM

SCHISM

Structured 
curvilinear grid and 
unstructured grid

Unstructured grid

Structured 
curvilinear grid

Structured 
curvilinear grid

Structured grid and 
unstructured grid

Structured 
curvilinear grid

Unstructured grid

Unstructured 
mixed triangular/
quadrangular grid

Alternating direction implicit method 
for	structured	grid.	Cell-centered	finite	
volume method for unstructured grid

Finite element method in space and 
finite	difference	method	in	time

Finite difference scheme

Second-order	finite	differences

2nd order semi-implicit matrix solver 
for structured grid. Finite-Volume for 

unstructured grid

Alternating direction implicit method

Finite volume method

Semi-implicit	Galerkin	finite	element	
method

Nesting is not 
possible

Not available

Not available

One-way nesting

Sub-Grid

Nested boundary 
conditions

Nesting at the 
boundaries

One-way nesting

Table 7.1. Geometric interpretation of difference expression.

7.2.4. Data assimilation systems 

Data assimilation techniques are used to combine model 
and observed data to obtain the best estimate of the state 
of a system (see Chapter 4.3	 for	 more	 details).	 Statistical	
techniques	are	often	employed	to	find	a	solution	which,	ide-
ally,	minimises	some	error	metric.	For	storm	surges,	 this	 is	
done	to	obtain	fields	of	sea	surface	height	that	can	help	us	
to better understand past events or to improve the quality of 
forecasts. An overview of the application of data assimilation 
to storm surge modelling and forecasting is provided in this 
section.	Henceforth,	references	to	errors	mean	some	metric	
distance between the model and observations. 

7.2.4.1. Sources of error in storm surge models

In	order	to	reduce	errors	in	storm	surge	models,	especially	
for	forecasting	in	which	the	accuracy	may	influence	real-time	
decision	making,	it	is	important	to	understand	the	sources	of	
error. Some of the main sources are given below.

Quality of input datasets 

This includes atmospheric surface forcing and tidal forcing at 
the	boundaries	(see	Section	7.2.2).	Storm	surges	are	largely	
forced	phenomena;	therefore,	the	accuracy	of	forcing	is	key	
and errors in the related datasets may be transferred into the 
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storm surge component of the modelled sea surface height. 
Errors in input datasets may arise from similar sources as the 
storm	surge	model,	including	model	and	instrument	errors.

For	 example,	 errors	 in	 tidal	 amplitudes	 and	 phases	 at	 the	
boundaries will propagate with the tidal waves into the do-
main.	As	discussed	in	Section	7.2.1,	interactions	with	the	tides	
can	influence	both	timing	and	height	of	a	storm	surge,	so	it	is	
important to have an accurate tidal component in the model. 
The accuracy of the surface atmospheric forcing is import-
ant	as	well,	especially	the	components	of	wind	and	surface	
pressure.	Due	 to	 the	 forced	nature	of	 storm	surges,	 this	 is	
one of the largest sources of error in storm surge forecasts 
(Horsburgh	et	al.,	2011).

Tuning of model parameters

It is common practice to adjust various model parameters 
to	obtain	a	better	solution.	For	example,	it	could	include	the	
tuning	of	bottom/surface	friction	coefficients.	It	is	very	un-
likely	to	find	a	perfect	parameter	set,	and	the	iterative	pro-
cesses often used can lead to non-optimal solutions. See 
Section 7.2 for more information about parameters used in 
storm surge models.

Representativity errors

Representativity errors arise from models’ ability to repre-
sent	variables	and	processes	such	as	resolution	(Daley,	1991).	
For	example,	a	coarse	model	may	not	be	able	to	resolve	fin-
er	scale	 features,	which	 is	present	 in	 the	observations.	For	
storm	surges,	this	is	particularly	important	nearby	complex	
coastlines	 and	 estuaries.	 Similarly,	 coarser	 models	 may	
mean	smoother	bathymetry	in	these	areas,	which	can	signifi-
cantly affect the modelled surge.

A model may not simulate all processes required to accurate-
ly	model	a	storm	surge.	For	example,	if	tides	are	not	included	
in	 the	model,	 only	 the	 atmospherically	 forced	 component	
of	sea	surface	height	is	being	generated,	and	contributions	
from tide-surge interactions will be missing. Other examples 
include the lack of tidal processes such as self-attraction 
and	 loading,	or	not	 including	 the	 inverse	barometer	effect	
in the model.

7.2.4.2. Assimilated data sources for storm surge 
modelling

An attempt to reduce the impact of the errors described in 
the previous section can be made using data assimilation. 
For	storm	surge	modelling,	assimilation	of	observations	may	
occur directly into the model or indirectly via input datasets. 

Datasets used as atmospheric forcing often contain as-
similated observations. The generation of the storm surge 

is highly dependent on the model’s interaction with these 
datasets	and	it	 is	vital	that	they	are	accurate.	For	example,	
the	forecasted	atmospheric	fields	used	at	the	UK	Met	Office	
use assimilation of atmospheric observations. There are also 
many	reanalysis	datasets	available,	such	as	the	ECMWF	ERA5	
dataset	(Hersbach	et	al.,	2020)	that	assimilates	observations	
from multiple sources to generate atmospheric data. While 
these	examples	are	suitable	for	extratropical	storm	surges,	
they	may	not	sufficiently	 resolve	 intense	 tropical	 cyclones,	
meaning that parametric methods may be a better option 
(see	Section	7.2.2.3).	There	are	also	assimilative	alternatives,	
such	as	the	MTCSWA	datasets	(Knaff	et	al.,	2011),	which	blend	
together	 parametric	 fields	 and	 observations.	 These	 have	
been	shown	to	have	some	benefit	for	forecasting	(Byrne	et	
al.,	 2017).	The	same	 is	 true	 for	 the	datasets	used	 to	derive	
tidal signals at the model boundaries. Examples of such 
datasets	 include	 TPXO	 (Egbert	 et	 al.,	 2002)	 and	 FES	 (Lyard	
et	al.,	2021),	which	incorporate	data	from	satellite	altimetry	
and tide gauges. See Section 7.2.2.2 for more information on 
these tidal datasets.

Sea surface height may also be assimilated directly into the 
modelled	sea	surface.	There	are	two	sources	used,	both	with	
advantages and disadvantages: tide gauges and satellite 
altimetry.	 Tide	 gauges	 (and	 other	 fixed	 instruments	 such	
as	bottom	pressure	recorders)	offer	information	that	is	fre-
quent	and	consistent	 in	 time,	making	them	useful	 for	cap-
turing ocean processes of all frequencies (including storm 
surges).	However,	they	are	generally	spatially	sparse.	On	the	
other	hand,	altimetry	data	offer	good	spatial	 coverage	but	
are	less	consistent	in	time,	as	a	satellite	only	returning	to	the	
same location once every number of days. This makes the 
data useful for longer periods of periodic ocean processes.

Tide gauge data are currently assimilated for storm surge 
forecasting	at	some	institutions	(see	Section	7.2.4.4).	There	are	
representativity challenges that must be considered when us-
ing	these	data.	Most	importantly,	modelled	sea	surface	height	
variables and observed variables must represent the same 
physical	quantity.	For	example,	do	both	datasets	contain	the	
same components of sea level such as tides and inverse ba-
rometer effect? The datum on which the data are based must 
also be considered. The sea level anomaly can be used to 
overcome these problems if a long enough record is available.

7.2.4.3. Application of data assimilation to real time 
forecasting systems

For	 real	 time	 forecasting,	data	assimilation	 is	used	to	gen-
erate an improved initial condition for a forecast model run. 
The forward propagation of errors can be reduced by cre-
ating a more realistic initial condition. This is important to 
improve the lead times over which good forecasts may be 
given. The use of data assimilation for storm surge forecast-
ing has been shown to offer improvements over short lead 
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times	(Heemink,	1986;	Verlaan	et	al.,	2005;	Madsen	al.,	2015;	
Zijl	et	al.,	2015;	Byrne,	2021).	However,	the	duration	of	these	
improvements	may	be	limited	to	a	few	hours	of	forecast,	due	
to the forced nature of storm surges.

This improved initial condition can be generated by running 
the	model	for	some	historical	period	up	until	today,	includ-
ing forcing with assimilated observations and potentially di-
rect assimilation of sea surface height. This model run can 
effectively be seen as a continuous simulation with assimila-
tive	steps	at	some	predefined	frequency,	for	example	every	6	
hours.	When	a	forecast	is	desired,	the	most	recent	state	from	
this model can be taken and used as the initial condition. A 
forecast	 simulation	 is	 then	 done	 using	 no	 assimilation,	 as	
no observations are available in the future. This means that 
the atmospheric forcing used is also a forecast. Figure 7.15 
illustrates this process.

There are several methods that have been used with success 
in	 storm	 surge	 modelling,	 including	 Optimal	 Interpolation	
(Gandin,	1966;	Lorenc,	1981	and	1986;	Daley,	1991),	variational	
assimilation	(Lorenc,	1986),	Kalman	filters	(Kalman,	1960)	and	
Ensemble	Kalman	Filters,	(Evensen,	2004).	In	all	methods,	a	
key step is the estimation of spatial error covariances in both 
the	model	and	the	observations.	This	can	be	parametrically,	
as	shown	in	the	example	in	Figure	7.16,	or	by	deriving	covari-
ances from an ensemble of model states. An example of the 
latter is described in Section 7.2.4.4.

Data	assimilation	has	the	potential	to	add	significantly	to	the	
computation	and	time	resources	required,	especially	for	en-

semble	systems.	As	noted,	for	real-time	forecasting	systems	
is	vital	that	a	balance	is	made	between	accuracy	and	speed,	
i.e. useful forecasts need to be delivered in a timely manner 
(Horsburgh	et	al.,	2011).

PAST PRESENT
T=0

FUTURE
“HINDCAST” PERIOD TO OBTAIN

INITIAL STATE FOR FORECAST RUN
“FORECAST” PERIOD

FOR PREDICTION

PREDICTED SURFACE
AND BOUNDARY FORCING
WITH NO ASSIMILATION

SURFACE AND BOUNDARY
FORCING INCLUDING

ASSIMILATED OBSERVATIONS

STORM SURGE
MODEL ASSIMILATING

OBSERVATIONS

“FREE” STORM SURGE
MODEL WITH NO ASSIMILATED

OBSERVATIONS

Figure 7.15.  Illustration of two distinct stages of sequential data assimilation for forecasting storm surges.

Figure 7.16.  An example of correlation length 
scale estimation for assimilation of sea surface 
height into a barotropic storm surge model of the 
North	Sea	(Byrne	et	al.	2021).	Such	a	length	scale	
could be used to assimilate tide gauge observations.
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7.2.4.4. Examples from real operational systems

The examples below are correct at the time of writing.

UKMO

The	UK	Met	Office	provides	storm	surge	forecasting	for	the	
United Kingdom. Its 2D operational model does not currently 
assimilate any data into the model sea surface height. The 
atmospheric forcing used does include assimilated obser-
vations and comes from UKMO or the European Centre for 
Medium-Range	Weather	Forecasts	(ECMWF)	models,	depend-
ing on the system. They also have more general operational 
3D	models	that	assimilate	temperature,	salinity	and	sea	level	
anomaly,	but	the	last	is	only	done	in	deep	water.	

Rijkswaterstaat

Rijkswaterstaat provides storm surge forecasts for The Neth-
erlands. Its system assimilates information from tide gauges 
around	the	Northwest	European	Shelf,	especially	in	the	North	
Sea	(Verlaan	et	al.,	2005;	Zijl	et	al.,	2015).	They	use	a	steady-
state	Kalman	Filter	 (SSKF),	which	uses	a	stationary	Kalman	
gain	derived	from	an	ensemble	of	states,	such	as	might	be	
used	for	the	ensemble	Kalman	filter	(EnKF).	SSKF	offers	more	
computational	efficiency	than	EnKF,	and	potentially	a	better	
representation of the error covariance than the standard 
Kalman Filter. Additional localization steps are also applied 
to	the	assimilation,	to	limit	the	distance	from	observations	
over which information is assimilated.

7.2.5. Ensemble modelling

Like	any	other	forecasts,	sea	level	predictions	have	an	asso-
ciated uncertainty. The threat to life and property of extreme 
sea level events makes estimation of this uncertainty and 
the generation of a range of possible water levels (probabi-
listic	forecast)	particularly	important	for	risk	managers	and	
decision-makers. The error of a single forecast time series 
can be assessed by comparison with in-situ tide gauges at 
specific	 locations	 and	 grid	 points.	 However,	 uncertainty	 of	
the	forecast	and	its	dependence	on	the	forcing,	model	char-
acteristics,	and	set	up	is	usually	unknown.	

Uncertainty of sea level forecasts depends on several fac-
tors and may contain errors in both the tide and the non-tid-
al	residuals	(storm	surge)	components.	During	a	storm,	the	
storm surge is mainly driven by the weather conditions 
at the sea surface. This is considered to be the dominant 
source of uncertainty in sea level forecasts and may change 
significantly	 depending	 on	 the	 meteorological	 conditions.	
For	 this	 reason,	ensemble	storm	surge	 forecasts	based	on	
weather	 ensemble	 prediction	 systems	 (EPS)	 are	 the	 most	
common approach to generate probabilistic forecasts (fore-
cast	plus	a	confidence	interval).

The weather is a chaotic system highly sensitive to the initial 
state	(Lorenz,	1965)	that	can	only	be	deterministically	predicted	
for	about	10	days.	Therefore,	the	standard	procedure	for	dealing	
with	forecasts	uncertainty,	i.e.	the	combination	of	different	mod-
el	solutions	or	ensemble	modelling,	was	initially	applied	to	me-
teorological	forecasts	(Leith,	1974;	Hamill	et	al.,	2000).	Conceptu-
al background of ensembles is chaos theory; they are a valuable 
tool to deal with equations in which several nonlinear processes 
and interacting variables are present. This is the case of meteo-
rological	models	but	also	of	ocean	models	and,	particularly,	of	
tide	and	surge	models.	Hence,	their	application	is	today	strongly	
recommended in oceanography.

An EPS is based on the combination of a set of forecasts with 
different	controlled	changes	in	the	initial	conditions,	the	model	
physics	or	the	open	boundary	conditions	(Palmer	and	Williams,	
2010;	 Flowerdew	 et	 al.,	 2010).	 All	 these	 modifications	 are	 de-
signed to represent the uncertainties in the knowledge of the 
weather	 state.	 For	 example,	 different	 initial	 conditions	 allow	
to	 include	those	perturbations	that	grow	most	rapidly	 in	time,	
in a context where slight changes to the initial conditions may 
lead	to	significantly	different	forecasts	(Buizza	and	Palmer,	1995).	
Slight	modifications	of	the	set	of	equations	(including	different	
values in the parameterization constants representing different 
processes)	also	provide	estimation	of	model	uncertainties	con-
tributing to the forecast error.

Deviation	of	wind	 and	 sea	 level	 pressure	fields	 from	 their	 ac-
tual evolution will determine a corresponding deviation on the 
predicted	 sea	 level.	 Therefore,	 their	 uncertainty	 derived	 from	
weather EPS will cause an uncertainty in the evolution of the sea 
level,	 linked	 to	 the	meteorological	 forcing	and	affecting	main-
ly the storm surge component. If different weather predictions 
are	used	to	drive	different	sea	level	simulations,	the	probability	
distribution function of the forecast sea level values allows es-
timating the uncertainty of the sea level forecast and the proba-
bility of exceeding a given sea level threshold. 

The	ECMWF	EPS	has	been	operational	since	1992	(Molteni	et	al.,	
1996).	It	was	first	applied	to	storm	surge	operational	forecasts	in	
the	North	Sea	by	Flowerdew	et	al.	(2010	and	2013),	who	provid-
ed skilled probabilistic forecasts of sea level and showed that 
ensemble spread was a reliable indicator of uncertainty during 
large surge events. 

Storm surge ensemble predictions have been used to forecast 
sea	level	in	Venice	by	Mel	and	Lionello	(2014a).	They	used	a	50	
members ensemble to simulate 10 events showing that EPS 
slightly increases the accuracy of the prediction with respect to 
the	deterministic	forecast,	and	that	the	probability	distribution	
of maximum sea level produced by the EPS is acceptably real-
istic. They also showed that the storm surge peaks correspond 
to maxima of uncertainty and that the uncertainty of such max-
ima increases linearly with the forecast range. The same proce-
dure	was	used	by	Mel	 and	 Lionello	 (2014b)	 for	 the	 simulation	

CHAPTER 7. STORM SURGE MODELLING 169



of the operational forecast practice for a three-month peri-
od	(fall	2010).	It	revealed	that	uncertainty	for	short	and	long	
lead times of the forecast is mainly caused by the uncertain-
ty	of	 the	 initial	 condition	and	of	 the	meteorological	 forcing,	
respectively. The probability forecast based on this ensemble 
technique has a clear skill in predicting the actual probability 
distribution	of	sea	level.	A	computationally	cheap	alternative,	
called	ensemble	dressing	method,	has	been	proposed	by	Mel	
and	Lionello	(2016).	It	replaces	the	explicit	computation	of	un-
certainty by ensemble forecast with an empirical estimate. In-
stead	of	performing	multiple	forecasts,	the	procedure	“dress-
es”	the	forecast	of	sea	level	with	an	error	distribution	form,	
which	includes,	on	one	hand,	a	dependence	of	the	uncertainty	
on	surge	level	and	lead	time	and,	on	the	other	hand,	of	the	
uncertainty of the meteorological forcing. This computational-
ly cheap alternative also provides acceptably realistic results.

Apart	from	the	meteorological	input,	other	sources	of	error	
on sea level forecasts can be attributed to the ocean model 
characteristics and/or to the setup of the system: bathyme-
try,	spatial	resolution,	model	domain,	tidal	forcing,	temporal	
resolution	of	 the	meteorological	 input,	barotropic	or	baro-
clinic	 models,	 ocean	 open	 boundary	 conditions,	 etc.	 Cur-
rently,	sea	level	variations	on	timescales	of	hours/days	are	
operationally forecasted through different barotropic and 
baroclinic	models,	sometimes	over	the	same	area.	Therefore,	
another option is the combination of existing operation-
al	models	with	 different	 characteristics,	 forcings	 and	 even	
physics	(multi-model	forecast).	

A	multi-model	storm	surge	forecast	was	first	implemented	by	
Deltares	(an	independent	Dutch	institute)	in	2008,	combin-
ing existing operational storm surge forecasts from differ-
ent countries in the North Sea. The system included the use 
of	 the	 Bayesian	Model	 Average	 (BMA)	 statistical	 technique	

for validation of the different members and generation of 
a	 combined	 improved	 prediction,	 with	 a	 confidence	 inter-
val	 (Beckers	et	al.,	 2008).	 In	 the	same	year,	 this	methodol-
ogy was tested for the Spanish coast by Puertos del Estado 
(Spain)	(Pérez	et	al.,	2012),	combining	the	output	of	Nivmar	
(Álvarez-Fanjul	 et	 al.,	 2001),	 an	 existing	 storm	 surge	 fore-
casting	system,	with	circulation	(baroclinic)	models	already	
operating	in	the	region.	Nowadays,	at	Puertos	del	Estado	is	
operational a multi-model surge forecast named ENSURF 
that combines Nivmar with two Copernicus Marine Service 
regional	operational	models,	IBI-MFC	(Sotillo	et	al.,	2015)	and	
MedFS	(Clementi	et	al.,	2021).	

The BMA technique requires near-real time access to tide 
gauge data and automatic quality control of this data (as 
required	 by	 the	 Nivmar	 system	 as	 well),	 and	 specific	 data	
tailoring of model outputs. It is applied to the surge or 
non-tidal residual component of sea level because this can 
be approximated by a normal distribution (which is not the 
case	for	total	sea	level	including	tides,	especially	for	strong	
semidiurnal	regimes).	So,	observations	from	tide	gauges	and	
model data for those models providing total sea level must 
be previously decided. This could be considered a limitation 
but,	in	practice,	it	is	the	best	way	of	optimising	the	final	to-
tal sea level forecast by using the tidal component obtained 
from historical tide gauge observations at each site. ENSURF 
is also a valuable operational validation tool that allows a 
detailed assessment of the skills of different models to fore-
cast	coastal	sea	levels.	A	first	deterministic	forecast	is	pro-
vided by the old Nivmar solution early in the morning every 
day	and,	when	later	the	Copernicus	Marine	Service	forecasts	
become	 available,	 they	 are	 integrated	with	 the	 tide	 gauge	
data	 and,	 by	means	 of	 the	 BMA	 technique,	 a	 probabilistic	
forecast	band	is	generated	for	each	harbour	(Pérez-González	
et	al.,	2017,	Pérez-Gómez	et	al.,	2019)	(Figure	7.17).

Figure 7.17.  Example of sea level probabilistic forecast generated by the multi-model ENSURF for the Barce-
lona	harbour,	validated	against	Barcelona	tide	gauge	(hourly	data).	Top	panel:	total	sea	level;	bottom	panel:	surge	
component.	Blue:	tide	gauge	data;	orange:	tide	prediction;	black:	BMA	forecast;	grey:	BMA	confidence	interval.
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Generally,	use	of	the	probabilistic	methodology	improves	the	
forecast	and	gives	significant	added	value	to	existing	opera-
tional	systems,	as	there	is	no	single	model	that	outperforms	
at	all	tidal	stations	and	synoptic	conditions.	However,	further	
work must be done with the BMA technique to predict the 
storm	peaks	which,	 in	some	weather	conditions,	are	better	
captured by single systems.

A multi-model ensemble forecasting system has been re-
cently developed for the Adriatic Sea combining 10 models 
predicting sea level height (either storm surge or total water 
level)	and	9	predicting	waves	characteristics	(Ferrarin	et	al.,	
2020).	Other	examples	of	this	technique	can	be	found	in	New	
York	(Di	Liberto	et	al.,	2011)	and	the	North	Sea	(Siek	and	Sol-
omatine,	2011).	

7.2.6. Validation strategies

Storm surge models have been traditionally validated with 
time series of coastal sea level measured by tide gauges. 
These data allow assessing the skills of the model to repro-
duce	 observed	 water	 heights	 at	 specific	 points	 along	 the	
coast. Note the advantages this application  presents with 
respect	to	sea	level	data	from	satellite	altimetry,	less	reliable	
along the coastal strip and with a lower temporal resolution. 
Fortunately,	 there	 are	hundreds	of	 tide	 gauges	 around	 the	
world that become a very valuable and reliable dataset for 
storm	surge	validation	 (Muis	et	al.,	 2016	and	2020,	Fernán-
dez-Montblanc	 et	 al.,	 2020).	 In	 some	 cases,	 these	 stations	
provide	ancillary	meteorological	data,	such	as	wind	and	at-
mospheric	pressure,	which	can	also	be	used	to	validate	the	
model	meteorological	forcing.	In	addition,	tide	gauges	trans-
mit data in near-real time that can be integrated in an oper-
ational validation of the forecasting system (Álvarez-Fanjul 
et	al.,	2001).

In	most	cases,	the	forecast	will	provide	the	tide	and	storm	
surge	signals	(hourly	to	daily	timescales),	usually	dominant	
at	the	tide	gauge	records,	but	will	not	be	able	to	reproduce	
higher-frequency sea level oscillations such as infragravity 
waves,	seiches	or	meteotsunamis,	with	periods	of	the	order	
of	a	 few	minutes.	 It	 is	 important	 to	define	which	observed	
“sea	 level”	product	will	best	fit	 the	validation	purpose,	ac-
cording to the physical processes included in the system. 
The most adequate standard product for existing operation-
al	storm	surge	forecasting	systems	are	filtered	hourly	values	
from tide gauges. As new models include additional process-
es	(e.g.	fully	coupled	models	including	wave	effects),	higher	
resolution	bathymetries,	and	forcing	fields,	the	use	of	lower	
temporal sampling data will become more important and the 
validation process more challenging.

Normally,	 the	model	output	at	 the	grid	point	closer	 to	 the	
tide	 gauge	 is	 selected.	However,	 the	 validation	 results	will	

depend on the resolution and quality of the bathymetry 
data,	as	well	as	on	the	location	of	the	tide	gauge:	if	it	is	in	
an open site or inside a harbour or bay with important local 
effects,	it	may	not	be	resolved	by	the	model.

A careful validation of both tide and surge components 
should	 be	 performed	 to	 verify	 not	 only	 the	 final	 total	 sea	
level	forecast,	but	also	the	quality	of	the	tidal	signal	in	the	
model,	which	can	be	an	important	source	of	error	especially	
on	shallow	waters	with	high	tidal	range.	For	these	reasons,	
model	 and	 tide	 gauge	 data	 must	 be	 de-tided,	 applying	 a	
harmonic	analysis	to	both	time	series,	as	well	as	computing	
the	 tide	prediction	 for	 the	 analysed	period,	 and	 the	 surge	
or non-tidal residual after tide subtraction. The performance 
assessment can then be made in terms of comparison of the 
harmonic	constants	(amplitude	and	phase)	from	model	and	
observations,	and	in	terms	of	model	data	time	series	com-
parison	of	tide,	surge	and	total	sea	level.

It is important to mention that sea levels measured by the 
tide	gauge	will	be	related	to	a	local,	regional	or	national	da-
tum. The model forecast is theoretically referred to mean 
sea	level,	though	this	mean	sea	level	may	be	affected	by	the	
model	 setup	 implementation,	 domain,	 etc.	 Therefore,	 the	
mean should be subtracted from both time series at each 
location before comparison.

Metrics for time series validation can be found at Section 
4.5.1. Most of these metrics describe the overall performance 
of the model for a time period of several days (the storm 
duration),	months	or	years.	However,	they	do	not	reflect	the	
predictive skill for extreme surge events. This can be bet-
ter	evaluated,	for	example,	in	terms	of	the	differences	in	the	
highest	percentiles	(e.g.:	95th,	99th	percentiles)	or	the	max-
imum observed and modelled value. For validation of long 
time	 series	 (multi-decadal	 hindcasts),	 it	 is	 possible	 to	use	
annual	maxima,	annual	percentiles,	and	extreme	sea	levels	
for	 specific	 return	 periods,	 obtained	 through	 extreme	 sea	
level	analysis	(Muis	et	al.,	2020).		

Taylor diagrams can be used to graphically indicate the per-
formance	of	different	competing	models	or	 solutions,	pro-
viding	information	of	the	Pearson	correlation	coefficient,	the	
standard deviation and the RMSE at each tide gauge.

Progressively,	 the	 storm	 surge	 models	 will	 consider	 inun-
dation,	and	additional	validation	of	the	flooding	extent	will	
be required. This is less straightforward and requires other 
types	of	data,	such	as	locations	of	flooded	points,	marks	left	
by	the	water	or	reports	about	the	flood	chronology	(Le	Roy	
et	al.,	2015).	This	information	is	commonly	available	after	the	
event for a delayed mode validation; e.g. for validation of 
inundation,	Loftis	et	al.	(2017)	used	crowdsourced	GPS	data	
and	maps	of	flooded	areas	obtained	by	drones.
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7.2.7. Outputs

The main outputs of storm surge models are: time series out-
put,	maximum	elevation	field	output	(extreme	values	at	ev-
ery	time	step	for	water	surface	elevation),	ensemble	forecast	
elevation	field	output,	animation	output.

7.2.7.1. Time series outputs

The time series output is usually plotted in a two-dimen-
sional	 rectangular	 coordinate	 system,	 the	 abscissa	 is	 time	
and the ordinate is water level. The time series output of 
storm surge models are the water level changes at a certain 
location. In order to facilitate the comparison between the 

results	 of	 simulations	 and	 the	 observation	 data,	 multiple	
result curves can be plotted in the same coordinate system.

Generally,	 the	results	of	storm	surge	models	 (without	 tide)	
can	be	directly	used	 for	plotting	 time	series	diagrams,	but	
sometimes attention should be paid to the change of the to-
tal	water	 level	at	a	certain	point.	Therefore,	 there	 is	a	way	
to	 output	 the	 total	 water	 level,	 that	 is	 the	 results	 of	 the	
storm surge model without astronomical tide directly super-
imposed	on	 the	astronomical	 tide	 from	harmonic	analysis,	
obtaining in this way the time series results of the total wa-
ter level. Figures 7.18 and 7.19 show examples of time series 
model storm surge result and storm surge superimpose on 
harmonic analysis tide.

Figure 7.18. 	Time	series	model	storm	surge	result	(blue	line)	and	observed	storm	surge	(red	circle).	

Figure 7.19. 	Time	series	model	storm	surge	result	superimposed	on	predicted	tide	(blue	line)	and	observed	
water	level	(red	circle).
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7.2.7.2. Maximum elevation field

Among	the	output	methods	of	storm	surge	models,	there	is	
an	output	form	called	maximum	elevation	field.	This	kind	of	
field	output	is	not	the	water	level	field	at	a	certain	time,	but	
extracts the highest water level value of each grid point in 
the	calculation	process	to	form	the	maximum	elevation	field.	
The	maximum	water	level	field	can	be	used	to	grasp	the	dis-
tribution of the maximum water level during a Typhoon and 
to identify the more severely affected areas along the coast. 
Figure	7.20	shows	the	maximum	storm	surge	field	during	2019	
Typhoon	Mitag	(1918).

7.2.7.3. Ensemble forecast field

The storm surge ensemble forecast usually uses the respec-
tive	meteorological	forcing	fields	of	the	ensemble	members	
to calculate the storm surge separately. The output of en-
semble	forecast	fields	mainly	includes	the	following	forms:	
(a)	ensemble	mean	field;	(b)	probability	field;	and	(c)	post-
age stamp maps.

a. Ensemble mean storm surge field

In	order	 to	obtain	a	definite	 forecast	 result,	 it	 is	nec-
essary to synthesise the respective results of the en-
semble members. It is generally used to assign different 
weights to the results of each member and to super-
impose	 the	 results	 of	 all	 members,	 i.e.	 the	 weighted	
average	method	(Wang	et	al.,	2010).	The	superimposed	
result	is	output	in	the	form	of	the	elevation	field,	and	
the	ensemble	forecast	field	is	obtained	as	result.

The track map of Typhoon Mitag can be seen in Figure 
7.21. The storm surge results of the subjective typhoon 
forecast	track,	fast	track,	slow	track,	left	track,	and	right	
track are used to synthesise the ensemble forecast wa-
ter	 level	 field	 applying	 the	weighted	 average	method	
(Figure	 7.22).	 In	 this	example,	 the	weight	of	 the	 storm	
surge result of the subjective forecast typhoon track is 
60%,	while	the	weight	of	the	storm	surge	result	of	the	
other tracks are all 10%.

b. Probability storm surge field

The typhoon ensemble forecasting tracks for storm 
surge	numerical	simulation	can	describe	the	surge	field	

Figure 7.20. 	The	maximum	storm	surge	field	
during	2019	Typhoon	Mitag	(1918).

Figure 7.21.   Track map of Typhoon Mitag. Red line: 
middle track; black line: fast track; cyan line: slow 
track; magenta line: left track; blue line: right track.
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under different typhoon track scenarios. By equitably 
assigning	weights	to	different	track	results,	the	proba-
bility	field	distributions	under	different	extreme	values	
of	storm	surges	can	be	clearly	displayed,	and	the	inten-
sity probability of coastal storm surges can be more in-
tuitively	presented	(Liu	et	al.,	2020).	Figures	from	7.23	to	
7.25 show the probability distribution of forecast storm 
surge	over	0.5m,	1.0m	and	2.0m	of	Typhoon	Mitag.

c. Postage stamp maps

A postage stamp map is a set of small storm surge maps 
drawn by the results of the individual members (Figure 
7.26).	Forecasters	can	learn	about	the	possible	situation	
of each ensemble member through the postage stamp 
map,	 thereby	 estimating	 the	 magnitude	 of	 the	 maxi-
mum	storm	surge	and	the	range	of	impact.	(WMO,	2012)

Figure 7.22. 	Synthesis	of	ensemble	forecast	water	level	field.

Figure 7.23.  Distribution of probability forecast-
ing of storm surge over 0.5m.

Figure 7.24.  Distribution of probability forecast-
ing of storm surge over 1.0m.

Figure 7.25.  Distribution of probability forecast-
ing of storm surge over 2.0m.
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Figure 7.26. 	Postage	stamp	map	of	storm	surge	field	of	Typhoon	Mangkhut.

Figure 7.27. Synthesis	of	elevation	field	animation.

7.2.7.4. Animation output

The	output	of	the	water	level	field	is	very	helpful	for	grasp-
ing the distribution of the storm surge process over a whole 
region.	The	output	of	the	storm	surge	water	level	field	is	the	
elevation value of all grid points at a certain time. The el-
evation	field	figure	at	each	moment	 is	 taken	as	a	 frame	of	
the	animation,	and	all	the	frames	are	connected	to	form	the	
elevation	field	animation	(Figure	7.27).	The	elevation	field	an-
imation	can	intuitively	reflect	the	changes	in	the	water	level	
of the entire area during the impact of the storm surge.

7.2.8. Existing operational storm surge 
forecasting systems

After decades of development of storm surge numerical 
models,	many	countries	have	established	their	own	opera-
tional	 storm	surge	 forecasting	models.	 For	example,	 in	 the	
United States a storm surge forecasting system is operating 
through	the	SLOSH	model,	in	which	the	wind	field	is	estab-
lished	based	on	the	cyclone	path,	maximum	wind	speed	ra-
dius,	 storm	centre,	 and	environmental	pressure	difference;	
it provides operational forecast products and storm surge 
inundation	guidance	products	(Jarvinen	and	Lawrence,1985).	
China	 established	 ver3.0	 of	 the	 PMOST	 forecasting	 system,	
which is based on a depth-averaged two-dimensional shal-
low	water	equation	in	the	vector	invariant	form,	and	uses	a	
SCVTs grid. It can enhance the resolution in key areas and 
fit	the	coastline.	The	system	is	able	to	couple	astronomical	
tides	and	simulate	flooding	processes.	With	the	GPU	accel-
eration	technology,	the	efficiency	of	storm	surge	simulation	
along the coast of China can reach 60 sec/day. The system 
can also perform ensemble forecasts based on multiple ty-
phoon events and storm surge probability forecasting. The 
Indian Institute of Technology storm surge model was de-
veloped in the 1980s and applied to storm surge forecasts 
in the Indian Ocean and the Arabian Sea. It uses rectangular 
Cartesian coordinates and separates land and water during 
calculations. It has been applied throughout the north Indian 
Ocean	(Dube	et	al.,	1984,	Dube	et	al.,	1985).	
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The two-dimensional storm surge model developed by the 
Japan	Meteorological	 Agency	 also	 uses	 rectangular	 coordi-
nates	 (Hasegawa	et	al.,	 2015).	 In	 the	numerical	 calculation,	
the	water	and	land	are	separated	with	the	flexible	mesh,	i.e.	
fine	grid	is	used	in	shallow	water	and	coarse	grid	is	used	in	
deep water. The system can also provide ensemble forecast-
ing	products.	In	the	mid-1980s,	the	Netherlands	developed	a	
numerical	fluid	dynamics	model	called	the	DCSM,	which	uses	
a depth integrated shallow water equation. The driving force 
of the model is provided by a high-resolution regional me-
teorological	model.	 In	 the	early	1990s,	 the	Kalman	filtering	
method was used in DCSM to assimilate the water level (Ver-
laan	et	al.,	 2005;	de	Vries,	2009).	The	UKMO	developed	the	
storm	surge	 forecasting	model	CS3X,	which	 is	a	 tide-storm	

surge model. In this operational storm surge forecasting sys-
tem,	the	interaction	of	tide	and	storm	surge	is	considered.	In	
recent	years,	a	storm	surge	ensemble	forecasting	has	been	
developed	 in	 this	 system	 (Flowerdew	et	 al.,	 2013).	 A	 storm	
surge model covering the French overseas territories has 
been	operated	since	the	1990s	by	Meteo-France	(Daniel	et	al.,	
2009);	 it	was	established	based	on	the	spherical	nonlinear	
shallow water equation. In order to solve the problem of the 
shore	boundary,	 the	C-grid	difference	 format	was	adopted,	
with meteorological forcing provided by the Holland model 
(see	Section	7.2.2.3).	Table	7.2	provides	a	list	and	features	of	
storm surge forecasting systems currently operating in vari-
ous countries.

Table 7.2.  List and features of operational storm surge forecast models.

CountryGridTypeAreaModel

HAMSOM,	Nivmar

Coupled ice–
ocean NPAC

JMA	Storm	Surge

Mike 21 pre-
operational 
3-D	2-D	finite	

element MOG2D

Mike 21 pre-
operational 
3-D	2-D	finite	

element MOG2D

KMA Storm Surge

Mediterranean Sea and  
Iberian Peninsula

Grand	Banks,	Newfoundland,	
Labrador

NE	Pacific,	120°W–160°W,	
40°N–62°N

23.5°N–46.5°N,	122.5°E–146.5°E

North	Sea,	Baltic	Sea

North	Sea,	Baltic	Sea

20°N–50°N,	115°E–150°E

Vertically integrated 
barotropic

3-D circulation based 
on the Princeton Ocean 

Model

2-D linearized shallow 
water

2-D hydrodynamic

2-D hydrodynamic

2-D barotropic surge and 
tidal current based on the 

Princeton Ocean Model

10 minutes

Approximately 20 km x 20 km

Finite difference curvilinear 
C-grid 1/8 degree

Staggered Arakawa C-grid. 1 
minute latitude/longitude

Finite	difference	9	nmi,	3	nmi,	1	
nmi,	1/3	nmi

Finite	difference	9	nmi,	3	nmi,	1	
nmi,	1/3	nmi

Approximately	8	km	x	8	km,	finite	
difference curvilinear C-grid 1/12 

degree

Spain

Canada

Japan

Denmark

Denmark

Republic of Korea
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CountryGridTypeAreaModel

NIVELMAR

BSH circulation 
(BSHcmod)

BSH surge 
(BSHsmod)

Caspian Storm 
Surge

WAQUA-in-
Simona/DCSM98

SLOSH

HIROMB/NOAA

Derived from 
MOTHY	oil	spill	

drifts model

Short-term sea-
level and current 

forecast

SMARA storm 
surge

Portuguese mainland coastal

North-east	Atlantic,	North	Sea,	
Baltic

Caspian	Sea	36°N–48.5°N,	
45°E–58°E

North	Caspian	Sea	44.2°N–48°N,	
46.5°E–55.1°E

Continental	shelf	48°N–62°N,	
12°E–13°E

Sea area south of Hong Kong 
within 130 km

North-east	Atlantic,	Baltic

Near-Europe Atlantic (Bay of 
Biscay,	Channel	and	North	Sea)	

8.5°E–10°E,	43°N–59°N

West Mediterranean basin (from 
the	Strait	of	Gibraltar	to	Sicily)

Restricted area in overseas 
departments and territories

Caspian Sea and near-shore low-
lying zones

Shelf	sea	32°S–55°S,	51°W–70°W.

Rio de la Plata

Shallow water

3-D hydrostatic circulation 
2-D barotropic surge

2-D	hydrodynamic,	based	
on MIKE 21 (DHI Water & 

Environment)

2-D	shallow	water,	ADI	
method,	Kalman	filter	

data assimilation

Finite difference

3-D baroclinic

Shallow-water equations

3-D hydrodynamic 
baroclinic

2-D depth-averaged

1 minute latitude x 1 minute 
longitude

Regional	spherical,	North	Sea,	
Baltic	6	nmi,	German	Bight	
Western	Baltic,	1	nmi,	surge	
North	Sea,	6	nmi,	north-east	

Atlantic 24 nmi

10 km x 2 km

1/8 degree longitude x 1/12 
degree latitude

Polar,	1	km	near	to	7	km,	South	
China Sea

C-grid,	24	nmi

Arakawa C-grid 5’ of latitude x 5’ 
of longitude Finer meshes

3	nmi	horizontal,	19	levels

Geographical	Arakawa	C-grid,	
1/3 degree latitude x 1/3 degree 

longitude

1/20 degree latitude x 1/20 
degree longitude

Portugal

Germany

Kazakhstan

Netherlands

Hong	Kong,	China

Sweden

France

Russian 
Federation

Argentina
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CountryGridTypeAreaModel

IIT–Delhi,	IIT–
Chennai,	NIOT–

Chennai

SLOSH

CS3 tide surge

PMOST 3.0

East and west coasts of India and 
high-resolution areas

Atlantic and gulf coasts

North-west European shelf waters

China sea 

10°N~45°N,	105°E~140°E

Non-linear,	finite	element,	
explicit	finite	element

2-D depth integrated

Finite	difference,	vertically	
averaged

2-D depth-averaged 
barotropic

For inundation model average 
spacing of 12.8 km offshore 

direction and 18.42 km along shore

625 meters

C-grid	12	km,	nested	finer	
resolution

SCVTs	unstructured	grid,	10km	
at boundary and 500m along 

shoreline

India

United States

United Kingdom

People's	Republic	
of China
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8.1.  
General introduction to wave characterization
Waves are extremely important in OOFS. This section gives 
an overview of the main challenges foreseen by OOFS for 
predictions to be able to numerically represent some rele-
vant processes like that in Figure 8.1.

8.1.1. Objective, applications, and beneficiaries

Why is a comprehensive and reliable wave forecast  
so important?

In	the	last	decade,	the	worldwide	seas	were	hit	by	severe	
storms	(see	ECMWF,	2020),	which	caused	serious	damages	in	
offshore	and	coastal	zones,	and	attracted	public	attention	on	
the importance of having reliable and comprehensive wave 
forecasts,	especially	when	extreme	events	occur	(Figure	8.2).	
Additionally,	human	activities,	such	as	offshore	wind	power	
industry,	oil	industry,	and	coastal	recreation	also	necessitate	
regular operational sea state information with high resolu-
tion in space and time.

Furthermore,	extreme	waves	can	cause	serious	impacts	over	
coastal environments and infrastructures. The design of coastal 

and offshore structures requires a reliable estimation of maxi-
mum wave height. Efforts of sea state information are directed 
towards	the	improvement	of	environmental	loads	definition	
for lifetime of a ship or structure (e.g. wind energy turbines or 
oil	and	gas	platforms).	For	example,	long-term	statistical	and	
high-resolution	predictions	of	significant	wave	height	are	nec-
essary for planning the maintenance operations of offshore 
wind	farms.	Subject	to	wave	forecasts,	in	the	days	and	hours	
preceding	a	mission,	“go/no	go”	decisions	are	made	on	opera-
tions	and	maintenance	activities	in	offshore	wind	farms.	Indeed,	
a reduction of uncertainties on metocean conditions will have a 
direct	impact	on	structure	and	mooring	loads,	both	for	ultimate	
limit	state	and	fatigue	design,	as	well	as	for	warning	criteria	for	
ships. These results can be obtained through hindcast and fore-
cast	studies	including	maximum	wave	parameters,	which	also	
aim at expanding the wave Copernicus Marine Service products 
catalogue1 by providing novel wave diagnostics.

1. https://myocean.marine.copernicus.eu/
data?view=catalogue&initial=1

Figure 8.1. 		 Waves	panorama	(credits:	Gabriel	Barajas	Ojeda,	IHCantabria).
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The level of performance of wave forecasting products is of 
crucial importance. The assimilation of novel satellite data 
in global Monitoring and Forecasting Centres has pointed out 
the skill of the systems during storms generating high waves 
(Aouf,	2018).	The	joined	satellite	and	model	analyses	also	
demonstrate the capability of the wave forecasting products 
to cover from global to regional scales (Copernicus Marine 
Service,	OSR2),	as	well	as	the	potential	benefits	of	merging	
observational and modelled products (such as those shown 
in	Figure	8.3)	provided	by	the	Copernicus	Marine	Service.

2. https://marine.copernicus.eu/access-data/ocean-state-report

Monitoring and forecasting

Monitoring	and	forecasting	of	wind	waves	are,	in	most	cases,	
closely linked with ocean and atmospheric observations and 
modelling. The availability of systematic near-real time ocean 
observations is a prerequisite for the quality of weather and 
ocean state forecasts. Novel satellite wave observations are 
crucial for reducing the uncertainties in prediction skills for 
the wave simulations. Given that most of the buoy observa-
tions	are	coastal,	remote	sensing	data	are	needed	for	tuning	
and	validating	the	models	offshore.	On	the	other	hand,	ocean	
waves have a clear signature in most ocean remote sensing 

Figure 8.2. 		 Left:	high	waves	flooding	after	passage	of	Hurricane	Irma	in	Saint	Martin	(Atlantic	Ocean)	in	Sep-
tember	2017	(source:	RCI-Guadeloupe).	Right:	high	waves	warning	after	passage	of	tropical	cyclone	Eliakim	in	La	
Réunion	(Indian	Ocean)	on	15	March	2018	(copyright	IPR	Imaz	Press	Réunion).

Figure 8.3. 		 Left:	time	series	of	significant	wave	height	at	Brittany	(France)	buoy	location	during	storm	Carmen	
on	1	January	2018.	Blue,	red	and	black	colours	stand	for	hindcast	from	wave	model	MFWAM,	analysis	from	model	
with	assimilation	of	Sentinel-3	SWH	and	buoy	SWH,	respectively.	Right:	SWH	map	(in	metres)	from	Copernicus	
Marine	Service	global	wave	reanalysis	at	peak	of	1	January	2018	event,	09	UTC	(source:	Copernicus	Marine	Service).

CHAPTER 8. WAVE MODELLING 188

https://marine.copernicus.eu/access-data/ocean-state-report


techniques,	either	adding	noise	or	biases,	and	stable	correc-
tions and detection are very important for sea level and ve-
locity estimates from altimetry (Climate Change Initiative 
Coastal	Sea	Level	Team,	2020;	Marti	et	al.,	2021).	It	is	import-
ant to underline that future regular monitoring of maximum 
wave heights is expected to improve understanding of the 
conditions that favour the generation of very large waves in 
the global ocean.

Sea state information for applications

There is a steady growth of the already intense interest in the 
wave conditions in coastal areas at different time scales. In-
creasing	maritime	traffic,	recreational	activities,	urban	devel-
opment,	ecosystem	restoration,	renewable	energy	industry,	
offshore	management,	all	push	in	this	direction	(Cavaleri	et	
al.,	2018).	Indeed,	sea	state	affects	most	of	the	activities	at	
sea	(shipping,	oil	and	gas	industry,	fisheries,	offshore	aqua-
culture,	etc.),	on	the	coast	(marine	protected	areas,	harbours,	
marine	renewable	energy,	tourism,	etc.).	These	activities	re-
quire	precise	information	on	the	sea	state	(hindcast,	nowcast	
and	forecast)	and,	in	particular,	on	wave	extremes.	In	addition	
to	activities	directly	linked	to	the	ocean,	wind	waves	are	of	
general interest to the Earth system.

Extreme events

Wind waves constitute the most relevant ocean process 
affecting the human activities and nearshore environ-
ment. The sea state and its related spatio-temporal vari-
ability dramatically affect maritime activities and the 
physical connectivity between offshore waters and coast-

al	ecosystems,	impacting	also	on	the	biodiversity	of	ma-
rine	protected	areas	(Hewitt,	2003;	González-Marco	et	al.,	
2008).	Given	their	destructive	effects	 in	both	the	shore-
line	environment	and	human	 infrastructures,	 significant	
efforts have been devoted to predict extreme wave height 
events,	prompting	a	wide	range	of	adaptation	strategies	
to deal with natural hazards in coastal areas (Hansom et 
al.,	2015).	In	addition,	there	is	also	the	emerging	question	
about the effects of anthropogenic global climate change 
on present and future sea state conditions.

Tropical cyclones are commonly linked to devastation by 
hurricane	force	winds,	storm	surges	and	strong	rainfall.	They	
are also responsible for large exchanges of heat in the up-
per	ocean	and	the	atmosphere,	and	the	transport	of	water	
from	ocean	to	land.	However,	the	dynamics	inside	these	ex-
tremes are poorly sampled and understood. SAR overcomes 
these	 situations,	but	 it	 is	only	able	 to	 recover	one-dimen-
sional	information,	which	limits	the	ac<Zcuracy	of	estimated	
quantities	like	wind	speed,	total	surface	current,	and	wave	
spectra.	 In	tropical	cyclones,	wave	spectra	(e.g.	from	Senti-
nel	or	by	 the	CFOSAT)	can	only	partly	be	 recovered,	as	 the	
quickly changing sea surface limits the resolution of SAR in 
the	azimuth	direction	(Ardhuin	et	al.,	2020)	and	from	SWIM	
instrument	of	CFOSAT	mission	(Figure	8.4).

Coupling with circulation

The combined effect of high waves and sea level surge aggra-
vate the storm risk potential. Integration of local wave and 
sea	level	forecasting	systems	(Álvarez-Fanjul	et	al.,	2018;	Sta-
neva	et	al.,	2020)	and	their	associated	alerts	demonstrated	

Figure 8.4. 	 	Left:	trajectory	of	hurricane	Pablo	from	25	to	28	October	2019,	NHC-NOAA	tropical	cyclone	report.	
Right:	wave	spectrum	observed	by	CFOSAT	near	the	trajectory	of	hurricane	Pablo	(17°W-45°N)	on	27	October	
2019	at	18	UTC	(source:	Beven,	2019).
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the urgent need for such services. In respect to deep open 
waters,	 the	 relevance	 of	 currents	 is	 a	 difference	 emerging	
often.	In	the	past,	especially	in	the	deep	ocean,	surface	cur-
rents did not reach velocities to substantially affect wave 
conditions,	 which	 led	 to	 ignoring	 the	 wave	 induced	 cur-
rents	 in	 the	 ocean	 forecasts.	 However,	 close	 to	 the	 coast,	
the	 currents	 (barotropic	 and	 baroclinic)	 are	 geographically	
enhanced	reaching	values	 that,	 if	not	considered,	can	 lead	
to	substantial	errors	 in	wave	model	 results	 (Cavaleri	et	al.,	
2018).	Coupling	between	wind	waves	and	circulation	model	
waves	 can	 also	 affect	 the	 predictions	 of	 water	 levels,	 and	
thus of storm surges through changes in the stress of the 
upper-ocean	 mixing	 and	 circulation	 (Thomas	 et	 al.,	 2008;	
Staneva	et	al.,	2021),	providing	more	accurate	offshore	wave	
spectra	 (Cavaleri	 et	 al.,	 2018).	 Besides,	 forecasting	 the	 La-
grangian behaviour of surface currents is a key to identify 
high-risk	scenarios	for	pollution	of	coastal	areas,	search	and	
rescue,	marine	plastic,	or	quantify	transport	and	retention	of	
larvae	or	other	planktonic	organisms,	with	impact	for	fishery	
and Marine Protected Areas management.

Mixing

Human activities that take place at the atmospheric and 
ocean	mixed	layer	(e.g.	offshore	wind	energy	sector)	are	large-
ly	driven	by	the	air-sea	exchanges	of	momentum,	heat,	and	
gas	transfer.	The	fluxes	between	atmosphere	and	ocean	are	
usually	parameterized	using	bulk	formulations,	in	which	coef-
ficients	are	often	a	function	of	wind	speed	alone.	For	example,	

ocean	waves	largely	define	air-sea	fluxes	and	upper	ocean	
mixing	(Babanin	et	al.,	2012;	Veron,	2015).	A	considerably	en-
hanced momentum transfer from the atmosphere to the wave 
field	is	found	during	growing	sea	state	(young	sea)	(Janssen,	
1989).	A	wind	stress	formulation	depending	on	wind	stress	
and the wind–wave momentum released to the ocean was 
proposed	by	Janssen	(1991).	When	running	stand-alone	ocean	
or	atmosphere	models,	the	surface	waves	that	represent	the	
air-sea interface are not taken into account. This can cause 
biases	about	the	upper	ocean,	due	to	insufficient	or,	in	some	
cases,	too	strong	mixing	(Breivik	et	al.,	2015),	or	even	because	
the momentum transfer is shifted in time and space compared 
to	how	the	fluxes	would	behave	in	the	presence	of	waves.	Re-
cent analyses show a moderate impact for intermediate wind 
speeds	(Edson	et	al.,	2013),	even	though	it	is	expected	that	the	
surface roughness caused by waves should play a role (Done-
lan,	2004),	although	it	is	often	correlated	with	the	wind	speed.	
The impact of waves on upper ocean mixing and sea surface 
temperature,	in	particular	in	cases	of	shallow	mixed	layers,	is	
clearer	at	global	and	regional	scales	(Janssen,	2012;	Staneva	et	
al.,	2017;	Law	Chune	et	al.,	2018);	see	an	example	in	Figure	8.5.

Engineering and near coastal applications

In order to design and operate ocean and coastal infrastruc-
tures	(e.g.	dikes,	harbours,	etc.)	wave	climate	data	and	wave	
statistics	are	crucial.	High-resolution,	high-skill	wave	forecasts	
are	important	for	coastal	and	marine	engineering,	given	that	
waves can damage marine infrastructures and affect the safety 

Figure 8.5. 		 Mean	difference	(in	percentage)	of	sea	surface	temperature	induced	by	wave	forcing	in	compari-
son	with	reference	NEMO	without	waves	(surface	stress,	Stokes	drift	and	wave	breaking	inducing	turbulence	in	
the	ocean	mixed	layer)	for	austral	summer	(January	to	March	2020)	(source:	Aouf	et	al.,	2021).
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of	shipping,	ports,	and	offshore	operations.	Waves	contribute	
to	a	large	extent	to	shoreline	erosion	and	flooding,	which	can	
influence	coastal	ecosystems	and	affect	coastal	communities.	
Realistic assessment and good understanding of historical wave 
climate is important to successfully address challenges and 
opportunities	caused	by	present	and	future	climate	change,	
such	as	reduction	of	sediment	supply	by	rivers	to	sand	mining,	
blocking of longshore sediment transport by ports and other 
structures,	sea	level	rise,	particularly	near	tidal	inlets,	and	land	
subsidence. Wind waves force coastal bathymetry changes and 
in	coastline	evolution,	especially	during	extreme	events	or	large	
swell	events,	waves	can	damage	beaches,	dunes,	and/or	dikes.

Early warning systems and risks

Warnings from integrated high-resolution wind waves surge 
forecasting systems can be sent in advance to the users. 
Several actions can be carried out to mitigate the impact of 
extreme	hydrometeorological	events.	For	example,	harbours	
would stop operations to prevent accidents and assure safe-
ty. In some events material damages can be considerable 
but,	as	a	result	of	preventive	actions,	personal	injury	can	
be avoided. Thanks to freely available satellite imagery (e.g. 

Sentinel),	it	is	now	possible	to	observe	from	nadir	altimeters,	
with	good	accuracy	and	increased	sampling,	the	coastline	
changes	by	significant	wave	height,	as	shown	in	Figure	8.6.

The assimilation of newly available satellite-based wave data 
in wind wave models allows to more accurately hindcast and 
forecast	coastal	evolution	in	remote	and	ungauged	areas,	and	
to assess the effectiveness of coastal management strategies. 
Wind wave forecasts directly may improve the safety of peo-
ple	working	offshore,	such	as	those	on	oil	platforms,	fishers,	
etc. Professional sailors are constantly looking for wave fore-
cast products that improve their knowledge and forecasts of 
sea state to be able to make the best decisions about routes 
and actions they will take during month-long competitions.

Sea state and coastal ecosystems

Some	coastal	ecosystems,	such	as	salt	marshes,	coral	reefs,	
mangroves,	and	seagrass	meadows,	play	a	fundamental	role	in	
shaping	nearshore	processes	in	a	large	portion	of	the	world's	
coastline. Due to their capacity to naturally mitigate coastal 
flooding	and	erosion,	the	management	and	protection	of	these	
ecosystems is increasingly advocated within nature-based 

Figure 8.6. 		 Sentinel-2	image	observing	coastal	changes	at	Maroni	estuary	(French	Guyana)	overlapped	by	
high	resolution	(1	km)	significant	wave	heights	on	CFOSAT	nadir	tracks	in	March	2021.	CFOSAT	captures	the	
decrease	of	SWH	induced	by	very	shallow	water	depth	processes	(courtesy	of	A.	Dalphinet,	MeteoFrance).
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coastal protection initiatives. Awareness that Nature-based 
solutions	(NBS)	can	tackle	societal	challenges	by	utilising	envi-
ronmentally safe operations for vulnerability and risk assess-
ment	processes	is	growing.	For	example,	marine	seagrass	is	
highly	considered	as	a	useful	NBS,	as	it	is	capable	of	attenu-
ating the impact of storm surges and coastal erosion. Ecosys-
tem	models	usually	have	significant	uncertainty	in	predictions.	
Understanding and better predicting wave-driven nearshore 
processes would help to improve our knowledge of hydrody-
namic interactions with ecosystems across different time and 
space.	Furthermore,	wave	forecast	data	are	needed	for	activities	
involving	protection,	development,	and	enhancement	of	coastal	
and	marine	environments.	Besides,	sea	state	information	can	
provide	technical	and	scientific	support	to	policy	makers	and	
stakeholders for environmental governance.

Wave data and the industry (e.g. marine energy sector, ship-
ping operations, emergency response, etc.)

Wave	data	are	critical	for	safe	and	efficient	design,	instal-
lation and operation of assets of the marine energy sector. 
High-resolution regional and coastal wave models can help 
to	improve	downscaling	of	general	sea	state	forecasts,	iden-
tify	hotspots	of	different	wave	height	properties,	and	pri-
oritisation	of	maintenance	jobs	in	offshore	wind	turbines,	
reducing their maintenance cost. Applications can further 
include	initial	resource	assessment	(wave	power),	environ-
mental	assessment,	and	planning	(e.g.	for	installation	and	
execution,	operation	and	maintenance).

Sea	state	conditions	have	a	significant	impact	on	the	design	
and structure of how vessels are built. The changes of the sea 
state impact on vessels operations and have always been a 
challenge for seafarers to which they have had to continually 
adapt.	Besides,	shipping/cargo	operations	are	highly	impact-
ed	by	sea	state	and	weather	conditions.	In	addition,	wave	
forecasts are needed for oil spill and emergency respons-
es. The industry has developed various ways to adapt to the 
strength of the ocean. As evolving design and commercial 
needs	push	the	boundaries	of	vessels‘	size	and	capacity,	the	
demand for accurate sea state information increases.

Climate and waves as a part of the Earth system models

In	our	“blue”	planet,	interactions	between	the	atmosphere	
and	the	ocean	are	crucial	for	the	climate,	and	sea-related	
research	plays	a	key	role	for	a	sustainable	future	(Visbeck,	
2018),	as	advocated	by	international	initiatives	like	the	Unit-
ed Nations Decade of Ocean Science for Sustainable Devel-
opment	(2021-2030).	Recent	studies	(e.g.,	Hewitt	et	al.,	2017)	
have shown the relevance of air-sea interaction for a wide 
variety of phenomena (e.g. tropical/extratropical cyclogen-
esis,	storm	tracks,	and	global	energy/radiation	balances).	
Moreover,	the	IPCC	has	recognized	the	relevance	of	ocean	
waves	for	natural	hazards	in	coastal	areas,	pointing	out	the	

need	for	more	mature	regional	(coupled)	downscaling.	Fur-
thermore,	air-sea	transfers	will	become	even	more	critical	in	
the	future,	due	to	enhanced	interface	transients,	tempera-
ture	gradients,	and	possible	other	factors.	To	address	the	un-
certainty and sensitivity of future projections due to global 
warming,	it	is	necessary	to	fill	the	knowledge	gaps	related	to	
air-sea	feedbacks,	which	also	limit	present	weather	model-
ling,	advancing	from	semi-empirical	(bulk)	formulations	to	
sea-state dependent equations with an enhanced process 
basis. There is also an urgent need to advance the under-
standing and improve the modelling capabilities of the air-
sea	boundary,	in	which	wind-waves	play	a	key	role.

The atmosphere-ocean feedback has now become state-of-
the-art	in	weather	prediction,	but	their	bearing	in	climate	
simulations is somewhat limited and warrants a more de-
tailed	assessment	(Breivik	et	al.,	2015).	The	modulation	of	
the active air-sea interface alters atmospheric and oceanic 
dynamics,	as	well	as	the	associated	bio-geo-chemical	fluxes	
(e.g.	CO2	fluxes	and	storage	at	sea).	Sea-state	coupling	should	
be	accounted	for	in	predictions/projections,	so	that	the	wave	
modulating effect on weather and climate evolution can be 
properly	reproduced	(Parkinson	and	Cavalieri	2012).	Within	
an	appropriate	coupling	and	downscaling/nesting	strategy,	
gaining understanding of air-sea interactions would reduce 
uncertainty in forecasting and be a critical advance for cli-
mate projections. Air-sea interface may have a role well be-
yond	that	conventionally	accepted,	and	non-linear	feedback	
should become more crucial under changing climate.

It is then essential to introduce the role of sea-state in both 
global	and	regional	models	for	climate	projection,	addressing	
the resulting implications for bio geochemical and boundary 
(sea-ice	and	land)	processes.	Enhanced	ESMs	can	be	sup-
ported	by	new	satellites	(e.g.	CFOSAT,	Sentinel	data,	etc.)	to	
achieve improved predictions for energetic conditions (e.g. 
tropical	cyclones	or	Mediterranean	tropical-like	cyclones,	of-
ten	referred	to	as	medicanes)	and	projections.	In	an	ESM,	the	
sea state needs to be considered at both global and regional 
scales,	ensuring	consistency	and	contributing	to	overcome	
uncertainties of projections at both short-term and long-term 
time scales. The advances on air-sea-wave-ice interactions in 
coupled	models	(including	the	land	boundary)	will	contribute	
to bridge the gap between predictions/projections.

8.1.2. General characteristic of waves

8.1.2.1. General concepts

Within the catalogue of physical meteo-oceanographic vari-
ables	and	processes	offered	by	any	OOFS,	waves	can	be	con-
sidered one of the most relevant elements. Waves have high 
interaction	with	human	activities	located	on	the	coast	(coasts,	
ports,	river	mouths,	etc.)	given	their	energetic	importance,	and	
their cyclical and continuous presence in nature. Figure 8.7 dis-
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plays the energetic relevance of wind-generated waves (with 
typical	periods	between	1	and	30s),	in	comparison	with	other	
oscillatory variables in the marine physical environment.

Traditionally,	observations	of	ocean	waves	were	obtained	
through	visual	databases	(Gulev	et	al.,	2003)	limited	in	space	
and	time,	and	with	a	high	uncertainty	about	their	qualita-
tive	genesis.	Likewise,	instrumental	wave	databases	(Chel-
ton	and	McCabe,	1985),	obtained	at	discrete	points	in	ocean	
and	coastal	areas,	have	been	relevant	in	the	understanding,	
quantification,	and	exploitation	of	this	variable.	However,	
only	records	of	no	more	than	two	decades	duration,	general-
ly non-continuous and acquired by equipment with non-ho-
mogeneous	hardware	characteristics,	were	available.	

More	recently,	thanks	to	satellite	technology	it	is	possible	to	
rely	on	a	more	extensive,	continuous,	accurate	and	homoge-
neous	wave	database	(Barstow	et	al.,	2004;	Ribal	and	Young,	
2019),	with	approximately	two	decades	of	development	in	
the state of the art. The major disadvantage of this type of 
data consists in the spatial discontinuity conditioned by the 
satellite’s	own	translation,	which	only	manages	to	cover	nar-
row trajectories (see Chapter 4,	Section	4.2.3).

In	the	same	way,	thanks	to	technological	advances	in	comput-
ers,	in	recent	years	it	has	been	possible	to	obtain	continuous,	
homogeneous,	and	realistic	wave	databases	with	global	cover-
age	(Saha	et	al.,	2010;	Reguero	et	al.,	2012;	Perez	et	al.,	2017),	in	
line with directional calibration techniques for post-process-
ing this type of series. These new databases are in turn fed by 
global	climate	models	of	wind,	pressure,	ice	cover,	and	other	
variables	(Tolman,	2010).	See	in	Figure	8.8	a	general	scheme	of	
variables and processes for wind-generated waves.

The wave variable represents one of the fundamental bas-
es	of	meteo-oceanographic	knowledge,	due	to	its	energy	
and interactions with natural and human activities in open 
and	coastal	areas.		Therefore,	it	is	important	to	have	a	good	
quantification	of	wave	characteristics,	either	from	a	statisti-
cal	(long-term	or	multi-year	/	hindcast	databases)	or	predic-
tive	(short-	to	medium-term	/	forecast	strategies)	approach.	
This	information	is	needed	to	design,	construct,	and	operate	
maritime activities from coastal areas  to offshore locations 
exposed	to	extreme	events,	as	well	as	for	environmental	
management,	climate	analysis,	and	all	situations	in	which	
the complex processes of wave transformation occur.
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Figure 8.7. 	 	Frequencies	and	periods	of	the	vertical	notions	of	the	ocean	surface	(adapted	from	Pérez	et	al.	
2013,	Holthuijsen	(2007),	after	Munk	(1950)).
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The	current	techniques	require	long-time	(historical)	series	
on	the	most	relevant	wave	variables,	associated	to	sea	states	
(generally	hourly)	with	a	global	coverage.	These	databases	
are	already	available,	often	free	of	charge,	thanks	to	import-
ant technological efforts of different institutions worldwide 
(Rascle	et	al.,	2008;	National	Centers	for	Environmental	Pre-
diction,	2012;	Le	Traon	et	al.,	2019).	This	reliable	information	
is	subjected	to	validation,	assimilation,	and	calibration	pro-
tocols	with	instrumental	data	(Thomas,	et	al.,	2008;	Stopa,	
2018)	but,	as	it	is	only	limited	to		open	water	areas,	does	
not usually include the transformation processes that waves 
undergo	in	intermediate	to	reduced	waters.	Then,	to	include	
these	relevant	processes,	it	is	necessary	to	address	the	con-
cept	of	wave	downscaling,	and	additional	physics	is	needed	
to characterise in detail and with high resolution the waves 
in	coastal	areas,	harbours,	beaches,	etc.	

Modern downscaling relies almost entirely on the support of 
numerical	models	that,	over	the	last	decade,	have	evolved	

enormously	in	terms	of	resolution,	including	physical	pro-
cesses,	spatial	extensions;	also	the	variables	to	be	obtained	
go	beyond	the	basic	wave	variables.	However,	the	new	pro-
cesses/variables	to	be	obtained,	along	with	the	new	numer-
ical	tools,	tend	to	increase	the	complexity	of	the	solutions,	
since they call upon for increasingly sophisticated mathe-
matical	formulations,	rise	the	dimensions	of	the	computa-
tional scheme (from two-dimensional to three-dimensional 
scopes)	and,	consequently,	boost	the	computational	time	for	
their solution.

This trend represents an important technical constraint in 
the assembly of numerical solutions for obtaining the wave 
variables,	from	hourly	to	multi-annual	statistical	analysis,	as	
well as for any analytical project in the predictive or forecast 
environment,	in	which	the	results	are	expected	to	be	avail-
able on a daily basis and within a calculation window of a 
few minutes/hours. 
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Figure 8.8.   General scheme of variables and processes for wind-generated waves’ characterization from 
offshore to coastal zones.
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Different methods have been proposed in the literature (Gas-
likova	and	Weisse,	2005;	Camus,	et	al.	2011	and	Camus,	et	al.	
2013)	to	overcome	this	problem,	with	the	purpose	of	a	better	
understanding of the complexity of the physical process-
es	associated	with	the	generation	/	propagation	of	waves,	
without paying a computational cost that moves the climate 
solution	away	from	its	practical	and	efficient	objective.	

In this chapter are discussed the most relevant concepts on 
the	quantification	of	the	wave	variable	in	the	meteo-ocean-
ographic	field,	focusing	on	how	to	obtain	time	series	(hourly)	
of	this	variable	in	the	multi-annual	field	(hindcast)	and	the	
predictive	field	that	are	part	of	an	OOFS.	Basic	concepts	are:

• Theoretical	definition	of	waves;

• Techniques,	tools,	and	numerical	models	that	are	
currently commonly used worldwide;

• Architecture	and	singularities	in	the	solution	schemes,	
assembly,	and	general	approximation	methods	for	the	
adequate exploitation of the tools;

• Basic and advanced variables associated with waves 
that can be obtained in different geographical areas;

• Some examples of multi-annual and forecast systems 
currently operating at the global level.

In line with the ten challenges of the UN Decade of Ocean 
Science	for	Sustainable	Development,	this	chapter	aims	at	
making the readers able to obtain general and basic knowl-
edge	of	wave	climate,	enabling	them	to	establish	their	own	
multi-annual statistical prediction and interpretation sys-
tems	for	studies	and	projects	in	coastal	engineering,	offshore	
maritime	works,	beach	design,	integrated	coastal	manage-
ment,	harbour	agitation,	forensic	analysis	of	extreme	events,	
design	formulations	for	coastal	engineering,	marine	con-
struction	aid	systems,	etc.

8.1.2.2. Definitions

This section describes the general terminology for the phys-
ical features of the ocean waves. Theoretical water waves 
are described by their length (L),	height	(H),	amplitude	(a)	
or height (H ),	and	water	propagation	depth	(d ).	Other	vari-
ables,	such	as	velocities,	pressures	and	accelerations	can	
be explicitly mathematically calculated from the three ba-
sic quantities: amplitude (a),	wavelength	(L)	and	period	(T ).	
Two-dimensional wave schematic is traditionally visualised 
(Dean	and	Dalrymple,	1991)	to	better	understand	the	wave	
main	characteristics	(Figure	8.9).

This	scheme	exemplifies	ocean	waves	a	as	simple	sinusoidal	
wave,	where	a represents the oscillatory and cyclic vertical 
distance	between	the	mean	water	level	and	the	crest	height,	
and η(x,t) represents the vertical position of the free sur-
face	at	a	specific	location	x and time. The coordinate axis 
used to describe wave motion is located on the still water 
line z=0 and bottom of the water z=-d. Wavelength (L)	can	
be	defined	using	the	dispersion	relation	(as	described	in	Eq.	
8.1),	defined	as	the	horizontal	distance	between	two	succes-
sive	wave	crests	or	troughs	(wave	lowest	point)	and	directly	
related with the wave period (T,	as	the	required	time	for	two	
successive	crests	to	pass	from	a	fixed	point	in	space	or	time	
respectively),	over	a	water	depth.

As	waves	propagate,	water	mass	moves	in	orbital	trajecto-
ries.	Also,	wave	phase	velocity	or	celerity	(C ),	is	equivalent	
to C=L/T. 

This	idealisation	rarely	appears	in	nature,	neither	in	frequen-
cy	nor	in	direction.	Thus,	irregular	waves	or	real	field	waves	
can be organised as a superposition of a large number of 
sinusoidal	components	(monochromatic	waves)	going	in	
multiple	directions,	each	of	them	with	different	frequencies	
or	periods,	amplitudes	and	random	phases.	This	idea	allows	
the	use	of	a	classical	Fourier	analysis,	statistical	techniques,	
and well-known energy-spectral techniques to adequately 
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Figure 8.9.   Characteristics of a 2D linear water wave.
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assimilate and describe ocean waves that exist within any 
location and time window (generally within 1 hour as sea-
state	definition).	

Random	or	irregular	ocean	waves,	as	a	summation	of	inde-
pendent	harmonic	waves,	can	be	described	in	detail	with	lin-
ear	theory	for	surface	gravity	waves,	only	valid	for	small	am-
plitude	waves.	Linear	theory	(also	called	Airy	theory,	or	Airy	
waves),	after	a	clear	definition	of	basic	governing	equations	
and	contour	conditions,	gives	the	solution	of	a	long-crested	
harmonic	propagating	wave	in	the	x-direction,	as	follows:

(8.1)

That yields the general dispersion equation that relates the 
angular frequency ω =2π/T and wavenumber ω =2π/L:

(8.2)

So,	dispersion	conditions	can	be	used	to	calculate	the	wave	
propagation	velocity	at	any	depth,	based	only	on	the	wave	
period.	As	a	result,	 long	waves	travel	faster	compared	to	
short	waves.	These	waves,	whose	propagation	speed	de-
pends	on	the	wavelength	and	frequency,	are	called	disper-
sive waves.

When	waves	travel	and	propagate	in	the	ocean,	they	form	
groups of different components. Since the difference be-
tween	the	spectral	sea-state	frequencies	is	infinitely	small	
(difference	between	adjacent	wave	numbers	is	also	infinitely	
small),	the	velocity	of	the	group	(Cg ) can be calculated from 
the phase velocity (C) as shown below:

(8.3)

It indicates that the phase velocity (speed of an individual 
wave)	is	always	equal	or	greater	than	the	speed	of	the	group.	
The dependence of the group velocity on frequency results 
in the disintegration of the wave groups: this is physically 
visible as longer waves travel faster ahead of the shorter 
waves and wave energy disperses across the ocean. A con-
sequence of this is the transformation of an irregular sea 
(called	SEA-type)	created	by	a	storm	into	a	more	regular	and	
phase-ordered	sea	(or	SWELL-type).

In	the	basic	linear	theory,	these	variables	can	define	three	
zones that clearly differentiate the overall behaviour of 
waves as they are generated and propagated towards the 
coast,	as	follows:

• Deep water: limited by d>0.5 L where wave-induced 
velocities decrease exponentially with increasing dis-
tance from the surface. Water particles move in circles 
of decreasing radius towards the sea bottom. Eventual-
ly,	the	amplitude	of	the	wave	is	equal	to	the	radius	of	

the biggest circle on the free surface. Individual waves 
of the group travel faster than the group. 

• Shallow water: limited between d<0.05 L,	for	shallow	
waters,	particle	kinematics	shows	that	the	amplitude	
of the horizontal velocity is constant over the vertical 
axis and it does not depend on the depth; also the am-
plitude of the vertical velocity increases linearly from 
the seabed to the surface. The orbits of the particles in 
shallow waters are elliptic. The celerity (C )	is	calculated	
only by the depth (d)	and	the	wavelength	(L)	is	propor-
tional to the wave period (T ).	Individual	components	
travel	at	the	same	speed	of	the	group,	maintaining	their	
position in the group.

• Intermediate depth: all other cases in which both wa-
ter	depth	and	period	(or	wavelength)	have	a	significant	
influence	on	the	solution	of	linear	wave	theory.	In	addi-
tion,	individual	waves	of	the	group	travel	faster	than	the	
group	(as	in	deep	waters).	

This	definition	of	waves	into	different	theoretical	zones	al-
lows	to	classify	the	physical	behaviour	of	the	oscillatory	flow	
in three categories:

a. Wave generation in deep water by wind action;
b. Wave propagation and dispersion from deep to inter-
mediate waters;
c. Wave transformation and dissipation towards the 
coastal	zone,	and	its	interaction	with	bathymetry,	natu-
ral	and	artificial	structures.

The general knowledge of these processes allows under-
standing	their	degree	of	complexity,	importance,	and	appli-
cation in statistical or predictive climate systems. It is im-
perative	to	properly	identify	the	experimental,	mathematical	
or numerical tools to be selected to solve processes (based 
on	the	most	relevant	wave	transformation	characteristics),	
to generate a hierarchy of the variables and processes to be 
considered and to establish the hypotheses in assembling 
climate systems.

The	following	sections	discuss	these	topics,	with	the	pur-
pose	of	enabling	the	setup	of	a	climatic	(multi-year)	or	pre-
dictive	system	for	ocean	waves	from	deep	water	to	the	coast,	
tailored	to	the	processes	that	the	user	wants	to	include,	con-
sidering	pros	and	cons	of	each	numerical	module,	as	well	as	
the inherent and concatenated uncertainties of the integrat-
ed system. 

8.1.3. Deep water wind-generated wave theory

Ocean wind-generated waves are one of the most challeng-
ing research objects in meteo-oceanographic physics. They 
are	generated	and	forced	by	the	wind	fields	acting	at		global	
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scale	(Janssen,	2004,	Chalikov,	2016)	and	are	subject	to	im-
portant	dissipation	and	strong	nonlinear	effects	(Babanin,	
2011),	which	drive	the	evolution	of	wave	spectra	at	the	scale	
of	tens	of	thousands	of	wave	periods	(Hasselmann,	1962,	
Zakharov,	1968).	Generation,	dissipation,	and	interaction	dy-
namics are the three main non-separable pillars for any wave 
model:	once	the	waves	are	produced	by	the	wind,	no	matter	
how	small	they	are,	the	mechanisms	of	their	attenuation	and	
energy exchanges with other wave components within the 
wave	spectrum	are	immediately	activated.	Moreover,	each	
pillar	is	not	a	single	physical	process,	but	rather	a	plethora	of	
various	processes,	often	concurrent	and	with	varying	relative	
significance	over	the	course	of	wave	evolution.

The three main dynamics are always present but in particular 
circumstances,	or	from	the	point	of	view	of	a	particular	ap-
plication,	other	processes	can	become	relevant	or	even	dom-
inate.	For	example,	various	influences	of	surface	currents	
(Babanin	et	al.,	2017),	sea	ice	(Thomson	et	al.,	2018)	or	surface	
tension,	as	well	as	other	forcings	(Cavaleri	et	al.,	2007).

In	shallow-water	environments	and	with	extreme	winds,	
waves become a different physical object and their respec-
tive wave models are notable for a lesser degree of physics 
and	a	larger	degree	of	parametric	and	ad	hoc	tuning.	For	fi-
nite	depths,	dispersion	is	reduced	or	even	ceases,	nonlinear-
ity	grows	but	active	nonlinear	mechanisms	change,	balance	
between energy input and dissipation is no longer main-
tained,	and	a	variety	of	new	physical	processes	come	into	
existence because of various wave-bottom interactions and 
sediment	response	(Young,	1999,	Holthuijsen,	2007).

When	winds	exceed	30	m/s,	a	simultaneous	change	of	phys-
ical	regime	takes	place	in	all	the	three	air-sea	environments,	
i.e.	atmospheric	boundary	 layer,	sea	surface,	and	upper	
ocean	(Babanin,	2018).	For	the	waves	on	the	ocean	surface,	
this	modifies	wind	input	processes	in	which	frequent	flow	

separation and massive production of spray alters wind-
wave exchanges and leads to the known effect of saturation 
of the sea drag. Wave breaking and dissipation are now driv-
en	by	completely	different	dynamics,	i.e.	by	direct	wind	forc-
ing rather than nonlinear wave evolution.

8.1.4. Nearshore transformation of waves

Any	ocean	wave	reanalysis	(multi-year	database)	or	predic-
tion	system,	focusing	on	shallow	waters	of	the	coastal	zone,	
will require detailed information on the most important pro-
cesses involved in the transformation of ocean wave char-
acteristics,	which	originated	in	deep	water.	This	subsection	
presents	a	comprehensive	description	of	these	processes,	
their basic equations and the physics that need to be taken 
into account. 

It is important to underline that the theories presented here 
treat	each	process	as	an	isolated	entity	but,	in	reality,	all	these	
processes	appear	together	and	act	concomitantly.	Hence,	it	is	
necessary to create a hierarchy of the relevant processes for 
each	sub-area	of	wave	propagation	towards	the	coast,	so	that	
developers of climate and forecasting systems can be aware 
and consider them appropriately.

8.1.4.1. Shoaling

Shoaling happens when waves start to interact with the 
ocean's	bottom	or	bathymetry	configuration.	As	the	wave	
propagates	over	intermediate	and	shallow	waters	zones,	it	
reduces its celerity and maintains its frequency (linear theo-
ry	main	hypothesis);	both	wavelength	and	phase	speed	de-
crease,	and	wave	amplitude	trends	to	grow	(Figure	8.10).	In	
other	words,	in	shallow	waters,	ocean	waves	become	less	
dispersive,	meaning	that	the	phase	speed	is	less	dependent	
on the wave frequency.

Waves interact
with bottom

Shoaling zoneDeep water

Figure 8.10. Ocean wave shoaling main characteristics.
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The change in the wave height due to shoaling can be cal-
culated from the following general relationship thorough a 
shoaling	coefficient,	Ks:

(8.4)

In	practice,	wave	shoaling	phenomena	can	be	observed	as	a	
local increase of wave heights due the reduction of the ba-
thymetry	profile	or	depths.	Also	can	occur	also	in	a	reverse	
form,	i.e.	shoaled	waves	travelling	into	progressively	deep-
er water. This results in a wavelength increase effect (wave 
speed	also	increases),	while	wave	height	decreases.

8.1.4.2. Refraction

When ocean waves change their direction of propagation 
from	the	bottom	or	for	a	bathymetry	interaction,	a	refrac-
tion	occurs,	mainly	due	to	the	change	of	a	same	wave	front	
travelling	at	different	bathymetric	depths,	yielding	partial	
reduction of its celerity. One section of a travelling wave 
moves	faster	than	the	other	part,	resulting	in	the	wave	fronts	
turning	towards	the	coast	(Figure	8.11).	Ocean	waves	will	al-

ways turn towards the region with lower propagation speed. 
Physically,	wave	refraction	satisfies	Snell’s	law:

(8.5)

As	waves	propagate	towards	a	coast,	waves	crests	tend	to	be-
come parallel to the coastline. Refraction can be visualised as 
the gradual change in waves’ direction when they tend to ap-
proach	a	coastline	at	an	angle	0°,	known	as	oblique	incidence.	

Additionally,	refraction	can	have	an	important	effect	(partial	
wave	height	reduction	or	increase)	calculated	with	a	refrac-
tion	coefficient	(KR) as follows:

(8.6)

Finally,	combined	wave	refraction	and	shoaling	are	always	
present simultaneously and affect wave height as follows:

(8.7)

Wave crests

Wave energy
converging

Wave energy
diverging

Figure 8.11. Ocean wave refraction main characteristics.
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8.1.4.3. Diffraction

When ocean waves reach and interact with any structure 
(natural	or	artificial,	 totally	or	partially	emerged),	wave	
diffraction	occurs,	which	is	described	as	the	blocking	and	
spreading of energy laterally perpendicular to the dominant 
direction	of	wave	propagation.	The	result	is	that	wave	fronts,	
angles,	and	energy	spreads	behind	(so-called	lee	side)	the	
obstacle and wave heights appear lower in sheltered areas 
(Figure	8.12).	Also,	wave	fronts	rearrange	into	more	structured	
and radial/focused wave propagation patterns.

The	circular	pattern	adopted	by	diffracted	wave	crests,	as	
they	penetrate	in	the	lee	side	of	obstacles,	diminishes	rapid-
ly as waves are diffracted further behind the obstacles. This 
behaviour	could	be	relevant	for	any	OOFS	near	bays,	har-
bours,	islands,	and	peninsulas	areas.

Diffracted waves are also still affected with both refraction 
and	shoaling	effects,	especially	for	large	sheltered	zones	
with	relevant	bathymetric	changes.	Also,	semi-diffraction	ef-
fects can occur for those semi-submerged structures (break-

waters	and/or	steep	bathymetric	bodies)	with	a	clear	refrac-
tion-diffraction combined effect.

Analytical solution for diffracted waves can be handled through 
a	diffraction	coefficient	for	an	idealised	constant	bathymetry	
and	semi-infinite	emerged	bodies	(CERC,	1984),	ignoring	wave	
reflection	effects,	and	using	instead	graphical	diagrams	as	a	
function	of	the	wavelength,	the	angle	of	incidence	between	
the emerged body and the distance between the head of the 
breakwater	and	the	point	of	calculation	(Koutitas,	1990).	For	
more	realistic	configuration,	numerical	approaches	(phase	av-
eraging	or	resolving	strategies)	should	be	invoked.

8.1.4.4. Wave current interaction

Ocean	waves	are	also	affected	by	currents	(tides,	storm	surg-
es,	river	discharges,	ambient	currents,	etc.).	Changes	in	the	
amplitude,	frequency,	and	direction	of	the	incident	waves	
are	expected	(Dean	and	Dalrymple,	1991).	

Current-derived local shoaling might occur if waves get blocked 
by	a	current.	Also,	current-induced	refraction	can	induce	chang-

Wave diffraction
through a gap

Wave diffraction
around an obstacle

Wave diffraction
around an obstacle

Figure 8.12. Ocean	wave	diffraction	behind	semi-infinite	obstacles.
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es	in	the	direction	of	speed/wave	propagation,	as	well	as	energy	
exchange between the current and the wave can be present at 
coastal/mouth of the river zones and in some harbour entranc-
es	affected	by	littoral	currents	(Figure	8.13).	

Linear theory is still valid and dispersion equation can be 
adapted to take into account currents (vertical integrated 
depth)	as	follows:

(8.8)

where Un is the component of the current in the wave direction. 

8.1.4.5. Dissipation (breaking and bottom friction)

Wave breaking is maybe one of the most energy-dissipat-
ing phenomena that waves can experience. It occurs when 
a shoaling/growing wave propagates over a limited depth 
profile,	reaching	its	own	water	volume	stability.	As	waves	
propagate	towards	shallow	water,	they	become	steeper	un-
til	a	stability-limit	when	they	break,	generating	a	complex	
mechanism	related	to	fluid	turbulence	and	vorticity.

Depending on water wave incoming characteristics such as 
frequency,	direction,	and	height,	and	the	bathymetric	char-

acteristics	(slope),	different	types	of	wave	breaking	are	ex-
pected to occur. A parameter called the Iribarren number 
(also	known	as	surf	similarity	parameter)	can	be	employed	
for	these	classifications	(see	Figure	8.14),	defined	as	a	func-
tion of the bottom gradient and wave steepness as:

(8.9)

where α	is	the	bottom	slope,	H is the incident wave height 
and L0 is the deep-water wavelength.

A simple way to estimate breaking limit depth is based on 
the	breaking	height	equal	to	a	fraction	of	the	water	depth,	as	
established	by	McCowan	(1984):	

(8.10)

where k=0.78.

For	coastal	wave	climate	or	forecast	applications,	realistic	
characterization of wave breaking could be one of the most 
challenging issues and should be handled numerically when 
dealing with prediction of structure damaged by waves in-
side	the	surf	zone	of	the	breaker	line	at	beach	profile.

Wave energy is
blocked and converges

Wave crests
Current

Figure 8.13. Example of wave-current interaction.
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Figure 8.14. Wave breaking type based on Iribarren number.

Additionally,	wave	dissipation	due	to	bottom	friction	can	be	
relevant when waves propagate into shallow water. Friction 
between the bottom and the orbital motion of water wave 
particles dissipates wave energy; it depends on both the or-
bital velocity and the roughness of the bottom.

8.1.4.6. Wave-structure interaction 

As	wave	fronts	reach	any	coastal	obstacle,	part	of	the	to-
tal-incident	wave	energy	travels	back	into	the	open	sea,	
basin,	or	sheltered	area	(Figure	8.15).	Some	of	the	original	
wave	energy	is	reflected	and	some	is	dissipated.	The	amount	
of	energy	is	reflected	(stated	as	reflection	coefficient	or	Kf)	
depending on both the vertical structure typology (natural 
cliffs,	beaches,	artificial	breakwaters,	quays,	etc.)	and	the	in-
cident	wave	characteristics	(mainly	due	to	wave	frequency).

An	idealised	vertical	structure	can	reflect	a	100%	of	the	in-
coming wave energy (KR=1 )	but	in	real	imperfect	coastal	
perimeters this value is commonly below (Kf<1),	due	to	the	
combination of complex physical processes (e.g. wave break-

ing,	friction,	percolation,	run-up,	etc.)	that	occur	in	the	struc-
ture-water interface.

For	shallow	water	zones	adjacent	to	coastal	structures,	it	is	
important	to	include	wave	reflection	in	the	list	of	relevant	
wave	transformation	processes,	especially	for	those	wave	
climate or forecast systems that needs a good characteriza-
tion	for	both	incident	and	reflected	waves	at	the	study	zone	
(i.e.	propagation	of	collateral	reflection	effects	from	far	areas	
such	harbours,	cliffs,	reefs,	jetties,	harbour	agitation,	etc.).

The	mathematical	description	of	wave	reflection	deals	with	
the calculation of wave motion as a linear sum of the incident 
wave	and	the	(partially)	reflected	wave,	as	a	transient	or	stand-
ing	wave	effect	(for	a	constant	deep	domain	and	1D	approach).	 
This can be complex for real bathymetry and coastal perim-
eter	configuration,	when	 irregular	wave	trains	 interact	with	
different	structures	and	coastal	typologies	and,	in	this	case,	
an ad-hoc numerical approach should be used. 
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Partial	wave	reflection	can	also	be	relevant	 for	semi-sub-
merged structures and/or steep bathymetric changes (e.g. 
dredged	 navigation	 channels),	 as	 it	 interacts	 with	 wave	
shoaling,	 diffraction,	 and	 refraction	 effects.	 For	 example,	
harbour agitation phenomena deal with a complex compu-
tation	of	diffracted	and	partially	reflected	wave	patterns.

Along	 with	 wave	 reflection	 effect	 and	 wave	 breaking	 on	
coasts	 and	 rubble-mound	 structures,	 waves’	 energy	 and	
frequencies	can	overtop	these	elements,	tide	instants,	and	
each	particular	structure's	typologies	and	characteristics.	

Within	 wave	 climate	 or	 forecast	 systems,	 for	 a	 detailed	
definition of wave effects interaction with coastal struc-
tures	 (natural	 or	 artificial)	 could	 be	 important:	 i)	 wave	
run-up	 height,	 defined	 as	 (Ru2%)	 the	 wave	 level,	 mea-
sured vertically from the still water line which is exceeded 
by	2%	of	the	number	of	incident	waves;	and	ii)	wave	over-
topping	discharge	(Figure	8.16),	defined	as	the	average	wa-
ter discharge per linear metre of width of the structure.

In	 recent	 times,	 forecast	systems	dealing	with	wave	over-
topping along a pedestrian coastal zone are delivered 
worldwide. The precision of these early-alert systems 
depends on a good reproduction of both incoming water 
waves	and	the	geometry	of	the	structure	(freeboard,	crest	
width,	roughness,	slope,	permeability,	and	porosity).	In	or-
der	 to	 calculate	 these	 derived	 variables,	 EurOtop	Manual	
(Van	der	Meer	et	al.,	2016)	gathered	some	empirical	formulae	

Incident wave

Reflected wave

Figure 8.15. Ocean	wave	reflection.

Wave
Overtopping

Coastal
Structure

Figure 8.16. Wave overtopping on a coastal perimeter example.

to	easily	obtain	them.	Also,	some	advanced	numerical	mod-
els	(based	on	Computational	Fluid	Dynamics)	are	available	
to	obtain,	with	a	very	good	approximation,	overtopping	val-
ues	and	discharge	volumes	(Losada	et	al.,	2008).
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8.2.  
Wave forecast and multi-year systems
Wave forecasting consists in describing the evolution of 
waves under the action of wind on the ocean surface and 
their	propagation	following	interactions	with	currents,	ice,	
and obstacles. Wave models numerically solve the varia-
tion of the wave spectrum from the energy balance equa-
tion taking into account the energy gain and loss terms. The 
evolution of wave models has followed improvements in the 
key	processes	of	wind-wave	growth,	swell	dissipation,	and	
nonlinear	wave	interactions.	Experimental	works	(Mitsuyasu,	
1970;	Hasselmann	et	al.,	1973)	have	highlighted	the	impor-
tance of nonlinear wave interactions and wind-wave growth. 

This	has	led	to	the	improvement	of	wave	models	with,	for	
example,	a	better	simulation	of	the	overshoot	phenomenon	
which describes the transition of wave energy from high to 
low frequencies. Wave models must consider the computa-
tion time to ensure an operational forecast in near-real time 
conditions.	So	far,	non-linear	wave	interactions	have	been	
simulated	in	the	models	in	an	approximate	way,	which	some-
times generate errors.

Wave prediction is primarily a short-term process to ensure 
the	safety	of	people,	property,	and	maintenance	of	operation-

Shoaling

Refraction

Diffraction

Reflection

Breaking

Friction

Run-up and overtopping

6-DOF ship

Mooring line stress

Pressure over structures

Harbour agitation and resonance

Structure stability

Erosion

Surf-beat

Navigation

Wave-structure interaction

Spectral ocean wave variables

Statistical ocean wave variables

Spectral wave shapes

Extreme waves

Free surface series

Wake waves

Wind-wave effects

Infragravity waves

Tsunamis

Meteo-tsunamis

Wave-current effects

Directional wave attack

2
Level of Complexity

1 3

Thresholds

Downtime

Functionality

Safety

Management

Performance

Performance (KPI)

Economics

Social impacts

Environmental impacts

Figure 8.17. Variables included in ocean wave OOFS grouped in levels from 1 to 3 depending on their com-
plexity and codependency.
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al activities that require an accurate description of the sea 
state.	In	addition,	wave	forecasting	is	necessary	for	long-
term	analysis	of	the	wave	climate,	to	learn	lessons	from	ex-
treme	wave	events,	and	to	upgrade	and	improve	operational	
wave forecasting systems. These last actions are part of wave 
reanalysis	or	so-called	multi-year	products,	of	which	the	
most	known	by	users	are	ERA5,	WAVERYS	-	Global	Ocean	
Waves Reanalysis - and CFSR.

8.2.1. Architecture singularities

8.2.1.1. Levels of complexity from deep to shallow water 

Every	OOFS,	designed	to	provide	ocean	wave-related	prod-
ucts	for	both	historical	(multi-year)	and	future	predictions,	
would require a modular architecture and a common ap-
proach methodology (see Chapter 4).

The main components of a forecasting system and of its ar-
chitecture	(Figure	4.1)	can	be	considered	valid	for	almost	any	
OOFS architecture as they are based on three general steps: 

a. Forcing and observations for data assimilation;
b. Numerical model:
c. Post-processing	tools	and	final	product	information	
(including	validation,	monitoring,	and	dissemination).

These steps should be followed when wave OOFS is used for 
deep	water.	However,	when	the	main	process	to	be	assessed	
within	the	OOFS	are	ocean	waves	in	the	coastal	zone,	the	
second step could be a major problem if not well concep-
tualised. The reason is that the type of numerical models to 
be	used	would	not	be	able	to	obtain	the	results	efficiently	or	
fast	enough,	especially	for	those	forecast	systems	that	need	
a robust and recurrent architecture for a 24/7 output. In ad-
dition,	numerical	wave	propagation	in	the	coastal	zone	could	
turn	rapidly	into	a	high-CPU	requirement	problem,	especially	
when	singular	wave	physics	should	be	solved,	such	as	wave	
reflection,	wave	current	interaction,	wave	overtopping	over	
structures,	etc.

Usually,	wave	OOFS	at	deep	water	only	provides	simple	pre-
diction	of	basic	variables	 (called	here	 level	1).	 In	coastal	
zones,	downscaling	approaches	were	not	able	to	obtain	
more complex solutions involving derived variables (called 
level	2	and	3),	because	they	could	not	be	based	on	direct/
trivial	solutions	but	needed	complex	numerical	calculations,	
and the use of advanced tools with high requirement of CPU 
time. A general list of the variables to be considered for each 
level	(from	1	to	3)	of	sophistication	and	complexity	within	a	
wave	OOFS,	is	shown	in	Figure	8.17.

The	variables	included	will	define	the	main	architecture	of	
the	OOFS	in	which,	through	a	method,	effects,	physical	be-
haviour,	and	final	prediction	are	linked,	but	allowing	the	pos-

sible future exchange/substitution of variables and methods 
in a simple and direct way. 

The general architecture of modern ocean wave OOFS needs 
to	meet	certain	characteristics	of	quality,	interoperability,	
operation,	and	reliability.	These	characteristics	should	pre-
vent anomalies that can lead to serious operational draw-
back such as:

• Unrealistic results without any protocol of quali-
ty	control,	with	solutions	only	found	with	a	dynamic	
approach (real-time sea-state by sea-state numerical 
runs,	as	explained	by	Rusu	et	al.,	2008);	
• Limited tools due to daily availability of CPU time; 
• No	learning/(feedback);	
• Limited	in	space,	geometrically	inert	(non-evolutionary);	
• Unknown	uncertainties	(no	error	control/	measure);	
• No	communication	between	modules,	only	based	on	
a deterministic nature.

To	overcome	these	possible	shortcomings,	it	is	then	neces-
sary	to	identify	some	architectural	specificities,	which	are	
described below.

a. Efficiency and speed of predictions. The need of cre-
ating	a	sufficiently	agile	and	efficient	system	that	can	
provide results within the time window pre-established 
by	the	future	use.	Generally,	this	window	is	reduced	to	
the	very	competitive	time	of	around	1	hour,	necessary	
to	trigger	all	processes,	obtain	results,	and	publish	
them.	Therefore,	the	general	assembly	method,	based	
on	a	hybrid	architecture	combining	clustering	methods,	
should	be	invoked,	especially	for	the	high-CPU	model-
ling for shallow waters.

b. Robustness (24/7).	The	workflow	must	be	light	and	
computationally	ordered,	to	guarantee	an	adequate	
triggering of the processes and obtaining of results.

c. Modular design. This refers to the ability of the sys-
tem	to	interchange	methods	and	tools	directly,	without	
major modifications to the backbone architecture of 
the	system	(plug	&	play).	This	way	of	working	requires	
an adequate standardisation of the intercommunica-
tion	formats	between	modules	(input	and	output,	I/O),	
so that the connection of each part is compatible with 
the coding of the general system.

d. Reliable and realistic results. This is one of the most 
important characteristics for a wave OOFS as it refers to 
the	reliability	of	the	tool,	the	credibility	of	the	general	
method	adopted,	and	the	satisfaction	of	the	end	user.	
For	this	purpose,	there	should	be	proposed	methods	
for validating the tool and its results with information 
measured in-situ. A common practice in the development 
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of this method is to prepare a document with instructions 
on	how	to	carry	out	field	campaigns,	indicating	locations,	
variables to be measured and type of equipment to be 
used,	recommended	schedules,	suggested	post-process-
ing	algorithms,	and	final	validation	products.	It	is	im-
portant	to	note	that	the	measurements	will	reflect	the	
logical evolution/growth of the study area in the opera-
tional	system	(modification	of	bathymetries,	evolution-
ary	shelter	elements,	etc.).

e. Ad-hoc mathematical and numerical tools. This is 
closely related to the idea of a modular system men-
tioned	above,	and	it	is	based	on	the	precise	integra-
tion of those tools aiming at the solution of physical 
processes of special interest. It is achieved through the 
appropriate use and adaptation of wave propagation 
tools	(e.g.	CFD	models,	Non-Linear	Shallow	Water	Equa-
tions,	Boussinesq-type	equations,	Mild	Slope	equa-
tions,	third-generation	wave	generation	and	propaga-
tion	models,	etc.).

f. Self-diagnosis of results. This feature is based on the 
use of statistical methods that allow a detailed diag-

nosis of the results provided by the system on a daily 
basis,	to	identify	and	quantify	the	errors	and	uncertain-
ties that are triggered throughout the execution of the 
system.	This	concept,	closely	linked	to	the	"cascade	of	
uncertainty"	theory	(Wilby	and	Dessai,	2010),	makes	it	
possible to optimise each method and reduce errors 
and uncertainties.

g. Nowcast integration. This refers to the capacity of the 
wave OOFS to take advantage of in-situ measurements 
provided continuously and in parallel with the use of 
the system during its operational phase. Algorithms 
should	be	developed	for	accessing,	reading,	post-pro-
cessing,	and	assimilating	the	information	measured	to	
compare	it	with	the	predictions	provided	by	the	system,	
with the final capacity to generate readjustments of 
certain	control	parameters	and,	thus,	of	the	predictions.	
This self-learning capacity of the system guarantees 
that,	in	a	few	months,	the	system	will	reach	a	mature	
operational level.

h. Tailor-made results. This is the OOFS’s capacity to 
correctly prepare the formats in which the results are pre-

Figure 8.18. Wave	climate	clustering	using	Max-Diss	algorithm	(source:	University	of	Cantabria).
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sented	(summary	tables,	email	bulletins,	and	web	pages)	
for	the	appropriate	decision-making	process,	adapting	the	
formats to the user needs and showing the general uncer-
tainties in the predictions.

The	architecture	specificities	proposed	here	are	able	to	pro-
vide:	i)	a	multi-year	wave	(hindcast)	and	b)	an	operational/
predictive product. 

8.2.1.2. Hybrid and clustering technique

A	hybrid	approach	has	been	recommended	(Groeneweg	et	al.,	
2006,	Stansby	et	al.,	2006)	when	the	complexity	of	the	physics	
involved in the wave propagation assessment arises condi-
tioning:	i)	the	numerical	model	(CPU	time)	to	be	used;	ii)	the	
spatial resolution of the domains to be taken into account; and 
iii)	the	temporal	relevance	of	new	variables	(such	as	variables	
above	level	1)	to	be	included	in	the	final	system/solution.

This approach allows a fast assessment of variables from 
level	2	to	3,	regardless	of	the	sophistication	of	the	tool	that	
performs it. This happens thanks to the concept of "pre-ex-
ecuted catalogue of cases" or clustering technique (also 
known	as	pre-cooked	catalogue),	which	is	responsible	for	
assimilating the statistics of all the casuistry of processes 
involved,	from	the	forcing	involved	to	the	final	response.	

The	hybrid	method,	as	described	in	various	articles	(Gasliko-
va	and	Weisse,	2006;	Breivik	et	al.,	2009,	Herman	et	al.	2009),	
always follows the same steps: 

• Access to the original forcing database (generally at 
deep	water,	sea-states,	wind,	and	sea	level	series);

• Apply a self-selection algorithm of N pre-selected 
families	of	cases	to	be	run,	which	will	cover	all	the	
physics	of	the	climate	at	the	outer	point	(Figure	8.18);

• Transform level 1 variables to levels 2 and 3 through 
the execution of the N cases with the use of mainly 
mathematical/numerical tools;

• Statistically reconstruct the original database (Kalra 
et	al.,	2005;	Browne	et	al.,	2007)	at	the	transfer	point	af-
ter	having	gone	through	the	transformation	processes,	
e.g.	from	the	outer	harbour	zone	to	the	quay	area,	mak-
ing use of an algorithm that statistically interrelates the 
pre-run catalogue of N cases with the complete statis-
tics of the forcing in the outer zone;

• Diagnose the data for historical diagnostic use.

8.3.  
Input data, available sources, data handling, and model  
pre-processing
8.3.1. Bathymetry and geometry

Any global ocean wave OOFS needs accurate bathymetry data 
(see Section 4.2.4 for information about sources of bathy-
metric	data).	For	systems	downscaled	towards	the	coastal/
harbour	zone,	it	is	recommended	a	detailed	bathymetry	with	
resolution grid between 5 and 20 m. 

Some solutions and models developed along the ocean wave 
OOFS	strategy	also	need	a	topography	(DEM).	Main	beach	to-
pographies,	artificial	structure	sections,	and	elevations	are	
recommended,	with	resolution	grid	below	5	m.	In	addition,	
vertical datumreference should be known and used to inte-
grate	all	the	different	bathymetric,	sections,	topography	ref-
erences,	along	with	sea	level	time	series.	

8.3.2. Forcing fields

Deep-water wave OOFS commonly need the following forcing 
met-ocean variables:

• Wind maps;
• Pressure maps;
• Ice coverage maps.

Shallow water / coastal / downscaled wave OOFS common-
ly need the following forcing met-ocean variables (generally 
obtained from the previous deep-water module or other hind-
cast/forecast	global	providers):
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• Wave spectra in the form of:

• Integrated	variables	(Hm0,	Tp,	Dir);
• N-modal	integrated	variables	(i.e.	2	SWELL	and	1	SEA);
• Wave spectral real forms if available;

• Sea level time series (both meteorological and astro-
nomical	tides);	
• Mid to high-resolution wind maps;
• Free-surface elevation time series.

8.3.3. Observations

Observations are used as the main source for validation and 
calibration. The following observations are required.

For deep-water approach:

• Satellite	observations	of	Hm0,	Tp	and	Dir;
• Directional	wave	spectra	definition	(buoy).

For shallow-water approach:

• Directional	wave	spectra	definition	(buoy);
• Pressure gauge time series (burst with more than 20 
minute	length);
• Non-directional wave buoy;
• Wave overtopping measurements if available (non-in-
trusive	camera	deployment).

8.3.4. Pre-processing and definition of the 
numerical problem

Modern ocean wave OOFS uses a numerical model strategy to 
simulate the generation and propagation of the main phenom-
ena	in	ocean	(deep	water)	and	coastal	regions	(shallow	water).	
These numerical codes commonly contain three main elements: 
i)	pre-process;	ii)	mathematical	solver;	and	iii)	post-process.

The	first	step	takes	place	before	the	model	execution	and	it	
is	included	in	the	pre-processing	stage.	Within	this	stage,	the	
following sub-parts should be accomplished:

• Definition of the computational domain geometry 
where the equations will be applied and solved. This 
area	is	commonly	discretized	as	cells,	control	volumes,	
or	elements	(depending	on	the	solver-type),	and	all	of	
them conform to a grid domain.

• Integration and adaptation of bathymetry data with 
the generated mesh (this is relevant for an adequate 
physical representation of the variables and for the sta-
bility	of	the	model).

In	general,	accuracy	increases	with	a	greater	number	of	cells	
but a longer computational time will be required. The choice 
will	depend	on	the	computer	power	available,	on	the	type	
of	architectural	scope,	and	on	the	method	to	be	used	(for	
example,	a	hybrid	approach	could	help	to	minimise	the	CPU	
time	required).	In	general,	the	balance	CPU-cost	/	physical	
definition	can	be	tackled	with	the	use	of	non-uniform	mesh-
es that have their nodes in the regions of special interest or 
where high variations of the physics properties take place. 

Recently developed numerical wave models have incorporat-
ed self-adaptive meshes. That means that the mesh auto-
matically adjusts its resolution (according to some tolerance 
criteria	/	physical	mesh	design	defined	by	the	user).

8.3.5. Boundary and initial conditions

Boundary conditions are the forcing values on the perime-
ters of the computational domain needed by any wave nu-
merical	model.	In	some	cases,	in	the	vicinity	of	any	other	
body or another model incorporated in the domain. 

Initial conditions are commonly the values of water waves 
that define a sea-state simulation (commonly with 1-hour 
frequency	rate	data	for	regional	OOFS).	

The following recommendations should be considered:

• Select an input forcing of the model (boundary condi-
tions),	adapt	the	formats,	and	assimilate	the	input	data	
to a form that can be used later by the solver equations 
(data	normalisation	stage).	Note	to	establish	correct	
sea levels and DATUM elevations.

• Define	any	symmetry	and	cyclic	boundary	conditions	
at the perimeter boundaries.

• Define	any	open	boundary	conditions	that	are	used	
to	freely	radiate	water	waves	through	infinite.

• For	wave	reflection	models,	define	each	individual	re-
flection	coefficient	to	be	taken	into	account.
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8.4.  
Modelling component: general wave generation and  
propagation models
8.4.1. Types of models

Ocean wave modelling efforts and applications can be 
broadly	classified	into	two	large	groups:	i)	phase	resolv-
ing	 (or	 direct)	 models;	 and	 ii)	 phase	 average	 (usually	
spectral)	 models.	 Direct	 models	 can	 explicitly	 simulate	
basic	equations	of	 fluid	mechanics	 for	 the	water,	 air,	or	
even	two-phase	media,	and	therefore	extend	the	analyt-
ical research beyond its traditional range of approximate 
and asymptotic solutions of such equations. At oceanic 
scales,	 however,	 such	models	 are	 not	 practical	 and	 not	
feasible,	and	therefore	spectral	models	are	employed	for	
wind-wave forecasts.

In	the	next	subsections,	for	both	deep	and	shallow	water	
analysis	is	given	a	general	description,	mathematical	model,	
limitations,	and	main	applications	for	each	type	of	model.

8.4.1.1. Deep water 

Spectral models

Evolution	of	wind-generated	waves	in	water	of	finite	depth	d 
can be described by the wave action N=F/ω balance equation:

(8.11)

where F(ω,k)	is	the	wave	energy	density	spectrum,	ω is in-
trinsic (from the frame of reference relative to any local 
current)	radian	frequency,	k is wavenumber (bold symbols 
signify	vector	properties).	In	the	linear	case,	temporal	and	
spatial scales of the waves are linked through the dispersion 
relationship	(see	Eq.	8.2).

The left-hand side of Eq. 8.11 represents time/space evolu-
tion of the wave action density because of the energy source 
terms	on	the	right.	On	the	left,	cg	is	group	velocity,	ck means 
the	spectral	advection	velocity,	U	is	the	current	speed,	and	
we note that c =ω/k is phase speed of the waves. ∇ here is 
the	horizontal	divergence	operator,	and	∇k is such an oper-
ator in spectral space.

On	the	right,	source	terms	are	physically	represented	by	
wind	energy	input	from	the	wind,	I; nonlinear interactions 
of	various	orders	within	the	wave	spectrum,	L,	whose	role	

is to redistribute the energy within the spectrum; dissipa-
tion	energy	sinks,	D;	wave-bottom	interaction	processes,	
B; and more sources are possible in specific circumstanc-
es.	Note	 that	 all	 the	 source	 terms,	 as	well	 as	 the	 group	
and	 advection	 velocities,	 and	 the	 advection	 current	 are	
spectra	themselves.	Please	refer	to	Cavaleri	et	al.	 (2007)	
for further details.

Among	the	source	functions,	L	is	a	conservative	term,	i.e.	its	
integral	is	zero,	but	the	other	integrals	define	energy	fluxes	
in and out the wave system:

(8.12)

is	the	total	flux	of	energy	from	the	wind	to	the	waves.	Note	
that,	depending	on	the	relative	speed	of	wind	U10 and wave 
speeds c (ω,k)=ω / k ,	contributions	to	the	total	flux	can	be	
both positive (from the wind to the waves if U10>c)	and	neg-
ative (from the waves to the wind if U10<c).	In	the	tropics,	
for	example,	where	the	wave	climate	is	dominated	by	swells	
produced	at	high	latitudes,	the	local	winds	are	typically	light	
and therefore the wind climate can be actually dominated by 
wave-induced	winds	(Hanley	et	al.,	2010).

It should be noted that the energy input to the waves is gen-
erally accepted as a purely atmospheric exchange. In princi-
ple,	however,	energy	input	from	the	ocean	side	to	the	surface	
waves of scales accommodated in Eq. 8.11 is perceivable. For 
example,	upper-ocean	currents,	tides,	or	internal	waves	can	
provide such dynamics. Given the amount of energy stored 
in	the	ocean	movements,	this	could	have	large	impacts	on	
surface	wave	fields,	even	if	localised,	but	it	is	fair	to	say	that	
it has not been considered by the wave-ocean modelling 
community in practical terms.

Integrating the momentum-input spectrum gives the total 
momentum	flux:

(8.13)

which is an important measure of wind-wave interactions 
(Tsagareli	et	al.,	2010).	Together	with	the	tangential	viscous	
stress τv it forms the total wind stress at the ocean surface

(8.14)
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and this stress is known independently (usually through em-
pirical	parameterisations	of	the	so-called	drag	coefficient)	
and thus can be used as a constraint or for validation of 
the wind input term I.	On	the	other	hand,	the	total	stress	
is	often	the	main,	if	not	the	only	property	which	expresses	
dynamic exchanges in large-scale air-sea models. Apart from 
situations	of	light	winds,	the	wave-induced	form	drag	(Eq.	
8.12)	provides	a	dominant	contribution	to	this	total	stress	
(Kudryavtsev	et	al.,	2001)	and	thus,	if	the	wave-model	phys-
ics	is	well	defined	and	validated,	such	models	can	provide	
explicit	rather	than	empirical	estimates	of	fluxes	for	general	
circulation models if those are appropriately coupled with 
wave models.

The dissipation function D has a similar meaning in the con-
text	of	wave-ocean	dynamic	exchanges,	but	with	some	es-
sential	distinctions.	First,	the	integral

(8.15)

is	the	total	flux	of	energy	out	of	the	wave	field.	The	energy	
passed to the ocean is largely spent on generating turbu-
lence near the surface and on work against buoyancy forces 
acting on bubbles injected during the wave breaking.

Unlike	the	input,	however,	which	only	occurs	on	the	air	side	
of	the	interface,	the	loss	(8.15)	can	go	both	to	the	ocean	be-
low and to the atmosphere above the ocean surface. Numer-
ical	simulations	of	Iafrati	et	al.	(2013)	showed	that	up	to	80%	
of wave energy due to breaking can be actually dissipated 
through the atmospheric turbulence.

The momentum-loss integral of dissipation function gives 
the so-called radiation stress:

(8.16)

which is presumed to be going to the currents (although some 
of	it	may	in	fact	be	going	back	to	the	wind,	or	to	the	bottom	in	
shallow	areas).	In	the	present	wave	models,	radiation	stress	
is parameterized in terms of wave-height difference along 
the	propagation	direction.	Obviously,	such	parameterization	
does	describe	the	energy	dissipation,	and	can	then	be	used	
to	estimate	the	momentum	loss,	but	only	in	the	areas	where	
dissipation	(Eq.	8.14)	 is	much	larger	than	the	energy	input	
(Eq.	8.14),	 i.e.	usually	in	shallow	waters.	In	deep	water,	the	
mean	wave	height	is	not	a	proxy	for	the	energy	loss.	In	fact,	
it may grow under wind action or not change if this action is 
balanced	by	the	whitecapping	dissipation,	but	the	integral	
(Eq.	8.16)	and	hence	the	radiation	stress	is	not	zero.	

Wave-ocean-bottom	interactions	in	infinite	depths,	depicted	
by term B	in	Eq.	8.11,	are	very	rich.	Finite	depths	are	charac-
terised by the condition of kd~1 (wavelength is comparable 
with the water depth d ),	and	shallow	non-dispersive	envi-

ronments by kd<<1. Dispersive-wave nonlinear dynamics 
slowdown	in	finite	and	shallow	depths,	weaken	or	cease,	but	
other nonlinear behaviours come into existence.

Wave	exchanges	with	the	bottom	include	bottom	friction,	for-
mation	of	ripples,	sediment	suspension	and	transport	if	the	
sea	bed	is	sandy,	generation	of	bottom	waves	if	the	bottom	
is	muddy,	and	percolation.	Long-shore,	cross-shore,	and	rip	
currents	result	from	radiation	stresses	(Eq.	8.15),	infragravity	
waves are produced by combined action of wave breaking 
and	nonlinear	wave	groups,	which	can	be	subsequently	re-
flected	back	to	the	deep	ocean	or	trapped	by	coastal	bays.

An example of this deep-water approach is the WAM (Hassel-
mann	et	al.,	1988),	perhaps	the	first	one	proposed	as	third-gen-
eration	model,	able	to	explicitly	represent	all	the	physics	rele-
vant	for	the	development	of	the	sea	state	in	two	dimensions,	
such	as	wind	generation,	whitecapping,	quadruplet	wave-wave	
interactions,	and	bottom	dissipation.	This	modes	is	mainly	
forced by a two-dimensional ocean wave spectrum that devel-
ops	freely	with	no	constraints	on	the	spectral	shape,	so	that:	a)	
a transfer source function of the same degree of freedom as 
the	spectrum	itself	need	to	be	developed;	and	b)	the	energy	
balance	had	to	be	closed	by	defining	the	dissipation	source	
function.	Hasselmann	et	al.,	(1985)	and	Komen	et	al.,	(1984)	
were	employed	to	deal	with	these	aspects,	respectively.	The	
dissipation was selected in order to replicate the observed 
fetch-limited wave growth and the fully developed Pier-
son-Moskowitz	spectrum	(WAMDI	group,	1988).

Constant improvements and updates have led to a third-gen-
eration WAM model. A third-generation wave model explicit-
ly represents all the physics relevant to the development of 
the sea state in two dimensions. Numerical solutions of the 
momentum	balance	of	air	flow	over	growing	surface	gravity	
waves	have	been	presented	in	a	series	of	studies	by	Janssen	
et	al.	(1989),	and	Janssen	(1991).	The	main	conclusion	was	that	
the growth rate of the waves generated by wind depends on 
the ratio of friction velocity and phase speed and on several 
additional	factors,	such	as	the	atmospheric	density	strati-
fication,	wind	gustiness,	and	wave	age.	This	work	has	also	
introduced	the	surface	stress	dependency	with	the	sea	state,	
and	the	feedback	of	wave-induced	stress	on	the	wind	profile	
in the atmospheric boundary layer.

WAM is an Eulerian phase-averaged model. Designed as a 
deep-water	model,	it	can	be	used	to	predict	directional	spec-
tra	and	wave	properties	(significant	wave	height,	mean	wave	
direction	and	frequency,	swell	wave	height).	The	model	can	
be	used	in	finite	depth	as	well	by	introducing	bottom	dissi-
pation source function and refraction. The model runs on a 
spherical latitude-longitude grid. 

The	first	WAVEWATCH	model	was	developed	at	TU	Delft	(Tol-
man,	1989;	Tolman	2014),	followed	by	the	NASA	Goddard	
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Space	Flight	Centre	in	1992.	Recently,	WAVEWATCH	III	was	pre-
sented as a worldwide used and full-spectral third-genera-
tion wind-wave model. It was developed at NOAA/NCEP and 
it	is	based	on	the	first	WAM	model’s	principles.	This	latest	
version includes many improvements in the governing equa-
tions,	model	structure,	numerical	schemes,	and	physical	pa-
rameterizations. The model solves the random phase spectral 
action density balance equation for wavenumber-direction 
spectra.	The	medium	properties,	namely	the	water	depth	and	
current	properties,	as	well	as	the	wave	field,	vary	in	time	and	
space in scales much larger than a single wave. WAVEWATCH 
is an open-source model that is freely available3,	including	
the whole source code and all documentation. 

The discretization of the wave energy spectra in all directions 
is achieved by using a constant directional increment and a 
spatially	varying	wavenumber	grid,	which	corresponds	to	an	
invariant logarithmic intrinsic frequency. In order to achieve 
high	accuracy,	both	first	order	and	third	order	schemes	are	
available for wave propagation. For the integration of source 
terms	in	time,	a	semi-implicit	scheme	is	used	similar	to	that	
used	in	WAM,	which	includes	a	dynamically	adjusted	time	
stepping algorithm.

Following	the	work	of	Battjes	and	Janssen	(1978),	WAM	and	
WAVEWATCH III models have been upgraded to account for 
the dissipation by wave breaking induced by depth in the 
surf	zone.	However,	wave	models	still	have	difficulties	with	
strong	three-wave	interactions	that	occur	in	finite-depth	and	
shallow	waters.	That	has	led	to	simplified	empirical	calcu-
lations	with	large	errors,	especially	for	complex	wave	trains	
with	multi-model	spectra.	In	addition,	both	models	lack	of	
diffraction	processes,	which	implies	that	only	open	coastal	
zones	could	be	solved	accurately,	plus	only	linear	behaviour	
of wave propagation could be assessed and non-linear cor-
rections	to	linear	wave	should	be	imposed,	by	triad	and	qua-
druplet	wave-wave	interactions	in	shallow	waters,	where	the	
waves	break	(Booij	et	al.,	1999).

8.4.1.2. Shallow water

Spectral models

For	shallow	water	domains	and	wave	propagation	(Eckart,	
1952),	the	SWAN	model	could	be	a	good	choice.	This	also	is	
a third-generation wave model developed at the Delft Uni-
versity	of	Technology,	with	the	purpose	of	obtaining	realistic	
estimates	of	wave	parameters	in	coastal	areas,	lakes,	and	
estuaries	from	given	wind,	bottom,	and	current	conditions.	
The SWAN model can be also used on any scale relevant for 
wind-generated surface gravity waves. The model equations 
are based on the wave action balance equation with sources 
and sinks. 

3. https://polar.ncep.noaa.gov/waves/wavewatch/wave-
watch.shtml

SWAN has been developed to simulate coastal wave condi-
tions	(with	friction,	breaking,	whitecapping,	triad,	and	qua-
druplet	wave-wave	interaction).	SWAN	can	be	also	coupled	
with	previous	models	such	as	WAM	or	WAVEWATCH	III,	and	in-
herit the boundary conditions. SWAN can provide a computa-
tional representation of directional and no directional spec-
trum	at	one	point,	and	several	spectral	and	time-dependent	
parameters	of	waves,	such	as	significant	wave	height,	peak	
or	mean	period,	direction,	and	direction	of	energy	transport.	
SWAN is a freely available4 open-source software. 

SWAN model is based on the spectral action balance equa-
tion,	which	describes	the	evolution	of	the	wave	spectrum	
(Booij	et	al.,	1999).	

In Cartesian coordinates the evolution of the action density 
is governed by the following balance equation:

(8.17)

where σ	is	the	wave	frequency,	θ is the wave direction com-
ponent,	t	is	the	time,	x and y	the	2D	coordinates	in	space,	N 
the	wave	action	density	spectrum	defined	as:

(8.18)

where E is the wave energy density spectrum; Stotal is the 
source term and C,S are the wave propagation velocities in 
space	and	wavenumber,	given	by:

(8.19) 

(8.20) 

(8.21) 

(8.22)

where k	is	the	wavenumber,	Cg is the group velocity; s is a 
coordinate in θ direction and m is a coordinate perpendicular 
to s; h is the mean water depth and K the wavenumber vector.

The left hand side of Eq. 8.16 corresponds to the kinematic 
terms,	as	derivatives	for	the	propagation	in	space;	and	are	
the propagation velocities. The term with the derivative with 
respect to θ is the refraction term. The term with respect to 
σ causes a change of frequency. The right hand side is the 

4. https://swanmodel.sourceforge.io/
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source	term	and	contains	the	effects	of	wind	generation,	
whitecapping,	dissipation,	bottom	friction,	surf	breaking,	
and nonlinear wave-wave interaction. This equation is im-
plemented	with	finite	difference	schemes	in	all	directions:	
time,	geographic	space,	and	spectral	space.	

The essential input data to run the model is the bathymetry 
for	a	sufficiently	large	area,	the	incident	wave	field,	and	the	
wind	field.	Various	general	and	nested	grids	can	be	selected,	
depending on the availability of high-resolution data and the 
computational	efficiency.	Nesting	is	a	very	important	imple-
mentation that can save computational time and increase ac-
curacy.	The	model	is	validated	with	analytical	solutions,	field	
observations	and	experimental	measurements,	and	has	shown	
good	agreement	(Booij	et	al.,	1999).	Moreover,	SWAN	can	oper-
ate	with	unstructured	grids	as	well.	Zijlema	(2009)	presented	
a	method	of	vertex-based,	fully	implicit,	and	finite	differences	
that is designed for unstructured meshes with high variability 
in geographic resolution. It is useful for complex bottom to-
pographies in shallow areas and irregular shorelines.

SWAN is basically designed for applications in open coastal 
scale,	with	no-diffraction	effects.	That	means	that	the	model	
should be used in areas where variations in wave height are 
large within a horizontal scale of a few wavelengths.

SWAN	organises	its	output	in	tables,	maps	(Figures	8.19	and	
8.20)	and	time	series,	as	well	as	1D	and	2D	spectra,	signifi-
cant	wave	height	and	periods,	average	wave	direction	and	
directional	spreading,	one-	and	two-dimensional	spectral	

source	terms,	root-mean-square	of	the	orbital	near-bottom	
motion,	dissipation,	wave	induced	force	(based	on	the	radia-
tion-stress	gradients),	set-up,	diffraction	parameter,	etc.

Mild slope equations models

MSE originally developed to describe the propagation of the 
waves over low gradient seabeds. MSE is commonly used in 
coastal	engineering,	since	it	can	account	well	the	effects	of	
simultaneous diffraction and refraction of the waves due to 
coastlines	or	structures	(Berkhoff,	1972).	Mild-slope	equa-
tions	are	a	type	of	depth-averaged	equation,	within	a	x-y 
domain	(2DH),	applied	in	both	deep	and	shallow	waters	for	
monochromatic	waves	(Lin,	2008).

The	equations	can	be	found	in	various	forms,	including	the	
effects	of	wave	breaking,	nonlinearity	of	waves,	wave-current	
interactions,	and	seabed	friction.	They	calculate	the	wave	am-
plitude	or	wave	height	but,	if	there	is	a	constant	water	depth,	
the mild-slope equation reduces to the Helmholtz equation 
for	wave	diffraction.	First	introduced	by	Berkhoff	(1972),	the	
MSE	assumed	that	the	wave	is	linear	and	the	slope	is	mild,	
obtaining	the	following	main	equation,	improved	by	including	
the effects of friction dissipation and wave breaking:

(8.23)

where C is the wave celerity and Cg the group velocity; η	̂	 is	
the complex wave surface function; k is the wavenumber; σ 
is the wave frequency; w is a friction factor and γ is a wave 
breaking parameter. Friction is then obtained with:

(8.24)

where a	is	the	wave	amplitude,	and	fr is a Reynolds depen-
dent	friction	coefficient	related	to	the	bottom	roughness;	n 
is	the	Manning	dissipation	coefficient.

For	weave	breaking	parameter,	the	following	formulation	is	
commonly used:

(8.25)

The original MSE has limitations because it is only applicable 
to	linear	waves	and	on	mild	bottom	geometry.	In	addition,	the	
equation	does	not	contain	energy	dissipation,	but	in	recent	
years there have been numerical advances to include energy 
dissipation and weakly non-linear waves with steeper bottom 
slopes. Mild-slope equation has been developed with differ-
ent formulations that can be described by hyperbolic (Dinge-
mans,	1997),	elliptic	(Berkhoff,	1972),	and	parabolic	(Lin,	2008)	
formulation of the mild-slope equation respectively.

The practical application of wave transformation usually re-
quires	the	simulation	of	directional	random	waves;	thus,	the	

Figure 8.19.  Example wave height and direction 
output from SWAN wave transformation model 
over the Southern California Bight (source: Uni-
versity	of	Florida).
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principle of superposition of different wave frequency com-
ponents	can	be	applied.	In	general,	MSE	models	for	spectral	
wave conditions require inputs of the incoming directional 
random sea at the offshore boundary. The two-dimensional 
input	spectra	are	discretized	into	a	finite	number	of	frequen-
cy and direction wave components. 

For	the	parabolic	approach,	the	evolution	of	the	amplitudes	
of all the wave components is computed simultaneously. 
Based on the calculations for all components and assuming 
a	Rayleigh	distribution,	statistical	quantities	such	as	the	sig-
nificant	wave	height	Hs	can	be	calculated	at	every	grid	point.	
Figure 8.20 shows an example for a near-coast wave propa-
gation obtained with a parabolic approximation of the mild 
slope equation for spectral wave conditions.

When	wave	reflection	becomes	relevant	for	wave	propaga-
tion	and	transformation	(i.e.	within	bays,	harbours,	sheltered	
areas,	etc.),	models	should	be	based	on	the	elliptical	approx-
imation	of	the	mild-slope	equation	(Berkhoff,	1972;	Madsen	
and	Larsen,	1987;	Tsay	et	al.,	1989).	This	approach	allows	en-
gineers	to	obtain	the	energetic	response	of	reflected	(totally	
or	partially)	waves,	under	the	penetrating	wave	action.

Elliptic mild slope models solve the extended mild-slope 
equation to reproduce the main processes that control dy-
namics of waves when approaching coastal areas and enter-
ing	into	harbours	(Figure	8.21):	geometric	refraction,	shoal-
ing,	diffraction	by	obstacles,	and	full	or	partial	reflection.	
Radiation	conditions	and	free	infinite	outflow	conditions	are	
also available in the model. It also considers the complete 

spectral frequency distribution and the directional spread-
ing of the wave energy spectrum.

In	addition	to	the	above	mechanisms,	nonlinear	waves	may	
be simulated by incorporating amplitude-dependent wave 
dispersion,	which	has	been	demonstrated	to	be	important	in	
certain	situations	(Kirby	and	Dalrymple,	1983).	

This practical approach for harbour agitation and wave prop-
agation	can	be	assessed	with	the	following,	among	others,	
commercial and non-commercial models: CGWAVE; ARTEMIS 
MIKE21;	PHAROS,	and	MSP.

Phase resolving models (SWE, NSWE, and Boussinesq)

The	Shallow	Water	Equations	(SWE)	are	applied	when	water	
waves enter very shallow domains. Particles move basically 
horizontally and the vertical accelerations are negligible. 

Figure 8.20. Significant	wave	height	propagation	
map	for	Los	Galeones	Beach	(Cadiz,	Spain)	computed	
with	a	parabolic	Mild-Slope	based	model	(REF-DIFF,	
OLUCA	model)	(source:	University	of	Cantabria).

Figure 8.21. Significant	wave	height	map	within	
Barcelona Port computed with an elliptic Mild-Slope 
based	model	(MSP	model)	(source:	University	of	
Cantabria	and	Puertos	del	Estado).
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In	this	case,	the	propagation	of	the	wave	can	be	described	
by	the	SWE	(Holthuijsen,	2007).	These	equations	are	derived	
from averaging the depth of the Navier-Stokes equations 
(NSE)	assuming	that	the	horizontal	length	scale	is	much	
greater	than	the	vertical.	The	profile	is	uniform	in	depth	and	
the vertical components very small. Using the conservation 
of	mass,	it	can	be	shown	that	the	vertical	velocity	is	small,	
while using the momentum equation the vertical pressure 
gradients	are	hydrostatic.	Therefore,	the	velocity	profile	is	
uniform	in	depth	and	the	vertical	components	very	small,	
and this is the reason for which SWE are also known as 
“long-wave	equations”,	given	that	they	can	be	applied	only	
to waves which are much larger to the bottom depth. 

In	the	case	of	ignoring	the	Coriolis	force,	the	frictional	and	
viscous	forces,	the	formulas	of	SWE	are:

(8.26)

(8.27)

(8.28)

Equation 8.26 is derived from mass conservation and Eqq. 
8.27	and	8.28	from	momentum	conservation,	where	η is the 
total	fluid	column	height,	(u,v)	-	a	2D	vector	-	is	the	fluid’s	
horizontal velocity in the xy 2D domain. 

To represent the ocean waves frequencies and physical be-
haviour,	an	improvement	within	the	original	SWE	is	needed,	
including the non-linearity terms and dispersive functions. 
The	solution	for	this	is	the	NSWE,	as	a	non-hydrostatic	wave-
flow	solution	model.	It	can	be	used	for	predicting	transfor-
mation of dispersive surface waves from offshore to the 
beach,	solving	the	surf	zone	and	swash	zone	dynamics,	wave	
propagation	and	agitation	in	bays	and	harbours,	and	rapidly	
varied	shallow	water	flows	typically	found	in	coastal	flooding	
(e.g.	dike	breaks,	tsunamis	and	flood	waves,	density	driven	
flows	in	coastal	waters),	as	well	as	large-scale	ocean	circula-
tion,	tides	and	storm	surges	(typically	solved	by	the	original	
SWE	models).

Main governing equation considers a 2DH wave motion over 
a domain represented in a Cartesian coordinate system (x,y).	
The	depth-averaged,	non-hydrostatic,	free-surface	flow	can	
be described by the NSWE and comprise the conservation of 
mass and momentum. These equations are given by:

(8.29)

(8.30)

 
(8.31)

where t is the time; ζ	is	the	free	surface	elevation,	d is the 
water depth and h=d+ζ,	u and v are depth-averaged flow 
velocities,	q	is	the	non-hydrostatic	pressure,	g the gravita-
tional	acceleration,	Cf	the	bottom	friction	coefficient,	and	the	
group of τ are the horizontal turbulent stress terms.

The	SWASH	 (Zijlema	et	al.,	 2011)	 is	one	of	 the	 latest	world-
wide available 🔗5 NSWE models. It is a numerical tool for 
simulating	unsteady,	non-hydrostatic,	free-surface,	rotational	
flow,	and	transport	phenomena	in	coastal	waters	as	driven	by	
waves,	tides,	buoyancy,	and	wind	forces.	It	provides	a	general	
basis for describing wave transformations from deep water 
to	the	beach,	port	or	harbour,	as	well	as	complex	changes	to	

rapidly	varied	flows,	and	density	driven	flows	in	coastal	seas,	
estuaries,	lakes,	and	rivers.	SWASH	is	an	efficient	and	robust	
model that allows the application of a wide range of time 
and	space	scales	of	surface	waves	and	shallow	water	flows	in	
complex	environments	(Figure	8.22).	The	model	can	be	also	

5. https://swash.sourceforge.io/

Figure 8.22. Results from the SWASH model for 
the	wave	condition	at	Limassol	Port	(Cyprus)	(from	
Van	der	Ven	et	al.,	2018).
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employed	to	resolve	the	dynamics	of	wave	transformation,	
buoyancy	flow,	and	turbulent	exchange	of	momentum,	sa-
linity,	heat,	and	suspended	sediment	in	shallow	seas,	coast-
al	waters,	estuaries,	reefs,	rivers,	and	lakes.

SWASH may be run in depth-averaged mode or multi-layered 
mode in which the computational domain is divided into a 
fixed	number	of	vertical	terrain-following	layers.	SWASH	im-
proves its frequency dispersion by increasing the number of 
layers rather than increasing the order of derivatives of the 
dependent variables like Boussinesq-type wave models do.

BE can be applied as an alternative to NSWEs as the region 
between deep and shallow waters can be also well described 
by	the	Boussinesq	model.	In	BE	models,	the	horizontal	com-
ponent of the velocity is assumed to be constant in the water 
column and the vertical component of the velocity varies al-
most	linearly	over	depth	(2DH	hypothesis).	Essentially,	these	
equations are the shallow-water equations with corrections 
for	the	vertical	acceleration,	and	third	order	derivatives	are	
the result of the Laplace equation forcing the vertical veloci-
ty of the velocity potential function to be expressed in terms 
of the horizontal velocity distribution. These equations can 
be readily expanded into two horizontal dimensions. 

Researchers have introduced many different implementa-
tions	of	the	Boussinesq	equations,	creating	Boussinesq-type	
models to be applied for propagation in deep water and the 
process	of	wave-breaking	(Brocchini,	2013).	A	vast	majority	
of Boussinesq equations models (for fully non-linear ap-
proach)	can	be	presented	as	follows:

(8.32)

 
(8.33)

with

 
(8.34)

 
(8.35)

 
(8.36)

(8.37)

where index of t denotes time; h is the equilibrium depth; η 
is	the	free-surface	elevation,	V	is	the	horizontal	velocity,	and	
∇ is the 2DH gradient operator. N and E respectively repre-
sent	bottom	drag	and	diffusion	(artificial).	

On	the	other	hand,	a	similar	family	of	equations	exist	and	are	
applied in the region between deep and shallow waters; the 
Boussinesq	equation-based	model.	For	this	approach,	the	main	
hypothesis is that the horizontal component of the velocity is 
assumed	to	be	constant	in	the	water	column,	and	the	vertical	
component of the velocity varies almost linearly over depth. 

One	of	the	most	complete	Boussinesq	models,	the	fully	non-
linear	Boussinesq	wave	model	(FUNWAVE)	in	its	TVD	version	
known	as	FUNWAVE-TVD	model	(Fengyan,	et	al.,	2012),	was	
developed at the Centre for Applied Coastal Research at the 
University	of	Delaware	(USA).	 It	 includes	several	enhance-
ments:	i)	a	more	complete	set	of	fully	nonlinear	Boussinesq	
equations;	ii)	a	MUSCLE-TVD	finite	volume	scheme	together	
with	adaptive	Runge	Kutta	time	stepping;	iii)	shock-capturing	
wave	breaking	scheme,	iv)	wetting-drying	moving	boundary	
condition with HLL construction method for the scheme; and 
v)	code	parallelization	using	MPI	method.	The	development	

of the FUNWAVE-TVD was prompted by the need to model 
tsunami	waves	in	regional	and	coastal	scale,	coastal	inunda-
tion,	and	wave	propagation	at	basin	scale	(Figure	8.23).	FUN-
WAVE is an open-source model available to the public 🔗6.

6. https://fengyanshi.github.io/build/html/index.html

Figure 8.23. Free surface snapshot from the 
FUNWAVE-TVD applied in Sardinero Beach and 
Santander	Bay	(Spain)	outer	and	inner	zone	
(source:	University	of	Cantabria).
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Numerical	solutions	of	Boussinesq	equations	can	be	significant-
ly	corrupted	if	truncation	errors,	arising	from	the	differencing	of	
the	leading	order	wave	equation	terms,	are	allowed	to	grow	in	
size and become comparable to the terms describing the weak 
dispersion effects. All errors involved in solving the underlying 
nonlinear SWE are reduced to 4th order in grid spacing and time 
step	size.	Due	to	non-linear	interaction	in	the	model,	higher	
harmonic waves will be generated as the program runs. These 
super harmonic waves could have very short wavelengths and 
the	classic	Boussinesq	model	is	not	valid.	For	this	reason,	a	nu-
merical	filter	suggested	by	Shapiro	(1970)	can	be	used.

In	summary,	both	Boussinesq	and	NSWEs	modelling	approach-
es are the preferred solutions in their respective physical 
regions: Boussinesq where nonlinearity and dispersion are 
both	significant,	typically	prior	to	breaking;	and	NSWE	where	
nonlinearity	predominates,	from	the	mid-surf	to	inner	surf	
zone	shoreward,	although	it	should	be	noted	that	there	can	
be	a	significant	overlap	of	these	regions.	Therefore,	the	NSWE	
models,	which	work	well	from	the	surf	zone	shoreward	and	
naturally	model	wave	breaking	and	the	moving	shoreline,	find	
their	main	weakness	in	the	absence	of	frequency	dispersion,	
so that in deeper water waves will propagate incorrectly at the 
shallow	water	wave	speed	and,	sooner	or	later,	break	again,	
which is not usual and correct in this region.

Two- and three-dimensions wave structure interaction model

CFD	utilises	numerical	approaches	to	examine	fluid	flows,	
heat	transfer	and	chemical	reactions.	Therefore,	within	wave	
propagation	and	structure	interaction	problems,	the	CFD	term	
mainly refers to computer codes that solve the fully nonlinear 
Navier-Stokes	equations	in	all	three	dimensions	(3D).

CFD is then a state-of-the-art techniques for industrial and re-
search	applications,	although	its	often	high	computation	cost	
demands the use of high-performance computers. Within the 
wave	propagation	and	wave	structure	interaction	field,	two	of	
the most used CFD programs are: IH2VOF (two-dimension ap-
proach,	derived	from	COBRAS	original	model)	and	OpenFOAM	
(three-dimension	approach);	these	two	codes	are	also	well	vali-
dated for many marine and ocean engineering applications.

As	a	classic	Eulerian	approach,	both	models	are	based	on	
the RANS equations. These equations represent the contin-
uum	properties	of	the	flow.	By	averaging	the	Navier-Stokes	
equations,	more	recent	VARANS	equations	are	obtained.	The	
VARANS	equations	can	have	different	terms,	depending	on	
the	assumptions	applied;	for	example,	they	include	a	k-ω 
turbulence	model	closure	within	the	porous	media,	which	
make them the most suitable formulation for coastal engi-
neering as the advantages of VARANS equations are numer-
ous.	The	solving	process	yields	very	detailed	solutions,	both	
in	time	and	space.	Pressure	and	velocity	fields	are	obtained	

cell-wise,	even	inside	the	porous	zones,	so	that	the	whole	
three-dimensional	flow	structure	is	solved.	Furthermore,	
non-linearity	is	inherent	to	the	equations,	and	therefore	all	
the complex interactions among the different processes are 
also	taken	into	consideration.	Finally,	the	effects	of	turbu-
lence within the porous zones can be also easily incorporat-
ed with closure models.

IH2VOF	model	(Lara	et	al.,	2006)	solves	2D	RANS	equations	
for	the	oscillatory	fluid	and	VARANS	equations	for	the	po-
rous media. This 2D model can simulate the most relevant 
hydrodynamic near-field processes that take place in the 
interaction between waves and low-crested breakwaters. It 
considers	wave	reflection,	transmission,	overtopping,	and	
breaking	due	to	transient	nonlinear	waves,	including	turbu-
lence	in	the	fluid	domain	and	in	the	permeable	regions	for	
any kind of geometry and number of layers. This model is 
highly	validated,	with	different	wave	conditions	and	break-
water	configurations,	achieving	a	high	degree	of	agreement	
with	all	the	studied	magnitudes,	free	surface	displacement,	
pressure	inside	the	porous	structure,	and	velocity	field.	

IH2VOF is based on the decomposition of the instantaneous 
velocity	and	pressure	fields	into	mean	and	turbulent	com-
ponents,	the	κ-ε	equations	for	the	turbulent	kinetic	energy	
κ,	and	its	dissipation	rate	ε. This permits the simulation of 
any	kind	of	coastal	structure	(e.g.	rubble	mound,	vertical	or	
mixed	breakwaters).	The	free	surface	movement	is	tracked	by	
the	volume	of	fluid	(VOF)	method	for	one	phase	only,	water	
and void. In order to replicate solid bodies immersed in the 
mesh	instead	of	treating	them	as	sawtooth	shape,	the	model	
uses a cutting cell method. The main purpose of this tech-
nique is to use an orthogonal structured mesh in the simula-
tions to save computational cost. 

IH2VOF includes a complete set of wave generation boundary 
conditions,	which	cover	most	water	depth	ranges.	These	in-
clude a Dirichlet boundary condition and a moving boundary 
method,	which	are	linked	with	an	active	wave	absorption	sys-
tem to avoid an increase of the mean water level and the ag-
itation. An internal source function can be also used to gen-
erate	waves,	but	it	has	to	be	linked	with	a	dissipation	zone.

The	RANS	equations	(clear	fluid	region)	are	redefined	as	follows:

(8.38)

(8.39)

Generally,	 IH2VOF	application	 is	within	a	detailed	 inci-
dent-wave and structure interaction (rubble-mound break-
waters,	vertical	structures	and	beaches),	taking	into	account	
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a realistic wave breaking and porous media interaction (see 
Figure	8.24).

The general VARANS equations include conservation of mass 
(8.39),	conservation	of	momentum	(8.40),	and	the	VOF	func-
tion	advection	equation	(8.41)	as	follows:

(8.40)

 
(8.41)

(8.42)

where u is the extended averaged Darcy velocity; n is the 
porosity	(volume	of	voids	over	the	total	volume);	ρ is the 
density; p is the pressure; g is the acceleration of gravity; ν is 
the	kinematic	viscosity,	and	α1 is the VOF function indicator 
(quantity	of	water	per	unit	of	volume	at	each	cell).

The	OpenFOAM	 (Higuera	 et	 al.,	 2014a	 and	 2014b)	 is	 an	 ex-
tensive software package that has been widely used in in-
dustrial and academic applications. It is freely distributed 
🔗7	as	an	open	source	CFD	Toolbox,	and	it	includes	a	broad	
range of features. IHFOAM 2.0 is an extension of the original 
software	 for	 coastal	applications,	newly	developed	with	a	
three-dimensional	numerical	two-phase	flow	solver,	spe-
cially	designed	to	simulate	coastal,	offshore,	and	hydraulic	
engineering processes. It contains an advanced multiphys-
ics	model,	widely	used	in	the	industry.	A	wide	collection	of	
boundary	conditions,	which	handle	wave	generation	and	
active absorption at the boundaries with a high practical 
application	to	coastal	and	harbour	engineering	(Figure	8.25),	
makes IHFOAM 2.0 different from the rest of solvers. Maza et 

al.	(2016)	have	studied	and	proposed	natural-based	solutions	
for coastal protections using IHFOAM.

8.4.2. Discretization methods

Various discretization methods are used in water wave 
solving	problems,	a	brief	description	for	each	of	them	is	
presented below (for additional references see Sections 
5.4.2.4	and	7.2.3.5):

• FDM. Maybe the most used and simplest ways to 
solve	numerically	partial	differential	equations	(PDEs).	
The	method	establishes	the	value	of	the	flow	variable	
at a given point based on the number of neighbour 

7. https://www.openfoam.com/

Figure 8.24.  Irregular wave propagation towards 
a	real	profile	beach.	Free	surface	snapshot	and	
wave	velocity	validation	against	field	measure-
ments	(source:	National	University	of	Mexico).

Figure 8.25.  Free surface snapshot of irregular 
wave interacting with a natural-based protection 
(a	tree	patch)	calculated	with	IHFOAM	2.0	(source:	
University	of	Cantabria).
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points. The numerical domain forms a grid. The govern-
ing	equations	of	the	fluid	are	considered	in	their	dif-
ferential	form	at	each	point	in	the	domain,	so	that	the	
solution is solved by replacing the partial derivatives 
with approximations by means of the nodal values of 
the functions. This method is recommended for struc-
tured grids and low-order equation schemes. 

• FEM for the solution of PDEs employs variational meth-
ods	to	minimise	the	error	of	the	approximated	solution,	
similarly to the Galerkin method. FEM was used in struc-
tural mechanics but this technique developed for compu-
tational	fluid	dynamics	applications	being	 introduced	to	
common wave propagation and agitations models. FEM 
technique,	similarly	to	the	FDM,	is	based	on	the	concept	
of subdividing a continuum computational domain into 
elements,	forming	a	grid	of	triangular	or	quadrilateral	un-

structured	elements	or	curved	cells	(Figure	8.26).	Therefore,	
the method can handle problems with great geometric 
complexity,	such	as	harbour	perimeter	definition,	concen-
tration	of	nodes	at	relevant	parts	of	the	domain,	etc.	  
 
FEM	used	variational	methods,	which	in	practice	means	
that the solution is assumed to have a prescribed form 
and to belong to a function space. The function space 
is	 built	 by	 varying	 functions,	 such	 as	 linear	 and	 qua-
dratic.	The	varying	functions	connect	the	nodal	points,	
which	can	be	the	vertices,	mid-side	points,	mid-element	
points,	etc.,	of	 the	elements.	As	a	 result,	 the	geomet-
ric representation of the domain plays a crucial role in 
the outcome of the numerical simulation. The original 
PDEs	are	not	solved	by	 the	FEM.	 Instead,	 the	solution	
is approximated locally by an integral form of the PDEs. 
The integral of the inner product of the residual and 
the weight functions are constructed. The integral is 
set to zero and trial functions are used to minimise 
the residual. The most general integral form is obtained 
from a weighted residual formulation. The process elimi-
nates	all	the	spatial	derivatives	from	the	PDEs	and,	there-
fore,	differential	type	boundary	conditions	for	transient	
problems and algebraic type boundary conditions for 
steady	state	problems	can	be	considered,	hence	the	
differential equations become algebraic. Only one 
equation	 is	solved	per	grid	node,	which	has	one	vari-
able as unknown. The same variable is also unknown at 
the neighbouring cells.

• FVM solves PDEs by transforming them to algebraic 
equations around a control volume (subdivisions of the 
computational	domain).	The	variables	are	calculated	at	
the centre of each control volume. General interpola-
tion methods are used to derive the values of the vari-
ables at the surfaces of the control volume considering 
the neighbour control volumes as well. The FVM has two 
major	advantages:	i)	it	is	able	to	accommodate	any	type	
of	grid,	making	it	applicable	for	domains	of	high	com-
plexity;	and	ii)	it	is	conservative	by	definition,	since	the	
control volumes that share a boundary have the same 
surface	integrals,	describing	the	convective	and	diffu-
sive	fluxes.	FVMs	are	very	popular	in	the	numerical	wave	
propagation	community,	succeeding	in	free	surface	flow	
simulations,	especially	when	highly	nonlinear	process-
es	are	involved,	such	as	wave	breaking.	

Figure 8.26. 	Finite	Element	Metod	(FEM)	based	
on irregular sized triangles applied to Galicia 
(Spain)	for	SWAN	model	(source:	University	of	
Cantabria).
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8.5.  
Data assimilation systems 
In	a	wave	forecasting	system,	data	assimilation	plays	a	key	
role	in	order	to	provide	the	best	description	of	sea	state,	
and also to correct uncertainties related to wind forcing from 
the	atmospheric	systems.	Since	the	beginning	of	the	1990s,	
with the arrival of altimeter missions such the pioneer one 
Topex-Poseidon,	the	assimilation	schemes	have	been	im-
plemented	to	use	significant	wave	height	in	the	WAM	model	
(Janssen	et	al.,	1989;	Bauer	et	al.,	1992;	Lionello	et	al.,	1992).	
Basically,	the	scheme	uses	an	optimal	interpolation	through	
a	weighted	correction	of	the	first	SWH	guess	with	that	one	
from altimeters. The correlation model to spread the correc-
tion from altimeter SWH to other grid points is essentially a 
Gaussian	function,	depending	on	the	distance	between	the	
observation	and	model	locations,	and	a	correlation	length,	
which	can	vary	with	the	wave	regime	(Greenslade	and	Young,	
2004).	The	assimilation	of	SWH	corrects	the	two-dimension-
al spectrum by introducing appropriate rescaling factors to 
the energy and frequency scales of the wind sea and swell 

components	of	the	spectrum,	and	also	updates	the	local	forc-
ing wind speed. The rescaling factors are computed for two 
classes	of	spectra:	i)	wind	sea	spectra,	for	which	the	rescaling	
factors are derived from fetch and duration growth relations; 
and	ii)	swell	spectra,	for	which	it	is	assumed	that	the	wave	
steepness	is	conserved.	Currently,	there	is	abundant	infor-
mation	on	SWH	(see	Figure	8.27),	as	it	is	provided	by	eight	
satellite	missions	(Jason-3,	Saral/Altika,	Cryosat-2,	Senti-
nel-3A	and	3B,	CFOSAT,	HY2B,	Sentinel-6MF).	This	ensures	
an excellent coverage for open ocean and it is evolving to a 
good coverage for coastal areas.

A variational technique has been also used in regional wave 
forecasting	(Saulter	et	al.,	2020)	to	assimilate	SWH	from	al-
timeters. This scheme is an adaptation of the assimilation 
code NEMOVAR to wave assimilation.

Figure 8.27. Significant	wave	height	(in	meters)	observed	by	altimeter	radars	of	six	satellite	missions	(Ja-
son-3,	Saral/Altika,	Cryosat-2,	Sentinel-3A	and	3B,	CFOSAT)	during	the	whole	day	of	11	October	2021	(source:	
Aouf	et	al.,	2021).

CHAPTER 8. WAVE MODELLING 218



Since	the	launch	of	the	ERS-1	and	2	and	ENVISAT	(2002)	satel-
lites,	the	waves	are	observed	with	more	detailed	information	
(Hasselmann	et	al.,	2013),	characterised	by	the	directional	
wave spectrum that can describe the different dominant 
wave	trains	(see	Figure	8.28).	The	assimilation	of	such	ob-
servations needs several steps and has been initiated at the 
end of 1990’s. The method is based on the assimilation of 
wave	systems	as	derived	from	a	spectral	partitioning	scheme,	
which works on the principle of the inverted catchment area 
(Hasselmann	et	al.,	1997;	Voorrips	et	al.,	1997;	Breivik	et	al.,	
1998;	Aouf	et	al.,	2006).	The	different	wave	systems	are	char-
acterised	by	their	mean	energy,	frequency,	and	direction.	The	
mean parameters are assimilated using an optimal interpo-

lation	(OI)	scheme,	following	a	cross-assignment	procedure	
that correlates the observed and modelled wave systems. 
The analysed spectra are reconstructed by resizing and re-
shaping the model spectra based on the mean parameters 
obtained from the OI scheme.

The	SAR,	from	the	ERS,	ENVISAT	and	Sentinel-1	satellites,	pro-
vides directional wave spectra with a limitation in azimuth 
direction of detecting waves with wavelength greater than 
150 m. Such wave spectra are very useful to describe several 
wave trains in energy and wave numbers components. MF-
WAM	started	to	assimilate	wave	partition	parameters,	such	
wavenumber	components,	by	using	optimal	interpolation.	
This	has	provided	a	significant	improvement	of	long	swell	
propagation,	and	an	assimilation	impact	which	remains	ef-
ficient	at	least	3	days	in	the	period	of	forecast.	Figure	8.29	

Figure 8.29. Difference of mean wave period 
(in	seconds)	from	the	model	MFWAM	with	and	
without assimilation of wavenumber components 
of SAR partitions from ENVISAT during the period 
from September to December 2010; positive and 
negative	values	stand,	respectively,	for	over-
estimation	and	underestimation	of	the	model,	
(source:	Aouf	et	al.,	2021).

Figure 8.30. Wide	swath	significant	wave	height	from	the	CFOSAT	mission.	Left:	global	view.	Right:	zoom	
focused	on	high	SWH	in	Southwest	Pacific	Ocean	(source:	Wang	et	al.,	2021).

Figure 8.28. Directional wave spectra observed 
by Synthetic Aperture Radar of Sentinel-1 (source: 
Derkani	et	al.,	2021).
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shows the impact of the assimilation of wavenumber compo-
nents of partitions from ENVISAT on the mean wave period. 
The different anomalies are strongly correlated with swell 
track propagation from the Southern Ocean.

Future wave forecasting systems will be able to assimilate 
both the wave heights and the directional components rep-
resented by the partitions. The impact of these assimilation 
systems ensures reliable integrated wave parameters in the 
3-day forecast. The processing of satellite wave data is evolv-
ing	rapidly;	in	a	recent	study	by	Wang	et	al.	(2021),	it	is	shown	
the	retrieval	of	significant	wave	height	on	a	scatterometer	
swath by using a deep learning technique. With this type of 

wave	data,	the	amount	of	data	to	be	assimilated	is	signifi-
cantly	increased,	which	keeps	consistent	the	correction	of	
the model over a swath distance of 200 km. An example of a 
wide swath SWH obtained from the CFOSAT mission is shown 
in	Figure	8.30.	The	assimilation	of	wide	swaths	of	significant	
wave heights improves the initial conditions of the sea state 
generated	by	storms,	for	instance	in	the	Southern	Ocean,	
and also enhances the impact in coastal regions. Further-
more,	with	the	trend	of	improved	spatial	resolution	of	the	
wave	model,	altimeters	are	providing	better	sampled	wave	
heights,	e.g.	5	hz	(~1km),	with	the	ability	to	correctly	describe	
small scale variations such wave-current interactions.

8.6.  
Ensemble modelling
Forecasts are subject to uncertainty by their nature. Some of 
the uncertainty is due to errors in model parameterizations 
of	real-world	processes,	while	some	others	can	be	attribut-
ed	to	observation	errors.	However,	a	significant	amount	of	
uncertainty is also introduced as a result of small differen-
tials between the analysis and the state of environmental 
conditions at forecast initiation. These differences can lead 
to much wider discrepancies between the forecast and ac-
tual	state	at	longer	lead	times,	depending	on	the	stability	of	
the background meteorological conditions. One approach to 
forecasting	is	attempting	to	quantify	the	uncertainties,	and	
view the forecast as sampling from a probability distribution 
of likely conditions rather than as a single “deterministic” 
outcome. Continuing increases in computing resources have 
enabled modelling centres to adopt a probabilistic forecast-
ing approach based on running wave EPSs.

The aim of an EPS is to provide forecasters with a measure of 
model and climatic uncertainty associated with a given fore-
cast. The ensemble will indicate lower forecast uncertainty 
in	well-	specified	and	stable	weather	conditions	than	in	un-
stable	conditions,	where	the	present	weather	state	might	be	
poorly analysed and weather system development is more 
dynamic.	As	a	forced-dissipative	system,	wave-forecast	un-
certainty is mostly determined by variations in the driving 
atmospheric	data.	Thus,	the	requirement	for	a	complex	EPS	
based	on	data	assimilation,	using	perturbed	initial	condi-
tions to generate starting conditions for ensemble members 
as	in	ensemble	weather	prediction,	is	limited.	Pioneering	
applications have been developed for global medium-range 

forecasts	(1-4	weeks	ahead)	at	centres	such	as	the	ECMWF	
(Molteni	et	al.,	1996;	Saetra	and	Bidlot,	2004),	NCEP	(Chen,	
2006),	and	FNMOC	(Alves	et	al.,	2013).	Research	into	short-
range	regional	ensemble	systems,	which	have	a	stronger	
requirement	for	uncertainty	to	be	well	specified	at	forecast	
initialization,	is	ongoing	at	the	UKMO	(Bunney	and	Sault-
er,	2015),	the	Italian	Meteorological	Service	(Pezzutto	et	al.,	
2016),	and	the	Australian	Bureau	of	Meteorology	(Zieger	et	
al.,	2018).

The data provided by an ensemble (see Figures 8.31 and 
8.32)	allow	more	than	one	approach	to	be	adopted	when	in-
terpreting	and	issuing	a	forecast.	For	example:	i)	individual	
members	can	be	identified	and	used	to	describe	alternative	
forecast	scenarios	deterministically;	ii)	dynamic	changes	in	
ensemble spread can be used to estimate the uncertainty 
associated with a deterministic product derived from the en-
semble;	or	iii)	probability	information	about	a	given	outcome	
(for	instance,	the	probability	of	wave	height	exceeding	a	cer-
tain	operating	threshold)	can	be	used	directly.	The	choice	
of approach requires an understanding of the end-user re-
quirements and of the ensemble’s performance.

However,	a	well-specified	ensemble	should	show	a	good	reliabil-
ity	relationship.	Similarly,	a	good	ensemble	will	show	a	strong	
correlation between spread in the EPS forecast and error in the 
ensemble control/mean forecast and observations. All these be-
haviours are fundamentally reliant on the quality of the underly-
ing	model.	In	the	example	in	Figure	8.33,	reliability	is	shown	to	be	
significantly	affected	for	a	short-range	ensemble	forecast	when	
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Figure 8.31. Point time-series ensemble wave forecast product by ECMWF. Top two panels: direction variability and 
wind	speed.	Lower	three	panels:	forecast	of	total	wave	parameters.	In	this	instance,	a	high-resolution	deterministic	
model	and	the	ensemble	control	are	overlaid	using	the	blue	and	red	lines,	respectively	(source:	WMO,	2020).
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Figure 8.32. Ensemble	forecast	charts.	Top:	ensemble	mean	significant	wave	height	(contours)	and	spread	(shad-
ing).	Bottom:	probability	of	significant	wave	height	exceeding	4	m	(source:	WMO,	2020).
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an underlying bias is corrected. A recommended practice when 
assessing probability of threshold exceedance is to evaluate the 
probability and also the quantity by which the threshold is ex-
ceeded.	For	example,	a	forecast	where	90%	of	ensemble	mem-
bers exceeded a threshold by 1 m Hs should be given a stronger 
level	of	confidence	than	a	forecast	with	a	similar	probability	of	
90%,	but	which	threshold	exceeds	by	only	10-20	cm.

One aspect of ensemble prediction that may have particular 
application	is	the	identification	of	low-probability,	high-impact	
occurrences of a “dangerous” sea state within the ensemble at 
long	range	(Petroliagis	and	Pinson,	2012).	In	extreme	cases,	the	
accuracy of the underlying model may be more questionable 
than	everyday	forecasting,	but	this	can	be	mitigated	using	a	
background	model	climatology.	Lalaurette	(2003)	described	
the	ECMWF	EFI	methodology	for	wind,	temperature,	and	pre-
cipitation	parameters,	in	which	forecast	members	were	com-
pared against a model climate. This EFI has also been extend-
ed	to	waves.	Figure	8.34	shows	an	example	in	which	the	figure	
on	the	left	is	EFI	(with	range	-1	to	1)	for	significant	wave	height,	
with	values	nearing	1	over	the	Norwegian	Sea.	The	figure	on	
the right is the corresponding 99th percentile of the wave-
height	distribution	for	that	day.	Therefore,	EFI	indicates	that	
the model is predicting wave heights above 4 m and that this 
is not usual for that time of the year.

A computationally cheaper version of a full ensemble system is 
the	so-called	“poor	man’s	ensemble”	(Ebert,	2001),	which	com-
bines some independent model forecasts from several opera-
tional centres. The availability of such a set of forecasts can also 
contribute to a “consensus forecast” in which the forecasts are 
weighted and bias corrected according to past performance to 
produce	an	“optimal	consensus	forecast”,	which	typically	outper-
forms	any	of	the	individual	model	forecasts	(Durrant	et	al.,	2009).

An example is given below for the interest of using a wave 
ensemble in the frame of emergency and wave submersion 
warning. Figure 8.34 right panel shows the high uncertainty 
between members on the location of the strong wave area 
generated by a storm event. The propagation of the storm 
is	observed	differently.	Several	members,	including	the	de-
terministic	forecast,	estimate	SWH	of	10m	on	Brittany	coasts	
at	102-hour	forecast	(06:00	UTC),	as	illustrated	in	Figure	8.35	
left	panel.	In	fact,	the	wave	submersion	warning	in	this	case	
was triggered for the evening. It can be seen that about 20% 
of the members considered a probability of waves with SWH 
greater than 10m near the analysis. Uncertainty was also re-
lated to the location of the storm on the North-South axis.

Figure 8.33. Reliability diagram for two wave EPS 
forecasts	of	significant	wave	height	above	6	m	at	a	
forecast range of 2 d (blue: Atlantic regional mod-
el;	red:	regional	model	of	the	United	Kingdom).	
The forecasts are considered reliable when the 
forecast probability and frequency of subsequent 
observations are similar (the data fall onto the 1:1 
line).	In	this	example,	the	effect	of	bias	correcting	
the	forecast	is	significant;	in	the	bottom	panel,	the	
lines representing forecasts after bias correction 
are much closer to the 1:1 line than the raw fore-
casts	in	the	top	panel	(source:	WMO,	2020).
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Figure 8.34. Extreme	Forecast	Index	(left)	and	associated	99th	percentile	of	significant	wave	height	derived	from	
the	model’s	long-term	climate	simulation	(right	panel)	(source:	WMO,	2020).

Figure 8.35. Left:	probability	(in	%)	of	SWH	exceeding	10m	at	102-hour	forecast	from	the	wave	ensemble	
system.	Right:	standard	deviation	of	SWH	(in	metre)	between	ensemble	members,	30	January	2021	at	06:00	UTC	
(courtesy:	A.	Dalphinet,	MeteoFrance).
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8.7.  
Validation and calibration strategies
For	all	operational	ocean	forecast	systems,	verification	of	
wave	models	is	dependent	on	the	choice	of	metric,	sampling	
strategy,	and	parameter(s)	to	be	verified.	Verification	and	
measurement of model uncertainty include describing the 
difference between the model and observed conditions and 
their statistical properties; assessing the value of the mod-
el	in	accurately	predicting	specific	ocean	conditions	for	user	
decision making; providing a long term view of performance 
and measuring the impact of model changes; and/or inves-
tigating the model’s ability to represent particular ocean 
processes	or	conditions.	As	with	any	statistical	analysis,	it	is	
useful	to	frame	the	question	or	hypothesis	that	the	verifica-
tion should answer and ensure that the metrics provided are 
appropriate to the expertise of the audience.

For	the	verification,	it	is	fundamental	the	sampling	strategy	
applied to both model and observations. Sampling should 
consider spatial and temporal correlations with respect to 
data	to	be	verified.	These	correlations	will	be	dependent	on	
the	verification	setting,	for	example	in	the	open	ocean	wave	
fields	may	 be	 well	 correlated	 over	 scales	 of	 hundreds	 of	
kilometres	and	several	hours,	whilst	in	coastal	settings	with	
a	 strong	 tidal	 component	 correlation	 in	 wave	 conditions,	
scales can diminish about tens of kilometres and periods 
of	 less	 than	 an	 hour	 (Saulter	 et	 al.,	 2020).	 The	 degree	 of	
correlation between data affects the sample size required 
to	 consider	 robust	 statistical	 verification.	 The	 verification	
can be affected if scales represented by models and ob-
servations are substantially different. In-situ observations 
tend to sample on scales equivalent to approximately 5-20 
km	depending	on	dominant	wave	periods,	whilst	a	1	Hz	al-
timeter	 observation	 of	 significant	 wave	 height	 is	 derived	
over a spatial footprint that covers approximately 6-7 km in 
the along-track direction with a diameter 2-10 km increas-
ing with the sea-state (since the backscatter increases as 
waves	 get	 bigger	 and	 wavelengths	 longer).	 Wave	 models	
can generally be considered to scale at a factor of 3-4 times 
of either the wave or forcing atmospheric model horizontal 
grid	and	integration	time	step	(Janssen	et	al.,	2007).	It	is	rec-
ommended	to	define	a	benchmark	representative	scale	for	
comparison	with	the	data	processed	to	that	scale,	as	well	
as metadata describing this processing supplied alongside 
with metrics. It may also be important to communicate lim-
itations	 in	 the	data,	 for	example	 in	 the	case	 in	which	 the	
available observations and processing methods cannot be 
extended	to	a	full	coverage	of	the	model	domain,	such	as	
coastal zones.

Existing standards for baseline performance metrics can be 
found	via	the	WMO/LC-WFV	established	at	ECMWF	(Bidlot,	2016),	
and Product Quality Dashboard of the Copernicus Marine Ser-
vice (🔗8 ).9Left panel in Figure 8.36 shows an example of scat-
ter index of SWH monitoring provided by different operational 

8. https://pqd.mercator-ocean.fr
9. https://catalogue.marine.copernicus.eu/documents/
QUID/CMEMS-GLO-QUID-001-028.pdf

Figure 8.36. Top: variation of scatter index of 
SWH in a forecast compared to wave buoys from 
June	to	August	2021,	colours	stand	for	operational	
centres	names	(source:	WMO/LC-WFV).	Bottom:	
map of scatter index of SWH from Global Ocean 
Wave	Reanalysis	(WAVERYS)	compared	to	altim-
eter	HY2A	during	the	2013-2018	period	(source:	
CMEMS-GLO-QUID-001-032 🔗9).
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centres in the framework of the WMO/LC-WFV. As illustrated 
by the Copernicus Marine Service global wave reanalysis (right 
panel	in	Figure	8.36),	the	altimeters	have	the	advantage	of	cov-
ering	all	ocean	basins,	allowing	 the	monitoring	of	 the	spatial	
variation of wave models errors.

Standards will continue to evolve with the increased use of en-
semble forecast systems and reductions in horizontal scales of 
wave,	atmosphere,	and	ocean	models.	However,	model	perfor-
mance is better described by metrics that exploit the uncertain-
ty	in	forecasts,	either	from	the	ensemble	(Pezzutto	et	al.,	2016)	
or using variability in spatial neighbourhoods surrounding an 
observation	point	(Ebert,	2008;	Mittermaier	and	Csima,	2017).	
For	long-term	monitoring,	an	important	ensemble	prediction	
metric	is	the	Cumulative	Ranked	Probability	Score	(Hersbach,	
2000),	which	can	be	directly	compared	with	Mean	Absolute	Error	
for	deterministic	predictions,	therefore	enabling	the	benefits	of	
transition to high resolution or ensemble models from lower 
resolution or deterministic systems to be measured.

Wave observational data are dominated by SWH measure-
ments available from in-situ sources and remote sensing 
via satellite missions and HF radar. SWH data are a prima-
ry	health	indicator	for	the	wave	model,	describing	the	wave	
energy of the surface ocean as a response to momentum 
supplied by the atmosphere and redistributed through wave 
dispersion. SWH is often the main parameter of interest for 
users and decision makers about sea-state conditions (see 
also Chapter 4).	However,	to	properly	verify	a	wave	model’s	
performance	at	a	process	level,	observations	of	further	pa-
rameters describing the distribution of wave energy within 

the two-dimensional frequency-direction spectrum should 
be	also	used.	Full	spectral	coverage	in	the	frequency	(period)	
domain of ocean surface waves is currently obtained only by 
in-situ measurements. Attention is needed to understand 
the limitations imposed by a given platform’s response to 
wave	action,	which	determines	a	high	frequency	cut-off,	and	
the distinction between directional spectra derived from the 
‘first	five’	approach	used	by	in-situ	data	(Swail	et	al.,	2010)	
versus the full frequency-direction distributions generated 
from models and remote sensing. Remote sensed data are 
strongly	affected	by	frequency	(wavelength)	cut-off	con-
straints	as	,	for	example,	SAR	will	capture	long	period	swells	
but	not	short	wind-waves.	From	a	verification	perspective,	it	
can	be	difficult	obtaining	a	sufficient	sample	of	data	across	
the full directional wave spectrum to enable a robust sta-
tistical	analysis	over	multiple	frequencies	and	directions,	
and	hence	it	 is	often	preferable	to	compare	wave	heights,	
periods,	and	directions	integrated	over	a	reduced	number	
of	partitioned	regions	of	the	wave	spectrum	(Ardhuin	et	al.,	
2010).	Since	wave	models	are	strongly	influenced	by	the	un-
certainty inherited from the forcing atmosphere (Cavaleri et 
al.,	2018),	when	evaluating	wave	models	at	the	process	level,	
it is recommended to verify wave parameters alongside con-
temporary measures of wind speed or stress.

A	useful	tool	in	the	verification	process	is	the	wave	rose	analy-
sis. Figure 8.37 shows a comparison between the directional wave 
properties	by	the	Copernicus	Marine	Service	WAVERYS	and	the	
buoy	51202	deployed	by	the	NOAA	NDBC	at	Oahu	(Hawaii,	USA).

Figure 8.37. Left:	wave	rose	for	Copernicus	Marine	Service	WAVERYS.	Right:	wave	rose	at	NDBC	buoy	51202	
(Hawaii,	USA).
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8.8.  
Outputs and post processing
8.8.1. Post-processing of the wave model 
results for the final delivery

Wave models provide at each grid point two-dimensional 
wave spectrum F (f,θ),	which	describes	how	the	wave	energy	
is distributed as a function of frequency f and propagation 
direction θ.	 In	general,	the	wave	spectrum	F is discretized 
in 30 frequencies and 24 directions. To simplify the study 
of	wave	conditions,	integrated	parameters	are	derived	from	
weighted integrals of F (f,θ).	The	moment	of	order	n,	mn is 
defined	as	the	following	integral:

(8.43)

The integrations are performed over all frequencies and di-
rections or over a spectral subdomain when the spectrum is 
split between wind sea and swell or partitioned into main 
components. The wind sea wave component is subject to 
the	wind	forcing,	and	then	wave	phase	speed	is	smaller	than	
the wind speed at the ocean surface. The remaining part is 
considered swell. It is established in the WAM model for in-

stance,	the	spectral	energy	is	subject	to	wind	forcing	when	
the	following	approximation	is	satisfied:

(8.44)

where u ∗	is	the	friction	velocity,	c is the phase speed as de-
rived from the linear theory of waves and φ is the wind direc-
tion. The integrated parameters are therefore also computed 
for wind waves and swell by only integrating over the respec-
tive components of F (f,θ)	that	satisfies	8.43	or	not.	

Significant wave height

The wave energy is the 0th order of the moment m0 and sig-
nificant	wave	height	(Hs)	is	defined	as	follows	(Hs snapshot 
shown	in	Figure	8.38):

(8.45)

Figure 8.38. Snapshot of Hs	(in	meters)	from	Copernicus	Marine	Service	global	wave	system	(3	February	2022	
at	21	UTC).
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Figure 8.39. Snapshot of mean period Tm_1	(in	seconds)	from	Copernicus	Marine	Service	global	wave	system	
(3	February	2022	at	21	UTC).

Mean period

The	mean	period	(snapshot	in	Figure	8.39)	is	expressed	in	
several ways. The most used is Tm_1 which is based on the 
moment of order _1,	that	is

(8.46)

Tm_1 is also commonly known as the energy mean wave peri-
od. By considering Hs,	it	can	be	used	to	determine	the	wave	
energy	flux	per	unit	of	wave-crest	length	in	deep	water,	also	
indicated as the wave power per unit of wave-crest length P.

To	analyse	different	aspects	of	the	wave	field,	other	mo-
ments	can	be	used	to	define	a	mean	period.	Periods	can	be	
based	on	the	first	moment	Tm1 given by:

(8.47)

Tm1 is essentially the reciprocal of the mean frequency. It can be 
used to estimate the magnitude of Stokes drift transport in deep 
water and periods based on the second moment Tm2 given by:

(8.48)

Tm2	is	also	known	as	the	zero-crossing	mean	wave	period,	
as it corresponds to the mean period that is determined 
from observations of the sea surface elevation using the ze-
ro-crossing method.

Peak period

The	peak	period	is	defined	for	total	sea	and	can	be	expressed	
as the reciprocal peak frequency of the 1D wave spectrum 
F(f) integrated over directions. There is a second way to com-
pute the peak frequency and it is obtained from a parabolic 
fit	around	the	discretized	maximum	of	the	two-dimensional	
wave spectrum F(f,θ). 

Mean wave direction

The	mean	wave	direction	is	defined	by	weighting	the	wave	
spectrum F (f,θ).	It	is	expressed	as	follows:

(8.49)

where S1 is the integral of sin(θ)*F(f,θ) over frequencies and 
directions,	while	C1 is the integral of cos(θ)*F(f,θ) over f and θ.

Directional spread

The wave directional spread gives the information on the di-
rectional	distribution	of	the	total	sea,	or	it	can	be	applied	for	
different wave components. It is expressed as follows:

(8.50)

where M is I/m0 and I is the integral of cos(θ-<θ>)*F(f,θ) over 
f and θ. <θ> is the mean direction. The directional spread can 
be	computed	for	wind,	sea,	and	swell	components.
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Surface Stokes Drift

The Stokes drift impacts the turbulence in the upper ocean 
layers and contributes to the source of energy of the ocean 
circulation,	particularly	the	Langmuir	circulation.	The	surface	
Stokes drift Us is computed from the wave spectrum in deep 
water by the following relation:

(8.51)

where the integration is over all frequencies and directions. 
k is the unit vector in the direction of the wave component. 
In	the	high	frequency	range,	the	Phillips	spectral	shape	is	
used with accounting of spectral level of the last frequency 
bin. Figure 8.40 shows the ratio of Stokes drift magnitude to 
10 m wind speed.

Partitioning wave spectrum

In	general,	wave	forecasters	firstly	analyse	the	integrated	
parameters over the full wave spectrum describing the total 
sea.	Then,	they	refine	their	analysis	by	examining	the	differ-
ent	dominant	wave	trains	representing	wind,	sea,	and	swell.	
Most	wave	models	include	a	partitioning	procedure,	which	
aims to separate the different wave systems represented by 
energy peaks in the wave spectrum. The most used partition-
ing	procedure	is	adapted	from	Hanson	and	Phillips	(2002)	
and is based on the watershed method inspired from image 
processing. After splitting the wind sea and swell wave spec-
trum,	the	method	consists	in	identifying	the	energy	peaks	in	

the wave spectrum and isolating a partition with decreasing 
energy from the peak to a limit corresponding to an increase 
in energy. Several partitions or wave systems can be detect-
ed	in	a	wave	spectrum,	and	they	are	classified	by	decreas-
ing order of their wave height. An example of partitioning 
is	shown	in	Figure	8.41,	where	three	partitions	are	detected	
with	two	swells	and	one	wind	sea.	The	average	height,	period	
and direction can be calculated on each partition.

Wave energy flux

The	wave	energy	flux	per	unit	of	wave-crest	length	in	deep	
water can be computed by using the wave period Tm_1 and 
significant	wave	height	Hs:

(8.52)

where rw is the water density and g is the acceleration due 
to gravity.

The	wave	energy	flux	can	be	expressed	by	integrating	the	flux	
of each spectral component.

(8.53)

where Cg is the group velocity in deep water.

Figure 8.40. Ratio	(in	percentage)	between	surface	Stokes	drift	and	wind	speed	from	Copernicus	Marine	Service	
global	wave	system	on	20	June	2021	at	21	UTC.	Arrows	show	the	Stokes	drift	direction.
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Figure 8.41. Top	left:	full	wave	spectrum	for	the	location	of	the	Prestige	ship	accident	(Trulsen	et	al.,	2015).	
Top	right:	swell	partition-1,	the	most	energetic	propagating	to	the	South-East	direction.	Bottom	left:	long	wind	
sea partition-2 propagating to the North-East direction. Bottom right: swell partition-3 propagating to the East-
North-East	direction	(source:	Copernicus	Marine	Service).
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8.8.2. Common output variables

Numerical models for wave generation and propagation can 
provide different variables to be used in multi-year and pre-

dictive systems. Table 8.1 lists variables that are commonly 
provided by numerical and that may be of special relevance 
for	users,	as	well	as	for	developers	who	wish	to	set	up	future	
wave OOFS and multi-year systems.

Common variable names 
(usually provided by third-generation spectral wave model and/or a mild 

slope approximations)

Symbol Units

Hs

Tp

Tm

Ө

S

Hsi, Tpi, Diri

Hmax

Tmax

Us

Vs

Cd

Tauoc

mss

m

s

s

ºN

m²/Hz/ºN

m, s, ºn

m

m

m/s

m/s

Significant	wave	height

Peak period

Mean wave period

Mean and Peak wave direction

Complete wave spectra matrix

Mean	parameters	of	wave	partitions	(Hs,Tm,Tp	and	Dir)	for:	2	Swells	and	1	wind	sea

Maximum wave height

Maximum wave period

Meridional component of Stokes drift

Zonal component of Stokes drift

Drag	coefficient	with	waves

Normalised stress to ocean

Mean square slope

Table 8.1.  Common names of wave variables.
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Advanced variable names 
(usually provided by phase resolving models and CFD approaches)

Symbol Units

η

U-V

Ru

q

ηIG

S

P

F

u-v

m

m/s

m

m³/s per m

m

m ²/Hz/ºN

N/m²

N

m/s

Free-surface time series at points and maps

Wave breaking-induced currents

Instantaneous wave run-up

Instantaneous wave overtopping volume

Infragravity wave oscillations

Multi-directional	wave	spectra	matrix	(agitation)

Instantaneous wave pressures over structures

Instantaneous forces over structures

Instantaneous wave currents

8.9.  
Inventories
The purpose of this section is to provide an initial invento-
ry	of	the	operational	ocean	wave	NearRealTime	(NRT)	and		
MultiYear	(MY)	operating	at	international	level.	Details	about	
each	specific	system,	resolution,	 implemented	numerical	
tool,	and	data	assimilation	are	provided	in	Tables	8.2	and	8.3	
and,	where	existing,	the	website	address	to	directly	link	to	
systems products and other relevant information.

8.9.1. Inventory of Near-real time wave 
forecasting systems

The present state-of-the-art operational ocean wave sys-
tems for NRT products from global to local scale is presented 
in Table 8.2.

Also,	current	contributors	to	the	ocean	wave	forecast,	either	
global	or	regional,	are	(among	others):	European	Centre	for	
Medium-Range	Weather	Forecasts,	UK;	Met	Office,	UK;	Fleet	
Numerical	Meteorology	and	Oceanography	Centre,	USA;	Envi-
ronment	and	Climate	Change	Canada,	Canada;	National	Cen-
tres	for	Environmental	Prediction,	USA;	Météo	France,	France;	
Deutscher	Wetterdienst,	Germany;	Bureau	of	Meteorology,	
Australia;	Service	Hydrographique	et	Océanographique	de	
la	Marine,	France;	Japan	Meteorological	Agency,	Japan;	Korea	
Meteorological	Administration,	Republic	of	Korea;	Puertos	del	
Estado,	Spain;	Danmarks	Meteorologiske	Institut,	Denmark;	
National	Institute	of	Water	and	Atmospheric	Research,	New	
Zealand;	Det	Norske	Meteorologiske	Institutt,	Norway;	Servi-
cio	de	Hidrografía	Naval,	Servicio	Meteorológico,	Argentina.
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Table 8.2. 	 Initial	inventory	of	global	(G)	and	regional	(R)	Near-real	time	wave	forecasting	systems.

WebsiteProductsData used for 
assimilation

Wave model 
core

Grid type and 
resolution

AreaSystem (Producer)Type

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

G

R

R

R

R

R

R

Global Wave Forecasting 
System	(MeteoFrance,	

France)

Arctic Wave Forecasting 
System (The Norwegian 
Meteorological	Institute,	

Norway)

Baltic Wave Forecasting 
System	(FMI,	Finland)

European North West 
Shelf Seas Wave Forecast-
ing	System	(UK	MetOffice,	

United	Kingdom)

Iberia Biscay Ireland 
Regional Seas Wave Fore-
casting System (Puertos 

del	Estado,	Spain)

Mediterranean Wave Fore-
casting	System	(HCMR,	

Greece)

Black Sea Wave Fore-
casting	System	(HEREON,	

Germany)

Global 
ocean

Arctic 
region

Baltic 
region

European 
North-

West shelf 
Seas

Irish-Bis-
cay-Iberian 

shelves

Mediterra-
nean Sea

Black Sea

Regular	grid,	
0.083° - 0.083° 
- 9km; 1 level 
(surface)

3km; 1 level 
(surface)

2km; 1 level 
(surface)

0.014° - 0.03°; 1 
level	(surface)

0.05° × 0.05°; 1 
level	(surface)

0.042° - 0.042° 
- 5km; 1 level 
(surface)

0.025° - 0.025° 
- 3km; N/A 

level	(surface)

MFWAM

WAM

WAM

WW3

MFWAM

WAM

WAM

SWH from 
satellite

NA

NA

NA

SWH from 
satellite

SWH from 
satellite

NA

3-hourly instan-
taneous for SWH 
MWT	VMDR	VSDXY	
WW,	SW1	SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW,	SW1	SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2
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WebsiteProductsData used for 
assimilation

Wave model 
core

Grid type and 
resolution

AreaSystem (Producer)Type

https://
nowcastsdr.ih-
cantabria.com/

R High resolution wave and 
current forecast within 

Santander Bay entrance 
(Spain)

Santander,	
Spain

10 x 10 km; 
10 m  level 
(surface)

SWAN - 
Elliptic mild 
slope and 
tidal cur-

rents model 
(ROMS)

In situ mea-
surements,	
buoys and 

radar

instantaneous 
data for waves 

SWH MWT VMDR 
VSDXY	WW	SW1	

SW2 and currents

https://portus.
puertos.es/
index.html?lo-
cale=en#/

http://www.
marine.ie/Home/
site-area/da-
ta-services/ma-
rine-forecasts/
wave-forecasts

http://www.
marine.ie/Home/
site-area/da-
ta-services/ma-
rine-forecasts/
wave-forecasts

http://www.
marine.ie/Home/
site-area/da-
ta-services/ma-
rine-forecasts/
wave-forecasts

http://www.bom.
gov.au/nwp/doc/
auswave/data.
shtml

R

R

R

R

R

Local Wave Forecasting 
System at the Harbour 
Authorities	(SAPO)

Foras Na Mara / Marine 
Institute Wave Forecasts

Foras Na Mara / Marine 
Institute Wave Forecasts

Foras Na Mara / Marine 
Institute Wave Forecasts

AUSWAVE

Spain

Ireland

Ireland

Ireland

Australia

Regular	grid,	
0.1° - 0.1°; 1 

level	(surface)

Regular grid. 
0.025 degrees 

(approximately 
1.5km)

Regular grid. 
0.025 degrees 

(approximately 
1.5km)

Regular grid. 
0.025 degrees 

(approximately 
1.5km)

AUSWAVE-G 
Global 

(78°S-78°N,	
0°E-359°E) 
AWAVE-R 
Regional 

(60°S-12°N,	
69°E-180°E)

SAPO

SWAN

SWAN

SWAN

WW3

In situ mea-
surements,	

Coastal 
buoys

NA

NA

NA

NA

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH TP 

VMDR SW2

Hourly instanta-
neous for SWH TP 

VMDR SW2

Hourly instanta-
neous for SWH TP 

VMDR SW2

Hourly instan-
taneous for sig_
wav_ht pk_wav_
per pk_wav_dir 

mn_dir_wnd_sea 
(for	SW1,	SW2,	
SW3,	and	WND)
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Website

Website

Products

Products

Data used for 
assimilation

Data used for 
assimilation

Available 
timeseries

Wave model 
core

Wave 
model core

Grid type and 
resolution

Grid type and 
resolution

Area

Area

System (Producer)

System 
(Producer)

Type

Type

https://www.
weather.gov/
marine/

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://nomads.
ncep.noaa.gov/

https://www.car-
icoos.org/waves/
forecast/SWAN/
PRVI/hsig

R

G

R

R

G

R

NOAA/NWS Marine 
Weather Forecasts

Global Ocean 
Waves Reanaly-
sis	(MOi,	France)

Arctic Ocean 
Wave Hind-
cast	(MetNo,	
Norway)

Baltic Sea Wave 
Hindcast	(FMI,	

Finland)

NOMADS 
NOAA Operational Model 
Archive and Distribution 

System

CARICOOS Nearshore 
Wave Model

USA

Global 
Ocean

Arctic Sea

Baltic Sea

Global

Puerto 
Rico and 

Virgin 
Islands

Regional 0.1º 
aprox.

0.2° × 0.2°

3km × 3km

2km × 2km

Regular grid 
(global 0.251 
to 0.5º and 

regional 11 km 
aprox.)

1 km grid to 
200 m and 10 

m grid

WW3

MFWAM

WAM

WAM

WW3

SWAN

Offshore 
buoys

Sea Wave 
Height	(SWH)

NA

NA

1993-2021

1993/01/01 
- 

2020/12/31

Offshore 
buoys

NA

Marine,	Tropical	
and Tsunami 

Services Branch

3-hourly instan-
taneous for SWH 
MWT	VMDR	VSDXY	
WW,	SW1	SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

8.9.2. Inventory of Multi-year wave systems 
(reanalysis, hindcast)

Table 8.3. 	 Initial	inventory	of	global	(G)	and	regional	(R)	Near-real	time	wave	forecasting	systems.
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WebsiteProductsData used for 
assimilation

Available 
timeseries

Wave 
model core

Grid type and 
resolution

AreaSystem 
(Producer)

Type

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://climate.
copernicus.eu/
climate-reanal-
ysis

https://polar.
ncep.noaa.gov/
waves/hind-
casts/

https://data.
csiro.au/collec-
tion/csiro:39819

https://marine.
copernicus.eu

https://marine.
copernicus.eu

R

R

R

G

G

G

R

R

Baltic Sea Wave 
Hindcast	(FMI,	

Finland)

Mediterranean 
Sea Waves Re-
analysis	(HCMR,	

Greece)

Atlantic -Iberian 
Biscay Irish- 
Ocean Wave 
Reanalysis 

(Puertos del 
Estado,	Spain)

Global ocean 
wave reanalysis 

from Climate 
data service co-
pernicus ERA5

Global wave 
reanalysis CFSR

Global wave re-
analysis CAWCR 

(CSIRO)

Black Sea Waves 
Reanalysis 
(HEREON,	
Germany)

Atlantic- Eu-
ropean North 
West Shelf- 

Wave Physics 
Reanalysis

Baltic Sea

Mediterra-
nean Sea

Irish-Bis-
cay-Iberian 

shelves

Global

Global

Global

Black Sea

European 
North-

West shelf 
Seas

2km × 2km

0.042° × 
0.042°

0.05° × 0.05°

0.5°x0.5°

0.5°x0.5°

0.4°x0.4°

0.037° × 
0.028°

0.017° × 
0.017°

WAM

WAM

MFWAM

ECWAM

WW3

WW3

WAM

WW3

NA

Sea Wave 
Height	(SWH)

Sea Wave 
Height	(SWH)

SWH

NA

NA

Sea Wave 
Height	(SWH)

NA

1993/01/01 
- 

2020/12/31

1993/01/01 
- present

1993/01/01 
- 

2020/12/31

1980 - 
present

1979 - 2017

1979 - 2010

1979/01/01 
- present

1980/01/01 
- present

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

Hourly 

Hourly instanta-
neous for SWH 

MWT	VMDR	VSDXY	
WW SW1 SW2

3-hourly instan-
taneous for SWH 
MWT	VMDR	VSDXY	
WW,	SW1	SW2
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Summary
Marine biogeochemistry is the study of essential chemical 
elements	in	the	ocean	(such	as	carbon,	nitrogen,	oxygen,	
and	phosphorus),	and	of	their	interactions	with	marine	or-
ganisms. Biogeochemical cycles are driven by physical trans-
port,	chemical	reactions,	absorption,	and	transformation	by	
plankton	and	other	organisms,	which	form	the	basis	of	the	
oceanic food web.

In	the	last	decades,	the	interest	for	this	cross-disciplinary	
science has greatly increased due to the occurrence of sig-
nificant	changes	in	the	marine	environment	closely	linked	
to the alteration of the biogeochemical cycles in the ocean. 
These	alterations	include	phenomena	such	as	acidification,	
coral	bleaching,	eutrophication,	deoxygenation,	harmful	al-
gal	blooms,	regime	shifts	in	plankton,	invasive	species,	and	
other processes deteriorating water quality and impacting 
the whole marine ecosystem. 

Monitoring and forecasting the biogeochemical and ecosystem 
components	of	the	ocean,	also	referred	to	as	“Green	Ocean”,	
are essential for a better understanding of the current status 
and changes in ocean health and ecosystem functioning. Such 
operational	systems	provide	indicators	useful	to	scientists,	
industry	(e.g.	fisheries	and	aquaculture),	policy	makers	and	
environmental	agencies	for	the	prediction	of	events,	the	man-
agement	of	living	marine	resources,	and	can	support	the	deci-
sion-making process to respond to environmental changes.

This chapter gives an overview of the Green Ocean component of 
OOFS.	 The	 first	 section	 addresses	 the	 objectives,	 applications	
and	beneficiaries	of	the	Green	Ocean	and	introduces	the	funda-
mental theoretical knowledge of marine biogeochemical model-
ling. The second section details and discusses each component 
of a biogeochemical OOFS to guide new forecasters in biogeo-
chemistry. Modelling of higher trophic levels is introduced. Final-
ly,	several	operational	systems	are	mentioned	as	examples.

Figure 9.1.  Threats on marine ecosystems. 
Changes and alterations in the marine envi-
ronment observed in recent decades include 
acidification,	coral	bleaching,	eutrophication,	
deoxygenation,	harmful	algal	blooms,	changes	in	
planktonic	regimes,	invasive	species,	etc.	

9.1.  
General introduction to Biogeochemical models
9.1.1. Objective, applications and beneficiaries

Human	activities,	primarily	the	combustion	of	fossil	fuels,	
cement	production,	and	the	industrial	production	of	nitro-
gen-based	fertilisers,	are	leading	to	ocean	warming,	acidifi-
cation,	deoxygenation,	and	coastal	eutrophication,	thus	put-
ting ever-increasing and compounding pressures on marine 
ecosystems	(Figure	9.1).	

At	the	same	time,	the	ocean	is	serving	as	a	major	sink	of	car-
bon	dioxide	(CO2),	the	most	important	anthropogenic	green-
house	gas.	This	contributes	to	mitigating	global	warming,	but	
the magnitude of this sink is likely to diminish. Our ability to 
quantify these phenomena and project their future course 
hinges on a mechanistic understanding of the biogeochemical 
cycles	of	carbon,	oxygen,	and	nutrients	in	the	ocean	and	how	
they are changing.

The	Marine	BGC,	the	study	of	elemental	cycles	and	their	in-
teractions	with	the	environment	and	living	organisms,	is	a	
multidisciplinary science at the crossroads between ocean 
physics,	chemistry,	and	biology,	and	intersects	with	atmo-
spheric and terrestrial sciences as well as social science and 
environmental	policy.	As	an	example,	Figure	9.2	 illustrates	
the complex carbon cycle in the ocean and the interactions 
between	biological,	chemical,	and	physical	processes.
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Ocean BGC models describe the base of the marine food 
chain from bacteria to mesozooplankton and couple the cy-
cles	of	carbon	(C),	nitrogen	(N),	oxygen	(O2),	phosphorus	(P)	
and	silicon	(Si).	They	mostly	focus	on	plankton,	classifying	
the plankton diversity in accordance with their functional 
characteristics,	 the	so-called	Plankton	Functional	Types	
(PFTs).	Species	at	higher	trophic	levels,	such	as	fish	and	ma-
rine	mammals	play	a	lesser	role	in	elemental	cycling,	they	
are	thus	generally	not	explicitly	represented	in	BGC	models,	
but they are very important for ecosystem models that fo-
cus on the ecology/biology of marine organisms. BGC and 
ecosystem models are sometimes referred to indistinctly 
because they can overlap in their representation of the 

lower	trophic	levels.	Specific	modelling	approaches,	like	
Lagrangian	modelling,	habitat	modelling,	or	food	web	mod-
els,	are	used	to	connect	BGC	with	the	high	trophic	levels	
(e.g.	fish).1

The	implementation	of	accurate	OOFSs	requires	sustained,	
systematic,	and	NRT	observation	from	(sub)mesoscale	to	
large	scale	to	initialise,	parameterize,	and	validate	ocean	
models. NRT information in operational oceanography 
means a description of the present situation with a delay of 
a few minutes to a few days.

1. https://www.ornl.gov/

Figure 9.2.  Cycling of carbon in the marine food chain. Phytoplankton assimilate CO2 via photosynthesis in 
the euphotic zone and are consumed by zooplankton. Zooplankton are the initial prey for many small and large 
aquatic organisms. Carbon is thus transferred further up the food web to higher-level predators. Different 
mechanisms contribute to the export and storage of carbon into the deep ocean. The carbon cycle in the ocean 
is	complex	and	influenced	by	biological,	chemical,	and	physical	processes	(credit:	Oak	Ridge	National	Labora-
tory at 🔗1).
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The forecast of ocean physics has considerably improved in the 
last	decades,	reaching	a	high	level	of	predictability	(Chapter 5).	
The evolving equations governing the physical dynamics are 
based	on	physical	laws,	the	model	parameterizations	are	quite	
well-established,	and	the	abundance	of	observations	for	tem-
perature,	salinity,	and	sea	level	height	offers	a	way	to	improve	
model predictions through data assimilation. Forecasting of the 
Green Ocean has been developed more recently and it has not 
yet	reached	the	same	level	of	maturity,	in	most	cases	being	in-
corporated into already existing physical OOFS. The formulation 
of ecosystem models is still empirical and the scarcity of in-situ 
biological and BGC data critically limits the capabilities to con-
strain their parameterization and to improve their performanc-
es through a robust data-model comparison exercise and data 
assimilation.	The	scarcity	of	data	is	even	more	critical	in	NRT,	
limiting	data	assimilation	to	surface	chlorophyll-a	(Chla)	de-
rived	from	satellite	reflectance	(Fennel	et	al.,	2019).

The advent of in-situ robotic platforms combined with high res-
olution satellite products for the Green Ocean have the poten-
tial	to	palliate	this	deficiency.	For	instance,	the	advent	of	hyper-
spectral satellites is promising in terms of delivery of surface 
information	on	PFTs,	detection	of	harmful	algal	blooms,	and	
benthic	habitat	mapping,	while	the	boost	in	robotic	platforms	
will	offer	huge	opportunities	to	map	the	(deep)	seafloor	with	an	
unprecedented level of details. The combination of marine ro-
botics,	image	analysis,	machine	learning,	new	sensor	develop-
ment,	and	the	coordination	of	robotic	platforms	and	satellite	
sensors	will	constitute	a	significant	breakthrough	in	our	knowl-
edge of marine ecosystems. All this information would need to 
be integrated in models for forecasting and producing high 
quality reanalysis of the Green Ocean to support the production 
of added value products and innovative services. Coordination 
of Ocean OSSEs can help to design the new observing biological 
and	biogeochemical	systems	with	maximal	impact	to	users,	yet	
their	development	is	still	insufficient	and	should	be	encouraged	
(Le	Traon	et	al.,	2019).

Ultimately,	BGC	OOFS	systems	serve	major	environmental	
and	societal	issues,	including	the	Ocean's	role	in	the	global	
carbon cycle and the impacts of natural changes and anthro-
pogenic stressors in the physical-chemical marine environ-
ment on ecosystems and human activities. Applications 
range	from	multi-decadal	retrospective	simulations	(namely,	
“reanalyses”),	operational	analysis	of	the	current	conditions	
(“nowcasts”),	short-term	and	seasonal	predictions	(“fore-
casts”),	scenario	simulations,	and	climate	change	projec-
tions. These integrated systems are essential not only for a 
better understanding of the current status of key biogeo-
chemical and ecosystem processes in the ocean and how 
they	are	changing,	but	also	to	provide	stakeholders,	policy	
makers and environmental agencies with indicators of ocean 
health	in	order	to	take	appropriate	mitigation,	adaptation,	
conservation,	and	protection	measures	for	living	marine	or-
ganisms and their habitats but also for human health.

“A predicted ocean whereby society has the capacity to 
understand	current	and	future	ocean	conditions,	forecast	
change and impact on human wellbeing and livelihoods” is 
an expected outcome of the United Nations Decade of Ocean 
Science	for	Sustainable	Development,	2021-2030	(Ryabinin	et	
al.,	2019),	supported	also	by	the	Sustainable	Development	
Goals	14	(Life	below	water),	8	(Decent	work	and	economic	
growth),	and	9	(Industry,	innovation	and	infrastructure).

9.1.2. Fundamental theoretical background

9.1.2.1. Biogeochemical modelling

Plankton	(including	phytoplankton	and	zooplankton)	are	or-
ganisms	which	are	carried	by	tides	and	currents,	or	do	not	
swim well enough to move against them. They form the base 
of the marine ecosystem and are a central component of the 
BGC models that simulate the cycling of elements through 
seawater and plankton. 

Most	models	take	an	“NPZD”	approach,	simulating:

• Nutrients: substances which organisms require for growth.
• Phytoplankton: microscopic algae which obtain ener-
gy from sunlight through photosynthesis.
• Zooplankton: planktonic animals which obtain energy 
by eating other organisms.
• Detritus: dead and excreted organic matter.

Each	of	these	is	represented	by	one	or	more	state	variables,	
depending on the complexity of the model. Rather than con-
sidering	individual	organisms,	state	variables	represent	con-
centrations of elements such as nitrogen or carbon. They are 
often called tracers because they are transported and dif-
fused by ocean dynamics.

As	with	physical	models,	BGC	models	are	discretized	on	a	grid	
covering the region of interest and require suitable initial and 
boundary	conditions	for	each	state	variable.	At	each	grid	point,	
the evolution of a state variable C is given by the equation:

(9.1)

where ∇ ∙ (CU) and DC are the advection and diffusion terms 
equivalent to those used for temperature and salinity in 
physical models (please refer to Chapter 5).	∇ is the gener-
alised	derivative	vector	operator,	t	is	the	time,	U the vector 
velocity,	and	DC is the parameterization of small-scale phys-
ics for the tracer. The SMS(C) stands for source-minus-sink 
terms for the tracer C and represents the BGC processes 
simulated by the model. Each 1D water column is normally 
treated	independently,	with	lateral	interactions	limited	to	
advection and diffusion. Most BGC models are formulated to 
conserve mass. 
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Figure 9.3. 	 Schematic	of	a	basic	NPZD	model	considering	four	state	variables,	one	for	each	compartment.		

Unlike the Navier-Stokes equations for physical models (Chap-
ter 5),	there	is	no	known	set	of	laws	defining	biological	be-
haviour.	Instead,	empirical	relationships	are	used	to	describe	
observed processes such as growth and mortality.

The basic source-minus-sink terms usually modelled in a 
NPZD	model	(Figure	9.3)	are:

• Phytoplankton growth or Primary production: the 
creation of organic matter through photosynthesis. It 
is	a	function	of	phytoplankton	concentration,	nutrient	
availability,	and	light	availability.	It	can	also	be	regu-
lated by temperature.
• Grazing: zooplankton eating phytoplankton and detritus.
• Mortality:	death	through	natural	causes,	e.g.	virus-
es,	predation	by	higher	trophic	levels	(fish	and	marine	
mammals),	etc.

• Messy feeding:	zooplankton	graze	inefficiently,	and	a	
proportion of organic matter enters the nutrient or de-
tritus pool rather than being ingested by zooplankton.
• Remineralisation: bacteria break down the organic 
matter	in	detritus,	which	is	converted	back	to	nutrients.
• Sinking: detritus sinks through the water column due 
to gravity.

In	this	case,	the	differential	equations	for	phytoplankton	(P),	
zooplankton (Z),	detritus	(D),	and	nutrients	(N)	are	as	follows:

(9.2)

where phytoplankton evolution depends on primary produc-
tion,	grazing	and	mortality;

(9.3)
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where zooplankton evolution depends on grazing and mortality;

 
(9.4) 

where	detritus	evolution	depends	on	mortality,	grazing,	messy	
feeding,	remineralisation	and	sinking;

(9.5)

where	nutrients	evolution	depends	on	primary	production,	
messy	feeding,	and	remineralisation.

µP is the growth rate of phytoplankton due to photosynthe-
sis; mP

 and mz are the mortality rates of phytoplankton and 
zooplankton; GP and GD are the grazing rates of zooplankton 
on phytoplankton and detritus; αD and αN represent the effi-
ciency of the grazing; (1-αD)	and	(1-αN)	the	non-assimilated	
fractions of grazing by zooplankton that return to detritus 
and nutrients; remD is the remineralisation rate of detritus 
and wD is the sinking speed of detritus.

The	exact	equations	used	differ	between	models,	 the	
ones given above are common examples. Other process-
es	are	often	considered	as	well,	notably	respiration,	ex-
cretion,	and	egestion,	which	cause	loss	of	organic	matter.	
Of	course,	additional	processes	may	be	included	in	more	
complex models. 

The processes can be modelled using different mathematical 
forms,	often	with	parameter	values	which	are	uncertain	and	
can be tuned. While sinking and mortality rates are usually 
single	parameters	(linear	functions),	phytoplankton	growth	
rate requires multiple parameters. µP is usually a function of 
nutrients,	light	and	temperature:

(9.6)

µ P 
max

 is	the	maximum	growth	rate,	f (T) is the temperature 
effect,	f (I) and f (N) are the limitation terms due to light and 
nutrients.	Different	formulations	exist	for	each	of	these	terms,	
but usually NPZD-type models characterise nutrient limitation 
of phytoplankton growth rate using Michaelis-Menten kinetics:

(9.7)

K is known as the half-saturation constant for nutrient 
uptake,	 and	N is the nutrient concentration. If nutrient is 
plentifully	available,	then	N/ (K+N) ≈1 and phytoplankton 
growth is not limited by the nutrient.

The state variables of NPZD models represent concentrations 
of	a	given	chemical	element,	often	nitrogen,	with	other	ele-
ments such as carbon derived using constant stoichiometry 

between	carbon,	nitrogen	and	phosphorus,	i.e.	the	Redfield	
ratio	of	106:16:1	(Redfield,	1934).	

More complex models include additional variables for each 
compartment.	Phytoplankton	can	be	split	into	PFTs,	grouping	
together species which perform a similar function within the 
ecosystem	(Le	Quéré	et	al.,	2005).	PFTs	are	often	based	on	
organism	size.	It	 is	also	common	to	separate	out	diatoms,	
which form silicate shells and play an important role in the 
sinking	of	carbon.	In	models,	PFTs	are	distinguished	by	dif-
fering parameters for traits such as maximum phytoplankton 
growth	rates,	grazing,	and	nutrient	affinity.	Zooplankton	can	
also	be	split	into	functional	types,	again	often	based	on	size,	
with different feeding preferences. Note that the current par-
adigm neglects the fact that many plankton are mixotrophs: 
they both photosynthesize and eat other organisms (Flynn et 
al.,	2013;	Glibert	et	al.,	2019).

Variable	stoichiometry	(elemental	ratios)	can	also	be	intro-
duced. Each PFT is then described by separate state variables 
for	each	element,	such	as	nitrogen,	carbon,	and	phosphorus.	

Chla is often included into BGC models as it is the main photo-
synthetic	pigment	found	in	phytoplankton,	and	measurement	
of its concentration in water is used as an indicator of the phy-
toplankton biomass. Chla can be represented as a constant 
ratio	to	the	carbon	biomass,	or	a	variable	ratio	depending	on	
nutrient,	light	levels,	and	temperature	(Geider	et	al.,	1997).

Most models incorporate dissolved inorganic nitrogen as a 
nutrient,	which	includes	nitrate	and	ammonium.	Phosphate	
and	iron	may	be	modelled	too,	and	silicate	if	diatoms	are	a	
PFT. Nutrient inputs from rivers and the atmosphere can also 
be	specified.	Detritus	may	be	split	into	different	sizes,	with	
different	sinking	rates,	and	into	different	elements.	Some	
models	explicitly	simulate	bacteria	and	viruses,	rather	than	
just parameterising their effects.

Besides	NPZD	variables,	models	can	also	include	other	re-
lated	processes,	such	as	the	oxygen	and	carbon	cycles.	The	
carbon cycle is usually represented by the state variables DIC 
and	total	alkalinity,	the	latter	being	the	capacity	of	seawater	
to	neutralise	an	acid.	From	these	and	other	variables,	quanti-
ties	such	as	pH	and	air-sea	CO2	flux	can	be	calculated	(Zeebe	
and	Wolf-Gladrow,	2001).

BGC models are closely related to higher trophic level models 
or ecosystem models. The latter require the underlying bio-
geochemistry,	and	BGC	models	require	at	least	some	parame-
terisation	of	the	ecosystem,	i.e.	the	explicit	representation	of	
part	of	the	living	component	of	the	ocean	(e.g.	phytoplankton,	
zooplankton)	with	zooplankton	mortality	as	a	closure	term,	
parameterising the predation of zooplankton by higher tro-
phic	levels	such	as	fish	and	top	predators	(see	Section	9.2.8).
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Adding complexity to BGC models means that less important 
processes	are	neglected	or	amalgamated,	but	also	increases	
the uncertainties associated with approximated formulations. 
There	is	no	consensus	on	optimal	structure	and	complexity,	
which	will	vary	depending	on	the	purpose	(Fulton	et	al.,	2003).	
Adding	extra	variables	also	increases	computational	cost,	
split between the computation of transport (advection and 
diffusion)	for	each	state	variable	and	the	computation	of	the	
non-linear functions relating the state variables of the BGC 
model.	In	an	operational	context,	the	balance	between	mod-
el complexity and computational costs is critical and must be 
carefully evaluated. BGC models should be as simple as possi-
ble	and	as	complex	as	necessary	to	answer	specific	questions.

9.1.2.2. Model calibration

As	already	mentioned,	biogeochemical	models	are	based	
on empirical relationships to describe the dynamics of bio-
logical processes. Observational data are then essential for 
tuning,	adjusting	or	revising	the	formulations,	i.e.	making	the	
model	results	match	the	observed	distributions	and	fluxes	
of inorganic and organic quantities. Model calibration can be 
performed	"by	hand",	i.e.	by	adjusting	certain	parameters	of	
the biogeochemical models until the models show a "good" 
fit	to	the	observed	tracer	fields,	or	by	using	objective	optimi-

sation	methods	(Kriest	et	al.,	2020).	The	resulting	set	of	bio-
geochemical parameters is often closely linked to the ocean 
circulation,	mixing,	and	ventilation	derived	from	the	physical	
model	used,	with	its	specificities	and	defaults.	

9.1.2.3. Physical-Biogeochemical coupling

Ocean	physics	advects	and	diffuses	BGC	model	variables,	
thus redistributing inorganic and organic amounts. In ad-
dition,	some	BGC	processes	depend	on	physical	conditions	
such	as	temperature	or	salinity,	particularly	crucial	for	the	
carbon	cycle.	Thus,	there	is	a	very	strong	link	between	the	
physical	conditions	and	the	BGC,	which	makes	the	BGC	mod-
els closely dependent on the physical models. 

Vertical motions are particularly critical to bring nutrients from 
nutrient-rich deep waters into the uppermost layer that re-
ceives the sunlight needed for photosynthesis and marine life. 
Two critical layers together regulate phytoplankton production:

• The mixed layer is the upper layer of the ocean that 
interacts with the atmosphere. It is assumed to be mixed 
and homogeneous through convective/turbulent pro-
cesses,	generated	by	winds,	surface	heat	fluxes,	or	pro-
cesses	modifying	 salinity.	 The	 deeper	 it	 is,	 the	 deeper	
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Figure 9.4. 	 Schematic	representation	of	the	interplay	between	mixed	layer	depth	(yellow	line)	and	upper-ocean	
euphotic	zone	(light	blue	area)	on	the	initiation	of	phytoplankton	bloom	(modified	from	Dall'Olmo	et	al.,	2016).
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phytoplankton	 are	mixed,	 which	 will	 take	 them	 away	
from the light required for photosynthesis. Deep mixing 
also replenishes near-surface nutrient stocks.

• The euphotic zone is the layer from the surface down 
to the depth at which irradiance is 1% of the surface 
irradiance.	The	deeper	the	euphotic	depth,	the	deeper	
the layer in which photosynthesis and phytoplankton 
production can occur. It extends from a few metres in 
turbid estuaries to approximately two hundred metres 
in the open ocean. 

The mixed layer may develop within the euphotic layer (in 
stratified	situations),	or	over	a	greater	thickness	of	up	to	
several	hundred	metres	(in	well-mixed	situations).	The	inter-
play between these two critical layers controls the plankton 
exposure to sunlight and the coincident exposure to nutri-
ents,	thus	regulating	phytoplankton	production	(Figure	9.4).	
Exact mechanisms are still debated. Please refer to Ford et al. 
(2018)	for	more	details.

In	turn,	phytoplankton	abundance	may	feed	back	to	phys-
ics,	by	absorbing	radiation	in	the	surface	layers	and	there-
fore affecting heat penetration into the water column (Len-
gaigne	et	al.,	2007).

9.1.2.4. From open ocean to coastal ecosystems

Different considerations are generally needed for open ocean 
and	coastal	ecosystems.	In	the	open	ocean,	the	seasonal	cy-
cle	is	quite	well	defined	and	recurring	(Figure	9.5).	Seasonal	
increases in temperature and solar radiation drive the phyto-
plankton spring bloom. The peak persists for a few weeks to 
months until nutrient limitation and grazing cause the bloom 
to collapse. A secondary biomass peak can develop in late 
summer or autumn.

In	contrast,	coastal	ecosystems	can	be	very	complex,	sub-
ject	to	a	succession	of	blooms	having	different	origins,	thus	
requiring	additional	model	complexity.	Correct	specification	
of	river	inputs	also	becomes	more	critical.	Furthermore,	the	
equations	in	Section	9.1.2.1	are	for	the	pelagic	(water	column)	
ecosystem.	In	shallow	waters,	such	as	shelf	seas,	it	becomes	
important	to	include	the	benthic	(seafloor)	ecosystem	into	
the	BGC	models.	This	requires	the	addition	of	extra	variables,	
though	they	do	not	need	to	be	advected	or	diffused.	Finally,	
coastal	waters	are	often	turbid,	and	the	effect	of	sediments	
and coloured dissolved organic matter on light and there-
fore primary production should be included. Dedicated opti-
cal models are sometimes used for this purpose (Gregg and 
Rousseaux,	2016).

9.1.2.5. Potential predictability of ocean biogeochemistry

The potential predictability of ocean biogeochemistry varies 
considerably depending on the scales and quantities of inter-
est.	A	lot	of	variability	is	driven	by	physics,	with	changes	in	mix-
ing	and	stratification	affecting	light	and	nutrients	and	therefore	
primary production. When these physics changes can be pre-
dicted,	e.g.	changes	in	stratification	with	a	warming	climate	and	
interannual variability related to phenomena such as the El 
Niño	Southern	Oscillation,	associated	large-scale	changes	to	
ocean	biogeochemistry	can	also	be	predicted.	Similarly,	chang-
es	to	the	ocean	carbon	cycle	and	acidification	with	increasing	
atmospheric CO2 concentrations can be predicted. When con-
sidering	local	regions	and/or	shorter	time	scales,	both	physics	
and biogeochemistry become harder to be accurately predicted.

Furthermore,	various	biogeochemical	quantities	change	at	
very different rates. Phytoplankton react quickly to changes 
in light and nutrient availability and can double in concen-
tration	over	a	day	(Laws,	2013).	Zooplankton	will	exhibit	a	
slightly	more	lagged	response	to	these	changes.	Meanwhile,	
nutrient	concentrations	will	typically	change	more	slowly,	
and	the	carbon	cycle	even	more	slowly,	although	surface	
concentrations	(of	nutrients	and	carbon)	can	change	rapidly,	
for example during a storm. These different rates of change 
have implications for the scales of predictability.

For	accurate	predictions,	it	is	important	to	initialise	mod-
els	using	data	assimilation	(see	Section	9.2.5).	At	season-
al-to-decadal	time	scales,	predictability	is	dominated	by	
physics,	and	this	must	be	accurately	initialised	and	simulat-
ed.	Physics	remains	important	at	shorter	time	scales,	but	is	
essential	to	initialise	nutrient	concentrations	correctly,	as	this	
will help to determine the primary productivity. For short-
range	predictions,	phytoplankton	concentrations	should	be	
initialised,	though	the	memory	of	the	phytoplankton	variables	
may	be	as	short	as	a	few	days,	given	that	they	react	to	changes	
in nutrients and mixing. Accurate model formulations and pa-
rameterisations	are	also	required,	otherwise	the	model	will	
react incorrectly to the data assimilation.

Figure 9.5.  Seasonal cycle of phytoplankton 
relative	to	variations	in	sunlight,	nutrients,	and	
zooplankton (Copyright: 2004 Pearson Prentice 
Hall,	Inc).
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Green Ocean modelling for operational oceanography is built 
in the same way as its Blue equivalent. The operational suite 
follows	almost	the	same	architecture	(see	Figure	4.1)	and	in-
formation	flows	from	marine	observation	data	up	to	end-us-
er products enhancing the initial information. Each compo-
nent	includes	a	research	stage,	a	development	stage,	and	an	
operational stage. This Chapter mainly focuses on the last 
stage,	in	which	the	system	is	in	operation.

The	modelling	component	includes	the	BGC	model,	data	as-
similation,	and	ensemble	modelling,	executed	for	analysis	
and to forecast BGC conditions. The data include upstream 
data	such	as	physical	conditions,	atmospheric	forcing,	exter-
nal inputs of chemical compounds provided at interfaces 
(atmosphere,	 land,	and	seafloor),	observational	data	from	
satellites,	and	in-situ	measurements	integrated	into	the	sys-
tems via data assimilation methods. The data are also used 
for validation tasks: the near-real time evaluation of the 
forecast accuracy and the delay mode evaluation of the 
model	system.	Finally,	the	model	outputs	and	end-user	
products are prepared by respecting certain standards of 
format,	units,	names,	etc.	for	delivery	to	users	and	archiving.

9.2.1. Architecture singularities

In	this	section,	we	present	the	main	architecture	singulari-
ties of OOFS dedicated to the production of ocean biogeo-

chemistry and marine ecosystems information. As most sys-
tems describing the “Green Ocean” in operation today are 
less	advanced	than	their	“Blue	Ocean”	equivalent,	the	“ide-
al” design proposed here includes some features that are 
still	at	the	stage	of	research	or	development.	Yet,	they	should	
be kept in mind for the construction of future systems.

9.2.1.1. Physical, optical, and biogeochemical components

As	introduced	in	Section	9.1.2,	the	space-time	evolution	of	the	
BGC	quantities	is	driven	by	physical	fields	through	horizontal	
and	vertical	advection,	lateral	diffusion,	and	vertical	mixing.	Ver-
tical motions are particularly important as they supply nutrients 
to	the	lighted	upper	ocean,	allowing	photosynthesis	to	occur.	

The	limitation	of	photosynthesis	by	light	thus	requires	a	fine	rep-
resentation of the penetration of spectral irradiance in the upper 
ocean,	as	it	is	absorbed	and	scattered	within	the	water	column.	
Light penetration used to be managed by very simple optical 
schemes,	but	it	 is	now	increasingly	managed	by	advanced	
bio-optical modules embedded into the physical-biogeochemi-
cal	model	systems,	to	both	compute	photosynthetic	activity	and	
to make the link with key observations such as spectral irradi-
ances from ocean colour missions. The evolution of ecosystem 
variables	in	the	trophic	chain	is	driven	by	physics,	optics,	and	
biogeochemistry	through	primary	production,	which	under-
pins	the	whole	marine	ecosystem	(see	Section	9.2.8).

9.2.  
Biogeochemical forecast and multi-year systems

Figure 9.6. 		 Schematic	of	a	physical-biogeochemical	coupling	(left)	and	nesting	(right).
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Figure 9.7.   Chronology of oceanographic observation platforms to measure marine biogeochemistry (adapt-
ed	from	Chai	et	al.,	2020).

The	physical	fields	can	come	from	simulations	of	the	ocean	
dynamics	(reanalyses,	nowcasts	or	forecasts)	produced	in-
dependently	by	the	BGC	modelling	suite.	Nevertheless,	the	
physical	fields	must	reflect	the	essential	dynamical	proper-
ties	for	the	biogeochemistry,	such	as	the	right	mixing	rate,	
the	right	vertical	velocity	statistics,	and	the	right	phasing	
with mesoscale structures and frontal positions (Berline et 
al.,	2007).

Although	some	feedback	from	biology	to	physics	may	exist,	
such	as	self-shading	(Hernandez	et	al.,	2017)	or	phytoplank-
ton	heat	release,	their	effects	are	generally	limited	to	moder-
ate	modifications	of	the	upper-ocean	heat	budget	and	asso-
ciated	vertical	structure	of	the	thermocline.	Therefore,	the	
physical and BGC modelling components are usually linked 
by	“one-way”	coupling,	resulting	in	successive	model	opera-
tions	(Figure	9.6).	As	a	result	of	the	“one-way”	approximation,	
the	coupling	can	be	implemented	in	“online”	mode,	i.e.	the	
physical and biogeochemical models run simultaneously at 
each time step: the temporal update of the physical model is 
performed	first,	before	being	used	for	the	update	of	the	bio-
geochemical	component.	Alternatively,	the	coupling	can	be	

implemented	in	“offline”	mode	where	the	physics	is	comput-
ed beforehand and stored at lower frequency (e.g. each day/
week)	and	then	used	as	inputs	for	the	biological	model	(Ford	
et	al.,	2018).

Such systems are usually less expensive in terms of compu-
tational	resources.	However,	the	practicality	of	the	“offline”	
coupling approach can be questioned with respect to vertical 
viscosity	and	diffusivity	coefficients,	which	typically	vary	
with	short	time	scales	(~hours)	compared	to	the	storage	rate	
of	“offline”	physical	fields	(typically	a	few	days).	This	can	be	
an issue in an integrated perspective that includes data as-
similation. Burning questions underlying the coupling strat-
egy for assimilative systems are still the subject of long-last-
ing	research	efforts	by	the	community	(Fennel	et	al.,	2019).

Regional models with lateral open boundaries also require 
values of the model state variables at boundaries. A conve-
nient	way	is	nudging	to	fixed	or	climatological	data	from	glob-
al	 reanalysis	or	datasets,	but	a	more	 robust	approach	 is	 to	
nest high-resolution regional ocean models into larger-do-
main	(and	usually	lower-resolution)	models	(see	Figure	9.6).	
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As	for	the	coupling	between	physics	and	biogeochemistry,	the	
coupling	 between	 configurations	 nested	 in	 space	 can	 be	
“one-way”,	with	the	inner	model	having	no	influence	on	the	
outer	model,	or	“two-way”,	in	which	the	inner	model	provides	
information to the outer model. “One-way” coupling is mainly 
used	in	BGC	operational	systems	for	different	reasons,	as	it	
offers the possibility to run the BGC model either in “online” 
or	“offline”	mode	with	the	physics,	while	the	“two-way”	nest-
ing requires by nature an “online” coupling between the 
physics	and	the	BGC,	making	the	operation	of	such	coupled	
systems more complex and time-consuming.

For	a	sound	representation	of	the	biology,	a	specific	design	
of the vertical discretization in the upper ocean is needed. 
The strong vertical gradients of the physical and biological 
variables typically require vertical spacing between horizon-
tal	levels	~	1	metre.	Regarding	the	horizontal	grid,	it	is	not	
always required to use the same numerical grid for physics 
and for biology. A coarsening approach that preserves the 
essential features of the resolved dynamics has been imple-
mented in some systems to feed the biological equations at 
lower	resolution,	while	saving	numerical	resources	(Berthet	
et	al.,	2019;	Bricaud	et	al.,	2020).	

9.2.1.2. Propagation of uncertainties

The forward integration of the discretized equations involved 
in the different modelling steps leads to results that are fun-
damentally uncertain. It is necessary to quantify this uncer-
tainty,	both	to	provide	the	user	with	useful	information	for	
decision making and for merging the forecast with future 
observations,	which	are	also	intrinsically	uncertain.

The main possible sources of uncertainty in biogeochemical/
ecosystem models are the following:

• initial conditions of the state variables;
• external	data	involved	in	the	forcings,	such	as	down-
ward	radiation,	cloud	cover,	etc.;
• input physical data used to constrain the evolution 
equation	of	the	biogeochemical/	ecosystem	variables,	
such	as	currents,	temperature,	vertical	eddy	viscosity,	etc.
• parameters	involved	in	the	representation	of	optical,	
BGC and ecosystem processes;
• numerical schemes and numerical approximations 
(such	as	coarsening	or	offline	integration);
• unresolved,	sub-grid	scale	processes	that	may	induce	
bulk effects as a result of non-linearities.

These	uncertainties	can	be	quantified	heuristically	or	can	be	
explicitly considered by introducing stochastic parameter-
izations	in	the	model	equations,	as	proposed	by	Garnier	et	
al.	(2016).	Multiple	forward	integrations	can	then	be	pro-
duced to generate ensembles that provide an approximation 
of the spread of the plausible solutions. A sample of the pri-

or probability distribution of the forecast is then generated 
by	the	different	ensemble	members	(Santana-Falcon	et	al.,	
2020).	As	a	result,	the	forward	integration	module	(referred	
as	Step	2	“Forecast”	in	Figure	4.1)	should	be	designed	in	such	
a way that it can be called n times (with n = a few tens to 
hundreds)	in	parallel	or	in	sequence.	Please	refer	to	Section	
9.2.4 for more details on Ensemble modelling.

9.2.1.3. BGC Data singularities

Biogeochemical variables very often have non-Gaussian 
statistical properties. This can be explained by the nature 
of these variables (generally concentrations that repeated-
ly take values close to 0 or biomasses that can vary by sev-
eral	orders	of	magnitude),	which	is	related	to	the	non-lin-
earities of the processes involved. Non-Gaussian behaviour 
requires special attention at the time of validation when 
comparing	model	variables	to	observations,	using	metrics	
calculated on log-transformed data or non-parametric 
metrics	 (please	 refer	 to	 Section	 9.2.6	 for	 more	 details).	 

Figure 9.8.  Examples of Chla ocean colour 
global multi sensor products available on the Co-
pernicus Marine Service. They are daily products 
for	1st	May	2019:	a)	OC-CCI	product;	b)	Coperni-
cus-GlobColour	level	3	product;	and	c)	Coper-
nicus-GlobColour	“Cloud	Free”	(interpolated)	
product	(from	Garnesson	et	al.,	2021).
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In	 addition,	 the	 assimilation	methods	applicable	 to	 large	
systems,	e.g.	Ensemble	Kalman	Filters,	are	typically	adapted	
to	Gaussian	distributions:	as	a	result,	it	is	necessary	to	insert	
a so-called anamorphic transformation – a function match-
ing the quantiles of the variable distribution to those of a 
standard Gaussian – between the outputs of the ensemble 
forward integration and the observational update step. This 
can be done in different ways: by prescribing a priori a given 
transformation	(e.g.	log-normal	or	truncated	Gaussian),	or	
by constructing the transformation from the ensemble in-
formation as proposed by Simon and Bertino (2009 and 
2012)	 and	Brankart	 et	 al.	 (2012).	 At	 the	end	of	 the	analysis	
step,	 the	 inverse	 transformation	must	 be	 applied	 to	 com-
plete the assimilation cycle and prepare a new initialization.

Another issue comes from the highly heterogeneous distri-
bution	of	the	biogeochemical	data	in	space	and	time,	most	of	
which	coming	from	satellites	(ocean	colour)	and	fairly	dis-
persed BGC-Argo profilers. The spatial scales captured by 
these	observational	data	are	therefore	very	different,	requir-
ing special care within biogeochemical data assimilation sys-
tems for localization at the analysis stage. The transforma-
tion	in	the	Fourier	space	can	then	prove	beneficial	to	carry	
out	this	step,	as	proposed	by	Tissier	et	al.	(2019).	The	archi-
tecture of an operational chain dedicated to biogeochemis-

try should therefore include a step to perform the observa-
tional update in a transformed space.2

9.2.2. Input data: available sources  
and data handling

This Section provides a general description and technical in-
formation on the data used to both drive and validate a bio-
geochemical forecasting system. Observational data are re-
quired at different stages of an OOFS: 

• Data	is	first	used	to	set-up	the	model	configuration:	
initial	and	lateral	conditions,	physical	forcing,	atmo-
spheric	surface	forcing,	and	external	inputs.	
• Data is essential for calibrating the formulations of 
the	BGC	processes,	i.e.	making	the	model	results	to	
match	the	observed	distributions	and	fluxes.	
• Then data is used to evaluate the model product quality.
• Finally,	observational	information	is	incorporated	into	
the numerical models using data assimilation methods 
with the objective to improve predicted model states.

2. https://marine.copernicus.eu/access-data/ocean-mon-
itoring-indicators/north-atlantic-ocean-chlorophyll-time-
series-and-trend

Figure 9.9. 		 North	Atlantic	Ocean	time	series	and	trend	(1997-2019)	of	satellite	chlorophyll.	Blue	dots:	daily	
regional average time series; green line: deseasonalized time series; blue line: linear trend (source: Copernicus 
Marine Service at 🔗2).
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9.2.2.1. Physical conditions

Required	fields	are	currents,	temperature,	salinity,	vertical	
diffusivity	coefficient	(Kz),	and	MLD.	They	are	provided	by	a	
physical model to the BGC model with which it is coupled in 
either	“online”	or	“offline”	mode	(see	Section	9.2.1	for	de-
tails).	Advection	and	diffusion	routines	are	usually	shared	
with the physical model. A list of physical-BGC coupled sys-
tems is available in Section 9.2.9.

9.2.2.2. Observational data

Ocean-observing platforms to measure marine BGC encom-
pass	ship,	mooring,	and	remote	sensing	observations.	A	good	
overview	 of	 the	 evolution	 and	 diversification	 of	 platforms	
over	the	past	century	is	given	by	Chai	et	al.	(2020)	from	which	

is	taken	Figure	9.7.	Among	the	traditional	observing	systems,	
satellites	 represented	a	 revolution,	providing	a	 continuous	
spatiotemporal coverage of sea surface variables. More re-
cently,	 autonomous	mobile	 platforms	measure	 ocean	 vari-
ables through the water column. They cover a wide range of 
spatial	and	temporal	scales,	filling	the	observational	gaps.

9.2.2.2.1. Remote sensing observations

Remote sensing-derived Chla data have a good spatial cover-
age of the entire ocean in near-real time and reprocessed 
time series for global and regional mapped products. They 
are	available	through	operational	services,	such	as	the	Coper-
nicus Marine Service (🔗3;	Le	Traon	et	al.,	2017).	Figure	9.8	

3. https://marine.copernicus.eu/

Figure 9.10. Spatial	coverage	of	chlorophyll	(top	left),	oxygen	(top	right),	nitrate	(bottom	left)	and	phosphate	
(bottom	right),	shown	as	the	number	(N)	of	profiles	in	the	upper	100	m	water	depth	in	1°x1°	cells,	from	1990	
to	2020.	To	show	gaps	more	clearly,	colour	shading	is	from	dark	(low	sampling)	to	light	(high	sampling),	white	
colour	indicates	no	sampling	(from	Jaccard	et	al.,	2021).
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presents some Chla products and their spatial coverage. Fig-
ure 9.9 illustrates the long time series available. Remote 
sensing derived PFTs and optical properties are also starting 
to be distributed on the same portal.

9.2.2.2.2. In-situ observations

The Copernicus Marine Service collects and distributes in-situ 
observations	 from	 a	 variety	 of	 platforms,	 including	 manual	
CTD-O2	measurements,	BGC-Argo	profiling	floats,	 ferrybox	sys-
tems,	 gliders	 and	moored	 buoys,	 gathered	 by	 global	 systems	
such	as	the	EuroGOOS,	SeaDataNet,	NODCs,	and	the	JCOMM.	Two	
types	of	products	are	provided:	1)	NRT	products	automatically	
quality controlled within 24 hours from acquisition for forecast-
ing	activities	and	2)	the	reprocessed	(or	multi-year)	products	for	
reanalysis activities. The main biogeochemical variables avail-
able	are	dissolved	oxygen	concentration,	nutrients	(nitrate,	sili-

cate	 and	 phosphate),	 Chla,	 fluorescence,	 and	 pH.	 The	 spatial	
distribution	 of	 all	 chlorophyll,	 oxygen,	 nitrate	 and	 phosphate	
samples	 of	 the	 reprocessed	 product	 (from	 1990	 to	 2020)	 are	
shown in. Figure 9.10.

Special attention should be paid to autonomous robotic under-
water	vehicles.	Argo	profiling	floats	drift	freely	with	the	currents	
and	measure	ocean	variables	through	the	water	column,	reach-
ing	up	to	2000	m,	while	gliders	can	be	programmed	to	sample	
along	a	predetermined	path,	making	the	former	more	suited	to	
the open ocean and the latter more suitable for observation at 
various depths in coastal and shallow oceans. After cycling verti-
cally,	both	floats	and	gliders	transmit	their	data	to	orbiting	satel-
lites	once	they	have	reached	the	surface,	providing	continuous	
monitoring and real-time data to operational centres.

The	 International	Biogeochemical-Argo	 (BGC-Argo)	program	 is	
revolutionising marine biogeochemistry by establishing a glob-
al,	full-depth,	and	multidisciplinary	ocean	observation	network,	
acquiring	profiles	in	regions	of	the	global	ocean	that	previously	
were	observationally	sparse	(Russell	et	al.,	2014).	They	measure	
oxygen,	Chla,	nitrate,	pH,	suspended	particles,	and	downwelling	
irradiance.	Since	their	deployment	in	2012,	1623	floats	have	ac-
quired	about	250000	profiles	(Figure	9.11),	the	major	part	being	
oxygen.	The	aim	is	to	have	1000	active	profiling	floats	measuring	
simultaneously the six essential variables mentioned above 
(Biogeochemical-Argo	Planning	Group,	2016;	Chai	et	al.,	2020).	At	
the	time	being,	410	floats	are	operational	around	the	world	(Fig-
ure	9.12).	An	example	of	time	series	is	presented	in	Figure	9.13.	
BGC-Argo data are publically available in near real-time after an 
automated	 quality	 control,	 and	 in	 scientifically	 quality	 con-
trolled	form,	delayed	mode	data,	within	six	months	of	collec-
tion,	via	two	Global	Data	Assembly	Centers	(Coriolis	 in	France	
and	US-GODAE	in	USA)	(Argo,	2022;	🔗4).	They	are	also	available	
through the Copernicus Marine Service (🔗5).

4. https://www.seanoe.org/data/00311/42182/
5. https://marine.copernicus.eu/

Figure 9.11. Spatial	coverage	of	oxygen	(top),	
Chla	(middle),	and	nitrate	(bottom)	from	the	
start	of	the	BGC-Argo	program.	230,202	profiles	of	
oxygen,	94,947	profiles	of	Chla,	and	49,939	profiles	
of nitrate have been acquired by October 2021 
(source:	T.	Carval,	personal	communication	using	
data	from	the	Copernicus	Marine	Service).
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Figure 9.12. Location	of	operational	BGC-Argo	floats	in	August	2021	(🔗6).

6

6. www.ocean-ops.org

Figure 9.13. Time	evolution	of	Chla	(top	left),	oxygen	(top	right)	and	nitrate	(bottom)	along	a	BGC-Argo	float	
trajectory in the North-East Atlantic.
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9.2.2.3. Climatologies, databases, and atlases

Databases and atlases are collections of uniformly format-
ted,	quality	controlled,	and	publicly	available	ocean	surface	
or	vertical	profile	data.	Climatologies	are	mapped	data	prod-
ucts,	produced	from	databases	and	atlases,	representing	the	
mean	annual,	seasonal,	or	monthly	large-scale	characteris-
tics of the distribution of a quantity. They can be used to 
create initial and/or boundary conditions for ocean BGC 
models,	evaluate	numerical	simulations,	and	corroborate	
satellite data.

The	GLODAP	provides	a	climatology	(GLODAPv2.2020)	of	ocean	
biogeochemical	variables	of	oxygen,	phosphate,	nitrate,	sili-
cate,	dissolved	inorganic	carbon,	total	alkalinity,	and	pH	on	a	
uniform 1° longitude/latitude grid. The product is described in 
Olsen	et	al.	(2020)	and	is	publicly	available	at	🔗7.8

The latest version of the WOA delivered in 2018 provides an 
annual,	 seasonal,	 and	monthly	 climatology	 of	 oxygen	 and	
macronutrients	(phosphate,	silicate,	and	nitrate)	on	a	1°	lon-
gitude/latitude	grid	(Figure	9.14).	

7. https://www.glodap.info
8. https://www.ncei.noaa.gov/products/world-ocean-atlas

It	is	described	in	Garcia	et	al.	(2018ab)	and	is	publicly	avail-
able at 🔗8. It is based on the latest major release of the 
WOD	described	in	Boyer	et	al.	(2018).

The	SOCAT	provides	surface	ocean	fCO₂	(fugacity	of	carbon	
dioxide)	observations,	🔗9.	The	latest	SOCAT	(version	2020)	
has 28.2 million observations from 1957 to 2020 for the global 
oceans and coastal seas. 

The EMODnet portal provides access to temporal and spatial 
distribution	of	marine	chemistry	data	in	European	seas,	🔗10.

9.2.2.4. Atmospheric surface forcing

Atmospheric surface conditions drive biogeochemical quan-
tities	and	processes,	such	as	photosynthesis	and	air-sea	ex-
changes	of	gas	elements	(oxygen,	carbon).	Typical	surface	
data	inputs	include	wind,	solar	radiation,	and	the	evapora-
tion-precipitation	flux.	They	can	be	obtained	from	an	opera-
tional	weather	prediction	system,	via	the	Copernicus	Climate	
Change Service (🔗11).

9. https://www.socat.info/
10. https://emodnet.eu/en/chemistry
11. https://climate.copernicus.eu/

Figure 9.14. Nitrate,	phosphate,	and	silicate	concentrations	at	sea	surface	and	dissolved	oxygen	concentra-
tion	at	200	m	depth,	all	in	mmol	m-3	(from	WOA	climatology).
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9.2.2.5. External inputs

External inputs of carbon and nutrients are provided to ma-
rine biogeochemical systems from observations or models. 
Although	these	inputs	are	currently	simplified	in	current	sys-
tems	(from	climatologies),	the	optimal	solution	would	be	to	
connect ocean operational systems with atmospheric and 
land operational systems. The link between the Copernicus 
Marine Service and the Copernicus Atmosphere and Land 
Services	(respectively,	🔗12 and 🔗13)	is	currently	discussed.

9.2.2.6. Units

Special attention should be paid to the units of the BGC 
quantities because there is no standardisation among the 
different	scientific	communities.	Model	data	are	usually	ar-
chived	in	the	units	specified	by	the	SI	Units	but	instruments	
frequently	do	not	measure	data	in	SI	Units,	making	conver-
sion	necessary.	For	example,	dissolved	oxygen	concentration	
in the seawater can be found in many different units (e.g. mg 
l-1,	ml l-1,	μmol l-1,	μmol kg-1,	mmol m-3,	μM),	with	the	SI	
Units being mole per cubic metre (symbol mol m-3).

It is worth noting the equivalences:

μmol l-1 = mmol m-3 =  μM

1 l = 10-3 m3 ≈ 1.025 kg

and the conversions:

μg l-1 = μmol l-1 × MW

μl l-1 = μmol l-1 × MV

g l-1 ≈ g kg-1 × 1.025

To convert a quantity in sea water from mole concentration 
(in	mol)	to	mass	(in	grams),	multiply	by	Molar	weight	(MW	in	
g mol-1);	from	mole	concentration	(in	mol)	to	volume	fraction	
(in	litre),	multiply	by	Molar	volume	(MV	in	l	mol-1);	expressed	
per	unit	mass	(in	gram)	to	volume	(in	litre),	multiply	by	den-
sity (in kg l-1).	1.025	is	an	approximate	but	general	value	for	
the density of seawater.

9.2.3. Modelling component

9.2.3.1. Numerical and discretisation choices

Marine biogeochemical models describe the cycling of es-
sential	elements	(e.g.	C,	N,	O2,	P,	and	Si)	through	the	lower	
trophic	levels,	usually	from	bacteria	up	to	mesozooplankton.	

12. https://atmosphere.copernicus.eu/
13. https://land.copernicus.eu/

Their complexity (i.e. number of state variables and process-
es)	differs	depending	on	the	scientific	question	under	inter-
est,	the	information	available	for	their	parameterization	and	
implementation,	and	the	investigated	time	and	space	scales.	
BGC models consist of a set of evolution equations (e.g. dif-
ferential	equations)	expressing	the	mass	balance	of	each	
model	component	(e.g.	state	variable).	These	mass	balance	
equations include local sources and sinks associated with 
biogeochemical	processes	(e.g.	photosynthesis,	respiration,	
and	nitrification),	trophic	interactions	(e.g.	predation),	the	
transport by physical processes in the three directions of 
space	by	advection	(e.g.	transport	by	the	main	current),	and	
diffusion (i.e. unresolved processes that are parameterized 
on	the	model	of	the	Fick’s	law	of	diffusion).	As	for	physical	
models,	biogeochemical	models	cannot	be	solved	analytical-
ly and require a numerical model for their integration. A nu-
merical	grid	has	to	be	defined	and	the	size	of	the	grid	cells	
will	define	the	spatial	scales	that	can	be	solved	(it	is	usually	
assumed that the length scale of the solved processes equals 
twice	the	size	of	the	grid).	Given	that	the	vertical	scales	of	
variations are much smaller than the horizontal ones due to 
the	rapid	extinction	of	the	light	field,	the	size	of	the	vertical	
mesh is usually of the order of metres in the upper layer. The 
numerical scheme for time steps and time integration has to 
be carefully chosen in order to avoid generating negative 
concentrations. The choices may be identical to the physical 
model	to	which	it	is	coupled,	or	different.	Numerical	and	dis-
cretization techniques are described in Chapter 5 and bio-
geochemical singularities are discussed in Section 9.2.1.

Whether the processes can be resolved or not in models will 
depend on the grid resolution used to solve the numeric. Fig-
ure	9.15	shows	the	spatial	and	temporal	scale	of	specific	bio-
geochemical processes. 

Regional and global scale models are able to capture the me-
soscale signals with temporal scales of the order of a month 
and spatial scales of the order of 50-100 km. Coastal models 
have	to	solve	the	high	frequency	signal	at	daily	and	(sub)-me-
soscale,	but	at	this	stage	they	are	able	to	solve	the	dynamics	
of the system at weekly to monthly scales.

9.2.3.2. The different biogeochemical models

In	marine	biogeochemistry,	the	specificity	lies	mainly	in	the	
diversity	of	environments,	ecosystems,	and	processes.	The	
choice of a BGC model will thus depend on the study area 
and the topic of interest.

Models of marine biogeochemistry and of the lower trophic lev-
els in the marine food web are usually of the NPZD type (see 
Section	9.1.2	for	more	details),	which	resolve	community	struc-
ture	by	the	explicit	representation	of	a	few	plankton	groups,	in	
accordance with their function in the ecosystem. Another ap-
proach is to let the community structure emerge from a wide 
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Figure 9.15. Time and space overlapping scales of major ocean processes. Main processes modelled by biogeo-
chemical	models	are	outlined	in	red	(adapted	from	Dickey,	1991).

range	of	possibilities.	For	example,	the	DARWIN	model	(Follows	
et	al.,	2007)	includes	a	large	number	(tens	or	hundreds)	of	PFTs	
whose physiological characteristics are stochastically deter-
mined	(the	parameters	are	prescribed	randomly),	allowing	the	
fittest	to	emerge	in	the	resulting	ecosystem.

Some of the most used models in OOFS are summarised below:

• HadOCC	(Palmer	and	Totterdell,	2001).
• MEDUSA	(Yool	et	al.,	2013).
• PISCES	(Aumont	et	al.,	2015).	Its	development	is	led	by	
the Pisces Community gathering eight international re-
search institutes/laboratories. The model can be down-
loaded from the NEMO and CROCO modelling systems 
into which it is embedded (🔗14 and 🔗15).
• ERSEM	 (Baretta	 et	 al.,	 1995;	 Butenschön	 et	 al.,	
2016).	Its	development	is	led	by	the	Plymouth	Marine	
Laboratory and the code is available at 🔗16.
• BFM	(Vichi	et	al.,	2015).	Its	development	is	led	by	a	con-

14. http://www.nemo-ocean.eu
15. https://www.croco-ocean.org
16. https://www.pml.ac.uk/Modelling/Home

sortium	of	five	members	and	the	code	is	available	at	🔗17.
• NORWECOM	(Skogen,	1993;	Skogen	and	Søiland,	1998).	
NORWECOM is the result of the cooperation between 
several	Norwegian	institutions,	for	more	information	
see http://www.ii.uib.no/~morten/norwecom.html.
• ECOSMO	(Daewel	and	Schrum,	2013)	is	developed	by	
Hereon with contributions from the Nansen Centre and 
other	collaborators,	see	🔗18.
• ERGOM	(Neumann,	2000).	It	was	developed	at	IOW,	
Germany. 
• BAMHBI	(Grégoire	et	al.,	2008;	Grégoire	and	Soetaert,	
2010;	Capet	et	al.,	2016).
• SCOBI,	described	in	Eilola	et	al.	(2009)	and	Almroth-Rosell	
et	al.	(2015).

Usually,	these	models	are	the	result	of	the	collaboration	be-
tween different national and international research/academic 
institutes	 and	 laboratories,	 organised	 in	 formal	 or	 informal	
consortia.	They	are	shared	by	several	operators.	In	most	cases,	
the code is available under open-source licences.

17. https://bfm-community.github.io/www.bfm-community.eu/
18. https://www.hereon.de/institutes/coastal_systems_
analysis_modeling/matter_transport_ecosystem_dynamics/
models/index.php.en
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Models	have	been	developed	to	be	applied	to	regional,	
shelf-sea,	basin,	or	global	ocean	scale.	The	level	of	complex-
ity differs depending on the application (biogeochemical cy-
cling	or	ecological	application).	The	models	mainly	differ	in	
the	biogeochemical	cycles	of	major	elements,	the	number	of	
nutrients,	the	number	of	autotrophic	and	heterotrophic	PFTs,	
the	complexity	in	process	formulation,	as	well	as	in	the	con-
sideration of the benthic component. See refer to Gehlen et 
al.	(2015)	for	a	detailed	description	of	these	models.

The practical ability to switch between different physical and 
biogeochemical models is desirable to compare models and 
upgrade them smoothly. This ability is offered by the FABM  
(🔗19)	and	it	has	been	used	in	NEMO	and	HYCOM,	among	oth-
er ocean/lake models programmed in Fortran. 

9.2.3.3. Connections Ocean-Earth systems

Several kinds of models are used for a range of environ-
ments,	but	different	considerations	are	needed	for	open	
ocean,	regional,	and	coastal	ocean.	Moving	from	the	open	to	
the coastal ocean is often accompanied by an increase in the 
spatial resolution and complexity of the model.

Regional models of coastal ecosystems can be very complex. 
Their dynamics is essentially driven by the boundary conditions 
with the open sea and at the air-sediment-land interface. 

 

19. https://bolding-bruggeman.com/portfolio/fabm/

 
For	the	ocean,	atmosphere,	rivers,	and	sediments	are	signif-
icant	sources	of	carbon	and	bioactive	nutrients,	such	as	ni-
trogen,	phosphorus,	 iron,	and	silicate.	Model	performances	
can be hampered by the quality of these boundary condi-
tions. Coastline and topography are also important to trigger 
high-frequency physical processes. 

Connections	with	the	surrounding	systems	(Figure	9.16)	that	
need to be carefully considered include: 

• Connection with land. Rivers exchange freshwater as 
well as inorganic and organic material with the ocean. 
Coastal marine ecosystems have been subject to con-
siderable	modification	in	recent	decades.	The	consider-
able nutrient load in river discharges is due to human 
activities	on	the	land	(e.g.	agriculture,	deforestation,	
waste	discharge,	etc.).	Such	inputs	are	critical	for	coast-
al ecosystem studies.

• Connection with the atmosphere. Atmospheric trans-
port and deposition are a source of chemical com-
pounds	(e.g.	carbon	dioxide,	nitrogen,	oxygen,	iron,	
and	phosphorus)	to	the	ocean,	affecting	marine	bio-
geochemistry	(e.g.	source	of	nutrients,	influence	on	pH,	
etc.)	(Krishnamurthy	et	al.,	2010).	

Figure 9.16. Connections	with	interfaces	(modified	from	Warner	et	al.,	2010).
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• Connection	with	the	seafloor.	Exchanges	between	the	
sediments and the ocean can be represented in a very 
basic way: they consist of the deposition of non-living 
organic	material,	resuspension,	and	release	of	inorgan-
ic nutrients from the sediments. But for a more robust 
approach it should be used an additional module rep-
resenting	(semi-)	explicitly	the	diagenesis,	benthic	eco-
system,	as	well	as	bioturbation,	diffusion,	bio-irrigation	
effects into the upper sediments and sediment trans-
port.	A	coupling	with	the	waves	is	sometimes	realised,	
e.g. using climatology. 

• Connection with the open ocean. Open ocean and 
coastal ecosystems are intimately linked as they ex-
change	mass,	fluxes,	and	materials	with	each	other.	The	
best possible knowledge of open boundary conditions 
is essential for coastal modelling.

• The sea ice algae contribute between 4 and 26% of the 
primary production in the sea ice covered regions of the 
Arctic	Ocean	(Spindler,	1994;	Gradinger,	2009;	Dupont,	2012).

Connections listed above are not always optimally imple-
mented	in	current	OOFS.	Rivers,	atmosphere,	and	sediment	
exchanges	are	often	introduced	in	a	simplified	way	using	cli-
matologies or simplified exchanges. More refined interac-
tions,	including	additional	numerical	modules	or	interannual	
observational	data,	are	currently	developing,	and	connec-
tions with surrounding systems should be considered for the 
construction of future systems.

9.2.4. Ensemble modelling

A forecasting system is literally designed to give an expectation 
of	future	conditions,	having	some	knowledge	of	present	condi-
tions. The expectation is also a judiciously named statistic de-
fined	by	the	mean	of	all	possible	outcomes;	for	example,	the	
expected primary production at a given location next week 
(time t1) can be expressed as the mean of all possible values at 
the same time and location <x(t1)> = ∫x(t1)dx. If we make next 
week’s primary production a function of today’s primary pro-
duction x1=f(x0),	the	function	f() implicitly includes all the other 
variables than primary production at present time such as nu-
trients,	solar	activity,	currents,	etc.	We	obtain	a	new	expression	
for the expected forecast value (using the notation <.> for the 
expected	value)	<x(t1)> = ∫f(x(t0))dx. The function f() is unfortu-
nately not a linear function because it represents the Michae-
lis-Menten	equations	(see	Section	9.1.2.1),	which	after	time	inte-
gration become exponentials: if the concentration of plankton 
doubles	today,	you	may	expect	a	lot	more	than	twice	the	plank-
ton next week in a period of multiplicative growth. This means 
that one cannot swap the above integral and the f()	function,	
even if x1 = f(x0)	is	true,	<x1>=f(<x0>) is generally false and will 
ineluctably generate a biased expectation: too high or too low 
depending on the convexity of the f() function.

One general workaround for this problem is the use of an 
ensemble	of	simulations.	Assuming	that	only	a	finite	num-
ber of N	possible	outcomes	is	available,	<x(t1)> becomes 
an arithmetic average instead of an integral: <x(t1)> ≅ 1/N 
Σ(XN(T1)),	with	xn	being	a	member	of	the	ensemble:	of	the	N 
possible	outcomes,	which	are	assumed	independent	from	
each	other	and	identically	distributed)	If	samples	are	like	
this,	the	arithmetic	average	will	converge	to	the	integral	as	
N tends to infinity. 

But why should one consider different possible outcomes 
when there is only one reality? The point is to manage uncer-
tainties,	which	have	more	diverse	origins	in	biogeochemical	
modelling	than	in	physical	or	wave	models,	in	particular	the	
dependence on ocean physics is strong. Among the input data 
sources	listed	in	Section	9.2.2,	the	following	bear	uncertainties	
that have an impact on biogeochemical model results:

• The seasonal restratification is critical. A too shal-
low mixed layer will confine the organisms near the 
surface and expose them to stronger lights than they 
should and exaggerate the bloom dynamics. A too shal-
low mixed layer will warm up too much and make the 
growth	conditions	artificially	favourable.	A	late	shoaling	
of the mixed layer in spring would lead to a delayed 
bloom	in	the	simulation,	leading	to	strong	errors	in	sur-
face Chla when comparing with observations. 

• A good representation of winter mixing is also a de-
sirable	feature	of	the	physical	model,	as	it	brings	deep	
nutrients closer to the surface and makes them avail-
able for primary production.

• The	ocean	temperature	influences	the	growth	of	mi-
croorganisms,	so	the	simulated	temperature	should	
be accurate.

• The transport of nutrients from the rivers to the open 
ocean	by	ocean	currents,	or	of	any	biological	material	
from	one	oceanic	region	to	another,	requires	accurate	
current simulations. 

• The availability of light is fundamental for the ocean 
ecosystem. The amount of light reaching the surface of 
the ocean (i.e. how much light has been attenuated by the 
atmosphere,	the	clouds,	the	water,	or	sea	ice)	is	uncertain.	

• The initial conditions of the biogeochemical model 
are often based on very scarce climatologies of nutri-
ents,	some	erroneous	values	may	remain	in	the	model	
during very long simulations.

• Nutrient inputs from rivers and atmospheric deposi-
tion are highly uncertain as well.
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All	the	above	are	extrinsic	source	of	errors,	which	can	be	
accounted for by randomly perturbing various inputs of the 
biogeochemical model: perturbations of the downwelling 
shortwave radiations would account for uncertainties in light 
conditions,	an	ensemble	of	physical	model	outputs	would	
account as well for the errors in the physical variables if the 
model	is	coupled	offline.	In	the	case	of	“online”	coupling,	the	
mixed layer depths can also be changed by adding perturba-
tions to the surface winds and surface heat fluxes. There are 
various ways of generating random perturbations in 2 or 3 
dimensions: a spectral method has been used in Natvik and 
Evensen	(2003)	and	following	works,	but	one	could	alterna-
tively use an atmospheric ensemble prediction system or an 
empirical mode decomposition of atmospheric reanalysis 
data.	The	goal	is	to	generate	an	ensemble	of	simulations,	
whose members differ slightly from each other because of 
the random perturbations they have received as input. 

Intrinsic sources of errors have also been mentioned in Sec-
tion	9.2.1.	Among	them,	the	BGC	model	parameters	cannot	be	
known with much certainty and can also be randomised. To 
do	this,	one	needs	to	imagine	their	probability	distribution,	
including their minimum and maximum admitted values. The 
random parameters may be fixed global values or values 
varying	continuously	in	space	(Simon	et	al.,	2015)	or	discrete-
ly,	according	to	designated	provinces	(the	Longhurst	provinc-
es	in	Doron	et	al.,	2011).	Time-varying	parameters	also	make	
sense since they may reflect neglected processes like popu-
lation	shifts.	To	this	effect,	an	auto-regressive	process	is	rec-
ommended	in	Garnier	et	al.	(2016).	

Other	intrinsic	sources	of	errors	can	be	difficult	to	control,	for	
example the noise caused by numerical advection schemes of 
the	model	or	other	model	biases.	If	these	are	not	too	severe,	it	
is desirable to emulate these uncontrollable errors by exag-
gerating	the	amplitude	of	other	errors	that	can	be	controlled,	

Figure 9.17. Scatter	plots	illustrating	second-order	statistics	from	various	types	of	ensembles	of	size	100.	a)	
two	independent	random	Gaussian	vectors	x	and	y.	b)	their	exponentials.	c)	same	as	(a)	but	adding	one	outlier	
at	(10,10).	d)	mixture	of	independent	Gaussian	vectors,	with	an	offset	of	10.	The	correlations	between	the	two	
variables are indicated in the legend. 
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e.g. increasing the level of noise in the wind forcing (extrinsic 
error)	to	compensate	for	a	bias	in	the	model	mixing	scheme	
(intrinsic).	The	preferred	action,	however,	should	be	to	correct	
the	biases	at	their	origin,	if	this	is	possible.

It	is	interesting	to	keep	track	of	the	perturbations	applied,	so	
that the differences between ensemble members can be ex-
plained by the sensitivity to the input parameters. A con-
trario,	Garnier	et	al.	(2016)	also	directly	perturb	the	concentra-
tions	of	biogeochemical	tracers,	in	which	case	the	differences	
between ensemble members can no longer be attributed to 
input parameters alone.

An ensemble of simulations is thus a way to obtain unbiased 
expectations,	defined	as	a	first-order	statistical	moment,	but	
it also provides other higher order statistics as well. One sta-
tistic that is critical for data assimilation is the variance-co-
variance	matrix,	a	second-order	statistic.	In	particular,	the	
statistics based on an ensemble can provide all empirical 
cross-covariances between observations and unobserved 
model	variables,	which	are	an	essential	ingredient	of	all	data	
assimilation	methods	(Carrassi	et	al.,	2018).

However,	the	variance	and	covariance	estimated	from	en-
sembles are sensitive to outliers and may be wrongly esti-
mated in case of ill-behaved ensembles. This is illustrated on 
Figure 9.17 with a synthetic example. Figure 9.17a shows the 
scatterplot	of	two	independent	Gaussian	variables,	x	and	y,	
that	display	a	low	correlation,	as	expected.	The	exponential	
of these values in Figure 9.17b shows a negative relationship 
due	to	the	exponential	stretching	of	randomly	high	values,	
which is not desirable neither for interpretation nor for as-
similation. Figure 9.17c illustrates that the correlation can be 
very sensitive to the introduction of a single outlier. Figure 
9.17d shows that a clustered ensemble can make the correla-
tion	artificially	high,	essentially	making	two	hundred	mem-
bers equivalent to a two-members ensemble only. 

9.2.5. Data assimilation systems

The assimilation of biogeochemical data into marine models 
aims at estimating the “true” value of biogeochemical quanti-
ties in real ocean ecosystems. These quantities are either key 
“states”	of	the	ocean	(e.g.	the	phytoplankton	biomass)	or	“pa-
rameters” characterising the functioning of the ecosystem (e.g. 
the	maximum	phytoplankton	growth	rate).	They	are	estimated	
by merging model guesses with field observations (e.g. model 
predictions and satellite observations of the phytoplankton 
biomass).	Such	merging	weights	the	errors	of	both	the	model	
and	the	observation,	looking	for	the	“true”	value	that	(ideally)	
lies in their proximity. Operational oceanography aims at esti-
mating these “true” biogeochemical quantities to evaluate 
trends of ocean biogeochemistry in the past (in ocean biogeo-
chemistry	reanalysis),	or	to	set	initial	values	for	biogeochemi-
cal model prediction in future forecasts.

The theory and methods behind data assimilation are described 
thoroughly in Chapter 4,	while	the	biogeochemical	model	com-
ponents have been described in the previous sections of this 
chapter. The following section provides a synthesis on how these 
ingredients can be combined in modern operational biogeo-
chemical systems. Comprehensive reviews of the subject were 
published	recently	by	Fennel	et	al.	(2019)	and	Ford	et	al.	(2018).

9.2.5.1. Biogeochemical state and parameter estimation

Most of the modern BGC OOFS apply DA to improve model sim-
ulations of biogeochemical state variables rather than biogeo-
chemical	parameters	(Fennel	et	al,	2019).	The	main	reason	for	
this bias is the straighter link between model state variables 
and	ecosystem	indicators	that	interest	end-users	in	the	policy,	
management,	and	blue	growth	sectors.	For	example,	the	MFCs	
of the Copernicus Marine Service provide assimilative reanal-
ysis	and	forecasts	of	nutrients,	phytoplankton	biomass	and	
oxygen concentrations (linked to coastal productivity and eu-
trophication),	and	water	acidity	(pH,	linked	to	ocean	acidifica-
tion	and	climate	change).	All	these	state	variables	are	linked	
to	the	Sustainable	Development	Goal	14	(Life	below	water)	
and are targets of marine policy (e.g. the European Union Ma-
rine	Strategy	Framework	Directive).

However,	the	variables	targeted	by	BGC	DA	systems	are	not	
necessarily	assimilated	into	the	model.	In	fact,	most	of	the	
above-mentioned centres assimilate ocean colour chlorophyll 
only,	as	a	proxy	of	phytoplankton	biomass,	and	none	of	them	
assimilates pH. It is assumed that a non-assimilated variable 
can be corrected towards its true value since it is linked to the 
assimilated	variable,	e.g.	pH	is	improved	through	its	relation	to	
the phytoplankton biomass via photosynthesis/respiration 
that	modify	dissolved	inorganic	carbon	(DIC)	concentration	
and	alkalinity	in	the	water	column,	and	thus	pCO2	and	pH.	
These corrections of non-assimilated variables can happen 
directly in the assimilative analysis step when using multivar-
iate	assimilation	methods	(Ciavatta	et	al.,	2011).	They	can	also	
happen indirectly during the model simulation of the ecosys-
tem	processes:	in	principle,	an	improved	estimation	of	the	
phytoplankton biomass should quantify better the air-sea CO2 
fluxes	and	hence	their	impact	on	pH.	However,	the	improve-
ment of non-assimilated variables is a strong assumption that 
needs to be thoroughly verified via comparison with indepen-
dent	datasets	(see	Section	9.2.6).

Some operational centres use BGC DA to estimate biogeo-
chemical	model	parameters,	on	their	own	or	concurrently	
with the model state variables (e.g. in a multivariate analysis 
configuration).	For	example,	the	Arctic	MFC	estimates	rates	of	
phytoplankton	growth	and	mortality,	and	this	improves	the	
simulation of the phytoplankton biomass that is a target 
variable	of	the	operational	system	(Simon	et	al.,	2015).	The	
parameters	can	be	estimated	as	variables	in	time	and	space,	
to somehow represent the variability of the real system 
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which cannot be formulated in the mechanistic equations of 
the	model.	For	example,	the	variability	of	the	phytoplankton	
species that are represented in biogeochemical models are 
often	forced	into	few	functional	groups.	In	practice,	the	spa-
tial-temporal variability of a given biogeochemical parame-
ter	is	often	represented	as	a	random	variable,	with	predefined	
statistical distribution. Its fluctuations are computed through 
the minimization of a cost-function between model predic-
tion	and	field	observations	of	a	state	variable,	which	is	linked	
to the parameter and assimilated into the model. BGC DA for 
parameter estimation has an enormous potential to improve 
our	understanding	of	marine	ecosystems,	their	model	repre-
sentation,	and	the	operational	prediction	of	target	variables.	
However,	it	is	also	challenging,	mainly	due	to	the	scarcity	of	
data to define realistic statistical distributions for the pa-
rameter variability and assess the reliability of the estimated 
parameter	fluctuations.	Schartau	et	al.	(2017)	provided	an	
excellent review of these opportunities and challenges.

9.2.5.2. Assimilated observational products

Most of the modern BGC OOFS assimilate ocean colour Chla 
into	their	model	systems	(Fennel	et	al.,	2019).	That	is	because	
this	satellite	product:	i)	quantifies	the	biomass	of	a	central	
component	of	biogeochemical	models	(phytoplankton);	ii)	
provides	data	that	are	generally	synoptic	(~100	km),	high	res-
olution	(~100	m),	and	frequent	(~daily);	and	iii)	has	a	timely	
and free access (e.g. through the Copernicus Marine Service; 
🔗20).	A	thorough	discussion	on	the	use	of	ocean	colour	in	
biogeochemical modelling and assimilation is provided in 
the	report	of	the	IOCCG	(IOCCG,	2020).	Here	it	is	worth	men-
tioning	that,	after	the	seminal	assimilation	of	ocean	colour	
by	Ishizaka	(1990),	biogeochemical	reanalyses	were	produced	
by assimilating ocean-colour total Chla in the global ocean 
(Nerger	and	Gregg,	2008),	in	an	ocean	basin	(Fontana	et	al.,	
2013),	and	in	coastal	and	shelf-seas	ecosystems	(Ciavatta	et	
al.,	2016).	More	recent	contributions	include	the	decadal	
global ocean ecosystem reanalyses by Ford and Barciela 
(2017),	obtained	by	assimilating	different	ocean	colour	prod-
ucts	for	1997	to	2012,	and	the	one	by	Gregg	and	Rousseaux	
(2019),	who	estimated	global	trends	of	primary	production	by	
assimilating ocean colour for 1998-2015. Besides the well-es-
tablished assimilation of total Chla from ocean-colour (e.g. 
Hu	et	al.,	2012),	innovative	applications	have	assimilated	sur-
face ocean colour products for: spectral diffuse attenuation 
coefficients	(Ciavatta	et	al.,	2014),	size-fractionated	Chla	and	
POC	(Xiao	and	Friedrichs,	2014),	remote	sensing	reflectance	
(Jones	et	al.,	2016)	and	both	phytoplankton	functional	type	
Chla	and	spectral	absorption	(Ciavatta	et	al.,	2018	and	2019;	
Skakala	et	al.,	2018	and	2020;	Pradhan	et	al.,	2020).	Surface	
data	of	partial	pressure	of	CO2	(pCO2)	from	ships	of	opportu-
nity were used in the reanalysis of air-sea CO2 fluxes in the 
global	ocean	(While	et	al.,	2012).	

20. https://marine.copernicus.eu/

Biogeochemical	data	are	sparse	for	the	ocean	interior,	but	
they can be useful to constrain vertical gradients that are 
extremely important in the functioning of marine ecosys-
tems.	For	example,	biogeochemical	simulations	were	 im-
proved	by	assimilating	vertical	observations	of	nutrients,	
oxygen,	and	pCO2	data	at	fixed	stations	(Allen	et	al.,	2003;	
Torres	et	al.,	2006;	Gharamti	et	al.,	2017).	The	increasing	num-
ber of autonomous underwater vehicles and floats observing 
biogeochemistry in the global ocean is an opportunity for the 
development of operational oceanography (see also Section 
9.2.2).	The	assimilation	of	such	data	in	the	water	column	can	
complement the assimilation of ocean colour at the surface of 
the	ocean.	For	example,	glider	data	of	Chla	and	POC	were	as-
similated	by	Kaufman	(2017),	while	Skakala	et	al.	(2021a)	assim-
ilated glider Chla and oxygen data along with ocean colour data 
in an operational model of the European North West Shelf 
Seas.	Recently,	the	assimilation	of	BGC-Argo	float	data	led	to	
improvements in the simulation of subsurface biogeochemis-
try	in	regional	seas	(Verdy	and	Mazloff,	2017;	Wang	et	al.,	2020),	
as	well	as	in	the	global	ocean	(Carroll	et	al.,	2020).	OSSE	analy-
ses have shown the potential of improving the ocean biogeo-
chemical simulations by combining the assimilation of the 
planned	1000	BGC-Argo	fleet	with	ocean	colour	assimilation,	
with	both	variational	data	assimilation	methods	(Ford,	2021)	
and	stochastic	ensemble	approaches	(Germineaud	et	al.,	2019).	
The Mediterranean MFC pioneered the assimilation of the 
BGC-Argo	float	for	operational	oceanography	(Cossarini	et	al.,	
2019).	This	application	is	demonstrating	remarkable	advantag-
es for the prediction of the subsurface phytoplankton dynam-
ics	and	biogeochemistry,	with	respect	to	the	assimilation	of	
ocean colour alone. It also pointed out the current main chal-
lenges	in	using	the	BGC-Argo	float	data	operationally:	i)	the	
availability	of	quality-controlled	data	in	near-real	time;	ii)	the	
relatively	low	number	of	floats	available	currently,	which	im-
plies that the impact of their assimilation is spatially con-
strained;	and	iii)	potential	biases	between	the	assimilated	float	
and satellite data (e.g. the Chla concentrations derived for re-
mote	sensitive	reflectance	and	in-situ	fluorescence).

9.2.5.3. Biogeochemical data assimilation methods

The general theory and application of data assimilation meth-
ods were presented in Chapter 5. For the assimilation of bio-
geochemical	data,	current	operational	systems	are	using	two	
methods	(Fennel	et	al.,	2019;	Moore	et	al.,	2019):

a. Ensemble	methods,	which	use	an	ensemble	of	ocean	
model simulations or states to represent the evolution 
of the physical and biogeochemical state variables and 
their uncertainty.

b. Variational	methods,	which	correct	the	model	simu-
lation towards the observation by minimising the dif-
ferences between the observation and the model esti-
mate of the variable.
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Hybrid ensemble/variational assimilation methods have been 
applied	successfully	with	physical	ocean	models	(e.g.,	Storto	
et	al.,	2018)	and	are	currently	being	developed	for	the	assimi-
lation of biogeochemical data in operational systems of the 
Copernicus Marine Service (EU H2020 SEAMLESS project: 🔗21).	

There is no “best” method for the assimilation of biogeo-
chemical	data.	The	choice	depends	mainly	on:	i)	the	target	
variable	(or	parameter)	of	the	assimilative	simulation;	ii)	
the	data	being	assimilated;	and	iii)	the	computational	re-
sources,	which	can	become	a	major	issue	when	using	bio-
geochemical models with a large number of variables. For 
example,	an	ensemble	method	might	be	preferable	if	the	
target	variable	(e.g.	nitrate)	is	different	from	the	assimilat-
ed	variable	(e.g.	ocean	colour	Chla)	because	one	can	exploit	
multivariate analyses that take the dynamical model error 
covariances into account. If the number of CPUs is a con-
cern,	 efficient	 variational	methods	might	be	 the	best	
choice,	if	adequate	information	about	the	model	error	co-
variances is available.

As	far	as	ensemble	methods	are	concerned,	since	the	intro-
duction	of	the	original	EnKF	(Evensen,	1994),	different	flavours	
of	the	filter	have	been	developed	(Vetra-Carvalho	et	al.,	2018)	
and applied with operational biogeochemical systems (Fennel 
et	al.,	2019).	For	example,	both	the	reanalysis	system	of	the	
Arctic	Ocean	(Simon	et	al.,	2015)	and	the	operational	system	of	
the	Great	Barrier	Reef	(Jones	et	al.,	2016)	use	the	DEnKF	(Sakov	
and	Oke,	2008).	In	the	Baltic	MFC,	work	is	in	progress	to	apply	
the	local	ESTKF	(Nerger	et	al.,	2012),	while	the	Global	MFC	is	
based	on	the	SEEK	(Pham	et	al.,	1998).	However,	the	propaga-
tion of an ensemble of model states implies a high computa-
tional cost. To ensure that the EnKFs perform adequately with 
affordable	ensemble	sizes	(i.e.	between	10	and	200),	practical	
adaptations like “localization” have been adopted (Houteka-
mer	and	Mitchell,	1998).	Localization	approaches	correct	the	
model simulation towards the observation just around the 
point where the observation was taken. “How much around” 
(i.e.	the	localization	scale)	depends	also	on	the	spatial	vari-
ability of the variable that is observed.

Examples of variational methods for biogeochemistry used 
by some operational centres include: the 3D-Variational as-
similative system for the European North West Shelf Seas 
(Skakala	et	al.,	2018)	using	NEMOVar	(Mogensen	et	al.,	2009;	
Waters	et	al.,	2015)	and	for	the	Mediterranean	Sea	using	
3DVarBio	(Teruzzi	et	al.,	2014	and	2019);	the	4D-Variational	
system	of	the	CCS	(Song	et	al.,	2016).	In	all	the	above	cases,	
the	assimilated	variable	is	ocean	colour	Chla	concentrations,	
but a limited number of other model variables are also up-
dated by means of functional links such as background Ch-
la-to-nutrients ratios of the phytoplankton cells.

21. https://seamlessproject.org/

A particular issue for biogeochemical data assimilation meth-
ods is the non-Gaussianity of the distributions of the biogeo-
chemical	variables	(Campbell,	1995),	which	is	related	to	the	
non-linearity	of	the	ecosystem	processes.	In	fact,	most	of	the	
traditional methods assume that these distributions are 
Gaussian.	The	use	of	logarithm	of	the	concentrations,	in	par-
ticular	for	Chla	assimilation	(Nerger	and	Gregg,	2007)	and	
Gaussian	anamorphosis	(Bertino	et	al.,	2003),	has	been	
demonstrated to handle the issue by bringing distributions 
closer to Gaussian before the assimilation of the data. This 
approach is currently exploited in operational systems of the 
Copernicus	Marine	Service,	e.g.	in	the	centres	for	the	Europe-
an	North	West	Shelf	Seas,	Arctic	and	Global	oceans	(Simon	et	
al.,	2015;	Skakala	et	al.,	2018;	Lamouroux	et	al.,	in	prep.).

9.2.5.4. Current challenges and opportunities

State-of-the-art operational centres are using BGC DA to pro-
vide better model output products to their users. It is expect-
ed that this use will expand further in the future thanks to 
current research and developments that are addressing the 
BGC DA challenges and opportunities described below (see 
also	Fennel	et	al.,	2019,	and	the	EU	H2020	SEAMLESS	project	 
(🔗22)	specifically	dedicated	to	the	advancement	of	opera-
tional	biogeochemical	data	assimilation	systems).

Before	applying	any	BGC	DA	method,	the	physical-biogeochem-
ical	models	at	hands	need	to	be	improved	as	much	as	possible,	
e.g.	through	implementation	of	the	most	relevant	processes,	
improved	parameterizations,	corroboration	of	equations,	and	
simulation	by	using	laboratory	and	field	data.	In	fact,	biogeo-
chemical data assimilation cannot fix (and actually might dete-
riorate)	any	systematic	flaw	of	the	applied	ecosystem	models	
(Ciavatta	et	al.,	2011).

It is expected that the integrated assimilation of data from 
the expanding fleets of in-situ autonomous observing sys-
tems (e.g. BGC-Argo floats in the open ocean and gliders in 
shelf-seas	and	coastal	areas),	along	with	the	traditional	sur-
face	ocean	colour	data,	will	make	possible	to	constrain	better	
a larger number of model variables and parameters of opera-
tional	models	(Cossarini	et	al.,	2019;	Skakala	et	al.,	2021a).

In	current	applications,	the	assimilation	of	physical	data	into	
ecosystem models can cause the deterioration of the bio-
geochemical simulations due to the breaking of physical bal-
ances and of their consistency with the biogeochemical 
fields	(Anderson	et	al.,	2000).	In	models	of	the	equatorial	
ocean,	the	assimilation	of	temperature	and	salinity	profiles,	
or	sea	surface	height,	can	perturb	the	balance	between	pres-
sure	gradients	and	the	wind	stress,	generating	unobserved	
currents	and	spurious	vertical	velocities	(Waters	et	al.,	2017;	
Park	et	al.,	2018).	In	turn,	this	can	result	in	unrealistic	upwell-

22. www.seamlessproject.org
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ing of nutrients and excessive recreation of the water col-
umn,	deteriorating	biogeochemical	model	products	(e.g.	ox-
ygen	and	primary	production).	The	combined	assimilation	of	
physical and biogeochemical data is a promising approach to 
address	the	above	issue,	and	preserve	the	consistency	be-
tween the physical and biogeochemical simulations (Ander-
son	et	al.,	2000;	Ourmières	et	al.,	2009;	Song	et	al.,	2016;	Yu	et	
al.,	2018).	Using	bio-optical	modules,	which	provide	feedback	
from biology to ocean physics in “two-way” coupling interac-
tions,	models	are	expected	to	preserve	even	better	such	con-
sistency,	in	both	simulation	and	assimilation	steps	of	opera-
tional	systems	(Skakala	et	al.,	2021b).	The	opportunity	for	the	
combined assimilation of physical and biogeochemical data 
is increasing along with the growing number of BGC-Argo floats 
and gliders mounting multivariate sensors in the ocean (Ska-
kala	et	al.,	2020).

The steady expansion of computing capability will facilitate 
the use of ensemble methods (including hybrid ensem-
ble-variational	methods)	to	better	represent	the	dynamics	of	
the	biogeochemical	model	errors.	Nevertheless,	this	evolu-
tion should be accompanied by the use of new stochastic 
ensemble generation methods that can represent the actual 
model	uncertainty	(Santana-Falcon	et	al.,	2020),	and	the	
careful consideration of potential non-linearity/non-Gaussi-
anity issues that can weaken the applicability of traditional 
data	assimilation	methods.	To	address	these	issues,	new	DA	
methods	such	as	particle	filters	(van	Leeuwen,	2010)	have	
been applied to coupled physical-biogeochemical models 
(Mattern	et	al.,	2013)	and	might	be	used	in	operational	sys-
tems in the future.

Finally,	Artificial	Intelligence/Machine	Learning	methods	
have supported data assimilation with geophysical models 
and will likely become relevant components of future oper-
ational biogeochemical data assimilation systems (Mattern 
et	al.,	2012).

9.2.6. Validation strategies 

The validation methodology is built upon four classes of met-
rics that have been defined by the GODAE/OceanPredict com-
munity	(Figure	4.30)	to	monitor	the	quality	of	ocean	analyses	
and	forecasts	in	physics	(Section	5.7)	and	are	used	and	sup-
ported by the broader biogeochemical community. These met-
rics gather a complete range of statistics and comparisons in 
space	and	time	to	properly	assess	the	consistency,	represen-
tativeness,	accuracy,	performance,	and	robustness	of	ocean	
model outputs. They are classified as follows (for a more de-
tailed	description	see	Hernandez	et	al.,	2009	and	Chapter 4):

• Class 1:	metrics	aim	to	provide	a	general	overview,	
they are typically spatial maps or vertical profiles.
• Class 2: metrics correspond to virtual moorings or 
sections of the model domain.

• Class 3:	metrics	are	derived	quantities,	such	as	in-
tegrated quantities.
• Class 4: metrics are model-observation match-ups 
products.

Based	on	this	methodology,	the	validation	strategy	of	bio-
geochemical	operational	systems	consists	of	two	phases:	i)	
the	near-real	time	evaluation	of	the	forecast	accuracy;	and	ii)	
the delay mode evaluation of the model system. 

9.2.6.1. Near-real time evaluation

The NRT validation aims to provide information about the qual-
ity of the forecasts and relies on the availability of NRT observa-
tions (e.g. data from satellite and from autonomous underwater 
sensors	such	as	BGC-Argo	floats,	BGC-gliders,	and	moorings	
equipped	with	biogeochemical	sensors).	A	validation	is	defined	
as	semi-independent	(independent)	when	the	observations	are	
(not)	assimilated	in	a	sequence	of	analysis	and	forecast	cycles.	
In	fact,	an	observation	from	a	continuously	recording	sensor,	
even	if	not	yet	assimilated,	shares	some	level	of	correlation	with	
already assimilated observations from the same sensor.

The forecast validation is commonly based on temporal and 
spatial match-ups of forecast model outputs and observa-
tions	(i.e.	GODAE	Class	4	metrics),	and	on	the	computation	of	
statistical skill metrics such as average difference (also re-
ferred	to	as	average	misfit	or	bias),	average	absolute	differ-
ence,	RMS	Difference	(RMSD),	correlation	index,	and	model	
efficiency	(Stow	et	al.,	2009).	Skillfulness	of	forecasts	can	be	
compared in terms of persistence (i.e. comparison with pre-
vious	day	forecast)	or	with	skill	performance	against	a	refer-
ence climatology. Skill statistics are often reported for vari-
ous	forecast	lengths	(i.e.	number	of	days	in	the	future).	

Two examples are presented in the following figures. Figure 
9.18	shows	model	analysis,	six	days	of	forecast	and	compare	
surface Chla model estimates to satellite observations for 
the European North West Shelf Seas system. Successive daily 
forecast values quickly diverge from the satellite product 
during	spring	and	summer	months,	highlighting	the	strong	
effect of data assimilation during the production period. 
During	winter,	the	satellite	coverage	decreases	and	the	ocean	
colour	error	increases,	inducing	a	negative	forecast	bias.

Figure 9.19 shows statistics for 1st and 6th forecast day in the 
Arctic Ocean. The onset of the spring bloom in the model is 
significantly	delayed,	but	from	the	middle	of	May	onwards,	
the model results are close to the observations. The quality 
barely changes as the length of the forecast period increas-
es,	except	during	the	spring	bloom	(the	first	weeks	of	the	
time	series)	in	which	the	bias	is	significantly	smaller	for	a	
forecast	range	of	one	day,	suggesting	that,	at	this	stage,	the	
model is unable to support increased concentrations after 
the assimilation events.
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Figure 9.18. Time series of surface Chla concentration for European North West Shelf Seas average. Day 0 
is	the	analysis	day,	with	assimilation	of	satellite	Chla,	and	days	1-6	are	forecast	days.	Satellite	ocean	colour	
values are shown in red for comparison and error in the pink shaded area. The number of grid point matchups 
is	shown	in	orange	(from	McEwan	et	al.,	2021).

Figure 9.19. Time series for bias and root mean 
square	(RMS)	differences	between	the	Arctic	
Ocean model system and ocean colour satel-
lite	for	1st	(top)	and	6th	(bottom)	forecast	day.	
Statistics	are	given	for	the	various	regions,	log10	
transformation has been applied (from Melsom 
and	Yumruktepe,	2021).

A different class of metrics can be used to evaluate the ca-
pacity	of	the	forecast	system	to	reproduce	specific	events,	
such	as	algal	blooms.	In	this	case,	the	skill	metrics	are	based	
on a binary discriminator test with a threshold (i.e. greater or 
lower	than	a	given	value	of	Chla	concentration)	and	a	yes/no	
decision.	For	example,	the	ROC	(Brown	and	Davis,	2006)	com-
pares two independent information sets (i.e. forecast and 
observation)	with	respect	to	a	threshold	value.	For	each	cou-
ple	of	yes/no	decisions	there	are	four	possible	outcomes,	
either	correctly	positive	or	correctly	negative,	and	two	model	
failures for incorrectly positive and incorrectly negative. Re-
sults of such metrics are plotted in contingent tables (Stow 
et	al.,	2009).

An example of the use of the ROC to characterise Chla in 
terms	of	events	is	presented	in	Figure	9.20,	using	the	Medi-
terranean	Sea	system.	The	threshold	is	defined	as	the	75th	
percentile of surface concentration and identifies surface 
bloom occurrence.

Since biogeochemical variables are often not Gaussian dis-
tributed (e.g. surface Chla distribution resembles a log-nor-
mal	density	distribution),	forecast	skill	performance	metrics	
can be computed on log-transformed data or using non-para-
metric	statistics,	for	example	median	of	the	misfit	(i.e.	model	
minus	observation)	instead	of	bias,	interquartile	range	of	the	
misfits	instead	of	RMSD,	and	Spearman	correlation	instead	
of	Pearson	one.	However,	while	data	transformation	(such	as	
the	log-transformation)	preserves	the	statistical	robustness	
of	metrics,	it	results	in	metric	values	that	may	be	difficult	to	
understand	by	users,	thus	reducing	the	benefit	of	the	valida-
tion	information	(Hernandez	et	al.,	2009).
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Figure 9.20. Time series of surface Chla concentration for European North West Shelf Seas average. Day 0 
is	the	analysis	day,	with	assimilation	of	satellite	Chla,	and	days	1-6	are	forecast	days.	Satellite	ocean	colour	
values are shown in red for comparison and error in the pink shaded area. The number of grid point matchups 
is	shown	in	orange	(from	McEwan	et	al.,	2021).

Real time skill statistics are reported in web pages which are 
continuously updated (e.g. the validation dashboard of the Co-
pernicus Marine Service: 🔗23).	Indeed,	time	series	of	the	vali-
dation metrics monitor the quality of the operational biogeo-
chemical system and alert for quality degradation of the 
model outputs. Possible deviation from the nominal quality of 
the	forecast	products,	which	is	specified	in	the	delay	mode	
validation,	might	be	due	to	model	failure	to	capture	specific	
events,	degradation	of	upstream	input	data	(e.g.	assimilated	
observations),	model	internal	biases,	but	also	to	the	day-to-
day	fluctuation	in	the	number	of	available	observations.

9.2.6.2. Delay mode evaluation

The DM validation conveys a more comprehensive and de-
tailed evaluation of the model capability to reproduce the 
spatial and temporal scales of variability of marine biogeo-
chemistry. DM validation assesses the reliability of the mod-
el	results	considering	the	user	needs	and	requirements,	
measures the strengths and weaknesses of the model sys-
tem	for	future	developments,	and	defines	the	nominal	qual-
ity level to which the forecast skill performance can be com-
pared	(Hernandez	et	al.,	2018).	

9.2.6.2.1. Common graphical representations

Results of the model performances assessment are generally 
provided in a variety of graphical representations that can be 
complementary	each	other,	most	common	representations	are:

23. https://pqd.mercator-ocean.fr/

• Spatial maps represent the spatial distribution of a 
given	variable	and	highlight	the	model's	ability	to	re-
produce	global	patterns,	spatial	gradients,	and	basin	
inter-difference. The bias and RMSD maps between pre-
dicted and observed values identify the regions of high 
and low model uncertainty. 

• Scatter plots compare the predicted values with the 
observed values in the form of a collection of pair-val-
ues	(i.e.	points	in	a	model	vs	observation	graph).	If	the	
points	are	coloured,	one	additional	information	can	be	
displayed. Scatterplots are useful to identify relation-
ships between the predicted and observed values. 

• Vertical	profiles	compare	the	vertical	structure	of	the	
predicted values with the observed values: surface val-
ues,	vertical	gradient,	and	deep	content.	The	shape	of	
the	profiles	gives	indications	of	the	physical	and	bio-
geochemical dynamics at work.

• Time series graphs represent the evolution of predict-
ed values with the observed values as a function of time. 
Such representation allows analysis if temporal dynam-
ics	(such	as	seasonal	variability,	interannual	variability	or	
trends)	are	captured	by	the	model.	

• Hovmöller	diagrams	are	latitude/longitude/depth	ver-
sus time diagrams displaying the evolution of a variable. 
They are more powerful than the time series graphs be-
cause	they	offer	an	additional	dimension,	allowing	to	
study how models reproduce spatial or vertical dynamics 
over time.
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• Taylor diagrams display simultaneously information 
on	model-observations	skill	for	three	metrics	(Taylor,	
2001):	1)	the	Pearson	correlation	coefficient,	2)	the	RMSD,	
and	3)	the	SD.	RMSD	and	SD	are	usually	normalised	
(RMSD and the model SD are divided by the SD of the 
observations)	to	represent	all	metrics	with	different	
units	into	a	single	diagram	(normalised	Taylor	diagram).	
The	Pearson	correlation	coefficient	between	the	model	
and the observations is given by the azimuthal position. 
The normalised SD is proportional to the radial distance 
from the origin. The normalised RMSD is proportional to 
the distance from the reference point. The observational 
reference is indicated along the x-axis and corresponds 
to the normalised SD and correlation equal to 1. Such di-
agrams are used to compare different model versions or 
to summarise the model performance for different vari-
ables	in	a	single	and	compact	diagram	(Jolliff	et	al.,	2009).

9.2.6.2.2. Evaluation of different system versions

In	the	frame	of	the	continuous	improvement	principle,	any	
upgraded and novel version of an operational biogeochemi-
cal system should show advancements with respect to the 
previous one in terms of model characteristics (e.g. addition 

of	new	modelled	variables	and	processes)	and	quality	of	the	
results. Updates of model formulations and upstream input 
data contribute to reduce the system uncertainty with re-
spect to a standard skill performance framework allowing 
versioning comparison. Figures 9.21 and 9.22 show how met-
rics can be used to compare different versions of a system.

Figure 9.21 compares daily surface Chla for two model versions 
of the European North West Shelf Seas system using regional-
ly-averaged	time	series	(GODAE	Class	4	metrics).	The	new	
product	(V11	in	Figure	9.21)	is	constrained	by	data	assimilation	
while	the	previous	product	(V10	in	Figure	9.21)	was	not.	The	
new version shows a better match with satellites during the 
growing	season,	with	lower	summer	peak	and	earlier	spring	
bloom,	although	there	are	differences	among	regions.	

In	Figure	9.22,	the	Taylor	diagram	summarises	the	quality	im-
provement for different system versions of the Irish-Bis-
cay-Iberia	MFC.	Chla,	nutrients,	oxygen,	and	carbon	variables	
are	compared	to	ocean	colour,	WOA	and	GLODAP	(GODAE	Class	
4	metrics).	The	evolution	of	the	system	shows	an	improve-
ment	in	almost	all	variables,	and	particularly	in	carbon-relat-
ed variables. This improvement is due to more realistic initial 
and boundary conditions in the latest version of the system.

Figure 9.21. Time	series	of	daily	surface	Chla	for	regions	of	the	European	North	West	Shelf	Seas,	from	the	
new	product	(V11),	the	previous	version	(V10),	and	ocean	colour	satellite	(from	McEwan	et	al.,	2021).
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Figure 9.22. Taylor diagram summarising the quality improvement of the operational system of the Irish-Bis-
cay-Iberia	MFC	(part	of	the	Copernicus	Marine	Service).	

9.2.6.2.3. Spatial and temporal evaluation

The DM validation is commonly built to test the pre-opera-
tional system for a medium/long simulation using higher 
quality observation datasets. They can include the same ob-
servation data of the NRT validation but characterised by a 
higher	quality	check	(e.g.	reprocessed	ocean	colour	product)	
and an additional number of historical in-situ data collec-
tions	(e.g,	World	Ocean	Database,	SOCAT,	EMODnet	data	col-
lection)	that,	because	of	the	delay	mode	quality	check,	be-
come available a certain time after their acquisition time.

Chla derived from remote sensing is a major dataset for BGC 
OOFS. It is extensively used in DM validation to validate the 
spatial and temporal structures. Figure 9.23 shows the annu-
al average distribution of Chla from the model and satellite 
observations	(i.e.	GODAE	Class	1	metrics).	The	large-scale	
structures	present	a	good	agreement,	i.e.	the	main	biogeo-
graphic	provinces	of	Longhurst	(1998)	including	oligotrophic	
gyres	(low	levels	of	chlorophyll		in	the	centre	of	the	basins),	
Antarctic	Circumpolar	Current,	tropical	band,	Eastern	Bound-

ary	Upwellings,	are	well	reproduced.	Differences	at	the	re-
gional	spatial	scale	are	found	along	the	equatorial	band,	in	
the	southern	high	latitudes,	and	in	coastal	regions	as	high-
lighted	by	the	scatterplot	(Figure	9.24).	The	distribution	of	
points shows good estimations in the open sea (for depths 
higher	than	1000	m)	and	underestimations	in	shallow	waters	
(when	bathymetry	is	lower	than	1000	m).

Seasonal cycle and interannual variability can be analysed 
using	Hovmöller	diagrams.	Figure	9.25	shows	the	seasonal	
cycle	of	Chla	in	the	North	Atlantic,	from	the	Global	Ocean	
system of the Copernicus Marine Service. The main features 
reproduced	are:	i)	a	bloom	in	spring	when	the	mixed	layer,	
rich	in	nutrients,	shoals	(light	limitation);	ii)	a	decrease	of	
Chla concentration in summer due to a thin mixed layer very 
poor	in	nutrients	(nutrient	limitation);	iii)	a	secondary	bloom	
in autumn when the mixed layer is deepening and nutrients 
are	transported	in	the	euphotic	layer;	iv)	a	period	of	weak	
production	(light	limitation)	in	winter;	and	v)	a	marked	sea-
sonal cycle in the extension of the subtropical gyre (retraction 
in	winter	and	extension	in	summer).	The	interannual	variabili-
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Figure 9.23. Annual mean of surface Chla averaged over the period 2009-2018 (mg Chl m-3).	Top	left:	model.	
Top right: satellite L4 observations. Bottom left: RMSD between model and satellite observations. Bottom right: 
log	bias	(i.e.	mean	difference	of	log)	between	model	and	observations	(from	Lamouroux	et	al.,	2019).

Figure 9.24. Scatterplot comparison of 2018 
annual averaged surface Chla concentration for 
the model vs satellite observations. The colorbar 
represents	the	bathymetry	(m),	from	shallow	
(yellow)	to	deep	water	columns	(dark	blue).	The	
dashed	line	is	the	line	1:1,	the	plain	line	is	the	
least	square	regression	fit	within	the	data.	The	
correlation	coefficient	R,	the	bias,	the	RMSD	(re-
ferred	to	as	rmse)	and	the	number	of	points	N	are	
computed on the log10-transformed space (from 
Lamouroux	et	al.,	2019).

ty of the south boundary of the oligotrophic gyre (i.e. the area 
between	30°N	to	40°N)	is	also	well	reproduced	by	the	model.

Long-term oceanographic monitoring stations are invaluable 
platforms to investigate temporal and spatial scales of BGC 
variability and assess BGC and ecosystem models. An exam-
ple	is	the	BATS	in	the	Sargasso	Sea,	situated	in	the	North	At-
lantic subtropical gyre. Figure 9.26 compares the Chla mod-
elled and measured at this station. The model predicts 
reasonably	well	the	subsurface	Chla	maximum,	with	concen-
trations slightly higher than in BATS data. The model catches 
the	seasonal	cycle,	with	a	bloom	during	the	deepening	of	the	
mixed	layer	in	winter.	In	summer,	the	production	in	the	mixed	
layer is more limited and is mainly due to the local reminer-
alization	of	organic	matter	(regenerated	production).

Observations for a large number of variables are also avail-
able in historical in-situ collections (e.g. nutrients like ni-
trate,	phosphate,	ammonium,	silicate,	iron;	and	carbonate	
system	variables	like	dissolved	inorganic	carbon,	alkalinity,	
pH,	pCO2,	biomass	for	phytoplankton	and	optical	quantities)	
contributing to enrich the state validation framework em-
bracing multiple features of the biogeochemical model. 

Figure 9.27 presents a multivariate GODAE Class 1 quantitative 
comparison	between	model	average	vertical	profiles	and	the	
reference	EMODnet	climatological	profiles	in	the	North	West	
Mediterranean sub-basin. The model reproduces the average 
values	and	shape	of	the	profiles;	modelled	profiles	are	within	
the	range	of	variability	of	the	climatological	profiles.
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Figure 9.25. Hovmöller	diagram	(latitude	versus	time)	of	surface	Chla	concentration	on	2009-2018	period	
computed	with	monthly	mean	fields.	Top:	model.	Bottom:	satellite	observations	(from	Lamouroux	et	al.,	2019).

Figure 9.26. Hovmöller	diagram	(depth	versus	time)	of	Chla	concentration	(mg	Chl	.m-3)	in	the	layer	0-300	
m	at	BATS	station,	over	the	period	2008-2017.	Top:	model.	Bottom:	bottle	data	at	BATS	station	(from	Lamou-
roux	et	al.,	2019).
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Figure 9.27. Comparison	between	weekly	(grey	lines)	and	annual	(black	lines)	vertical	profiles	from	the	model	
run	for	North	West	Mediterranean	sub-basin	in	2019	(part	of	the	Copernicus	Marine	Service)	and	climatological	
profiles	of	nutrients,	dissolved	oxygen,	and	carbon	variables	retrieved	or	derived	from	EmodNET	dataset	(red	
dots	for	means	and	dashed	lines	for	standard	deviations)	(from	Salon	et	al.,	2019;	Feudale	et	al.,	2021).

9.2.6.2.4. Process-oriented evaluation

Besides the already mentioned direct skill error calculation 
(e.g.	bias,	RMSD)	and	pattern	assessments	(e.g.	spatial	cor-
relation	between	model	and	observational	maps),	DM	vali-
dation is enriched by process-oriented metrics (i.e. quanti-
ties derived from state variables that describe the results of 
particular	processes)	and	theoretical	derived	quantities,	
such	as	stoichiometric	indicators	N:P,	DOC:POC,	Chla:POC,	
which	contribute	to	assess	the	fit-for-purpose	of	the	model	
functioning.	Among	process-oriented	metrics,	it	is	worth	
mentioning those deriving from the use of the continuously 
growing	amount	of	available	BGC-Argo	floats	and	glider	pro-
files.	Metrics	are	based	on	the	depth,	slope,	and	amplitude	of	
several	particular	biogeochemical	features,	such	as	the	deep	
Chla	maximum,	nitracline,	and	oxygen	minimum	zones.	They	
are	associated	with	the	biological	carbon	pump,	the	air-sea	
CO2	flux,	oceanic	pH,	oxygen	levels,	and	provide	an	innova-
tive framework that evaluates the model capability to repro-
duce	the	interaction	of	physical	(e.g.	vertical	mixing)	and	

biogeochemical	(e.g.	phytoplankton	growth	and	uptake)	pro-
cesses	that	shape	variable	vertical	profiles	(Salon	et	al.,	2019;	
Mignot	et	al.,	2021).	

These metrics are currently used for DM validation but could 
also be easily implemented for NRT validation by routinely 
comparing	the	forecast	skill	with	pre-operationally	defined	
seasonal benchmarks and thus highlighting possible anoma-
lies.	For	example,	Salon	et	al.	(2019)	used	such	metrics	to	
evaluate	the	system	of	the	Mediterranean	Sea	(Figure	9.28),	
while	Mignot	et	al.	(2021)	applied	them	to	evaluate	the	sys-
tem	of	the	Global	Ocean	(Figure	9.29	and	9.30),	both	part	of	
the Copernicus Marine Service. 

Figure 9.28 shows how the time evolution of the vertical pro-
files matches up with the observations as well as several 
quantitative	metrics	along	the	corresponding	float	trajectory	
in the Mediterranean Sea. Temporal succession of the winter 
vertically	mixed	blooms,	the	onset,	the	time	evolution,	and	
the	depth	of	the	DCM,	which	typically	establishes	during	the	
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Figure 9.28. Time	evolution	of	two	BGC-Argo	floats	in	Mediterranean	Sea	for	Chla	(left)	and	nitrate	(right).	a):	
trajectory	of	the	BGC-Argo	float;	b):	Hovmöller	diagrams	(depth	versus	time)	of	Chla	and	nitrate	concentration	
from	float	data;	c):	model	outputs	matched-up	with	float	position.	Metrics	for	model	(solid	line)	and	float	data	
(dots):	d):	surface	concentration;	e):	0–200	m	vertically	averaged	concentration;	f):	correlation	between	vertical	
profiles;	g):	depth	of	the	deep	chlorophyll	maximum	(blue)	and	depth	of	the	mixed	layer	bloom	in	winter	(red)	
to	the	left,	and	depth	of	the	nitracline	(2	calculation	methods)	to	the	right	(from	Salon	et	al.,	2019).

stratified	season,	are	consistent	in	the	Western	Mediterra-
nean	Sea	(Figure	9.28,	left).	The	analysis	is	completed	by	Chla	
profiles,	nitrate	content,	and	nitrate-based	metrics	(Figure	
9.28,	right)	that	allow	to	evaluate	the	key	coupled	physical–
biogeochemical processes (i.e. water column nutrient con-
tent,	nitracline,	and	effect	of	winter	mixing	and	summer	
stratification	on	the	shape	of	nitrate	profile).	The	shape	of	
the	nitrate	profile	(i.e.	correlation	values),	the	temporal	evo-
lution of the 0-200 m averaged values and of the nitracline 
depth are consistent for the selected float in the Eastern 
Mediterranean Sea.

Figure	9.29	compares	the	seasonal	time	series	of	MLD,	sur-
face	Chla,	NO3,	Si	and	PO4	in	the	North	Atlantic	during	the	
“spring	bloom”,	derived	from	the	BGC-Argo	floats	observa-
tions and from the Global Ocean system of the Copernicus 
Marine Service. The percent bias and percent RMSD are also 
represented for each metric. The model reproduces the sea-
sonal	cycle	of	surface	Chla	and	nutrients,	i.e.	the	timings	of	
minima,	maxima,	and	the	onset	of	the	bloom,	the	winter	Chla	
minimum	and	winter	nutrients	maxima.	However,	the	skill	
metrics deteriorate in summer with the model underestimat-
ing Chla maximum and overestimating NO3 and PO4 minima. 

The	Global	system	skill	for	22	metrics	(Mignot	et	al.,	2021)	is	
summarised	in	the	Taylor	diagram	(Figure	9.30),	which	allows	
for a rapid evaluation of strengths and weaknesses of a model 
simulation.	For	instance,	the	global	model	is	skilled	at	repro-
ducing	oxygen	levels,	cycling	of	nutrients,	and	DIC,	but	the	rep-
resentation	of	Chla,	POC,	spCO2	and	spH	needs	to	be	improved.	

Finally,	DM	validation	can	be	enriched	by	additional	levels	
of	process	and	system	validation	(Hipsey	et	al.,	2020).	These	
aim	to	assess	the	model	performance,	to	simulate	fluxes	
and	rates	of	transformation,	which	drive	changes	in	model	
state	variables,	and	to	verify	emergent	properties	that	are	
not directly predictable by the choices made to build the 
model structure and formulations. Measuring time and 
space	variability	of	in-situ	fluxes	is	difficult	and	highly	re-
source	consuming,	thus	the	list	of	metrics	remains	restrict-
ed	to	few	fluxes,	such	as	rate	of	primary	production,	nutri-
ent	uptake,	grazing	rates,	and	sinking	of	organic	particles.	
Nevertheless,	the	general	confidence	and	fit-for-purpose	in	
the underlying function of biogeochemical operational 
models can be increased by informing users about the un-
certainty of a wider range of processes featured in the 
model formulation.
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Figure 9.29. a):	trajectory	of	a	BGC-Argo	float	located	in	the	North	Atlantic.	Time	series	derived	from	the	
BGC-Argo	(blue)	and	the	model	simulation	(yellow):	b):	mixed	layer	depth;	c):	surface	Chla;	d):	NO3;	e):	Si;	f):	PO4. 
For	each	metric:	g):	seasonal	percent	bias;	h):	percent	RMSD	(from	Mignot	et	al.,	2021).
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Figure 9.30. Comparison	of	BGC-Argo	float	observations	and	model	values	for	22	metrics	using	a	Taylor	dia-
gram. The symbols correspond to the metrics and the colours represent the BGC processes with which they are 
associated	(from	Mignot	et	al.,	2021).

9.2.7. Output

The purpose of this section is to provide recommendations 
and guidelines about the dissemination of products and 
the delivery of services based on BGC OOFS. These recom-
mendations stem from the experience gained by some op-
erational	oceanography	service	centres,	which	deliver	nu-
merical products and have collected users’ needs through 
the	Service	Desk,	a	structure	dedicated	to	answer	and	man-
age	any	user	request.	Products	and	services,	such	as	the	
production,	preparation,	and	delivery	of	operational	ocean	
forecasts	to	users	in	forms	that	meet	their	needs,	are	the	
final	goal	of	an	OOFS.

9.2.7.1. Data formats

Following	the	community	of	physical	oceanographers,	the	
biogeochemical community has widely adopted the NetCDF 
format (🔗24)	and	the	CF	metadata	conventions	(🔗25)	for	
standard names and units. These standards are adopted by 
most operational oceanography actors (e.g. within GODAE 
OceanView),	including	the	groups	that	operate	numerical	
ocean	prediction	systems,	and	also	by	most	of	those	deliv-
ering services based on oceanic observations.

24. https://www.unidata.ucar.edu/software/netcdf/
25. https://cfconventions.org/
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9.2.7.2. Standard products

A BGC OOFS should offer users a reliable and easy access to 
valuable	ocean	information	(past,	present,	and	forecast).	Each	
system operator should work to ensure that the following 
common	variables	(with	their	acronym	or	formula	in	brackets)	
are produced in delayed-mode and real time bases:

• nitrate concentration [NO3]
• phosphate concentration [PO4]
• dissolved oxygen concentration [O2]
• chlorophyll-a	concentration	[Chla]
• phytoplankton	concentration	(expressed	as	carbon)	
[PHYC]
• net primary production of biomass (expressed as car-
bon)	[NPP]

In	addition	to	the	above	standard	products,	operators	should	
also	make	available	the	following	products,	if	they	are	repre-
sented in the model:

• silicate	concentration	[Si]
• iron	concentration	[Fe]	
• ammonium concentration [NH4]	
• zooplankton	concentration	(expressed	as	carbon,	mass,	
or	mole)	[ZOOC]
• PFTs	chlorophyll-a	concentration	[PFTs]
• dissolved	inorganic	carbon	concentration	[DIC]	
• total	alkalinity	[TALK]
• pH	[pH]
• surface pCO2 [spCO2]
• air-sea CO2	flux	[fCO2]
• light	attenuation	coefficient	[Kd]
• photosynthetic	photon	flux	[PAR]
• euphotic	layer	depth	[ZEU]
• secchi_depth_of_sea_water	[ZSD]

Model data are usually archived in the units specified by 
the	International	System	of	Units	(SI	Units),	being	mole	per	
cubic metre (symbol mol m-3)	for	concentration	in	seawater.

9.2.7.3. Data storage

The 2D or 3D concentrations of the modelled prognostics and 
diagnostics	variables	are	saved	and	stored	instantaneously,	
or	averaged	over	specific	time	periods	(daily,	weekly,	month-
ly,	etc.).	It	has	to	be	underlined	that	to	store	outputs	requires	
substantial	computer	disk	space,	especially	for	biogeochem-
ical models which can generate a lot of variables or derived 
quantities. This should be considered before the operational 
system is set up.

9.2.7.4. Other end-user products

Other	data	and	information,	called	“end-user	products”,	can	
be	derived	from	or	in	addition	to	the	standard	products,	with	
the purpose of building indicators of the marine environ-
ment	for	water	quality	monitoring,	pollution	control	(eutro-
phication	phenomena),	food	web	indicators,	etc.

9.2.7.5. Applications

The	scientific	community	has	identified	key	variables	and	in-
dicators to evaluate current state and likely future condi-
tions	of	the	ocean,	such	as	the	EOV	(from	the	GOOS	Expert	
Panels)	 or	 the	 OMI	 	 (from	 the	 Copernicus	Marine	 Service).	
Oxygen,	 chlorophyll-a,	 primary	 production,	 nutrients,	 pH,	
and	CO2	air-sea	flux	are	monitored	 to	keep	 track	of	ocean	
health	and	changes,	also	to	advise	the	policy	makers.	These	
indicators provide important information also for ecosys-
tem-based	fish	management,	 sustainable	aquaculture,	 and	
fisheries	research.	The	number	of	users	of	BGC	model	prod-
ucts has been steadily increasing during the last years (Fig-
ure	9.31),	highlighting	the	growing	interest	for	BGC.

9.2.8. Higher trophic levels modelling

Researches	by	marine	biologists,	ecologists,	and	fishery	scien-
tists very often use a set of environmental variables to explain 
available observations for one species of interest and make pre-
dictions. Examples of frequently collected information include 
geo-referenced	 fishery	 catch	 data	 or	 acoustic-derived	 abun-
dance	of	a	fish	species,	scientific	sampling	of	eggs,	larvae	or	ju-
veniles,	 satellite	 tracking	of	 individuals	of	 large	fish,	 seabirds,	
turtles	 or	 marine	 mammals,	 or	 simply	 visual	 observations	
(whales).	These	studies	are	based	on	the	correlation	between	

Figure 9.31. Number of distinct users of BGC 
model products of the Copernicus Marine 
Service during the last years (courtesy of the 
Service	Desk).
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outputs of the statistical or mechanistic model developed using 
the	environmental	variables	and	the	observed	variables,	i.e.	the	
presence or abundance of the studied species at a given stage of 
development.	Since	the	relationships	are	defined	using	observa-
tions collected in a very dynamic environment with multiple 
sources	of	variability	in	time	and	space,	it	is	essential	to	use	en-
vironmental variables co-located with the observations. Howev-
er,	due	to	limitation	in	observations,	marine	scientists	most	of-
ten	have	to	aggregate	their	data	sets	to	crude	resolutions,	e.g.	by	
season	or	year	in	large	geographical	boxes,	or	they	restrain	their	
analyses	 to	 satellite-derived	 oceanic	 variables,	 such	 as	 SST	
(available	since	early	1980s),	SSH	(since	1992),	and	sea	surface	
Chla	 concentration	 (since	 1998).	 The	 provision	 of	 these	 satel-
lite-derived variables has generated large progress in the under-
standing of ecology and population dynamics of marine species. 
However,	there	are	still	some	gaps	in	the	use	of	these	variables	
given	that:	 i)	satellites	measure	only	the	surface	of	the	ocean;	
and	ii)	surface	Chla	is	a	proxy	of	primary	production,	which	is	not	
necessarily closely related to the upper trophic level animals 
that	feed	on	zooplankton	or	larger	organisms	(e.g.	micronekton).	
Furthermore,	 in	 the	 development	 phase	 of	 these	 organisms	
(lasting	from	days	to	months),	the	spatial	and	temporal	correla-
tion between primary production and these animals may be lost. 

Modelling	tools	have	the	potential	to	fill	these	gaps,	by	sim-
ulating	the	marine	food	web	with	primary	production,	zoo-
plankton,	and	micronekton	as	essential	variables	to	support	
HTL.	As	explained	 in	Section	9.1.1,	BGC	and	HTL	models	are	
often separate models as they focus on different processes 
but	BGC	models	can	provide	input	for	HTL	models,	and	there	
are	examples	of	BGC-HTL	coupled	models	(e.g.,	Libralato	and	
Solidoro,	2009;	Rose	et	al.,	2015;	Aumont	et	al.,	2018;	Diaz	et	
al.,	 2019).	 However,	 presently	 the	 link	 (online/offline	 cou-
pling)	is	neither	straightforward	nor	fully	investigated.	Thus,	
HTL models currently must rely also on other sources of in-
put,	such	as	satellite	and	in-situ	data	collection.	

Connections,	 challenges,	 and	 expectations	 in	 bridging	BGC	
and HTL modelling are discussed in the next subsections.

9.2.8.1. Essential variables

Primary	production,	 zooplankton,	 and	micronekton	are	 es-
sential ecosystem variables for the development of applica-
tions directed to management and conservation of marine 
resources and its biodiversity. Primary production is the 
source of energy to low and mid-trophic level functional 
groups. Zooplankton are a crucial link between the primary 
producers	 (mainly	 phytoplankton)	 and	 the	micronekton	 at	
the	 mid-trophic	 level	 of	 the	 marine	 food	 web,	 as	 well	 as	
many mid-size pelagic species and some specialised large 
predators	(e.g.	baleen	whales).	Micronekton	is	defined	by	a	
size	range	between	1	and	10	cm,	and	include	many	species	of	

fish,	crustaceans	and	cephalopods,	as	well	as	the	early	life	
stages	of	many	larger	fish	species.	The	micronekton	that	in-
habit permanently the lower mesopelagic depths (~ below 
300-400m)	feed	on	the	organic	matter	sinking	in	the	water	
column.	 All	 micronekton	 organisms,	 including	 the	 species	
temporarily	occupying	this	trophic	level	and	size	range,	are	
the forage of larger marine species that have developed var-
ious skills to detect and feed on them. 

Primary	production,	zooplankton,	and	micronekton	are	thus	key	
inputs	to	investigate	the	mechanisms	driving	fish	recruitment,	
as well as movement and migration of oceanic predators.

9.2.8.2. Satellite-derived and in-situ observations

9.2.8.2.1. Primary production

To	establish	which	mechanisms	control	the	distribution,	re-
cruitment,	and	abundance	of	large	oceanic	exploited	or	pro-
tected	species,	marine	scientists	require	a	three-dimension-
al representation of the environment and not only surface 
observations as those provided by satellites. The existence 
of a deep Chla maximum (e.g. in tropical waters and the Arc-
tic)	is	a	good	illustration	of	the	lack	of	adequation	between	
surface and subsurface. One possible solution for this prob-
lem is to extrapolate the satellite observations over the wa-
ter column according to some empirical models developed 
to	estimate	vertically	integrated	primary	production,	or	NPP,	
based on surface Chla and key variables (SST and solar radi-
ation).	 This	 product	 provides	 an	 essential	 foundation	 to	
monitor	ocean	productivity.	However,	various	flaws	remain,	
there	are	caveats	for	shallow	waters	and	the	Arctic,	as	well	as	
difficulties	in	resolving	persistently	cloudy	regions.	However,	
primary	production	can	also	be	provided	by	BGC	models,	of-
fering the better three-dimensional vision as opposed to the 
satellite-based	estimates,	but	this	solution	is	still	little	used	
although the improvements in BGC models (in particular 
thanks	to	the	use	of	data	assimilation)	are	promising.

9.2.8.2.2. Zooplankton

Zooplankton is certainly the variable on which have been de-
veloped the most advanced applications on larval recruit-
ment,	fish	habitat,	dynamics	of	 small	and	mid-size	pelagic	
species as well as baleen whales. Despite decades of sam-
pling	efforts	at	sea,	zooplankton	observations	remain	limit-
ed to a few valuable long-term time series from oceano-
graphic stations and a partial global climatology from the 
compilation	of	all	available	data	collected,	which	represents	
a	huge	effort	of	data	standardisation	(Moriarty	and	O’Brien,	
2013).	Therefore,	only	numerical	models	can	provide	the	syn-
optic maps of zooplankton distributions needed by ecolo-
gists	and	fishery	scientists.	
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9.2.8.2.3. Micronekton

Micronekton	species,	including	a	huge	biomass	of	mesope-
lagic	 organisms,	 are	 among	 the	 largest	 unknowns	 in	 the	
functioning of the global ocean ecosystem. This is a critical 
gap to understand the ecology of their predators for which 
there is a lot of interest in terms of resource management 
and	 conservation.	 In	 recent	 years,	 climate	 change,	 carbon	
storage	in	the	deep	ocean,	and	the	role	of	diel	vertical	migra-
tion	of	mesopelagic	(and	zooplankton)	have	become	major	
scientific	issues.	

But,	even	more	than	for	zooplankton,	the	sparsity	of	obser-
vations on a global scale and over time poses a real problem 
for modellers of higher trophic levels. The traditional ap-
proach for sampling micronekton is net trawling. Many stud-
ies	are	simply	qualitative	descriptions	of	species,	quite	often	
used in combination with acoustic sampling to support the 
extrapolation of acoustic signal to biomass estimates. How-
ever,	 biomass	 based	 on	 acoustic	 sampling,	 especially	with	
one	single	frequency,	can	be	easily	biased	by	one	or	two	or-
der of magnitudes due to the very strong resonance (back-
scatter)	of	some	organisms,	e.g.	gelatinous	organisms	con-
taining	 gas	 bubbles	 (Proud	 et	 al.,	 2018)	 or	 conversely	 very	
weak	resonance	despite	large	biomass,	e.g.	fish	without	swim	
bladder	(Dornan	et	al.	2019;	Escobar-Flores	et	al.	2019).	In	the	
absence	of	sufficient	data	coverage,	relatively	simple	model-
ling approaches are used to simulate these functional groups 
in	 a	 food	web	model,	 relying	 on	 allometric	 scale	 relation-
ships,	 first	 macro-ecological	 principles,	 or	 fluxes	 between	
trophic boxes. 

9.2.8.3. Models of zooplankton and mid-trophic levels

9.2.8.3.1. Complexified BGC models

Improving resolution of primary production in BGC models 
helps	to	get	better	zooplankton	predictions,	although	the	re-
lationship is not so straightforward. The reason is that in 
models the zooplankton component is used as the closure 
term of the biogeochemical cycles. To compensate for the 
lack in biogeochemical models of zooplankton predation by 
higher	 trophic	 levels,	 a	mortality	 function	 with	 a	mortality	
rate	increasing	rapidly	(quadratic	term)	is	used	to	avoid	nu-
merical instability at high levels of biomass. A high mortality 
rate is realistic in warm tropical waters but less for cold wa-
ters	 in	 which	 the	 lifespan	 of	 zooplankton	 is	 much	 longer,	
leading to high biomass persisting during fall. Underestimat-
ed zooplankton biomass can then have a cascading effect on 
the phytoplankton mortality. To address this issue in biogeo-
chemical	models,	it	may	help	the	addition	of	a	trophic	level	
feeding	on	zooplankton,	e.g.	the	micronekton	at	the	interme-
diate	trophic	level,	or	a	simplified	representation	of	the	entire	
upper food web with a size spectrum approach (Zhou et al 
2010).	Gelatinous	organisms	are	also	increasingly	recognised	

as a key group in marine biogeochemical cycles as they need 
to be included to account for zooplankton mortality. A recent 
development	consisted	in	the	introduction	of	a	jellyfish	func-
tional group in the biogeochemical model PLANKTOM (Wright 
et	al.,	2021),	suggesting	that	 it	can	have	a	large	direct	 influ-
ence on the zooplankton as well as on the other groups 
through	 trophic	 cascades.	 However,	 parameterisation	 of	
physiological rates and validation of micronekton and jelly-
fish	carbon	biomass	are	limited	by	the	deficit	of	data	on	these	
species.	 Moreover,	 adding	 mid-trophic	 level	 compartments	
would	still	increase	complexity	of	BGC	models,	which	are	al-
ready complicated as including dozens of variables.

9.2.8.3.2. Spatially explicit models with transport

Models with less complexity and easier to parameterize can be 
used in the meantime. They are useful approaches comple-
mentary	to	more	complex	BGC	models,	allowing	faster	testing	
studies,	 e.g.	 for	 processes	 and	 new	 functional	 groups,	 with	
outputs providing useful intermediate benchmarks. These 
models do not include all the detailed biogeochemical cycles 
but	 focus	on	 food	web	 functional	 groups,	 size	 spectrum,	or	
target species. The link with the lower trophic level can be as 
simple	as	an	energy	transfer	coefficient	between	primary	pro-
duction and each functional group. A key advantage of re-
duced complexity is the greater facility to implement quantita-
tive methods to estimate parameters using available 
observations,	whether	at	global	or	 regional	 level.	Neverthe-
less,	such	models	still	simulate	the	transport	by	oceanic	cur-
rents,	either	based	on	advection-diffusion	equations	like	the	
ocean	circulation	and	BGC	models	(Maury	et	al.,	2007;	Lehodey	
et	 al.,	 2010),	 or	 with	mean	 transfers	 between	 adjacent	 grid	
cells	and	geographical	boxes	(Audzijonyte	et	al.,	2019).	Trans-
port can be also simulated using Lagrangian IBM approaches 
that keep track of individuals or meta-individuals character-
ised	by	individual	state	variables	(weight,	length,	energy	stor-
age,	 life	 stage,	 etc)	 and	 behavioural	 rules.	 However,	 due	 to	
computational	 cost,	 this	 approach	 is	 still	 usually	 limited	 to	
regional	domains	or	single	species	(DeAngelis	and	Gross,	1992;	
Carlotti	and	Wolf,	1998;	Miller	et	al.,	1998;	Huse	et	al.,	2018).	

9.2.8.3.3. Ecosystem food web and size spectrum models

Other modelling approaches are oriented towards a represen-
tation of the ecosystem food web to explore the interactions 
between	fisheries	and	exploited,	by-catch,	or	protected	spe-
cies	 (Christensen	 and	 Walters,	 2004).	 Zooplankton	 and	
mid-trophic	 levels	 are	 often	 defined	 by	 a	 small	 number	 of	
functional	groups	in	the	food	web	interactions.	The	difficulty	
comes from the rapid increase in the number of parameters as 
functional groups and species are added in the food web 
model. The increasing complexity in the network of connec-
tions	between	the	numerous	groups,	species	and	sometimes	
life	stages	of	species,	is	developed	at	expense	of	the	spatial	
description. A few approaches combine such complexity with 
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a	semi-spatially	explicit	representation,	i.e.	through	bulk-trans-
fer between geographical regions or cells from various sizes 
(e.g.	Audzijonyte	et	al.,	2019).	The	size	spectrum	is	an	approach	
that	strongly	simplifies	the	view	of	a	marine	ecosystem.	

The size-based ecosystem modelling is a classical approach 
that is used to predict biomass distribution and size-structure 
of	marine	consumers	(see	review	in	Blanchard	et	al.,	2017).	Jen-
nings	and	Collingridge	(2015)	have	developed	this	approach	at	
global scale. The model predicts rates and magnitudes of en-
ergy	flux	from	primary	producers	to	consumers	that	depend	
on	primary	production,	transfer	efficiency,	predator	and	prey	
body	mass,	and	temperature.	Biomass	is	estimated	in	the	wa-
ter column without considering the horizontal transport nor 
the	vertical	structure,	and	mesopelagic	communities	are	not	
explicitly	modelled.	Maury	et	al.	(2007)	have	developed	a	sim-
ilar size-spectrum approach but that also accounts for the in-
fluence	 of	 spatial	 dynamics	 and	 vertical	 diel	migration.	 Au-
mont	 et	 al.	 (2018)	 have	 fully	 coupled	 this	 latter	model	 to	 a	
physical-biogeochemical model allowing to explore two-way 
interactions between lower and higher trophic levels of the 
pelagic	ecosystem.	Petrik	et	al.	(2019	and	2020)	have	proposed	
another approach that discretizes the size spectrum into a few 
stage-structured	functional	groups	as	in	De	Roos	et	al.	(2008).	
Their demographic system at each spatial grid cell is forced 
offline	by	vertically	integrated	temperature,	vertically	integrat-
ed	zooplankton	biomass	concentrations	and	mortality	losses,	
bottom	temperature,	and	detrital	fluxes,	but	there	is	no	trans-
port	or	fish	movement.	

There is no simple solution to model end-to-end ocean eco-
systems	 (Fulton,	 2010)	 but	 various	 approaches	 that	 reflect	
the	different	scientific	questions	 that	are	 investigated.	The	
demand for greater details in taxonomic representation and 
population	dynamics	(including	transport,	recruitment,	and	
migrations)	of	target	species,	creates	major	problems	in	cal-
culation,	 estimation	 of	 parameters,	 and	 analysis	 of	 uncer-
tainties,	which	may	 be	 a	 critical	 issue	 if	 the	model	 has	 to	
support management and policy decisions. For these rea-
sons,	to	formulate	management	advice	for	quotas	of	catches	
and/or	effort	and	conservation	measures,	RFMOs	mostly	rely	
on	standard	stock	assessment	modelling	approaches,	fitted	
to	key	target	species	and	fisheries.	These	models	have	been	
used since the 1960s and can integrate multiple sources of 
information to estimate the key parameters of population 
dynamics	 and	 fisheries	 for	 a	 single	 species	 (Maunder	 and	
Punt,	2013).	However,	they	treat	the	environmental	variability	
as	noise	that	is	removed	from	fishing	data	using	standardisa-
tion methods or integrated as a random signal in the predict-
ed	 recruitment	 process,	 and	 thus	 they	 cannot	 be	 used	 to	
project mid- to long-term changes (e.g. climate change ef-
fects	on	fisheries).

9.2.8.4. Contribution from operational oceanography 

Improved BGC models with assimilation of in-situ and satel-
lite data is an approach with promising results and rapid 
progress.	Thanks	to	data	assimilation,	the	physical	and	bio-
geochemical models used in operational oceanography to 
predict and forecast ocean physics and primary production 
are	becoming	more	and	more	accurate.	Consequently,	 they	
are	used	by	an	increasing	number	of	marine	biologists,	ecol-
ogists,	and	fishery	scientists.	The	outputs	of	biogeochemical	
models are also essential to explore the historical period 
before	the	satellite	era,	which	started	in	the	late	1970s	(see	
Figure	9.7).	The	information	generated	by	BGC	models	is	also	
needed to develop seasonal forecasting of ocean ecosys-
tems,	 population	 dynamics	 of	 marine	 animals,	 and	 to	 ex-
plore the impact of climate change with long-term projec-
tions,	once	forced	by	Earth	System	Models.	Many	BGC	models	
also	provide	dissolved	oxygen	concentration	and	pH,	which	
are	useful	variables	for	modelling	habitats	of	fishes.	Finally,	
the recent progress achieved in operational oceanography 
contributes to an overall improvement of all types of zoo-
plankton,	micronekton	and	ecosystem	models.	

A global zooplankton and micronekton model-based product 
(Lehodey	et	al.,	2010	and	2015)	is	delivered	in	the	Copernicus	
Marine	Service.	With	only	11	parameters,	the	model	simulates	
one functional group of zooplankton and six functional groups 
of	micronekton	in	the	global	ocean,	with	a	vertical	structure	
simplified	 into	 three	 layers	 in	 the	water	column	 (epipelagic,	
and	upper-	and	lower-mesopelagic)	allowing	to	consider	ver-
tically migrant and non-migrant mesopelagic behaviours. The 
functional	groups	are	driven	by	primary	production,	euphotic	
depth,	temperature,	and	horizontal	currents	with	time	of	de-
velopment and mortality rate linked to water temperature. The 
limited number of parameters allows implementing quantita-
tive methods to estimate their optimal values by searching for 
the	best	fit	between	observations	and	predictions	(Lehodey	et	
al.,	2015).	However,	the	sparsity	of	direct	biomass	observations	
and	the	difficulty	to	convert	the	signal	of	acoustic	echo-sound-
ers into biomass is still an issue that requires further develop-
ments.	In	particular,	there	is	the	need	to	progress	on	acoustic	
models	(Jech	et	al.,	2015).	

9.2.8.5. Applications

Zooplankton and micronekton outputs produced by the Co-
pernicus Marine Service have proved to be useful variables 
along with physical and biogeochemical variables to model 
feeding	habitats,	feeding	behaviour,	and	migrations	of	large	
oceanic protected species such as marine mammals and tur-
tles	(e.g.,	Abecassis	et	al.,	2013;	Lambert	et	al.,	2014;	Cham-
bault	 et	 al.,	 2016;	 Roberts	 et	 al.,	 2016;	 Green	 et	 al.,	 2020;	
Pérez-Jorge	 et	 al.,	 2020;	 Romagosa	 et	 al.,	 2020	 and	 2021).	
These	applications	contribute	to	the	scientific	advice	needed	
to	propose	marine	spatial	management	measures	(e.g.,	Ma-
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rine	Protected	Areas	and	Migratory	Corridors),	the	planning	
of	activities	at	seas	(e.g.,	offshore	energy,	military	exercises	
and	tests,	and	navigation	routes),	and	real-time	operational	
tools	to	limit	the	interaction	of	fisheries	with	protected	spe-
cies	 (Howell	 et	 al.,	 2008;	 Hobday	 et	 al.,	 2010;	 Hazen	 et	 al.	
2018).	 The	 combination	 of	 zooplankton	 and	 micronekton	
variables has been used in a mechanistic model of Antarctic 
krill	population,	including	food	conditions	that	adults	need	
to successfully produce eggs and the density of predators 
feeding	on	spawned	eggs	(Green	et	al.	2021).	

Finally,	spatially	explicit	population	dynamics	of	target	spe-
cies	can	be	driven	by	these	variables	to	study	recruitment,	
natural	 mortality,	 and	 movements	 linked	 to	 feeding	 be-
haviour	 and	 spawning	 migrations	 of	 fish	 (Lehodey	 et	 al.,	
2008;	Dueri	et	al.,	2012;	Hernandez	et	al.,	2014;	Scutt	Phillips	
et	al.,	2018;	Senina	et	al.,	2019).	These	models,	combined	with	
quantitative methods integrating various sources of georef-
erenced	 data	 (i.e.	 catch,	 size	 frequencies	 of	 catch,	 tagging	
data,	 density	 of	 larvae,	 and	 acoustic	 biomass	 abundance),	
provide new tools to assess the status of exploited stocks 
(Senina	et	al.,	2008	and	2020;	Dragon	et	al.,	2018),	to	test	spa-
tial	management	 scenarios	 (Sibert	 et	 al.,	 2012),	 to	 develop	
real	time	monitoring	applications	(Lehodey	et	al.,	2017),	and	
forecast seasonal to long-term changes along with IPCC cli-
mate	scenarios	(Lehodey	et	al.,	2013;	Dueri	et	al.,	2014;	Bell	et	
al.,	2013	and	2021).

9.2.9. Inventories

The	first	Green	Ocean	applications	of	operational	oceanogra-
phy,	coupling	biogeochemical	models,	and	assimilation	com-
ponents	from	the	existing	GODAE	systems,	were	discussed	in	

Brasseur	et	al.	(2009).	Some	years	later,	Gehlen	et	al.	(2015)	
and	Fennel	et	al.	(2019)	discussed	the	current	state	and	fu-
ture prospects of analysis and prediction tools for ocean bio-
geochemistry	and	ecosystems,	and	presented	representative	
examples of global and regional physical–biogeochemical 
systems implemented in pre-operational or operational 
mode.	Currently,	a	 few	forecasting	systems	are	fully	opera-
tional,	 i.e.	maintained	 by	 an	 operational	 centre	with	 strict	
commitment to routinely provide forecasts.

Tables 9.1 and 9.2 provide initial inventories of the operation-
al	 forecasting	and	multi-year	systems,	based	on	the	 litera-
ture mentioned above and completed in collaboration with 
the MEAP-TT working group that is one of the OceanPredict 
Task	 Teams.	 General	 information	 is	 given	 for	 each	 system,	
along	with	type	(from	global	to	coastal	scale),	producer,	res-
olution,	implemented	model,	data	assimilation	method,	and	
product	catalogue,	as	well	as	the	web	address	that	the	read-
er can consult for further details.

Table 9.1. 	 Initial	inventory	of	BGC	Global	(G)	to	Regional	(R)	to	Coastal	(C)	operational	forecasting	systems.

WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu 

G Global Ocean BGC 
system	(MOI,	France)

Global 
ocean 

1/4° PISCES coupled 
offline	with	
NEMO (1/12° 
degraded to 
1/4°)	at	daily	

frequency

SEEK	method,	using	
total Chla from OC 

satellite data

Chla,	NO3,	PO4,	
Si,	Fe,	O2,	PHYC,	
NPP,	spCO2,	pH,	
10-days	forecast,	
updated weekly
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

R

R

R

R

R

Northwest European 
Shelf Seas BGC sys-
tem	(UK	Metoffice,	

UK)

TOPAZ5-ECOSMO 
Arctic Ocean system 
(Norwegian Meteo-
rological	Institute,	
Norway; Nansen 

Environmental and 
Remote Sensing 
Center,	Norway)	

Baltic Sea system 
(Swedish Meteoro-
logical and Hydro-
logical	Institute,	

Sweden)	

Iberia-Biscay-Irish 
system	(MOI,	France	

+	consortium)	

MedBFM3 model 
system (Euro Med-
iterranean Center 
on Climate Change 
-	CMCC,	Italy;	OGS,	

Italy)	

European 
North-
West 

shelf Seas

Arctic 
Region

Baltic Sea

Iberi-
an-Bis-

cay-Irish 
shelves 

Mediter-
ranean 

Sea 

~7 km

6 km

1 nautical 
mile

1/36° 

1/24°

ERSEM coupled 
online with 

NEMO

ECOSMO bio-
logical model 

coupled online 
to	the	HYCOM	
ocean physical 

model 

ERGOM coupled 
online with 

NEMO

NEMO-PISCES 
online coupled 
model; nested 
into	PHY	and	
BGC solutions 

from the Global 
MFC

BFM	v5	model,	
off-line cou-

pled with NEMO 

3D-Var NEMOVAR 
method,	using	total	

Chla from OC satellite 
data

Assimilates Chla 
from OC satellite 

data using a nudging 
approach,	and	surface	

observations are 
projected downward 
in the water column 

applying an algorithm 
described by Uitz et 

al.	(2006).	

_

No assimilation 

3DVAR-BIO	method,	
using Chla from 

satellite and vertical 
profiles	of	Chla	and	

nitrate  from BGC-Argo

Chla,	NO3,	PO4,	
O2,	PHYC,	NPP,	
spCO2,	pH,	Kd,	
6-day	forecast,	
updated daily

Chla,	NO3,	PO4,	
Si,	O2,	PHYC,	
ZOOC,	NPP,	

spCO2,	DIC,	pH,	
Kd,	10-day	fore-
cast,	updated	

daily 

Chla,	NO3,	PO4,	
NH4,	O2,	spCO2,	
pH,	NPP,	ZSD,	
6-day	forecast,	
updated twice 

daily

Chla,	NO3,	NH4,	
PO4,	Si,	Fe,	

O2,	PHYC,	NPP,	
spCO2,	DIC,	pH,	
ZEU,	10-days	

forecast updat-
ed on a weekly 

basis 

Chla,	PHYC,	
ZOOC,	NO3,	

NH4,	PO4,	Si,	O2,	
spCO2,	pH,	fCO2,	
ALK,	DIC,	NPP,	

10-day forecast 
updated daily 

CHAPTER 9. BIOGEOCHEMICAL MODELLING 288



WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://www.po-
seidon.hcmr.gr

http://www.na-
noos.org/prod-
ucts/j-scope/
home.php 

https://coast-
alscience.noaa.
gov/research/
stressor-im-
pacts-mitiga-
tion/hab-moni-
toring-system/ 

https://ereefs.
org.au/ereefs

www.vims.edu/
hypoxia; https://
oceansmap.
maracoos.org/
chesapeake-bay/

R

R

C

C

C

C

Black Sea system 
(University	of	Liege,	

Belgium)	

POSEIDON system 
(HCMR,	Greece)	

J-SCOPE	forecast	
system	(JISAO’s	Sea-
sonal Coastal Ocean 

Prediction of the 
Ecosystem,	funded	

by	NOAA,	US)	

Harmful Algal Bloom 
Monitoring System 
(National Centers 
for Coastal Ocean 
Science,	formed	by	
the	NOAA,	US)	

Great Barrier Reef 
(Bureau of Meteo-

rology	et	al.)	

Chesapeake Bay

Black Sea 

Mediter-
ranean 

Sea 

California 
Current 
System 

Coastal 
and lake 

regions of 
the US 

Great 
Barrier 

Reef 

Chesa-
peake 

Bay

~3km 

1/10° 

1/10° 

_ 

_ 

600m

BAMHBI,	online	
coupled with 

NEMO 

ERSEM-II 
model,	on-line	
coupled with 

POM 

ROMS ocean 
model coupled 

with a BGC 
model 

_ 

CSIRO eReefs 
modeling suite 

ChesROMS-ECB

“Ocean Assimilation 
Kit” (OAK; Vanden-
bulcke	and	Barth,	

2015)	for	assimilation	
of surface Chla from 

satellite 

No assimilation 

_

_

_

_

Chla,	PHYC,	NO3,	
PO4,	Si,	NH4,	
O2,	spCO2,	pH,	
fCO2,	ALK,	DIC,	
NPP,	Kd,	PAR,	

10-day forecast 
produced daily 

Chla,	PHYC,	
ZOOC,	BACC,	

NO3,	NH4,	PO4,		
4-day forecast 
updated daily 

Seasonal 
forecasts of 
sea surface 
temperature 
(SST)	and	BGC	

variables 

Daily forecast 

A few days 
forecast 

Nowcasts and 
a few days 

forecasts of 
physical and 
BGC variables 
(focusing on 

O2,	acidification	
metrics,	T,	S)
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Table 9.2. 	 Inventory	of	BGC	Global	(G)	to	Regional	(R)	to	Coastal	(C)	multi-year	systems.

WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://www.
cls.fr/

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

G 

G

R

R

R

Global Ocean BGC 
system	(MOI,	France)	

Global Ocean low 
and mid-trophic 

levels	product	(CLS,	
France)	

Northwest European 
Shelf Seas BGC 
system (UK Met 
Office,	UK)	

TOPAZ-ECOSMO 
reanalysis system 
(Nansen Environ-

mental and Remote 
Sensing	Center,	

Norway)	

Baltic Sea system 
(Swedish Meteoro-
logical and Hydro-
logical	Institute,	

Sweden)	

Global 
ocean 

Global 
ocean 

European 
North-
West 

shelf Seas 

Arctic 
Region 

Baltic Sea 

1/4° 

1/12° 

~7 km

25 km 

1 nautical 
mile 

PISCES,	coupled	
offline	with	

NEMO at daily 
frequency 

LMTL com-
ponent of 
SEAPODYM	

dynamical pop-
ulation	model,	
driven	offline	
by	NEMO,	NPP	
from satellite 
and PISCES 

ERSEM,	coupled	
online with 

NEMO 

ECOSMO bio-
logical model 

coupled online 
to	the	HYCOM	
ocean physical 

model 

SCOBI coupled 
to NEMO 

No assimilation 

No assimilation 

3D-Var NEMOVAR 
method,	using	surface	

PFT Chla from OC 
satellite data 

Assimilates surface 
Chla a from OC 

satellite and in-situ 
nutrient	profiles,	using	
an Ensemble Kalman 
Smoother	(EnKS)	

method,	after	a	gauss-
ian anamorphosis for 
all BGC data. EnKS is 
preferred to EnKF in 

delayed mode 

LSEIK data assimila-
tion	scheme,	using	

oxygen and nutrients 

Chla,	NO3,	PO4,	
Si,	Fe,	O2,	PHYC,	
NPP,	spCO2,	pH,	
1993 onwards 

2D	fields	of	
zooplankton 
biomass and 
six groups of 
micronekton 
biomass,		1998	

onwards 

Chla,	PFTs,	
PHYC,	NO3,	PO4,	
O2,	spCO2,	pH,	
NPP,	Kd,	1993	

onwards 

Chla,	NO3,	
PO4,	O2,	PHYC,	
ZOOC,	Kd,	2007	

onwards 

Chla,	NO3,	NH4,	
PO4,	O2,	1993	

onwards 
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WebsiteProductsBGC Data Assimilation  
(method and data) 

PHY-BGC 
models 

ResolutionCovered 
Area 

SystemType

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://marine.
copernicus.eu

https://ocean.
ust.hk:8443/
SiteMapApi/
new/index.jsp

R

R

R

R

R

Iberia Biscay Irish 
system	(MOI,	France)	

Global Ocean low 
and mid-trophic 

levels	product	(CLS,	
France)	

MedBFM3 model 
system	(OGS,	Italy)	

Black Sea system 
(University	of	Liege,	

Belgium)	

China Sea Multi-
Scale Ocean 

Modelling System 
(CMOMS)

Irish-Bis-
cay-Ibe-

rian 
shelves 

Global 
ocean 

Mediter-
ranean 

Sea 

Black Sea 

China 
Seas

1/12°  

1/12° 

1/24° 

~3km 

~3km 

NEMO-PISCES 
online coupled 
model; nested 
into	PHY	and	
BGC solutions 

from the Global 
MFC

LMTL com-
ponent of 
SEAPODYM	

dynamical pop-
ulation	model,	
driven	offline	
by	NEMO,	NPP	
from satellite 
and PISCES 

BFM	v5	model,	
off-line cou-

pled with NEMO 

BAMHBI	model,	
online coupled 

with NEMO 

ROMS ocean 
model coupled 

with a BGC 
model 

No assimilation 

No assimilation 

3DVAR-BIO	method,	
using surface Chla 

No assimilation 

No assimilation 

Chla,	NO3,	NH4,	
PO4,	Si,	Fe,	

O2,	PHYC,	NPP,	
spCO2,	DIC,	
pH,	ZEU,	1993	

onwards 

2D	fields	of	
zooplankton 
biomass and 
six groups of 
micronekton 
biomass,		1998	

onwards 

Chla,	PHYC,	
ZOOC,	NO3,	

NH4,	PO4,	Si,	O2,	
spCO2,	pH,	fCO2,	
ALK,	DIC,	NPP,	
1999 onwards 

Chla,	PHYC,	O2,	
NO3,	PO4,	spCO2,	
pH,	fCO2,	ALK,	
DIC,	NPP,	1992	

onwards 

Chla,	PHYC,	
ZOOC,	NO3,	NH4,	
PO4,	O2,	spCO2,	
pH,	ALK,	DIC,	
small	detritus,	
large	detritus,	
terrestrial	POM,	
and terrestri-
al DOM; 1992 

onwards
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10.1.  
Introduction to coupled prediction
In the early days of numerical modelling of the various com-
ponents	of	 the	Earth	system,	each	component	was	 treated	
individually. Figure 10.1 shows a representation of two sys-
tems,	 ocean	 and	 atmosphere,	 that	 run	 independently:	 the	
output of one system is used to “force” the other. The inter-
face between the ocean and the atmosphere was considered 
a phenomenon that had to be modelled independently of 
the two media. 

This representation of the Earth system interactions is in 
some	sense	arbitrary.	As	the	complexity	of	models	grew,	at-
tempts were made to integrate the components more tight-
ly,	 particularly	 in	 the	 field	 of	 climate	 modelling.	 Weather	
forecasting has a time scale of days to a couple of weeks 
(Lorenz,	1967)	and,	as	new	forecasts	would	be	initialised	reg-
ularly	 (typically	 every	 day),	 excessive	 diffusivity	was	 never	
considered a problem. Making the early numerical weather 
prediction models conservative was therefore not a priority. 
The	problem	of	conserving	quantities	such	as	heat,	moisture,	
or momentum to avoid model drift,	began	to	manifest	itself	
only with the advent of long integrations of climate mod-
els. It became clear that long climate integrations of the at-
mosphere	needed	to	also	consider	the	impact	of	a	(slowly)	
changing	ocean,	not	least	because	the	various	climate	com-
ponents interact in nonlinear ways. This produces feedback 
loops that can fundamentally alter the state of each climate 
component. Numerical weather prediction models also need-

ed to close the energy budget at the top of the atmosphere 
(or	in	the	case	of	climate	change,	get	that	imbalance	right).	
This	 led	 to	 the	first	attempts	at	coupling	ocean	and	atmo-
sphere	models.	The	ice	floating	on	the	ocean	and	the	soil	in	
the ground were also separate from the ocean and the atmo-
sphere.	The	latter	was	the	first	to	be	incorporated	into	more	
complex	models,	leading	to	the	first	coupled	models.	

Figure 10.2 shows a conceptual representation of systems 
that can interact through a “mechanism” called coupler. Fig-
ure 10.3 shows a more detailed and realistic representation 
of this coupling process.

Theoretical challenges to producing skilful weather forecasts 
were	noted	early	 in	 the	history	of	NWP.	For	example,	Lorenz	
(1963)	pointed	 to	 the	phenomenon	of	sensitive	dependence	
on initial conditions. This means that small changes in our 
current best guess of the atmosphere or ocean could lead to 
very	large	changes	in	the	forecasts.	As	a	consequence,	skillful	
weather	prediction	is	limited	to	a	finite	time	horizon	of	around	
1-2	weeks.	However,	 this	perspective	 tends	 to	 focus	on	syn-
optic scale atmospheric dynamics. When a numerical mod-
el of the atmosphere is coupled to numerical models of the 
ocean	and	other	 Earth	 system	 components,	 new	 timescales	
are	introduced	into	the	system.	In	such	multiscale	systems,	

Figure 10.1. Traditional modelling platform 
characterised	by	Systems	(S),	like	ocean	model	
and	atmosphere	model,	and	inputs	to	each	 
System	(V).

Figure 10.2. Coupling modelling platform where 
Systems	(S)	communicate	with	each	other	through	
an interface code called “coupler”. 
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fast growing errors tend to be associated with processes 
that evolve quickly but saturate at smaller scales (Harlim 
et	 al.,	 2005),	while	 slower	 growing	or	decaying	 errors	 tend	
to be associated with larger scale oscillations (Penland and 
Sardeshmukh,	 1995;	 Penland	 and	 Matrosova,	 1998;	 Vannit-
sem	and	Duan,	2020).

DA is the process of integrating information from numerical 
models with observations derived from real world measure-
ments.	At	operational	centres,	DA	systems	have	typically	been	
built for each Earth system component independently. Early 
efforts to produce coupled forecasts maintained this separa-
tion of components when applying DA to provide initial con-
ditions	(Saha	et	al.,	2006,	2010,	and	2014;	Zhang	et	al.,	2007),	
an	approach	that	 is	now	called	WCDA.	More	recently,	 there	
have been efforts to treat the entire coupled Earth system 
as one state and update accordingly. This more integrated 
approach	allows	observations	to	have	immediate	 influence	
across	 domain	 boundaries	 (e.g.	 the	 air-sea	 interface),	 and	
as such is called SCDA. There are also approaches that fall 
on	the	spectrum	between	these	extremes,	such	as	the	CERA	
system at the ECMWF that applies different DA systems to the 

atmosphere	and	ocean	but	still	allows	influence	across	the	
air-sea interface via an iterative cycling over a moving 6-12 
hour	time	window	(Laloyaux	et	al.,	2018).

Beyond	 these	 theoretical	 considerations,	 there	 are	 many	
technical complications involved in transitioning to coupled 
prediction. Many centres have developed monitoring and 
prediction tools independently for individual Earth com-
ponents	 (e.g.	 atmosphere,	ocean,	 land,	waves,	 etc.).	 This	 is	
natural based on the historical context of their development 
and	limitations	on	computing	capabilities,	but	it	has	creat-
ed an infrastructure within and across institutions that adds 
complexity to the task of unifying prediction systems. The 
major prediction centres are making progress towards an 
integrated approach by unifying software infrastructure for 
models	 and	 data	 assimilation	 capabilities,	 as	 well	 as	 pro-
viding opportunities to increase interactions among the de-
velopment teams of each system component. Data formats 
for model output and observational data sets have not been 
fully	standardised	across	the	various	Earth	system	domains,	
and so this adds further steps before seamless integration. 

Figure 10.3. A	schematic	of	the	components	(ocean,	waves,	etc.),	the	models	(NEMO,	WWIII,	etc.),	and	the	
coupling	exchanges	between	them,	based	on	the	system	described	in	Lewis	et	al.	(2019).	Note	the	use	of	the	
coupler	OASIS,	the	use	of	input	forcing	between	Jules	and	the	river	flow	model,	direct	coupling	between	Jules	
and the UM and direct forcing between the NEMO and ERSEM systems. A relatively simple coupled system (no 
ice)	that	includes	6	different	models	and	4	different	approaches	to	coupling	between	them.
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A very important practical limitation that has most certainly 
curtailed research and development in coupled prediction is 
the extreme demands it places on computational resources. 
The best performing applications for atmospheric predic-
tion and ocean prediction have already been pushed to their 
limits of resource consumption. Acknowledging the fact that 
coupled systems can perform very differently at low resolu-

tions	versus	high	resolutions,	there	remain	very	few	organ-
isations with the resources needed to explore unanswered 
questions in coupled prediction at relevant resolutions for 
operational	 prediction.	 For	 this	 reason,	 there	 are	 efforts	
underway to identify methods to reduce the computational 
demands at bottlenecks within the cycled data assimilation 
and forecast systems.

10.2.  
Coupling processes
10.2.1. Waves and their role in air-sea exchange

Waves have been called the gearbox of the climate system 
(Semedo	et	al.,	2011).	The	analogy	highlights	the	mediating	
role	of	the	wave	field	between	the	atmosphere	and	the	ocean	
interior. It may seem surprising that the sea surface demands 
its own class of numerical model. The other components (at-
mosphere,	ocean,	sea	ice,	land	surface)	have	real	substance,	
i.e. they each represent a three-dimensional chunk of the 
Earth	system.	In	contrast,	the	wave	model	is	a	representation	
of a surface	between	two	media,	namely	the	air	and	the	sea	
(Figure	10.4).	There	are,	however,	good	practical	reasons	for	
this	 split.	 If	 we	 had	 access	 to	 unlimited	 computing	 power,	
we could model the ocean and the atmosphere with a grid 
resolution approaching Kolmogorov’s microscale. That would 
mean that the Navier Stokes equations could be solved in 
the	 approximative	 limit	 known	 as	 DNS	 (Moin	 and	Mahesh,	

1998).	In	this	case,	the	(liquid)	ocean	would	presumably	in-
teract	with	the	(gaseous)	atmosphere	and	on	their	interface	
would	 form	a	wavy	surface	 that,	given	a	sufficiently	strong	
momentum	flux	(mostly	from	the	atmosphere	to	the	ocean),	
would form droplets and bubbles as the waves start to break. 
The	computational	reality	is	far	from	this.	At	present,	we	can	
model the ocean and the atmosphere with models that have 
grid cells of tens of metres in the horizontal if we limit our-
selves	to	small	domains,	whereas	the	waves	that	form	under	
the	influence	of	the	wind	have	wavelengths	of	the	order	of	
some metres to hundreds of metres and so cannot be explic-
itly resolved together with the bulk ocean properties.

The behaviour of these waves determines the mass and mo-
mentum	fluxes	between	the	ocean	and	the	atmosphere.	As	
waves	 grow	under	 the	 influence	of	 the	wind,	 they	become	
steeper. In this phase they are also choppier than they will 

Figure 10.4. Representation of AWO coupled models.
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be	later	on.	All	this	means	that	the	momentum	flux	between	
the atmosphere and the ocean is affected by the presence 
of	waves	(Janssen	et	al.,	2004;	Breivik	et	al.,	2015).	There	 is	
also very important feedback between the waves and the at-
mosphere.	As	waves	grow,	the	sea	surface	becomes	rougher,	
slowing the near-surface winds and increasing the momen-
tum	flux	from	the	atmosphere	to	the	wave	field.	This	has	the	
effect of stemming the deepening of low-pressure systems. 
This is important in the formation and growth of extratropi-
cal	lows	(Janssen,	1991	and	2004),	but	also	in	the	evolution	of	
tropical	cyclones	(discussed	further	below).

A secondary effect of waves on the air-sea interaction is 
through their ability to impart momentum and turbulent ki-
netic	energy	to	the	ocean	interior	(Figure	10.4).	As	waves	grow,	
they absorb momentum that would otherwise go directly to 
the	formation	of	ocean	currents.	As	waves	break,	they	part	
with	 this	momentum,	 and	also	 inject	 turbulent	 kinetic	 en-
ergy	into	the	ocean	(Janssen	et	al.,	2004;	Rascle	et	al.,	2006;	
Ardhuin	et	al.,	2008	and	2009).	This	leads	to	a	redistribution	
of momentum and kinetic energy in time and space (Ardhuin 
and	 Jenkins,	 2006;	 Breivik	 et	 al.,	 2015;	 Staneva	 et	 al.,	 2017;	
Wu	 et	 al.,	 2019),	 and	 has	 a	 profound	 effect	 on	 near-shore	
processes	 (Uchiyama	et	al.,	 2010;	Kumar	et	al.,	 2012)	where	
waves interact strongly with the currents. It is also clear that 
in open ocean conditions the mixed-layer depth is a function 
of	the	wave	activity,	in	part	sustained	by	the	Langmuir	turbu-
lence	(McWilliams	et	al.,	1997;	Fan	and	Griffies,	2014;	Li	et	al.,	
2016	and	2017;	Li	and	Fox-Kemper,	2017;	Ali	et	al.,	2019).	The	
enhanced mixing due to waves is thus important for the sea 
surface	 temperature,	which	helps	 to	determine	 the	air-sea	
heat	flux	and	thus	constitutes	an	important	feedback	mech-
anism between the atmosphere and the ocean.

10.2.2. Land/sea exchanges

Land-sea interactions take place on a wide range of spa-
tial	and	temporal	scales.	The	presence	of	land	modifies	the	
weather	in	the	coastal	zone,	e.g.	the	daily	variations	in	wind	
speed	and	direction	due	 to	 the	sea	breeze,	and	hence	 the	
atmosphere provides an indirect link between the land and 
the ocean. Another example of this indirect coupling is the 
way	large-scale	weather	systems	can	influence	the	transport	
pathways	of	river	water	(Osadchiev	et	al.,	2020).	

The	 physical	 couplings	 between	 land,	 ocean,	 and	 atmo-
sphere	are	not	necessarily	equal	in	strength	and	importance,	
and we often observed a lagged response. The runoff from 
rivers is dependent on the precipitation over a potentially 
very	large	catchment	area,	with	significant	lag	between	spe-
cific	precipitation	events	and	the	freshwater	discharge	to	the	
coastal ocean. This lag is particularly pronounced in temper-
ate and polar regions where the precipitation accumulates 
as	 snow	 during	 parts	 of	 the	 year.	 This	 is	 reflected	 by	 the	

state-of-the-art	of	coupled	modelling,	as	very	 few	systems	
couple	the	ocean	to	the	land,	but	rather	use	the	atmosphere	
as a mediator.

10.2.3. Air-sea exchanges across sea ice

At	high	latitudes,	air-sea	exchange	is	modified	by	the	pres-
ence	of	sea	ice.	Varying	in	thickness	up	to	a	couple	of	metres,	
sea ice is sensitive to forcing from both air and sea and the 
air,	sea,	and	sea	ice	are	strongly	coupled.	Geophysical	scale	
sea	 ice	 is	 essentially	 a	mixture	 of	 ice	 floes	 of	 varying	 size	
and	 thickness,	 with	 the	 added	 complexity	 of	 being	 rafted	
and ridged. Describing accurately the sea ice mechanical be-
haviour	is	extremely	challenging,	although	modelling	sea	ice	
as plastic materials at the large scale has long been a suc-
cessful	approach	(Coon	et	al.,	1974;	Hibler,	1979;	Hunke	and	
Dukwicz,	1997;	Girard	et	al.,	2011).	In	medium	to	high	model	
resolutions	(≤	10km),	such	models	can	generate	small-scale	
features	such	as	the	ice	leads	(Hutchings	et	al.,	2005;	Wang	
and	Wang,	2009;	Girard	et	al.,	2011;	Spreen	et	al.,	2017).	This	
thin ice cover has a very small heat content and easily melts 
away	during	summer,	 resulting	 in	 large	seasonal	variations	
of sea ice extent.

In	much	of	 the	pack	 ice	region,	 the	thermodynamic	and	dy-
namic interactions between air and sea are greatly sup-
pressed.	During	wintertime,	the	air-sea	heat	flux	through	leads	
is two orders of magnitude larger than that through thick ice 
(Maykut,	 1978).	Dynamically,	pack	 ice	behaves	as	a	 low-pass	
filter,	the	air	and	sea	surface	stresses	act	on	the	ice	cover	thus	
driving	the	advection	and	deformation	of	sea	ice,	while	ocean	
waves are generally suppressed. The MIZ is a highly com-
plex	region	consisting	of	ice	floes	of	varying	dimensions	and	
shapes. Wave energy propagating into the MIZ can lead to rap-
id breakup. The damping of waves in sea ice is directly related 
to	the	amount	of	energy	imparted	on	the	sea	ice.	This	is	a	field	
of	active	research,	and	it	is	presently	not	fully	clear	how	the	
MIZ	attenuates	wave	energy	(Doble	and	Bidlot,	2013;	Williams	
et	al.,	2013;	Kohout	et	al.,	2014;	Sutherland	and	Rabault,	2016;	
Ardhuin	et	al.,	2016;	Rabault	et	al.,	2020).	

Landfast ice is a special region where the air-sea interaction 
nearly ceases. It generally appears in winter seasons and often 
occurs in shallow waters where ridged ice grounds on the sea-
bed	(Mahoney	et	al.,	2014),	or	occurs	where	islands	are	close	to	
each	other	(Divine	et	al.,	2003).	Modelling	studies	have	shown	
that adding base stress due to grounding ridges and increas-
ing ice tensile strength improve the simulation of landfast ice 
evolution	(Lemieux	et	al.,	2016),	although	in	some	Arctic	shelf	
seas the time duration needs to be further improved.

In	coupled	modelling,	a	key	consideration	is	whether	to	cou-
ple the sea ice directly to the atmosphere or only through the 
ocean	 model.	 In	 some	 recent	 coupled	 models,	 particularly	
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for	 high-resolution	 short-term	 atmosphere,	 ocean,	 and	 sea	
ice	forecasts,	the	timestep	for	coupling	has	decreased	to	one	
hour	or	 less,	e.g.	 the	coupled	ocean-ice	model	METROMS	at	
the	Norwegian	Meteorological	Institute	(Naughten	et	al.,	2018),	
or	the	atmosphere-ice	coupled	model	at	UKMO	(Ridley	et	al.,	
2018).	In	these	cases,	the	difference	between	using	the	atmo-
sphere timestep or ocean timestep is generally negligible. 

10.2.4. The importance of air-sea exchanges 
during storms and other extreme events

Air-sea exchange really comes to the fore in the develop-
ment of tropical cyclones. The sea surface temperature must 
as a general rule exceed 26.5ºC to sustain the growth of the 
cyclone	 (Emanuel,	 1986).	 However,	 the	 depth	 to	 which	 the	
ocean’s temperature must be above this critical threshold 
is also important. As the cyclone moves across the sea sur-
face,	the	Ekman	transport	will	lead	to	divergence,	and	verti-
cal Ekman pumping will eventually lead cooler water to the 
surface.	If	the	cyclone	is	moving	sufficiently	slowly,	this	will	
eventually	 kill	 the	 cyclone	 (Mogensen	 et	 al,	 2017).	 Thus,	 it	
is essential to include an ocean model component that re-
sponds to the atmospheric forcing.

The importance of coupled ocean-atmosphere prediction 
systems in providing seasonal predictability is well-known 
(Kim	et	al.,	2012,	and	references	therein).	Sources	of	predict-
ability	 in	seasonal	 forecasting	systems	tend	to	be,	by	their	
very	 nature,	 coupled	 systems	 driven	 by	 teleconnections	
that	are	functions	of	climate	modes,	such	as	the	North	At-
lantic	Oscillation	and	the	El	Niño–Southern	Oscillation	that	
have	 geographically	 far-reaching	 consequences.	 However,	
as timescales shorten and the dominance of these coupled 
climate modes become less fundamental to predictability 
of	 the	 atmosphere-ocean	 system,	 it	 becomes	 less	 obvious	
whether	 the	 benefits	 of	 fully	 coupled	 systems	 justify	 the	
computational	cost	or	the	technical	and	scientific	complexity	
required. The coupling between atmospheric and wind wave 
models	was	 first	 introduced	 operationally	 in	 1998	 at	 ECM-
WF.	 The	method	 based	 on	 the	 theoretical	work	 of	 Janssen	
(1991)	 contributed	 to	 an	 improvement	 of	 both	 atmospher-
ic and surface wave forecasts at the medium range on the 
global scale. The usual approach of forcing the ocean with 
atmospheric	conditions	(Takano	et	al.,	1973),	and	referred	to	
in	this	section	as	“forced”)	using	bulk	parameterisations	of	

Polar lows are of a decidedly less extreme nature than trop-
ical	cyclones,	but	 they	share	the	same	dependence	on	sea	
surface	temperature	(Rasmussen	and	Turner,	2003).	As	winds	
blow	off	the	sea	ice,	the	air	is	rapidly	warmed	by	the	(relative-
ly)	warm	ocean	surface.	Under	the	appropriate	atmospheric	
conditions	(Kolstad,	2015),	this	can	lead	to	the	formation	of	
polar	lows.	These	are	small-scale,	intense	cyclones,	typically	
with	gale-force	winds.	 If	 the	cyclone	 is	 rather	 stationary,	a	
shallow layer of warmer water can mix with cooler waters 
through Ekman pumping. As the ocean temperature is key 
to	sustaining	a	cyclone,	the	water	mixing	can	sometimes	be	
enough to inhibit further growth of the polar low.  

Examples	 of	 instantaneous	 coupling	 between	 land,	 ocean,	
and atmosphere also include coastal inundation during 
landfall	of	tropical	cyclones	(Lee	et	al.,	2019).	In	these	cases,	
heavy	precipitation	leads	to	a	swelling	of	local	rivers,	which	
is often coincidental with a large storm surge. The result is 
a rapid sea-level rise that may cause extensive damage to 
coastal	infrastructure,	especially	when	combined	with	large	
surface waves and strong winds.

the	fluxes	 (Large	and	Yeager,	 2009)	 is	 computationally	and	
structurally far easier and cheaper than coupling approach-
es.	However,	the	key	boundary	layer	processes	(see	Section	
9.1	for	details)	are	not	taken	into	account	and	thus	the	feed-
back between the atmospheric boundary layer and the up-
per ocean is not represented. It is necessary to understand 
how	 important	 these	 processes	might	 be,	 bearing	 in	mind	
that coupled models can suffer from systematic errors as a 
result of positive feedback leading to drifts in the forecast 
(Hyder	et	al.,	2018).	

Ocean forecasting systems have become increasingly 
high-resolution,	 resolving	 coastlines,	 bathymetry,	 and	 ed-
dy-scale processes. The effect of coupling on model predic-
tions becomes more important with increasing grid resolu-
tion	(Janssen	et	al.,	2004),	and	so	the	question	of	the	benefits	
of coupling to ocean forecasting is perhaps more relevant 
now than ever. A small but growing body of literature demon-
strates	the	benefits	to	ocean	prediction	of	coupling	at	short-
er	 time-ranges	 (Brassington	 et	 al,	 2015;	 Allard	 et	 al.,	 2010;	
Lewis	et	al.,	2018	and	2019).

10.3.  
Benefits expected from coupling
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Understanding the advantages of coupled over uncoupled 
predictions in short-range ocean forecasting is in its infancy. 
Although	the	future	of	advanced	systems	is	clearly	coupling,	
as	several	processes	are	better	represented,	predictive	mod-
elling without coupling is however possible thanks to param-
eterizations and should never be discarded as an option. At 
a recent science meeting of OceanPredict (Vinayachandran 
et	al.,	2020),	the	need	for	a	careful	evaluation	of	how	ocean	
and atmosphere components interact and impact each oth-
er	 was	 highlighted.	 At	 monthly	 or	 shorter	 timescales,	 the	
benefits	of	running	coupled	systems	need	to	be	evaluated,	
balancing	scientific	and	service	benefits	against	complexity	
and computing costs. Intermediate complexity coupling may 
also be an appropriate approach if full coupling is not viable 
and the service is not reliant on the atmosphere and ocean 
information.	Lemarié	et	al.	(2021)	provided	an	example	of	an	
atmospheric boundary layer approach that gives some of the 
benefits	 of	 coupling	 whilst	 being	 significantly	 simpler	 and	
computationally cheaper.

The	potential	benefits	of	using	a	coupled	framework	is	rein-
forced by the move towards a multi-hazard approach to pre-
dictions. Natural hazards from multiple sources may combine 
or	occur	concurrently	(Lewis	et	al.,	2015).	Large	waves,	storm	
surges,	high-wind	speeds,	and	extreme	precipitation	are	all	
hazards	that	are	likely	to	co-occur,	and	influence	each	other	
through coupled feedbacks that can compound one another 
(for	 example	 through	 over-topping).	 Coupled	 systems	 that	
predict these coupled feedbacks may enable an improve-
ment in the range and consistency of actionable information 
to be provided through hazard warnings and guidance.

When considering providing services in multi-hazards frame-
works,	 the	 opportunities	 that	 coupling	 provides	 should	 be	
considered	alongside	the	scientific	benefits.	A	coupled	system	
combining the full water-cycle – including consistent precipi-
tation,	river	runoff,	wave,	currents,	and	surge	forecasts	-	can	
give users mutually consistent products in a joint probability 
framework.	This	can	be	important	in	coastal	flooding,	where	
the impacts for coastal communities or industries can come 
from	 high	 river	 flows	 and	 local	 heavy	 precipitation	 events,	
alongside overtopping waves and extreme surges. From a 
service	 perspective,	 it	 is	 attractive	 to	 provide	 probabilistic	
frameworks in which the timings and intensities of events 
are consistently incorporated and interact appropriately; 
these services increasingly rely on probabilistic information 
for decision making. An area that has had limited attention 
but	seems	likely	to	prove	significant	is	the	impact	of	feedback	
among	Earth-system	components	upon	ensemble	spread,	and	
hence the quality of the probabilistic information. 

Ocean	phenomena	are	usefully	classified	depending	on	their	
nature,	which	determines	the	timescale	for	oceanic	predic-
tive skill and whether a coupled ocean-atmosphere model 
would be advantageous. Some phenomena have strong de-

pendence,	 and	a	 rapid	 response,	 to	 the	atmosphere	 forcing	
and can be thought of as forced-dissipative systems. This cat-
egory	 includes,	 surface	waves,	 responses	 to	 surface	heating	
and	wind	in	the	ocean	boundary	layer,	and	storm	surges.	These	
systems	largely	depend	upon	skill	in	the	atmosphere	model,	
and	so	the	benefits	of	coupling	to	the	atmosphere	can	be	a	
leading-order driver of the ocean system skill. The advantage 
of coupling and its impact upon predictability often focus on 
the	benefits	to	the	atmosphere	(Brunet	et	al.,	2010;	Belcher	et	
al.,	2015).	The	impact	of	ocean	coupling	on	tropical	meteorolo-
gy is well documented with tropical cyclones (Bender and Gi-
nis	2000;	Mogensen	et	al.,	2017;	Smith	et	al.,	2018;	Neetu	et	al.,	
2019),	monsoons	(Fu,	2007),	and	the	Madden–Julian	Oscillation	
(Bernie	et	al.,	2008;	Shelly	et	al.,	2014;	Seo	et	al.,	2014),	which	
predictability improved in coupled systems. There is also an 
increasing	body	of	evidence	that	the	oceans	have	a	significant	
local	(important	for	short-range	forecasts)	and	non-local	(in-
creasingly	 significant	 at	 longer	 lead-times)	 influence	on	 the	
extra	tropics	(Minobe	et	al.,	2008).	

In	 the	 literature,	 there	 is	 limited	 quantification	 of	 the	 im-
pact of the coupled improvement in atmospheric parame-
ters on ocean services but it is an increasing area of study. 
Guiavarc’h	et	al.	(2019)	explored	the	impact	of	a	coupled	(at-
mosphere-ocean)	system	on	short-range	ocean	forecast	skill	
and	showed	that	there	are	benefits	 in	SST	predictability	at	
the	short-range,	but	with	mixed	results	for	other	parameters.	
Given that the research system they used is at a relatively 
early	stage	in	development,	and	the	resolution	of	the	atmo-
sphere	is	significantly	lower	than	in	comparable	forced	sys-
tems,	these	results	are	encouraging.

Although the importance of coupling the wave-ocean interface 
for improving forecasts of surge and waves is well document-
ed	(Wolf,	2008;	Lewis	et	al.,	2018),	most	storm	surge	and	wave	
prediction systems remain largely independent. As well as the 
atmospheric	 forcing,	 ocean	 currents	 have	 a	 significant	 role	
in	modifying	ocean	wave	properties.	The	presence	of	eddies,	
fronts,	and	filaments	with	length	scales	of	tens	to	hundreds	
km	 and	 ubiquitous	 in	 the	 world’s	 oceans,	 can	 be	 the	main	
source	of	variability	in	significant	wave	heights	at	these	scales.	
Ardhuin	et	al.	 (2017)	made	a	compelling	case	 for	 the	 impor-
tance of coupling the ocean surface currents to a wave model 
allowing adequate representation of wave height variability in 
the world’s open oceans. Wave predictions in shelf seas en-
vironments are shown to be improved as a result of coupling 
to	an	ocean	model	(Allard	et	al.,	2012;	Wahle	et	al.,	2017;	Lewis	
et	al.,	2018).	as	well	as	the	predictions	of	ocean	current	and	
other	 ocean	 parameters,	 including	 upwelling	 due	 to	 stokes	
drift	effects,	were	enhanced	(Wu	et	al,	2019).	Fan	et	al.	(2009)	
showed that time and spatial variations in the surface wave 
field,	as	a	result	of	coupling	to	winds,	are	particularly	strong	
in	hurricanes,	with	significant	additional	feedback	from	ocean	
currents and near-surface temperatures. 
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The ocean eddy kinetic energy is damped when taking into 
account the feedbacks between ocean surface current and 
winds	(Oerder	et	al.,	2018;	Jullien	et	al.,	2020).	As	ocean	mod-
els	 increasingly	 resolve	 the	 mesoscale	 explicitly,	 they	 are	
likely to have the tendency to over-predict the eddy activi-
ty.	In	uncoupled	systems,	there	is	an	option	to	calculate	the	
wind stress using relative wind speeds (taking into account 
the	eddies	and	other	ocean	current	 interactions).	However,	
in these systems there is no imprint of ocean eddies on the 
atmospheric wind stress curl (due to the lack of ocean ed-
dies	 in	the	uncoupled	atmospheric	modelling	system),	and	
so the feedback onto the wind stress results in over-damp-
ing of the eddies. A fully coupled system will correctly allo-
cate	the	feedback	between	the	winds	and	currents,	allowing	
the	eddy	and	wind	fields	to	co-evolve	correctly.	This	coupling	
between the winds and currents can also lead to upscaling 
to	the	large	scale,	e.g.	Renault	et	al.	(2016)	showed	that	cur-
rent/wind	feedback,	through	its	eddy	killing	effect,	resolves	
long-lasting biases in Gulf Stream path. 

Marine heatwaves have recently been recognised for their 
importance	 (Holbrook	 et	 al.,	 2019).	 They	 are	 high	 impact	
events that can be induced by anomalous heating at the 
ocean surface; their predictability is dependent upon air-
sea	 coupled	phenomena	 (Jacox,	 2019).	 At	 the	other	 end	of	
the	 temperature	 scale,	 Pellerin	 et	 al.	 (2004)	 showed	 that	

Over	the	past	decades,	operational	oceanography	underwent	
a rapid transition and gradually became part of core systems 
of operational centres previously largely focusing on weather. 
Sufficient	observations	are	now	available	to	improve	the	es-
timation	of	 the	ocean	 state,	 including	mesoscale	 variability,	
ice	cover,	or	wave	spectra	for	wave	systems.	The	development	
of	weakly	coupled	data	assimilation	techniques,	the	explora-
tion of strongly coupled data assimilation using cross-domain 
error	covariance	 (Sluka	et	al.,	2016),	 the	ability	 to	assimilate	
an	ever-growing	source	of	observations,	the	improvements	in	
physics and dynamics of the various components of the Earth 
system,	 and	 rapidly	 increasing	 computing	 capacities,	 keep	
pushing forward the quality of forecasts and reanalyses that 
can	be	produced.	As	a	result,	information	available	for	prod-
ucts and services is continuously expanding and including a 
rapid increase in the quality and quantity of ocean and marine 
services. It is now well established that marine services are 
essential to any nation with coastal assets.

coupling can also have strong impacts in ice-infested seas 
even	down	to	sub-daily	time	scales,	due	to	rapid	changes	in	
coastal	sea	ice	cover	(i.e.	the	formation	of	coastal	polynyas).	
The sea ice acts as a barrier between a relatively warm–wet 
ocean	and	cold–dry	atmosphere,	and	changes	in	the	sea	ice	
cover	can	have	dramatic	effects	on	heat	and	moisture	fluxes.	
The importance of coupling has also been recognized in po-
lar	regions	(Jung	and	Vitart,	2006).

Coastal regions are particularly impacted by coupled pro-
cesses,	both	between	the	ocean	and	atmosphere	and	cou-
pling with river and estuaries. The impact of freshwater dis-
charges	on	the	ocean	circulation	is	highlighted	by	Røed	and	
Albretsen	(2007)	and,	more	broadly	on	the	coastal	marine	en-
vironment,	by	Dzwonkowski	et	al.,	2017.	The	inputs	from	the	
land	surface,	mediated	 through	estuaries	and	 lagoons,	 are	
generally poorly represented in ocean forecasting systems 
due	to	their	scale	(time	and	space)	and	their	complexity.	It	is	
extremely	difficult	to	accurately	model	nutrient	inputs,	which	
are	mediated	strongly	by	land	use	and	societal	factors,	and	
the associated plankton response is therefore compound-
ed. Although this problem is not fundamentally a coupling 
problem,	there	is	still	scope	for	improving	the	inputs	to	the	
coastal environment through specifying better the river-es-
tuary-ocean interface. 

In	 the	 late	 90s	 and	 early	 2000s,	 operational	 marine	 ser-
vices were limited to a few marine weather variables such 
as	waves,	 tides,	and	surges.	With	coupled	systems	now	in	
place in many operational centres and the continuous push 
for	increased	resolution	to	better	reflect	local	conditions,	a	
wide variety of new services has and continues to emerge. 
It is now common for service providers to be overwhelmed 
with	information	drawn	from	many	prediction	systems,	and	
for users to be submerged with products. In the next sub-
sections are discussed the few steps that should be fol-
lowed to sort through the very large number of products 
that	can	be	generated	numerically,	so	that	services	are	cen-
tred	on	needs	in	a	fit	for	purpose	and	accessible	approach.	
A few simple examples are used to demonstrate ways of 
tying together all this numerical knowledge and provide 
forecasts and services that are informative and tailored to 
various groups of users. 

10.4.  
Ocean Information Services based on Coupled Frameworks
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10.4.1. Establishing service needs

The	 first	 step	 when	 evaluating	 services’	 needs,	 including	
whether	to	use	or	not	a	coupled	or	forced	system,	is	to	clear-
ly	 define	 the	 service	 gap	and	how	 current	 capacity	 can	be	
leveraged to address it. The second step is to identify enough 
resources required to bring the project to completion. Nu-
merous capacities are required to sustain timely and accu-
rate	services:	 i)	reliable	and	sufficient	computing	resources	
including	 telecommunications,	 bandwidth,	 and	 storage,	
along with staff to operate and maintain the IT infrastruc-
ture;	 ii)	physical	scientist	 to	 install;	optimise;	 run;	validate,	
and	verify	numerical	systems;	iii)	physical	scientists	to	pro-
duce	 forecasts;	 iv)	 forecasters	able	 to	disseminate	and	ex-
plain	forecasts;	v)	the	ability	to	sustain	such	services	through	
extreme	conditions	(e.g.	during	a	powerful	cyclone);	and	vi)	
the capacity to overcome throughout the years the changes 
in	 IT	 infrastructure,	 complexification	of	 systems,	 increasing	
volumes	of	data,	etc.	However,	it	should	never	be	forgotten	
that,	whatever	is	the	capacity	and	the	complexity	of	a	state-
of-the-art	forecast,	it	only	has	value	if	it	reaches	the	users	in	
the due time.

For those countries that choose to operate regional systems 
driven	with	data	provided	by	major	operational	centres,	the	
capacity to download the required data quickly enough to 
run regional systems and issue timely regional forecasts is 
also	key.	 It	should	be	also	ensured	that	sufficient	 local	ex-
pertise	 is	available	 to	monitor,	 ,	and	fix	any	 issue	with	 the	
regional system.

When	launching	new	or	improved	forecast	services,	another	
important step is to identify user groups (e.g. marine engi-
neers,	marine	 transportation	 industries,	 search	and	 rescue	
operations,	fisheries	and	aquaculture,	coastal	communities)	
and understand their needs. It should be also kept in mind 
that within each group there can be considerable modula-
tion of needs and that needs can evolve with time and hence 
they should be reviewed periodically. See section 4.8 for 
more details on user requirements. 

10.4.2. Identifying the required information

Search	and	rescue	and	coastal	flooding	cases	are	used	to	il-
lustrate how to select the modelling tools that are required 
to best address the problem. They are also used to demon-
strate	how	a	fit	for	purpose	approach	may	identify	the	nu-
merical systems best suited to deliver services.

A search and rescue incident that requires drift predictions 
is an example of a service to illustrate the choices needed. 
Forecasts of the trajectory of the drifting object requires 
knowledge	of	tides,	eddies,	inertial	oscillations,	winds,	and	
waves. Such incidents often occur during high winds and 
large	waves	conditions	and,	as	discussed	 in	9.1,	 it	 is	under	

such	 conditions	 that	 interactions	 between	 tides,	 waves,	
ocean,	 and	 atmosphere	 are	most	 important.	 This	 suggests	
that	 coupled	 predictions	 could	 add	 value	 (Davidson	 et	 al.,	
2009)	 to	 the	 use	 of	 independent	 ocean,	 wave,	 and	 atmo-
sphere	forecasting	systems.	As	already	discussed,	ensembles	
are essential to sampling uncertainty in various components 
of a system. In their comprehensive review of the Deepwater 
Horizon	oil	spill	event,	Barker	et	al.	(2020)	made	a	case	for	
the importance of coupled atmosphere-wave-ocean systems 
for effective oil spill response. All these considerations point 
to the use of ensemble coupled ocean-wave-atmosphere 
systems that are post-processed though tracking systems 
capable	of	considering	the	characteristics	of	various	objects,	
such	as	a	person	in	the	water	or	a	vessel	at	drift.	However,	
the	simulation	overhead	(in	time	and	computer	resources)	of	
the coupled system needs to be balanced with the need to 
quickly run ensemble simulations to provide probabilities of 
the search zone to help optimise search patterns. A case sim-
ilar to that of search and rescue is the response to oil spill 
or	tracking	of	nuclear	debris,	which	also	requires	models	to	
predict particulate dispersion but also need to consider oth-
er	chemically	induced	processes,	such	as	fate	and	behaviour.

Coastal	flooding	is	the	other	example	used	here	to	illustrate	
how to select the best modelling tools. Local communities 
typically have precise questions such as: “How much water 
will there be and for how long?” “Will the water reach my 
street and my house?” “Will it damage my property?” “Will 
it erode my land or the cliff my house is perched on?” Local 
authorities and disaster management agencies might have 
further considerations such as: “What are the most likely 
and the worst-case scenarios?” “When should we consider 
evacuations and through what route?” “What critical infra-
structures	might	be	at	risk?”	However,	the	nature	of	the	ser-
vice will depend on local conditions. Consider for example 
a community living at high latitudes. In the event of a po-
lar	 low	 (discussed	 in	 9.1),	 ice	 can	 recede	 rapidly	 to	 expose	
long stretches of ocean leaving the coastline exposed to 
large	swells.	 In	 these	areas,	wave-ice	 interactions	can	 lead	
to rapid changes and coupled ice-ocean-wave-atmosphere 
systems should be preferred to provide accurate forecasts of 
the	low’s	evolution,	rapidly	changing	marine	conditions,	and	
to	warn	the	coastal	communities.	On	the	other	hand,	 loca-
tions exposed to tropical cyclones will need a system more 
focused on predicting ocean-atmosphere interactions in 
support	of	track	and	intensity	prediction.	However,	the	con-
cept of a forecast based on total water level at the coast re-
mains,	although	the	fit	for	purpose	numerical	guidance	to	be	
used might have some differences. It is then particularly im-
portant to consider user orientated questions. User groups 
rarely	care	about	technical	issues,	such	as	if	the	models	are	
coupled or if the surge component is barotropic or baroclin-
ic. They care that scientists put forward the combination that 
best	addresses	their	concerns.	They	want	to	receive	a	fit	for	
purpose	 service.	 Simulations	 of	 tide,	 surge,	 wave,	 erosion,	
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hydrodynamic,	and	atmospheric	may	all	be	required,	but	to	
decide whether they should be coupled or not it is necessary 
to	understand	if	this	improves	the	specific	predictions	iden-
tified	by	the	user	questions	outlined	above.

Advanced knowledge of the risk of an upcoming event is 
useful to put in place mitigation measures. An outlook for 
several	days	to	several	weeks	is	of	particular	interest,	as	well	
as	the	early	identification	of	upcoming	risk	for	which	ensem-
ble	 systems	are	 relevant.	At	early	 stages,	 the	 focus	 should	
be	on	identifying	risk	and	uncertainties,	and	communicating	
them in a clear manner. As the high impact event nears (e.g. 
next	couple	days),	ensembles	can	be	replaced	with	resolu-
tion	 increases,	so	 that	 the	 risk	 forecast	 is	changed	 into	an	
impact-based	 forecast	 (i.e.	damage	 to	housing,	 risk	of	 cars	
being	swept	away,	risk	of	cutting	off	of	an	evacuation	route,	
etc.).	 This	 should	make	 the	 scientists	 understand	 that	 for	
the	users	the	waves,	surges,	tides,	and	other	phenomena	are	
relevant	only	as	much	as	they	affect	flooding	in	their	areas	
of interest. This further highlights the importance of met-
rics used to evaluate models and forecasts. When it comes 

to	flooding,	having	a	slightly	better	RMSD	and	thus	a	better	
representation of the mean state is useless if the total water 
level	peaks	are	missed.	Thus,	relying	on	an	overly	complicat-
ed ocean system that results in little to no added skill in total 
water	 level	 forecasts	 is	 useless.	 Similarly,	 if	 a	 complicated	
system	 cannot	 be	 operated	with	 sufficient	 resolution	 over	
long	enough	periods,	or	with	enough	ensemble	members	to	
sample	 uncertainties,	 it	 is	 not	 fit	 for	 purpose.	 In	 addition,	
coupling should be considered also in the context of the re-
sources	(always	limited)	of	operational	centres.

Finally,	whether	numerical	systems	are	run	locally	or	remote-
ly and whether all systems required to produce such fore-
casts	are	coupled	or	not,	the	path	forward	should	be	one	in	
which the forecasters are experts at providing added value 
taking into account the perspective of the public (e.g. plac-
ing	in	the	context	a	particular	expected	extreme,	comparing	
it	 to	previous	ones,	explaining	the	subtle	differences	to	be	
expected	with	the	forecast	risk,	etc.).	As	such,	the	forecasters	
are the ultimate downscalers bringing added value based on 
local knowledge and history.
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11.1.  
The need of downstream products
11.1.1. Blue Economy

The importance of the ocean for global society and econo-
my is represented in the context and framework of the Blue 
Economy and is also very relevant for the Sustainable De-
velopment	Goal	14	(SDG14):	Life	Below	Water	🔗1. The ocean 
is	the	single	largest	natural	asset	on	the	planet,	contains	
97% of all the water on Earth and about 99% of the habit-
able	space	on	this	planet,	and	delivers	numerous	benefits	to	
humanity. The ocean is responsible for the oxygen in every 
other breath we take. It supplies 15% of humanity’s protein 
needs. It helps to slow climate change by absorbing 30% 
of carbon dioxide emissions and 90% of the excess heat 
trapped by greenhouse gases. It serves as the highway for 
some	90%	of	internationally	traded	goods,	via	the	shipping	
sector.	If	the	ocean	were	a	country,	with	several	trillion	dol-
lars per year of economic activity it would rank 7th on the 
list of largest nations by GDP. The ocean is also the source 
of	hundreds	of	millions	of	jobs,	in	sectors	such	as	fisheries,	
aquaculture,	shipping,	tourism,	energy	production,	etc.	It	
is also the source of about 30% of the world’s oil and gas 
resources but this percentage will change if the necessary 
transition to a low carbon development pathway will suc-
ceed. Millions of the world’s poorest people depend heavily 
on the ocean and coastal resources for their subsistence 
and livelihoods. Small-scale fisheries catch about half of 
the world’s seafood but engage 44 times as many jobs per 
ton	of	fish	as	industrial	fisheries	do.

According to the Water and Ocean Governance Programme 
of UNDP 🔗2,	the	Blue	Economy	is	a	sustainable	ocean	eco-
nomic paradigm and is the natural next step in the overall 
conceptualization and realisation of sustainable human 
development.	On	the	other	hand,	there	is	the	important	
aspect related to the impact that the Blue Economy might 
have on the ocean. The European Commission stated 🔗3 
that	all	blue	economy	sectors,	including	fisheries,	aquacul-
ture,	coastal	tourism,	maritime	transport,	port	activities	
and	shipbuilding,	will	have	to	reduce	their	environmental	
and climate impact. Tackling the climate and biodiversity 
crises requires healthy seas and a sustainable use of their 

1. https://sdgs.un.org/goals/goal14
2. https://www.undp.org/blog/blue-economy-sustain-
able-ocean-economic-paradigm?utm_source=EN&utm_me-
dium=GSR&utm_content=US_UNDP_PaidSearch_Brand_En-
glish&utm_campaign=CENTRAL&c_src=CENTRAL&c_src2=GS-
R&gclid=Cj0KCQiAweaNBhDEARIsAJ5hwbdEFafpkIcJuzISsld-
Lg4UzxIkqOhAo6MClAjSwEBvBA_ZHi10o_8IaAn_0EALw_wcB
3. https://ec.europa.eu/commission/presscorner/detail/en/
ip_21_2341

resources,	as	well	as	creating	alternatives	to	fossil	fuels	and	
traditional food production.

Transitioning to a sustainable Blue Economy requires invest-
ing	in	innovative	technologies.	Wave	and	tidal	energy,	algae	
production,	 fisheries	management,	restoration	of	marine	
ecosystems,	etc.,	will	create	new	green	jobs	and	businesses	
in the Blue Economy. 

Downstream services provided by the operational ocean-
ography community should be able to facilitate and sup-
port this transition towards a more sustainable Blue Econ-
omy worldwide.

11.1.2.  Applications and services

Operational oceanography is available nowadays to many 
users	through	solutions	(services	and	products)	dealing	with	
several	SDGs,	and	societal	and	scientific	challenges.	Oceano-
graphic products from global to regional scale are produced 
by national and international forecasting centres. They are 
then	downscaled	to	sub-regional	scales,	transformed,	and	
provided	to	users,	private	companies,	public	users,	stake-
holders,	and	citizens	through	an	ocean	products	value	chain	
that	includes	development	of	specific	solutions,	advanced	
visualisation,	usage	of	multi-channel	technological	plat-
forms,	specific	models,	and	algorithms.	Figure	2.1	in	Chapter 2 
shows a representation of ocean value chain: forecasting 
centres	manages	Marine	Core	Service,	which	produces	In-
formation	(e.g.	forecast	products)	that	are	delivered	to	In-
termediate Users through ad hoc Interfaces managed by the 
Central	Information	System.	Then,	such	information	is	elab-
orated by Developers and transformed for Multiple Down-
stream Services that use customised end user information to 
deliver new information to End Users.

Important steps forwards have been carried out in order to 
facilitate the dialogue among service providers and users to 
identify	requirements	and	needs,	and	to	co-develop	and	test	
the applications and solutions. Collaborative frameworks 
like	the	Copernicus	Users	Uptake	programme,	the	interna-
tional	initiative	Geo	Blue	Planet,	the	GOOS	Regional	Alliances	
downstream	effort,	the	IOC	and	WMO	working	groups,	etc.,	
are in support of the Blue Economy’s growth.

The private sector has been playing an important role in the 
development	of	operational	systems,	providing	operational	
services in areas that in the past were covered only by pub-
lic institutions. Some businesses are impacted every day by 
oceanographic	conditions,	and	sometimes	disrupted	by	ex-
treme events. Accurate and reliable oceanographic and me-
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teorological	predictions	may	increase	business	productivity,	
if appropriate standards of safety are adopted. 

The public sector mostly focuses on protecting lives and prop-
erty. Often this is not enough to protect economic operations 
at	sea,	in	which	monitoring	and	forecast	information	is	need-
ed on a regular basis and representing local scale processes. 
Downstream applications play a key role addressing (and ad-
justing	to)	end	users’	needs,	while	simultaneously	justifying	
global scale modelling and monitoring investments done by 
the public sector in the past.

Most of the developments in downstream applications have 
been driven by international grants and individual countries. 
In	some	areas,	end	users’	willingness	to	pay	for	such	applica-
tions is very low. There is a need to improve the applications 
but also to promote and disseminate information on existing 
applications. The main reason is that a reasonable cost/ben-
efit	relationship	for	businesses	must	be	achieved	to	have	a	
market driven demand for downstream operational services.

It is therefore of paramount importance to show how research 
and technological development in the different application 
fields	(e.g.	advanced	visualisation,	usage	of	multi-channels	
technological	platforms,	and	development	of	specific	models	
and	algorithms)	have	advanced	in		recent	years,	and	that	more	
accurate and user friendly applications are available for users.

International standards have been developed and should 
be further consolidated to support interoperability and a 
common formatting of ocean application products and ser-
vices,	as	well	as	quality	assessment.	Downstream	applica-
tions are an essential component contributing to ocean lit-
eracy through the dissemination to the public of operational 
oceanography knowledge. Economic sustainability and mar-

ket exploitation of downstream application is a key aspect to 
fill	the	gap	towards	a	fully	sustainable	development	of	op-
erational oceanography added value services and products.

It is also of fundamental importance to improve the dialogue 
among	producers	and	users	to	identify	requirements,	as	well	
as co-developing and testing the applications. Engaging end 
users in the analysis and evaluation process is critical in or-
der to tailor downstream products in the best way.

An effort for gathering and promoting applications by world-
wide	producers	should	include	different	sectors,	such	as:	a)	
Fishery	and	aquaculture;	b)	Tourism	and	sports	activities;	c)	
ICZM	and	MSP;	d)	Transport	and	harbour	services;	e)	Marine	
digital	services;	f )	Technologies	for	maritime	safety;	g)	Cli-
mate change and anthropogenic impacts on marine environ-
ment;	and	h)	Energy	from	the	sea.

To	achieve	this	goal,	producers	are	asked	to	manage	and	pro-
mote the adoption of an international standard to support 
interoperability and a common formatting of ocean applica-
tion	products	and	services,	as	well	as	quality	assessment.	
It is fundamental to promote market development of down-
stream applications as well as liaise with and gather input 
from	the	other	international	and	national	initiatives	(e.g.,	
EuroGOOS,	Geo	Blue	Planet,	IOC,	WMO).	

With	a	view	to	the	Ocean	Decade	implementation,	in	this	
chapter	will	be	discussed	key	challenges,	best	practices,	rel-
evant	examples	of	applications,	as	well	as	the	present	ad-
vanced capabilities and future challenges in the following 
applications	fields:	1)	Sea	Situational	Awareness	(web	pages	
and	other	dissemination	mechanisms);	2)	Oil	spill	observing	
and	forecasting;	3)	Ports;	4)	Voyage	planning;	and	5)	Fisheries	
and aquaculture.
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11.2.1.  Sea Situational Awareness (web pages 
and other dissemination mechanisms)

Dissemination services provide users with databases on rel-
evant environmental information and set up their formatting 
to support marine and maritime activities. These services 
include the collection and validation of existing information 
and the production of new geo-localised information to us-
ers. Mechanisms for data sharing among databases are of-
fered	to	intermediate	and	final	users,	so	that	the	integration	
with existing services is facilitated.

The mechanisms of access to databases from private and 
public users is a matter of concern for the dissemination 
services as it could limit the accessibility of the services. Us-
ers should be able to access information in the applications 
through	the	Internet,	using	either	desktop	or	mobile	phone.	

These issues are quite critical since information on marine 
and	coastal	areas	is	currently	dispersed	in	heterogeneous,	
not	connected,	poorly	known	and	not	accessible	systems.	
Consequently,	it	is	important	to	develop	systems	that	widen	

availability,	improve	information	sharing,	and	facilitate	ac-
cess to the data. Public and private users are supported by 
mechanisms	of	open	and	free	access,	including	massive	(e.g.	
FTP,	THREDDS,	P2P)	and	system	communication	services	(e.g.	
web	services,	tiling	services).	4

11.2.1.1.  The Copernicus Marine Service MyOcean Viewer

The Copernicus Marine Service MyOcean Viewer (🔗5)	allows	
exploration of most of the online catalogue with multi-pro-
jection	maps,	graphs	vs.	time,	and	elevation	and/or	distance.	
Using information from both satellite and in-situ observa-
tions,	the	CMEMS	provides	state-of-the-art	analyses	and	
forecasts	daily,	which	offer	the	capability	to	observe,	under-
stand,	and	predict	the	marine	environment	state	(Figure	11.1).	
The Copernicus Marine Service MyOcean Viewer has been de-
veloped by Lobelia Earth. The Basemap layer contains infor-
mation from the GSHHG dataset provided by the University 
of Hawaii and the US NOAA.

4,	5.	https://myocean.marine.copernicus.eu/

Figure 11.1. Examples	of	screenshots	from	MyOcean	Viewer	web	application,	including	visualisation	of	sea-
water	velocity	for	the	Global	Ocean	and	time	series/time-depth	plots	in	a	specific	location	(source:	🔗4).

11.2.  
Examples of advanced downstream systems
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11.2.1.2. SeaConditions

An example of web service for sea situational awareness 
is SeaConditions (🔗6).	 It	is	a	service	providing	weather	
forecasts,	including	oceanographic	and	sea	state	forecasts	
(sea	surface	temperature,	surface	currents,	significant	wave	
height	and	direction,	wave	period,	sea	level),	meteorological	
forecasts	(air	temperature,	mean	sea	level	pressure,	precip-
itation,	cloud	cover,	and	10	metre	winds),	bathymetry	and	
satellite	observations	of	chlorophyll-a,	and	water	transpar-
ency. Forecasts are referred to a time period of 5 days and 
are	based	on	state-of-	the-art	meteorological,	oceanograph-
ic,	and	wave	modelling	that	allow	obtaining	high	quality	data	
(Figure	11.2).	SeaConditions	includes	data	from	Copernicus	
Marine	Service	(including	satellite	data)	and	the	ECMWF.

SeaConditions covers the Mediterranean Sea: it has commer-
cial and free versions available on the web and download-
able	for	mobile	(Google	Play	and	Apple	Store).	Its	users	are	
more than 100000.

11.2.1.3. Marine-Analyst

The Marine-Analyst (🔗7)	is	a	platform	for	searching,	viewing,	
processing,	transferring,	advertising,	and	disseminating	ma-
rine	spatial	data	from	numerous	data	sources	(Figure	11.3).	

6. https://www.sea-conditions.com
7. http://marine-analyst.eu/

Launched	in	October	2020,	it	is	powered	by	WEkEO	(🔗8),	the	
Copernicus DIAS. The Marine-Analyst.eu enables users to ac-
cess data and key analyses for the location of their choice in 
Europe. It offers a personal dashboard where each user can 
collate the reports created for the chosen datasets. Generat-
ing	on-demand	data	analyses	for	any	location,	the	platform	
is	able	to	address	multidisciplinary	challenges,	for	example:

8. https://www.wekeo.eu/

Figure 11.2. SeaConditions web service for the Mediterranean Sea.

Figure 11.3. Example of data accessible from 
Marine-Analyst.eu application.
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• Maritime spatial planning: it represents a solution for 
coordinating	decision-making	on	identified	areas	and	
specific	activities,	by	considering	a	basin	as	a	whole	or	
partitioning	it,	including	its	ecological	functioning	and	
the	activities	it	supports,	e.g.	zonation	based	on	essen-
tial biophysical ocean parameters (such as chlorophyll 
Chla	and	light	attenuation	Kd)	(from	Copernicus	Marine	
Service),	human	activities	inventory	(from	EMODnet),	etc.	
(“MSP	challenge”	at	the	Ocean	Hackathon	Brest	2020);

• Climate change: addressing climate change not only 
requires	better	science,	but	it	is	also	crucial	to	inform	
journalists,	interested	citizens,	and	the	wider	public.	
The Marine-Analyst facilitates access to information 
and	transparent	analyses,	e.g.	sea	surface	tempera-
ture trends and anomalies (from Copernicus Marine 
Copernicus),	coastal	erosion	(from	EMODnet)	(“Climate	
change at my Beach challenge” at the Hack the Ocean 
Hackathon	2019).

• Marine protected areas:	park	managers	benefit	from	
simplified access to various information comprising 
key	information	for	the	management	of	their	MPA,	e.g.	
MPA	bulletins	(from	Copernicus	Marine	Service,	fore-
cast	products),	vessel	density	hierarchical	clustering	
and	statistical	analysis	(from	EMODnet)	(Environmental	
impact	of	Shipping	traffic	at	the	Blue	Innovation	Hack-
athon	2021).

11.2.1.4. NOAA Sea Level Rise viewer

NOAA provides map viewer and applications for marine 
data such as the Sea Level Rise - Map Viewer (🔗9),	which	
gives users a way to visualise community-level impacts from 
coastal flooding or sea level rise (up to 10 feet above av-
erage	high	tides).	Photo	simulations	of	how	future	flooding	
might	impact	local	landmarks	are	also	provided,	as	well	as	
data	related	to	water	depth,	connectivity,	flood	frequency,	
socio-economic	vulnerability,	wetland	loss	and	migration,	
and	mapping	confidence.	The	viewer	shows	areas	along	the	
contiguous	United	States	coast,	except	for	the	Great	Lakes.	
The maps are produced using detailed elevation maps with 
local and regional tidal variability. By using real photos at 
some	specific	locations,	the	viewer	is	able	to	show	the	im-
pact	of	a	certain	sea	level	rise	in	the	“real	world”	(Figure	11.4).

11.2.2. Oil spill forecasting

In	the	past	decade,	much	effort	has	been	made	to	support	
operational oil spill modelling as a crucial component of the 
response. The most advanced systems are fully operation-
al	24/7,	meet	the	robustness	and	accuracy	criteria,	as	well	
as the real-time requirements in terms of performance and 
dynamic service delivery. Examples of these systems are: OS-
CAR	(Aamo	et	al.,	1997),	GNOME	(Zelenke	et	al.,	2012),	OilMap	

9. https://www.climate.gov/maps-data/dataset/sea-level-
rise-map-viewer

Figure 11.4. Example of NOAA Viewer.
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(Spaulding	et	al.,	1992),	MOTHY	(Daniel,	1996),	MEDSLIK-II	
(De	Dominicis	et	al.,	2013),	COSMoS	(Marcotte	et	al.,	2016),	
and	OpenDrift	(Dagestad	et	al.,	2018).	Oil	spill	models’	ca-
pabilities range from prediction of sea surface and upper 
layer transport to fully 3D oil and associated gas move-
ment,	 including	 intrusion	formation	and	high-pressure	
physics effects. 

Incorporated oil spill models are coupled to up-to-date 
meteo-ocean monitoring and forecasting systems that pro-
vide	the	fields	of	ocean	circulation,	wind,	and	waves	on	a	
regular basis. The Copernicus Marine Service provides such 
data to most European systems. This information not only 
allows	computing	the	oil	drift,	but	it	also	helps	to	simulate	
the oil transformation processes and interaction with sed-
iments,	both	coastal	and	seabed.	The	results	are	typically	
represented by oil mass balance time series delineating 
what fraction of the original spilled oil is expected to be 
kept	afloat,	evaporated,	dispersed	in	the	water	column,	
beached or sedimented.

During	the	oil	spill	accidents,	tight	coordination	between	the	
oil spill detection/monitoring unit and operational model-
ling	is	vital	for	starting	the	spill	forecasts,	ground-truthing,	
and fast decision making. Real oil spills provided unique op-
portunities to examine the predictive skills of operational oil 
spill	models,	using	observations	carried	out	during	oil	spill	
accidents. Such combined studies have been conducted on 
spills in many geographic regions: the Prestige disaster in the 
Atlantic	Spanish	coast	in	2002	(Castanedo	et	al.,	2006;	Daniel,	
2010),	the	Fu	Shan	Hai	wreck	in	the	Baltic	Sea	in	2003	(De	
Carolis	et	al.,	2013),	the	Lebanon	crisis	in	2006	(Coppini	et	
al.,	2011),	the	Kerch	Strait	oil	spill	in	2007	(Ivanov,	2010),	the	
Deepwater Horizon oil spill in the Gulf of Mexico in 2010 (Liu 
et	al.,	2013),	the	Agia	Zoni	II	oil	spill	in	the	Aegean	Sea	in	2017	
(Coppini	et	al.,	2018),	the	Sanchi	spill	disaster	in	the	East	Chi-
na	Sea	in	2018	(Qiao	et	al.,	2019),	the	Ulysse-Virginia	oil	spill	
in	the	Ligurian	Sea	in	2018	(Liubartseva	et	al.,	2020a;	Daniel	
et	al.,	2021),	and	in	the	Grande	America	accident	in	the	Bay	of	
Biscay	in	2019	(Daniel	et	al.,	2020).

Since	oil	transport	is	mainly	controlled	by	ocean	currents,	the	
accuracy of oil spill simulations crucially depends on the res-
olution of the hydrodynamic models used. To resolve coastal 
scale	processes,	downscaling	techniques	that	switch	from	
high-resolution	hydrodynamics	to	ultra-fine	scales,	with	a	
resolution	of	around	100	m,	are	being	developed.	As	an	ex-
ample,	an	operational	decision	supporting	system	for	oil	spill	
emergencies addressed to the Italian Coast Guard was devel-
oped	by	Sorgente	et	al.	(2020)	in	the	Western	and	Central	Med-
iterranean Sea. Progress in downscaling led to operational oil 
spill	modelling	in	harbour	and	port	areas,	such	as	the	Port	of	
Taranto	in	south	Italy	(Liubartseva	et	al.,	2020b)	and	the	Port	
of	Tarragona	in	Spain	(Morell	Villalonga	et	al.,	2020).	In	these	
three	examples,	the	MEDSLIK-II	oil	spill	model	was	applied	in	

various	configurations.	Two	examples	of	oil	spill	forecasting	
applications are described in the following subsections.

11.2.2.1. MOTHY

MOTHY	is	a	dual	system	consisting	of	an	ocean	model,	de-
veloped	to	best	represent	the	surface	current,	and	a	slick	
or	object	model	(Figure	11.5).	It	operates	worldwide,	and	
can	be	implemented	immediately,	24	hours	a	day,	by	the	
marine forecasting service of the National Forecasting Cen-
tre	of	Météo-France	(🔗10),	located	in	Toulouse.	This	Centre	
provides met-ocean support and drift forecasts to assist au-
thorities in charge of accidental marine pollution and search 
and rescue operations. The oil spill forecasting system was 
developed	by	combining	the	Cedre's	(🔗11)	expertise	in	oil	
chemistry	with	the	Météo-France's	expertise	in	weather	and	
ocean forecasting and modelling to provide a robust oper-
ational	service	maintained	by	Météo-France.	The	system	is	
operated	at	Cedre's	request	in	support	of	oil	spill	response	
operations and at the request of the Maritime Rescue Coor-
dination Centres in support of search and rescue operations. 

MOTHY	has	been	operational	since	1994	and	was	widely	used	
during the Erika 🔗12	(December	1999),	Prestige	🔗13 (Novem-
ber	2002),	and	Grande	America	🔗14	(March	2019)	crises.	The	
system is activated about 20 times a week for actual spills 
or search and rescue operations. The search for objects or 
people constitutes almost three quarters of the applications.

The	model	is	regularly	updated	and	improved.	MOTHY	in-
cludes a Lagrangian model with the possibility of backtrack-
ing. The 3D version takes into account vertical buoyancy- and 
turbulence driven movement. There are 3 components:

• oil	or	any	substance	that	drifts	like	a	slick,	including	
vegetable oil or a few chemicals;
• cargo containers;
• search and rescue targets.

Drift predictions depend primarily on reliable and timely 
access to observed and predicted environmental data. From 
this	point	of	view,	Météo-France	is	equipped	with	the	best	
atmospheric models:

• The AROME limited area model covers the entire 
French	coastline,	with	a	1.3	km	resolution	around	France	
and 2.5 km around the French overseas territories;

10. https://meteofrance.com/
11. http://wwz.cedre.fr/en
12. http://wwz.cedre.fr/en/Resources/Spills/Spills/Erika
13. http://wwz.cedre.fr/en/Resources/Spills/Spills/Prestige
14. http://wwz.cedre.fr/en/Resources/Spills/Spills/
Grande-America
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• The ARPEGE 🔗15 global model with variable mesh (1/10 
°	or	1/2	°	depending	on	the	area),	centred	on	France,	for	
forecasts over the European seas and near Atlantic;
• The IFS 🔗16 global model of the ECMWF has a resolu-
tion of 1/8° and GFS at 1/4 ° in R&D mode.

and ocean models:

• Global ocean system by Mercator Ocean International 
🔗17 with a resolution of 1/12°;
• Regional	systems	(IBI	at	0.028°×0.028°	resolution,	
MedFS	at	0.042°×0.042°	resolution,	Atlantic-European	
NWS	at	0.014°×0.03°	resolution);
• SCHISM	in	New	Caledonia	(1/200°	resolution).

The	MOTHY	model,	which	calculates	the	three-dimensional	
drift	of	surface	and	subsurface	oil,	is	a	"superparticles"	mod-

15. http://www.umr-cnrm.fr/gmap/nwp/nwpreport.pdf
16. https://www.ecmwf.int/
17. https://www.mercator-ocean.eu/

el.	Superparticles	are	seeded	at	each	time	step,	according	to	
the	specified	location,	duration,	and	rate	of	release.

Being	operated	by	Météo-France's	Marine	Forecasting	service,	
MOTHY	is	free	for	the	French	authorities	and	certain	foreign	
weather services as a part of their public service mission. After 
requesting	an	account,	users	can	freely	perform	modelling	in	
the Channel - North Sea on the Noos-Drift online platform: 🔗18.

11.2.2.2. WITOIL

WITOIL	(Where	Is	The	Oil)	is	a	multi-model	oil	spill	forecast-
ing service providing predictions on transport and trans-
formation of actual or hypothetical oil spills for the global 
ocean,	the	regional	European	Seas,	and	selected	coastal	ar-
eas	(Figure	11.6).	Being	an	interactive	system,	WITOIL	requires	
the	input	of	data	about	atmospheric	winds,	sea	surface	tem-
peratures,	and	sea	currents.

18. https://odnature.naturalsciences.be/noosdrift/api/home/
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Figure 11.5. General	diagram	of	the	MOTHY	system.	Blue:	static	data.	Green:	data	sets	stored	in	the	Météo-
France	database;	includes	all	Météo-France/ECMWF	atmospheric	models	and	Copernicus	Marine	ocean	models.
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WITOIL provides users with spatial-temporal distributions 
of oil concentration at the sea surface and on the coastline. 
WITOIL output consists of graphics and animations available 
through web browser and downloadable products (both 
ocean	and	atmospheric	fields	and	oil	slick	simulation	out-
puts).	Moreover,	WITOIL	provides	an	interoperable	service	
that can be accessed from and integrated in any GIS system.

Data	used	in	the	WITOIL	application	are:	i)	the	atmospheric	wind	
data from ECMWF provided by Italian Aeronautica Militare at a 
resolution	of	1/10°:	6-hourly	analysis,	1	hour	for	the	first	3	days	
of	forecast,	3	hours	for	the	following	3	days	of	forecast,	and	6	
hours	for	the	last	4	days	of	forecast;	and	ii)	the	ocean	current	
and SST data are provided by the Copernicus Marine Service.

In	particular,	the	following	domains	and	ocean	products	are	
used in WITOIL: 

1. The Global Ocean at 1/12° (from Copernicus Marine Ser-
vice)	and	1/16°	(Global	Ocean	Forecasting	System	by	CMCC);
2. Mediterranean Sea using the MedFS products at 1/24° 
horizontal resolution from Copernicus Marine Service;
3. Black Sea using the BSFS products at 1/40° horizontal 
resolution from Copernicus Marine Service;
4. Baltic Sea using the Baltic Sea Forecasting System at 
0.028°×0.017° horizontal resolution from Copernicus 
Marine Service;
5. Southern Adriatic and Northern Ionian Sea coastal ar-
eas using the CMCC SANIFS (🔗19),	based	on	the	SHYFEM	

19. http://sanifs.cmcc.it

unstructured	grid	ocean	model,	reaching	a	horizontal	
resolution of 10-100 m in the coastal areas; 
6. Several areas in the Persian Gulf using the CMCC 
ocean	forecasting	systems	based	on	SHYFEM,	reaching	
a horizontal resolution of 10-100 m in the coastal areas. 

Free-access	WITOIL	version,	a	web-based	application	at	🔗20,	is	
available	for	the	Mediterranean	Sea	in	English,	Italian,	French,	
Spanish,	Arab,	Greek,	and	Russian.	Advanced	multi-model	
WITOIL version is available upon request: 🔗21.

Various systems collaborated to provide information support 
for a recent oil spill. On 25th	July	2020,	the	MV	Wakashio	hit	
a	reef	and	ran	aground	off	Pointe	d'Esny	on	the	southeast	
coast	of	Mauritius,	in	the	Indian	Ocean	(Figure	11.7).	In	the	
morning	of	6th	August,	oil	leaked	out	of	a	fuel	tank	and	oil	
pumping operations were carried out. They were completed 
on 12th August. On 16th	 August,	 the	 ship	 broke	 in	 two.	 On	
19th	August,	the	front	part	of	the	ship	was	towed	about	20	
kilometres from the coast. It sank on 24th August.

Following a request from the Mauritian authorities for assis-
tance	from	France,	the	Prefect	of	the	Reunion	Island,	activat-
ed a crisis cell. Meteo-France was then involved to forecast 
the	oil	drift	(Daniel	and	Virasami,	2021).	Also	CMCC	and	MOI	
produced oil spill simulations and forecasts with WITOIL and 
sent them to relevant authorities.

20. http://www.witoil.com/
21. witoil@cmcc.it

Figure 11.6. Example of the user interface and results of the WITOIL oil spill forecasting application.
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11.2.3. Ports

Ports	and	activities	linked	to	maritime	transport,	for	both	
commercial	and	tourism	purposes,	have	a	significant	econom-
ic value for coastal countries. Ports may be affected by very 
serious environmental issues that have consequences on the 
safety	of	port	activities,	as	well	as	be	a	vehicle	for	concentra-
tion and dispersal of alien species through ballast waters.

11.2.3.1. SAMOA service for Spanish ports

Approximately 85% of imports and 60% of Spanish exports are 
channelled	through	ports,	and	such	figures	highlight	the	vital	
role they play in the national economy. The ports suffer the ex-
treme	events	of	the	main	physical	variables,	in	particular	wind,	
waves,	and	sea	level.	These	phenomena	affect	the	installations	
throughout	all	phases	of	the	port	life,	from	design	to	operation.	
To	respond	to	these	complex	needs,	the	Spanish	Puertos	del	
Estado	and	Port	Authorities	co-financed	the	SAMOA	initiative.

SAMOA fully integrates a comprehensive set of products in a 
specific	visualisation	tool	that	is	managed	by	administrators	
in the harbours. It also includes an alert system via e-mail 
and	SMS,	fully	configurable	by	the	port	community	users.	In	

addition,	an	extended	set	of	applications,	such	as	oil	spill	
models	and	air	pollution	monitoring	tools,	have	been	fully	
integrated into the system.

The	main	functions	of	the	system	are:	1)	provision	of	infor-
mation for knowledge-based operation of infrastructures 
(e.g.	forecast	of	port	closure	due	to	extreme	events);	2)	aid	
for	pilot	operations;	3)	safer	and	more	efficient	port	opera-
tions (e.g. crane operations affected by winds and planning 
of	Ro-Ro	operations);	4)	fight	against	oil	spills	in	the	interior	
of	the	harbours;	and	5)	control	of	water	and	air	quality.

SAMOA is heavily relying on previously existing Puertos del Es-
tado	monitoring	networks	(25	buoys,	8	HF	radars	and	40	tide	
gauges)	and	it	has	been	used	to	detect	and	fill	gaps,	improving	
the	coverage	of	meteorological	stations	on	the	ports,	and	the	
control of the tide gauges by means of continuous GNSS.

The SAMOA wave component has been designed to provide 
a	three-day	forecast	of	agitation	(significant	wave	height	in	
the	interior	of	the	port)	inside	10	Spanish	ports	of	special	
interest:	Almería	(two	ports),	Gijón,	Las	Palmas	(three	ports),	
Málaga,	and	Santa	Cruz	de	Tenerife	(three	ports).	Prior	to	SA-
MOA,	Puertos	del	Estado	was	running	an	operational	wave	

Figure 11.7. A recent oil spill emergency: the August 2020 incident in Mauritius.

CHAPTER 11. DOWNSTREAM APPLICATIONS: FROM DATA TO PRODUCTS 334



forecast	able	to	provide,	using	the	SWAN	model,	wave	fore-
casts at the harbours mouth. Thanks to the development of 
SAMOA,	this	forecast	has	now	been	downscaled	to	the	interi-
or	of	the	ports	at	extremely	high	resolution	(2	m).

The SAMOA circulation component produces daily a short-
term	(three-day)	forecast	of	three-dimensional	currents	and	
other	oceanographic	variables,	such	as	temperature,	salinity,	
and sea level for nine Spanish ports in the Mediterranean 
(Barcelona,	Tarragona,	Almería),	the	Iberian	Atlantic	(Bil-

bao,	Ferrol),	and	the	Canary	Islands	(Las	Palmas,	Tenerife,	La	
Gomera,	and	Santa	Cruz	de	la	Palma).	The	three-dimensional	
hydrodynamic model used in the SAMOA circulation compo-
nent	is	the	ROMS	(Shchepetkin	and	McWilliams,	2005).

The SAMOA model outputs are freely accessible through the 
Puertos del Estado’s THREDDS catalogue (the THREDDS is a 
web server that provides access to data and metadata for 
scientific purposes using a variety of remote data access 
protocols).	Likewise,	free	access	to	some	products	is	grant-

Figure 11.8. The	SAMOA	visualisation	tool,	showing	the	circulation	at	Barcelona	Port	(upper	panel)	and	the	
real-time	measurements	at	Algeciras	Harbour	(lower	panel).	
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ed via a web interface (🔗22).	Additionally,	a	specific	tool	for	
port	authorities	-	the	CMA	shown	in	Figure	11.8)	-	has	been	
developed to properly exploit all SAMOA products and so far 
has	been	implemented	in	46	ports.	The	CMA,	developed	by	
Nologin Ocean Weather Systems (🔗23),	is	based	on	a	web	
interface (🔗24)	and	provides	easy	access	to	all	information	
generated	by	the	SAMOA	systems,	both	in	real	time	and	in	
forecast mode. Users can define thresholds for all spatial 
points inside the application (model points and measur-
ing	stations)	that	are	employed	to	trigger	alerts.	The	CMA	is	
also capable of creating custom PDF reports for each fore-
cast	point.	Furthermore,	a	user-friendly	oil	spill	model	and	
an atmospheric dispersion model have been developed and 
incorporated into the CMA. Port managers granted access to 
the	tool	can	define	the	level	of	permission	allowed	to	users.	
For	example,	some	users	can	get	permission	for	visualisa-
tion,	but	might	not	have	access	to	the	oil	spill	model.	The	
CMA	is	also	used	to	configure	personalised	alert	systems,	de-
fining	the	points	and	the	alerts	to	be	triggered,	as	well	as	the	
reception	method	(e-mail	or	SMS).	The	alerts	can	be	defined	
as	a	combination	of	parameters,	conditions,	and/or	thresh-
olds as complex as desired by the user. A very good example 
of	how	the	CMA	tool	should	be	used	is	the	Algeciras	harbour,	
in	which	it	is	utilised	by	a	community	of	500	users,	including	
the companies located at the facilities.

Building	on	the	success	of	SAMOA,	a	SAMOA	2	project	is	now	
on	its	final	stage	of	implementation.	This	second	phase	will	
include	new	components,	such	as	a	wave	overtopping	fore-
cast	and	extremely	high-resolution	wind	prediction	(2	m).	In	
2022,	once	SAMOA	2	is	completed,	the	system	will	have	the	
following components: 44 CMA implementations in different 
ports	(of	a	total	of	46	ports	in	the	national	system),	20	1-km	
resolution	atmospheric	forecasts,	21	agitation	systems,	31	
circulation	systems,	19	new	meteorological	stations,	eight	
GNSS,	15	very	high	wind	forecast	systems,	plus	other	addi-
tional modules. Work is ongoing on how to use the new mod-
els	to	explore,	for	example,	the	wave	current	interactions.

With	the	new	system	in	place,	the	most	important	challenge	
for the Spanish port system will be to implement the meth-
odologies necessary to make proper use of all the new avail-
able tools. While some ports are very active and are already 
making	good	use	of	the	new	information,	others	are	still	not	
able to fully exploit it. Several initiatives will be launched 
to reduce this gap. Making operational oceanography a core 
part of the port management business is probably the most 
significant	result	of	SAMOA.	

22. https://portus.puertos.es/index.html?locale=en#/
23. https://www.nologin.es/en/nowsystems
24. https://cma.puertos.es

11.2.3.2. AQUASAFE

The AQUASAFE platform (🔗25)	aims	to	increase	efficiency	in	
management	of	maritime	operations,	providing	real	time	in-
formation and its integration with forecast and diagnostics 
tools. This platform is operational for all Portuguese Ports 
and	in	the	Port	of	Santos	(Brazil).	It	is	also	used	to	support	
aquacultures,	inland	navigation,	irrigation,	and	water	utilities.

Measured	data	(sensors,	remote	detection,	etc.)	and	mod-
elled	data	(meteorology,	hydrodynamics,	waves,	etc.)	are	
integrated in a platform which synchronises all of them in 
time,	space	and	dimensional	units	to	provide	easy	and	ro-
bust access to real time and forecast information. The global 
architecture of the Platform is presented in Figure 11.9.

AQUASAFE	has	a	micro-service,	cloud	native	architecture.	
Each	one	of	the	platform's	components	(data	download,	data	
formatting,	model	execution,	etc.)	is	implemented	in	a	com-
pletely	isolated	way,	facilitating	both	its	maintenance	and	
scalability.	It	also	uses	Container	technology	(from	Docker)	
so that each component is portable and consistent and can 
be quickly instantiated.

The	Client	Applications	(User	 Interfaces)	connect	to	Data	
services via a state-of-the-art authentication layer. A Data 
services layer is managing the Data acquisition (ingestion 
of	data	from	external	systems	to	the	platform,	and	storage)	
and the Processing Services (which performs computation-
al	loads	that	generate	new	data).	It	also	manages	Reporting	
and	Alarms.	Data	Processing	Services,	Reporting	and	Alarms	
are processed through a common Scheduler.

Using	this	system,	port	operations	have	better	efficiency	
and safety as it improves the match between tight sched-
ules	of	container	ships,	or	tight	security	of	liquefied	natural	

25. https://hidromod.com/?s=aquasafe

Figure 11.9.  Architecture of the AQUASAFE platform. 
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gas	(LNG)	carriers,	and	the	operational	weather	limits	of	each	
Terminal.	Thus,	the	impact	in	the	logistic	chain	including	
ports is extremely positive.

In	this	context,	PIANC’s	Maritime	Navigation	Commission	
Working Group 54 produced a set of recommendations “on 
the use of hydro/meteo information for navigational chan-
nel	and	port	basin	operations,	including	the	determination	
of	operational	limits”	(PIANC,	2012).	The	AQUASAFE	platform	
was developed along those recommendations.

Hydrodynamics and wave propagation modelling methodolo-
gy used in the operational systems implemented with AQUA-
SAFE	is	based	on	downscaling	global	models	to	local	scale,	to	
correctly	forecast	parameters	like	sea	level,	currents,	or	waves	
(Figure	11.10).	Meteorological	forecasting	also	has	a	similar	ap-
proach,	but	institutes	or	companies	specialised	in	meteorolo-
gy	are	usually	used	as	data	suppliers	(e.g.	MeteoGalicia).

This downscaling methodology is also embedded in the con-
cepts behind some modelling systems like WRF (atmospheric 
model)	or	SWAN	(waves	nearshore).

11.2.4. Voyage planning

Shipping	moves	the	global	commerce	as,	according	to	UNC-
TAD,	around	80%	of	the	volume	of	international	trade	in	

goods is carried by sea 🔗26. This tremendous effort comes 
with	a	significant	environmental	footprint.	According	to	the	
Fourth	GHG	study	of	the	IMO,	shipping	accounted	in	2018	for	
nearly 3% of global anthropogenic CO2 emissions. Container 
ships,	bulk	carriers,	and	oil	tankers	are	the	greatest	emit-
ters	of	the	world	fleet.	When	it	comes	to	per-ship	emissions,	
cruise ships also distinguish themselves for their carbon 
footprint.

Various measures are presently discussed both at IMO 🔗27 
and at the European Union level 🔗28 for reducing the GHG 
emission from shipping. In the short term (i.e. the current de-
cade),	more	efficient	operations	for	both	old	and	newbuild	
ships would be possible via a blend of design and operational 
measures.	Among	the	operational	ones,	both	speed	limitation	
and voyage planning could be considered. Speed limitation 
leads to reduction in emission at the cost of longer voyage 
durations,	and	could	be	viable	for	delivering	non-perishable	
goods.	However,	for	all	ship	types,	the	environmental	bene-
fits	of	speed	limitation	could	be	enhanced	through	voyage	
planning or weather routing. This wording may refer to quite 

26. https://unctad.org/topic/transport-and-trade-logistics/
review-of-maritime-transport
27. https://www.imo.org/en/MediaCentre/MeetingSumma-
ries/Pages/MEPC76meetingsummary.aspx
28.	https://eur-lex.europa.eu/legal-content/EN/TX-
T/?uri=CELEX%3A52021DC0550

Figure 11.10. AQUASAFE	platform:	wave	model	at	the	Port	of	Leixões	(Portugal).	
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different	systems	supporting	the	definition	of	the	route	to	
be sailed. It is possible to distinguish among:

• Strategic/Tactical planning. The former refers to op-
timally	deploy	the	fleet	of	a	given	shipowner	to	pursue	
some	benefit,	while	the	latter	to	the	shape	of	a	specific	
route between given ports of call;

• Global/Local optimization. The former refers to op-
timise	some	figure	of	merit	integrated	along	a	voyage	
(such	as	total	voyage	GHG	emissions),	while	the	latter	
to	locally	constrain	the	vessel	behaviour	(wind,	waves,	
or	ship	motions	below	a	given	threshold);

• Single/Multiple	Objectives.	In	the	former	case,	the	
optimization	objective	(such	as	emissions,	duration,	
cost,	and	comfort)	is	one	at	time,	while	in	the	latter	
multiple,	conflicting	objectives	can	be	addressed	(usu-
ally	making	use	of	some	mathematical	compromise);

• Deterministic/Stochastic.	In	the	former	case,	an	algo-
rithm is used to deliver exactly the same solution for given 
boundary conditions (usually a proof of optimality is avail-
able),	while	in	the	latter	stochastic	approaches	(such	as	
genetic	ones)	are	used	for	speeding	up	computations	at	
the cost of losing full optimality and reproducibility.

In	most	 items	of	the	above	taxonomy,	voyage	planning	is	
related	to	weather	and	ocean	state,	both	observed	and	pre-
dicted,	to	be	used	for	either	constraining	the	navigational	
options	or	defining	the	route’s	optimization	objectives.	A	re-
cent joint IMO-WMO symposium 🔗29,	highlighted	that	routing	
optimization may help ships to increase their operational ef-
ficiency	and	simultaneously	reduce	emissions,	while	it	is	es-
pecially relevant for safety of navigation in extreme marine 
conditions. Voyage planning tools are developed by several 
research	organisations	in	various	countries,	such	as	(non-ex-
haustive	list):	Sweden	(Li	et	al.,	2021),	Portugal	(Vettor	and	
Guedes	Soares,	2016),	Poland	(Krata	and	Szlapczynska,	2018),	
Italy	(Mannarini	et	al.,	2016a),	South-Korea	(Lee	et	al.,	2018).	
An attempt to classify ship routing models can be found in 
(Zis	et	al.,	2020).

Finally,	for	its	contribution	to	GHG	emission	reduction,	voy-
age planning embeds a potential to contribute to several 
targets of the UN Sustainable Development Goals (🔗30),	no-
tably	to	12.2,	12.4,	and	13.

29. https://library.wmo.int/doc_num.php?explnum_id=10305
30. https://sdgs.un.org/goals

11.2.4.1. VISIR

The VISIR is a voyage planning model developed since 2012 
by	the	CMCC	and	the	University	of	Bologna.	It	can	be	defined	
as	a	tactical,	global-optimization,	single-objective,	deter-
ministic model system for ship route planning. It is based 
on	an	exact	graph-search	method	(Dijkstra’s	algorithm)	
modified	for	dealing	with	dynamic	environmental	fields.	It	is	
coastline-	and	sea-bottom-aware,	thanks	to	a	masking	pro-
cedure in preparing the graph. It was used for both motor 
and sailboat routing in the Mediterranean Sea (Mannarini et 
al.,	2016)	and	in	the	Atlantic	Ocean	(Mannarini	and	Carelli,	
2019).	So	far,	VISIR	has	been	used	in	conjunction	with	both	
analysis	and	forecast	wave	and	current	fields	from	Coper-
nicus	Marine	Service,	and	with	wind	fields	from	ECMWF	or	
COSMO-ME	(Mannarini	et	al.,	2015).	

In	its	first	version,	VISIR	computed	only	least-distance	and	
least-time	routes.	However,	starting	from	version	2,	also	a	
least-CO2 route algorithm was embedded into VISIR. VISIR-1 
used polar plots for representing sailboat speeds through 
water	(STW)	in	dependence	of	wind	magnitude	and	direction	
(Mannarini	et	al.,	2015),	while	wave	fields	were	used	for	mo-
torboat	routing	(Mannarini	et	al.,	2016).	VISIR-1-b	made	use	of	
sea surface currents for correcting STW for sea current drag 
and	drift	(Mannarini	and	Carelli,	2019).	Starting	from	VISIR-1b,	
the angular resolution of the routes was enhanced thanks 
to a higher degree of connectivity of the underlying graph. 
While all VISIR-1 versions are based on a parametrization of 
calm	water	and	wave	added	resistance	for	motorboats,	VI-
SIR-2 can alternatively make use of a ferry response model 
derived from a ship simulator. This allows for inclusion of 
wind-wave	angle	of	attack,	a	more	accurate	representation	
of	involuntary	speed	loss	in	waves,	as	well	as	of	fuel	con-
sumption	and	CO2	emissions	(Mannarini	et	al.,	2021).	

The validation of the path planning component of VISIR was per-
formed	via	both	analytical	benchmarks	(Mannarini	and	Carelli,	
2019)	and	model	inter-comparison	(Mannarini	et	al.,	2019).

VISIR is an open-source model and its updates are usually re-
leased upon documentation on peer-reviewed publications. 
In Table 11.1 is provided an overview of VISIR features across 
its versions (🔗31).	So	far,	only	version	1.a	and	1.b	have	been	
released,	which	were	coded	in	Matlab.	However,	the	model	
version currently being developed is coded in python. VISIR-2 
powers	an	operational	service	for	ferries	in	the	Adriatic	Sea,	
available at 🔗32.

In Figure 11.11 an example of optimal routes from the most 
recent version of VISIR is displayed.

31. http://www.visir-model.net/
32. https://gutta-visir.eu
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Version Released Language Ship model Fields Angular 
resolution

Objectives

1.a

1.b

2.a

2016

>2021

2019

matlab

python

matlab

Semiempirical parametrization 
of resistances

Semiempirical parametrization 
of	resistances	or	fitted	ship	

simulator response

Semiempirical parametrization 
of resistances

Waves	(height,	
period)

Waves	(height,	
direction)	&	

currents

Waves	(height, 
period)	&	currents

distance,	time

distance,	time,	
CO2

distance,	time

26.6º

14.0º or 
better

7.1º or  
better

Table 11.1. Overview of features in VISIR model versions.

Figure 11.11. Optimal	routes	for	a	ferry	of	125	m,	computed	via	VISIR-2.	Left	panel:	bundles	of	East-bound	
CO2-optimal	routes	for	25	departure	times	any	3	hour	and	three	engine	load	values	(70,	85,	or	100%	of	max-
imum	engine	power).	Right	panel:	least-distance	(cyan),	least-time	(red),	and	least-CO2	(green)	route	from	
Patras	(Greece)	to	Brindisi	(Italy)	for	departure	date	and	time	as	in	the	title	and	engine	load	at	70%.	Relative	
CO2 and CII savings with respect to the shortest route are also indicated.

a) b)
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11.2.5. Fisheries and aquaculture

New technologies are developing for management and mon-
itoring	of	fisheries,	valorisation	and	protection	of	fish	spe-
cies,	enhancing	environmental	standards	for	sustainable	
aquaculture,	reducing	wastes	and	improving	safety,	develop-
ing	commercial	platforms	for	direct	selling	of	fish	products,	
and tracing products in innovative ways. Another aspect to 
take	into	consideration	is	the	characterization	of	fisheries	
and	aquaculture	products,	with	the	purpose	of	diversifying	
products and innovating traditional practices. Information 
technologies can assist in the development of important 
systems	to	support	the	economic	sustainability	of	the	fishing	
industry,	which	may	help	fishers	to	guarantee	the	quality	of	
products,	as	well	as	get	information	on	sea	conditions	and	
on	fishing	models.	In	the	following	subsection	are	present-
ed three examples on the use of operational oceanographic 
products	for	stock	assessment,	and	management	of	fisheries	
and aquaculture.

11.2.5.1. Bluefin tuna33

The SOCIB and the IEO have developed a habitat model for 
predicting spawning distribution of Atlantic bluefin tuna 
(Thunnus	thynnus)	in	the	Western	Mediterranean.	Observed	
data for larvae location are incorporated in a predictive 
system	of	the	habitat	model,	forced	by	operational	ocean-
ographic	products	from	the	Copernicus	Marine	Service,	such	
as	satellite	altimetry	and	chlorophyll,	as	well	as	sea	surface	
temperature and salinity from hydrodynamic models for 
forecasting	the	Bluefin	tuna	habitats	(Alvarez-Berastegui,	
2016;	Ingram,	2018).	Analysis,	satellite	data,	and	forecast	by	
the	MedFS,	in	situ	data	for	OC,	SST,	and	Total	Allowable	Catch	
set by ICCAT are used in the application. Description of the 
application is available at 🔗34.

11.2.5.2. Harmful algal bloom warning system

The Harmful algal bloom warning system provides near re-
al-time forecast information for the aquaculture industry 
along	Europe’s	Atlantic	coast,	it	is	of	vital	importance	for	mit-
igating the effects of HABs. It was originally developed in the 
FP7	Asimuth	project	(Cusack	et	al.,	2016),	subsequently	further	
developed	in	H2020	AtlantOS	(Cusack	et	al.,	2018)	and	Inter-
reg Atlantic Area PRIMROSE (🔗35).	The	warning	system	has	
been operational at the Irish Marine Institute since 2013 and 
subsequently deployed in Spain by IEO and in Norway by the 
NIVA. HAB information is disseminated in the form of a weekly 
bulletin to a wide audience with plots easy to interpret and ex-
planatory text. The EOVs are used to develop data products for 
the weekly HAB bulletin and include: phytoplankton biomass 
and	diversity,	sea	surface	temperature,	ocean	colour,	ocean	
surface	stress,	 sea	surface	height,	 subsurface	 temperature,	
surface	 currents,	 subsurface	 currents,	 sea	 surface	 salinity,	
subsurface	salinity,	and	ocean	surface	heat	flux.	Other	EOVs	
required to produce the HAB bulletin are the biotoxins and/
or phycotoxins produced by some phytoplankton species that 
can	accumulate	in	shellfish.	Numerical	models,	satellites	and	
in-situ data are integrated and undergo expert interpretation 
before	finding	their	way	to	the	weekly	bulletin.	

11.2.5.3. Weather window tool

The Weather window tool provides a user-friendly interface to 
short-term wave forecasts. It was developed by the Marine In-
stitute,	Ireland,	in	the	framework	of	AtlantOS	(Dale	et	al.,	2018)	
and is currently developed further in MyCOAST (Interreg Atlan-
tic	Area)	to	include	more	locations	along	the	European	Atlantic	
coasts. Availability of “coordinated” coastal observatories and 
forecasting models is the prerequisite for the transferability 

33. https://www.digitalocean.ie
34. http://www.socib.es/index.php?seccion=detalle_noti-
cia&id_noticia=191
35.	https://www.shellfish-safety.eu/

Figure 11.12. The Weather window tool  
(source: 🔗33).
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of	this	tool	to	other	locations.	To	this	aim,	MyCOAST	project	de-
veloped a guideline to the standardisation of data from the 
observing and forecasting systems based on the NcML 🔗36. 
The	user	of	the	tool	selects	a	location	from	a	dropdown	menu,	

36. https://www.unidata.ucar.edu/software/netcdf-java/
v4.6/ncml/Tutorial.html

Figure 11.13. A conceptual model of aquaculture 
site selection approach using GIS (source: Dale et 
al.	2017).

PHYSICS BIOGEOCHEMISTRY BIOLOGY	&	ECOSYSTEMS

● Sea State* ● Oxygen ● Phytoplankton Biomass & Diversity

Ocean Surface Stress Nutrients Zooplankton Biomass & Diversity
● Sea Ice Inorganic carbon ● Fish Abundance & Distribution

Sea Surface Height Transient Tracers
●  Marine	turtles,	birds,	mammals	

abundance & Distribution
● Sea Surface Temperature Suspended Particulates ● Live Coral

Subsurface Temperature Nitrous Oxide ● Sea Grass Cover
● Surface Currents Carbon	Isotope	(°C) Mangrove Cover

Subsurface Currents Dissolved Organic Carbon ● Macroalgal Canopy
● Sea Surface Salinity ● Ocean Colour

Subsurface Salinity

Ocean	surface	heat	flux

*Wave height is essential for site selection

Mature Pilot Concept ● Useful for site selection

Table 11.2. 	 List	of	physical	variables	for	building	the	aquaculture	site	selection	(source:	Dale	et	al.,	2017).

inputs a cut-off wave height that is deemed by the user as safe 
for	specific	field	activity	at	the	site,	and	selects	the	time	pe-
riod	up	to	a	week	(limited	by	the	duration	of	wave	forecast).	
Two	graphs	are	then	displayed:	i)	significant	wave	height	time	
series with the cut-off height marked and safe dates and times 
coloured	green;	and	ii)	wave	period	and	direction	as	a	supple-
mentary information. A snapshot of the tool is presented in 
Figure 11.12.

11.2.5.4. Aquaculture site selection

Aquaculture site selection is a key factor in aquaculture op-
eration,	including	offshore	aquaculture,	and	proper	site	se-
lection is a prerequisite for the economic sustainability of 
the	operation,	for	animal	welfare,	and	for	product	quality.	It	
is	possible	to	base	the	identification	of	suitable	sites	for	off-
shore aquaculture on observational and modelling systems. 
In	response	to	the	industry	requirement,	a	relevant	demon-
stration of this service was performed in the framework of 
AtlantOS	(Dale	et	al.,	2017).	GIS	approach	has	been	used	as	
it	offers	a	means	to	organise,	process,	and	analyse	different	
data	types	and	data	models,	as	well	as	to	perform	a	spatial	
multi-criteria	evaluation.	A	set	of	criteria	needs	to	be	fulfilled	
for a site to be suitable for offshore aquaculture. These cri-
teria,	presented	in	Table	11.2,	are	related	to	physical	factors	
like	temperature,	waves,	and	currents,	as	well	as	legal	or	ad-
ministrative	factors	such	as	distance	to	ship	routes,	marine	
protected	areas,	offshore	windmills,	etc.	A	conceptual	mod-
el of the aquaculture site selection approach using GIS is 
presented in Figure 11.13.
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12.1. 
Introduction
The	growth	of	ocean	prediction	research,	capability,	applica-
bility,	availability,	maturity,	and	user	uptake	from	an	 initial	
idea	25	years	ago,	while	gradual,	has	been	unrelenting.	To-
day’s capacity and maturity in ocean prediction goes beyond 
what was initially conceived and provides a strong basis for 
advancement	 of	 societal	 benefits.	 Over	 the	 next	 10	 years,	
ocean prediction systems will continue to gradually rival 
weather	prediction	systems	in	the	sense	of	ubiquitous	use,	
protecting	 lives,	economic	 impact,	and	supporting	custodi-
anship of the environment. Building a framework with stan-
dards and best practices for the full operational oceanogra-
phy value chain will enable further harnessing of prediction 
systems in supporting a healthy ocean at the same time of 
a blue economic growth for all countries. This will further 
awareness and accessibility of the marine environment 
through digital platforms underpinning increases in ocean 
prediction	literacy,	capacity	building,	applications,	and	ser-
vices	(Figure	4.1).	

Herein we outline the expected advances of ocean prediction 
and other supporting components of operational oceanogra-
phy over the next decade. An underlying theme is the inte-

gration of ocean prediction systems within the larger context 
of	operational	oceanography,	 seamless	environmental	pre-
diction,	and	the	blue	economy.	This	 requires	a	 transparent	
framework	 approach	 of	 standards	 and	 best	 practices,	 en-
abling	all	countries,	particularly	those	with	the	least	resourc-
es,	to	engage	and	benefit.

This chapter introduces the key drivers for the next genera-
tion	of	OOFS,	spanning	from	global	to	coastal	scale	observing	
systems	 (Section	12.2)	 to	numerical	models	evolution	 (Sec-
tion	12.3),	data	assimilation	(Section	12.4)	and	ensemble	sys-
tems	for	prediction	(Section	12.5),	from	the	growing	AI	tech-
niques	 for	 understanding	physical	 processes	 (Section	 12.6)	
to	seamless	approach	(Section	12.7)	and	DTO	(Section	12.8),	
including as well the evolution in quality assessment (Sec-
tion	12.9).	The	last	sections	focus	on	planned	evolution	for	
state-of-the-art services like the Copernicus Marine Service 
(Section	12.10)	and	international	initiatives	promoted	by	the	
UN	Decade	of	the	Ocean	(Section	12.11).

12.2. 
Observing system evolution with ocean prediction engagement
The quality of the ocean analysis and forecasts highly relies 
on observations assimilated for constraining the ocean cir-
culation in ocean forecasting systems. The evolution of the 
forecasting systems towards increased realism to represent 
a larger spectrum of ocean processes and scales will be un-
derpinned by the ‘adapted’ in situ and satellite observations 
that	 efficiently	 constrain	 the	 different	 scales	 of	 the	 ocean	
variability. Close collaboration between ocean forecasting 
centres and the observation providers is crucial to promote 
such evolution. Communication ensures the best use of in-
formation from the present to the future observation sys-
tems. It allows forecasting centres to inform on the obser-
vation use and to report on their impacts on analysis and 
forecasts.	In	the	longer	term,	it	also	increases	opportunities	
for the ocean forecasting centres to contribute to evolve 
ocean observing system designs to optimally meet require-
ments and enable capabilities of future operational systems. 
Inclusion of forecasting centres in designing and evaluating 

the future impact of the GOOS 🔗1 component has started 
to be recognized as a best practice in the observation and 
prediction community. 

In	such	a	context,	OOFS	strictly	depends	on	the	availability	of	
near-real time observations for assimilation and validation 
purposes. Accuracy of forecast products is largely impacted 
by	 the	 quality	 of	 assimilated	 observations,	 so	 that	 the	 ef-
fort of the community is to support the forecasters with high 
quality	data	in	space	and	time	sampling.	Le	Traon	et	al.	(2019)	
provides the Copernicus Marine Service strategy for obser-
vational network evolutions and the requirements for OOFS 
to	 support	maritime	 safety,	 marine	 resources,	 marine	 and	
coastal	 environments,	 weather,	 seasonal	 forecasting,	 and	
climate.	According	to	this	document,	the	main	priorities	are:

1.  https://www.goosocean.org/ 
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• For satellite data:

• Guaranteeing continuity of the present operational 
missions’ capacity of Sentinel for downstream coast-
al	applications,	and	of	Cryosat	mission	for	monitoring	
of sea ice thickness and sea level in polar regions;
• Developing new capacity for wide swath altimetry 
for the future OOFS and services; 
• Developing microwave mission for the improvement 
of	spatial	coverage	of	sea	surface	temperature,	sea	ice	
drift,	sea	ice	thickness,	and	sea	surface	salinity;
• Enforcing R&D for observing sea surface salinity 
and ocean currents from space.

• For in-situ data:

• At	 global	 scale,	 the	 main	 future	 challenges	 are:	
a)	 to	 improve	 the	coverage	of	biogeochemical	mea-
surement,	b)	the	measurement	of	deep	temperature	
and	salinity,	and	c)	measurement	of	 in-situ	velocity	
observations,	sea	ice	observations,	and	open-ocean	
wave measurements;
• At	a	regional	scale,	the	main	priority	is	to	fill	gaps	
for a wide range of variables in the shelf-coastal ob-
servational	networking,	in	order	to	improve	monitor-
ing and forecasting capacities.

Copernicus	Marine	Service	provides	specific	strategic	docu-
ments 🔗2 for both satellite and in-situ observations to sup-
port	monitoring	and	forecasting	activities.	The	GOOS	defines	
the following strategic objectives for observing systems at 
global level towards 2030: 

• to deepen engagement and impact by enforcing the 
connection with forecasting centres;
• to	 deliver	 an	 integrated	 fit-for-purposes	 observing	
system able to support and expand the implementation 
of observing systems and ensuring data management 
according to the FAIR principles;
• to build future observational networks by support-
ing innovation in observing technologies and extend-
ing systematic observations to understand impacts on 
the ocean.

12.2.1. Challenges for the current ocean 
observing systems

Major challenges for the current ocean observing systems 
include:	i)	most	of	the	ocean	observations	made	by	non-op-
erational	oceanography	communities	(e.g.	environment,	fish-
ery,	research,	and	industrial	sectors)	have	not	been	used	for	
operational forecasting; the ocean observations are made by 

2.  https://marine.copernicus.eu/about/observation-re-
quirements 

various sectors with different monitoring and data collection 
standards,	and	 little	efforts	have	been	made	to	harmonise	
observations	 from	 the	different	 sectors;	 and	 ii)	 technolog-
ic	bottlenecks	and	significant	data	gaps	in	sub-surface,	sea	
bottom,	geological	and	biological	observations.	

For	 developing	 an	 integrated	 and	 unified	 ocean	 observing	
system	 to	 support	 the	 seamless	 information	 service,	 three	
pillars	are	recommended,	,	as	shown	in	Fig.	12.1.	The	first	pillar	
is to maximise the value of existing observations by breaking 
the	institutional	and	sectorial	barrier	(She	et	al.,	2019)	and	fit	
for the purposes of multi-sectors. This can be implemented 
by performing multidimensional integration of operational 
and	non-operational	ocean	observing	communities,	includ-
ing	operational	monitoring,	environment	monitoring,	fishery	
monitoring,	research	monitoring,	crowd	(citizens	and	NGOs)	
monitoring and other sectoral monitoring (industrial and so-
cioeconomic).	 The	 observations	 should	 be	 “collected	 once	
and	used	for	many	times”	 (Martín	Míguez	et	al.,	2019).	Due	
to	the	existing	mandate	of	monitoring	entities,	either	public	
or	 private,	 current	 ocean	observing	practices	 are	designed	
separately	to	fit	for	the	purpose	of	individual	sectorial	ser-
vice,	and	observations	are	hardly	shared	from	different	mon-
itoring communities. When designing multidimensional in-
tegration	on	a	national	and	regional	scale,	unified	standards	
should be applied. The operational and autonomous plat-
form	is	an	efficient	framework	for	the	integrated	and	unified	
ocean	observing,	which	is	highly	recommended.	

The	second	pillar	is	to	develop,	deploy,	and	utilise	large	net-
works	of	autonomous,	cost-effective,	 innovative	sensors	to	
fill	the	observation	gaps	in	subsurface	and	emerging	obser-
vations,	 e.g.	 marine	 litter,	 biological	 variables,	 and	 under-
water noise. A combination of breakthroughs in underwater 
communication	technology,	underwater	robotics,	and	ML/AI	
may	significantly	improve	the	capacity	of	underwater	moni-
toring,	especially	for	pollutants,	biogeochemical	and	biolog-
ical variables. Adaptable observations are also needed for 
characterising key processes underpinning predictability in 
the marine earth system. 

The third pillar is to design and optimise existing ocean ob-
serving	to	fill	gaps	in	the	characterizations	of	processes	and	
sensitive	regions	that	are	crucial	to	the	predictability	and	fit	
for the purposes in multi-sectors. It is essential that the mon-
itoring	capacity	is	based	on	an	integrated	system	of	in-situ,	
remote	sensing,	models,	assimilation,	and	ML/AI	tools.	Sam-
pling schemes of such a system can then be designed to opti-
mise	the	integrated	monitoring	capacity,	so	that	observations	
would most effectively be used to reduce the earth system 
prediction uncertainties. It should be noted that dedicated 
observations	 should	 be	 identified	 and	 included	 to	 address	
specific	predictability	in	the	UOM	(She	et	al.,	2016).	
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12.2.2. Observing System Evaluation

At	present,	OS-Eval,	based	on	ocean	forecasting	systems,	are	
not often conducted in a coordinated manner. The most used 
techniques of OS-Eval are data denial experiments with real 
or	 simulated	 observations	 (e.g.,	 OSE	 and	 OSSE).	 Although	
only observation platforms which are already existing with 
real	 observations	 can	 be	 evaluated,	 simulated	 observa-
tions allow us to evaluate the impact of future platforms or 
evolution of the observation network. Impact assessment 
methods will evolve in the future with more sophisticated 
techniques	 based	 on	 ensemble	 and	 adjoint	methods,	 and	
potentially also AI. Considering that BGC applications and the 
earth	 system	 predictions,	 including	 the	 ocean	 component,	
are	 progressively	 becoming	 more	 important,	 the	 develop-
ment of suitable evaluation methods for those applications 
is also indispensable. Improving analysis/forecast accuracy 
and developing methods assimilating new types of observa-
tion data will increase the ability to make fair assessments 
for various platforms. Multi-system evaluation and regular 
re-assessment of the observation impact to follow the sys-
tem evolutions are required to improve the robustness of the 
results by moderating system-dependency. 

Enhanced communication and coordination between model-
ling/data assimilation experts and observation/network ex-
perts will be essential for a proper design and interpretation 
of	OS-Eval,	especially	to	extract	compelling	messages	on	the	
ability of the ocean observing system to control processes 
having different temporal and spatial scales. The provision of 
regular reports on ocean observation impacts in ocean predic-
tion systems is expected to enhance such communication. It 
should also be noted that OS-Eval activities require dedicated 
infrastructures and resources. Cooperation with internation-

al	partners	(e.g.	OceanPredict,	GOOS/ROOS,	WMO,	IOC,	etc.)	is	
hence essential to establish a substantial value chain between 
ocean observation networks and ocean prediction systems. 

OS-Eval activities require dedicated infrastructures and re-
sources. It is essential to strengthen the capabilities of oper-
ational and climate centres to assess the impact of present 
and future observations to guide observing system agencies 
but also to improve the use of observations in models.

An observation network cannot be considered by its own but 
should be evaluated in complementarity with other in-si-
tu and satellite networks. The synergy from a combination 
of observation platforms’ data with the other existing and 
planned in-situ and satellite observations should be evalu-
ated. This will be necessary since the model forecasts need 
to	be	constrained	on	a	large	spectrum	of	scales,	as	individu-
al platforms cannot provide it. Optimally leveraging satellite 
and in-situ observations to improve the ocean predictability 
is an important research topic with strategic importance. Un-
derstanding and being able to showcase and demonstrate 
the impact of both present and future observing systems in 
improving ocean prediction (and environmental prediction in 
general)	 is	 important	 to	 justify	and	maintain	 long	 term	 in-
vestments for the observation system. Feedback from such 
efforts enables observation groups to know where to invest 
their	efforts,	both	technologically	and	in	terms	of	geographic	
coverage in density and scope.  

To	best	showcase	evaluations	of	the	observing	system,	pre-
diction impact metrics should be generated in terms of value 
for:	(1)	user	and	application	needs;	and	(2)	observing	system	
needs.	On	 the	user	and	application	 side,	 elements	 like	 the	
WMO	RRR	can	be	used,	 in	which	 the	 impact	of	an	observa-
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Figure 12.1. Integrated observing. Unlocking the value of ocean observing by integrating observations in 
three	dimensions:	fit	for	purpose,	parameter,	and	instrumental	(source:	She	et	al.,	2019).
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tion on the forecast system is framed in terms of impact on 
a user or application. This can entail further post processing 
of	prediction	output,	to	translate	forecasting	impact	into	in-
formation	that	the	end	user	will	use	directly.	For	example,	for	
Search and Rescue at sea it may be necessary to know the 
impact	of	an	observing	system	on	drift	prediction,	and	quan-
tifying how much it would decrease the search area at sea 
while still ensuring high probability of detection. There is also a 
need to show the impact of an observing system on a variety 
of	applications,	as	well	as	to	provide	insight	into	the	impact	
of decreasing or augmenting the number of observations. 
Additionally,	when	developing	metrics	to	support	observing	
system	needs,	the	multi-purposeless	of	the	observations	(cli-
mate,	ocean	services	and	health)	needs	to	be	covered.	

Real-time impact assessment methods should also be de-
veloped to monitor and report on the use and impact of the 
different assimilated observation networks by operational 
ocean forecasting centres. This will help to detect impacts of 
changes	 in	 the	observation	network,	and	 take	countermea-
sures against them. 

In the next subsections are presented the evolution plans for 
the	observatory	component,	i.e.	ARGO	and	satellite	observa-
tions,	which	will	drive	the	next	generation	of	OOFS.

12.2.3. Argo evolution plans

The international programme Argo (🔗3)	is	currently	the	ma-
jor global initiative for the collection of “information from in-
side	the	ocean	using	a	fleet	of	robotic	instruments	that	drift	
with the ocean currents and move up and down between the 
surface and a mid-water level”. In Chapter 4 can be found 
an overview on the current ARGO operational capabilities for 
OOFS. Argo design after 2020 is available at 🔗4,	 including	
the following major targets:

• Improved observational capacity in the polar sea-ice 
regions and marginal seas;
• Increased resolution in key areas like the Western 
Boundary	 Currents	 in	 which	mesoscale	 noise	 is	 high,	
and the Equatorial region for which high temporal res-
olution is needed;
• Launch of new missions for biogeochemical and deep 
region variables.

Next generation Argo programme is also oriented towards 
validation and deployment of new sensors for measuring 
ocean	turbulence	and	small-scale	mixing,	which	 is	 funda-
mental	for	improving	OOFS,	numerical	models,	data	assimi-
lation	schemes,	and	validation	of	forecast	products.	

3. https://argo.ucsd.edu/
4. https://argo.ucsd.edu/argo-beyond-2020/

Expansion of the observing network requires maintenance 
and advancements of data management systems among pro-
viders and forecasting centers to ensure interoperability and 
open	access	to	growing	data	inflow	(Roemmich	et	al.,	2019)

12.2.4. Next phase for satellite missions 

Satellite	 observations,	 together	with	 those	 in-situ,	 are	 the	
key element for the global ocean observing system. In Chap-
ter 4,	 it	 has	 already	 been	 provided	 a	 general	 overview	 of	
the type of data used for building OOFS. Next generation of 
forecasting systems will also exploit the new technological 
advancements	 in	 the	 observational	 network,	 and	 satellite	
measurements will play an important role in monitoring the 
cryosphere,	coastal	zones,	and	inland	waters	to	improve	the	
quality of marine services. The International Altimetry Team 
has recently published a contribution about the future 25 
years of progress in altimetry measurements (International 
Altimetry	Team,	2021);	 according	 to	 this	work,	 the	main	 re-
quirements	 by	 altimetry	 for	 scientific	 and	 operational	 ad-
vances	of	operational	oceanography,	and	more	in	general	for	
Earth	system	science,	are:

• Increasing the coverage of satellite measurements to 
support	 ocean	 dynamics	 understanding,	 from	 smaller	
mesoscale	 to	 sub-mesoscale,	by	means	of	multi-plat-
form	in-situ	measurements,	multi-satellite	and	SAR,	and	
SAR-interferometry altimetry;
• The design of ad-hoc experiments for in-situ data 
collection guided by remote data;
• The evaluation of vertical circulation by means for in-si-
tu and high resolution sea surface height measurements;
• Guaranteeing the continuity of the current operation-
al measurements;
• Estimating uncertainties on regional sea level trends 
by comparing tide gauges with GNSS positioning with 
altimetry;
• Improving sea level record at coastal scale by using 
high	 resolution	 SAR	 altimetry,	 tide	 gauges	 with	 GNSS	
positioning,	 and	 developing	 GNSS	 reflectometry	 (the	
last is very promising for providing sea level change 
measurements);
• Increasing the spatial resolution of altimetry products 
with advanced techniques like SARIn-based “swath mode” 
processing and fully focused SAR over polar oceans;
• Increasing not only spatial but also temporal reso-
lution by means of higher resolving altimeter such as 
SWOT,	accompanied	by	larger	altimetry	constellation	that	
includes	swath	and	conventional	altimetry,	doppler	wave	
and	current	scatterometer,	and	integrated	altimeter.	
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Ocean models are one of the pillars for OOFS. Chapter 4 
provides information on current modelling capacities while 
Chapters	 from	 5	 to	 10	 deepen	 the	 theoretical	 aspects,	 but	
still remain a main question to be answered: What is expect-
ed by ocean models for the future OOFS? Fox-Kemper et al. 
(2019)	provided	an	extensive	review	on	challenges	and	per-
spectives	 in	 ocean	models,	 touching	 many	 scientific	 open	
questions	and	issues	to	solve.	In	particular,	evolving	the	core	
models	 to	address	adequate	 scales	 in	 space	and	 time,	 ac-
curately	representing	physical	processes,	and	running	fastly	
is	 the	baseline	 for	 improving	predictability,	as	well	as	past	
reconstruction	of	the	blue,	green	and	white	ocean.	These	are	
the challenges that have to be tackled for the improvement 
of future OOFS.5

Le	Sommer	et	al.	(2018)	showed	that	the	evolution	in	ocean	
modelling for operational oceanography is strictly connect-
ed to resolve physical processes down to the submesoscale 
(Chassignet	and	Xu,	2021)	and	to	describe	internal	wave	and	
internal tides at a global scale thanks to increase in comput-
er power and improved physical parameterization (Shriver et 
al.,	2012).	Increasing	resolution	in	space	and	time	is	not	the	
only way to address high quality operational products: mod-
ularity	of	modern	geoscientific	models	is	key	for	addressing	
modelling	complexity	(Le	Sommer	et	al.,	2018).	

Modelling complexity and modularity for the next generation 
of OOFS have a computational cost that needs to be account-
ed for once we consider evolutions in numerics. Evolutions in 
High Performance Computing is then another pillar on which 
establishing	OOFS;	scientific	questions	to	be	solved	require	
also	to	face	technological	challenges.	Le	Sommer	et	al.	(2018)	
highlighted how the main current limitations in the modelling 
framework capacity is not due to computational speed of the 

5.	 	https://marine.copernicus.eu/sites/default/files/media/
pdf/2020-10/CMEMS-requirements-satellites.pdf 

processors,	but	on	access	 to	memory	and	 latency	 in	 input/
output. Such limits require a deep revision on the way devel-
opments	are	carried	on,	but	sustained	collaboration	between	
ocean modellers and computer scientists is also key. 

The	usage	of	graphics	processing	units	(GPU)	is	progressively	
accelerating the Earth system modelling the atmosphere and 
the ocean. This transition to modern massive supercomput-
ers requires re-design numerical codes and HPC optimiza-
tion/parallelization strategies. In the oceanographic commu-
nity,	codes	have	been	progressively	ported	on	hybrid	CPU/
GPU	architectures:	 for	 example,	 Xu	 et	 al.	 (2015)	 provided	a	
first	example	of	porting	of	the	POM	on	GPU	architecture,	fo-
cusing	on	adopted	strategy	for	memory	access	optimization,	
new	design	of	communications,	boundary	optimization	over-
lapping	approach,	and	I/O	optimization,	achieving	over	400x	
speedup	 against	 a	 single	 CPU	 core,	 reducing	 energy	 con-
sumption	by	about	seven	times.	Liu	et	al.	(2019)	provided	a	
description	of	the	first	parallel	implementation	and	optimi-
zation of the ROMS on a many-processor	system,	the	Sunway	
sw26010: the result showed that the speedup of optimised 
hotspot program can be up to 3.69x with respect to original 
ROMS one. Such examples demonstrate how future complex 
computing architectures can be exploited for accelerating 
ocean	 models	 execution,	 benefiting	 operational	 systems,	
and opening new frontiers in numerical modelling.

Growing application requirements push from petascale to 
exascale:	 in	 the	near	 future	 larger	datasets,	more	parame-
ters,	much	more	computing,	more	need	for	parallelism,	and	
large power consumption will be available. These improve-
ments are strictly connected to evolutions in climate and 
ocean modelling that aim to represent real-world systems 
characterised by multi-physics and multi-scale interaction in 
space	and	time,	opening	to	predictive	science.	

12.3. 
Numerical models planned evolutions, including adaptation to 
new HPC systems 

To support operational oceanography and marine appli-
cations,	Copernicus	Marine	Service		has	drawn	up	a	doc-
ument 🔗5  that describes the main requirements for the 
evolution of the Copernicus Satellite Components. It fo-
cuses on the need of a multi-sensor and multi-mission 
approach	for	collecting	SST,	SSS,	ocean	colour,	currents,	
wind,	and	wave	measurements.	This	would	constrain	fu-

ture	high	resolution	open	ocean,	coastal	models,	and	cou-
pled ocean/wave models. The document also recognizes 
the	need	of	improving	space/time	resolution,	to	better	mon-
itor and forecast the physical and biogeochemical state of 
the	ocean	at	fine	scale,	and	to	improve	the	monitoring	of	
coastal zones and of rapidly changing polar regions.
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Emerging observing technologies provide impetus to the devel-
opment of DA systems. Operational ocean DA systems are con-
stantly evolving their application of improved data assimi-
lation	methods,	their	use	with	increased	resolution	models	
and	models	with	increased	complexity,	their	use	of	new	and	
upcoming	observing	technology,	and	their	use	of	new	com-
munity DA software and computer hardware infrastructures. 
Below is a summary of some of the areas in which DA is ex-
pected to evolve in operational forecasting systems over the 
next 10 years.

In	terms	of	the	DA	methodology,	the	most	immediate	develop-
ment is the merging of ensemble and variational methods. Draw-
ing	on	the	strengths	of	both	approaches,	the	“hybrid”	approach	
is being developed in a number of forecasting centres. The static 
or parametrized version of the background error covariances 
used	in	variational	methods	and	the	flow-dependent	estimates	
from an ensemble are combined. Experience from NWP suggests 
that the hybrid approach performs better than an either pure 
variational	or	pure	ensemble	method	(Lorenc	and	Jardak,	2018);	
efforts are underway to implement similar capability in global 
and regional ocean forecasting systems. These are likely to reach 
some maturity over the coming few years. More sophisticated 
DA	methods,	which	do	not	rely	on	the	assumption	that	forecast	
errors have an unbiased Gaussian distribution (such as particle 
filters,	van	Leeuwen	et	al.,	2015),	are	being	actively	pursued	to	
deal	with,	for	instance,	biogeochemical	variables.	Another	grow-
ing area of methodological development is the application of 
machine learning to the data assimilation problem (Bonavita et 
al.,	2021),	particularly	in	regard	to	model	error	estimation,	model	
parameter	estimation,	and	the	estimation	of	forecast	error	cova-
riance statistics.

Ocean model resolution is constantly being increased as 
more computer resources become available. DA systems need 
to evolve to make sure they can deal with the larger range of 
scales in the models. The complexity of models is also increasing 
in both the ocean models themselves and the different 
types of coupled models being used. Applying DA methods to 
ocean/sea-ice	models,	physical-biogeochemical	models,	acous-
tic-physical	models,	and	more	complete	earth	system	models	
that	 include	many	different	earth	system	components,	 is	an	
active	area	of	research	(Penny	et	al.,	2019).	Models	used	for	op-
erational	ocean,	sea-ice,	and	atmosphere	forecasting	on	short	
timescales are increasingly becoming coupled together and 
the data assimilation methods needed to effectively initialise 
these systems are being developed. Most operational coupled 
weather forecasting systems do not currently use strongly cou-
pled	data	assimilation	methods,	whereby	ocean	observations	
can	directly	influence	the	atmospheric	analysis	and	vice	versa,	
but they are expected to be developed and implemented over 
the next decade. 

The software infrastructure needed to apply the data assim-
ilation is also under development by several new commu-
nity	DA	software	systems,	 including	 the	DART	 (Anderson	et	
al.,	2009),	the	OOPS,	the	JEDI,	EnKF-C	(Sakov,	2014),	and	the	
PDAF	 (Nerger	et	al.,	 2020).	The	computer	hardware	used	 to	
run forecasting systems is also evolving with different ar-
chitectures	such	as	GPUs,	which	will	become	a	strong	com-
putational candidate for operational forecasting systems in 
a 10-year timeframe along with the evolution of numerical 
codes. The community software systems provide the oppor-
tunity for more collaboration between operational forecast-
ing	groups,	and	between	operational	and	research	groups.	

12.4. 
Future evolutions in ocean data assimilation for operational 
ocean forecasting

Exascale computing is then the next frontier to build global 
climate systems at the optimal model resolution that requires 
a high level of performance capabilities but remaining within 
a	specific	power	budget.	Operational	centres	need	to	account	
for heterogeneous computing resources: heterogeneous com-
puting aims to match the requirements of each application 
to	the	strengths	of	CPU/GPU	architectures	(Mittal	and	Vetter,	
2015).	The	collaborative	framework	among	different	hardware	
components	is	an	open	research	field	that	aims	at:

• Port large-scale codes written in CPU or GPU-suited 
languages into heterogeneous computing systems min-
imising overhead and error-prone;
• Design new suitable data-access strategies to take 
full advantage of fused CPU-GPU systems;
• Reduce use of more classical programming languages 
like Fortran in favour of more modern computing lan-
guages such as Python;
• Increase data analytics capacities;
• Decrease energy consumption towards Green Computing.
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12.5. 
Future of ensemble prediction systems
Numerical	ocean,	weather,	seasonal	and	climate	forecasting	
systems across the world are tending towards becoming cou-
pled ensemble data assimilation prediction systems (Brass-
ington	et	al.,	2015;	Barton,	2021;	Buizza,	2021;	Frolov,	2021;	Fujii	
et	al.,	2021;	Komaromi,	2021),	including	a	better	coverage	of	
the inter-relationships among the geophysical domains of 
the	ocean,	atmosphere,	sea	 ice,	 land,	and	biogeochemistry	
(Sandery	et	al.,	2020;	O’Kane	et	al.,	2021).	Forecasting	systems	
are	also	increasingly	applied	to	finer	spatiotemporal	scales.

The need to quantify the probability distribution of fore-
cast	error	in	coupled	and	downscaled	models,	as	well	as	the	
reliability	and	accuracy	of	 forecasts,	will	be	served	well	by	
ensemble	prediction	systems,	such	as	those	using	the	EnKF	
(e.g.,	Sandery	et	al.,	2020;	O’Kane	et	al.,	2021;	Sun	et	al.,	2020;	
Minamide	and	Posselt,	2022).	

Ensemble prediction systems enable synthesis of models 
and observations leading to data that can be used to provide 
best estimates of geophysical variables and quantify the 
dynamics	of	 their	uncertainty	 (Sandery	et	al.,	 2019)	 (Figure	
12.2).	Uncertainty	quantification	will	become	as	important	in	
forecasts	as	the	forecasts	themselves,	providing	guidance	on	
reliability and insight into fast growing disturbances in the 
geophysical environment. As described in other sections of 
this	 chapter,	 advances	 in	 ensemble	prediction	will	 also	be	
coupled	to	improvements	in	models,	observations,	data	as-
similation,	computer	resources	and	technology.	

There	 is	 an	 associated	 loss	 of	 predictability	 towards	 finer	
scales	(Jacobs	et	al.,	2021).	Prediction	systems	using	coupled	
data	 assimilation	 and	 finer	 spatial	 resolution	 will	 require	
larger	ensembles,	more	 frequent,	 representative	and	accu-
rate	observations,	 and	 improved	data	assimilation	practic-
es. Extending the range of predictability will be facilitated 
by advances to ensemble prediction systems. Operational 
ensemble systems will incorporate improved methods for 
data assimilation in the presence of model error and strong 
non-linearities,	such	as	the	iterative	EnKF	(Sakov	et	al.,	2017),	
hybrid	covariance	methods	(Kotsuki	and	Bishop,	2022),	and	
assimilation of non-linear observations such as water va-
pour,	 cloud,	precipitation,	 sea-ice,	 and	phytoplankton	 con-
centration	(Bishop,	2016;	Posselt	and	Bishop,	2018).

Combining ensemble prediction with machine learning and 
artificial	intelligence	will	also	play	an	increasing	role	in	fore-
casting	 (Brajard	et	 al.,	 2021;	Weyn	et	 al.,	 2021).	 In	 some	 in-
stances,	forward	models	with	reduced	order	low	dimensional	
and	data-driven	differentiable	emulators	(Maulik	et	al.,	2021)	
will be able to replace full non-linear models to reduce com-
putational	cost	and	assist	in	searches	for	initial	conditions,	
patterns,	 parameterisations	 and	 ensemble	 perturbations	
appropriate for particular forecasts. Ensemble prediction 
systems	 will	 be	 used	 to	 identify	 initial	 states,	 forcing	 and	
dynamics that contribute to regime transitions (O’Kane et al 
2019;	Quinn	et	 al.,	 2020)	 and	 in	 the	 forecasting	of	 extreme	
events	(Hawcroft	et	al.,	2021).	

Forecast	model	parameters	will	continue	to	be	poorly	known,	
subject	 to	 uncertainty,	 dependent	 on	 grid	 resolution,	 and	 a	
source of model bias requiring joint state and parameter es-
timation	 (Kitsios	et	al.,	 2021).	With	 this	approach,	predictabil-
ity of certain geophysical processes may be improved (Zhang 
et	al.,	2017).	Future	ensemble	prediction	systems	will	be	opti-
mised with model parameters that minimise bias in the ensem-
ble mean but that adequately represent the parameter’s error 
probability	distribution	in	the	ensemble	(Gao	et	al.,	2021).	Cou-
pled model forecasts will be able to be optimised in state and 
parameter space. Model error minimization will be multi-variate 
and simultaneous across the geophysical realms with respect to 
the	global	network	of	observations	(Sandery	et	al.,	2020).

Ensemble prediction systems will play an increasing role in 
the	 future	 design	 of	 observation	 systems	 (Sandery	 et	 al.,	
2019	 and	 2020).	 Coupled	 ensemble	 prediction	 provides	 in-
sight into unobserved variables through cross domain co-
variances. Future applications of coupled ensemble predic-
tion systems will provide improved reanalysis products with 
tighter	constraints	on	carbon,	sea-ice	volume,	air-sea	fluxes,	
ocean	heat	storage	and	transport,	using	optimally	designed	
observing systems. 
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Unstructured mesh models that enhance resolution towards 
the coastline for detailed hydrodynamic and biogeochemical 
forecasting	of	coastal	and	river,	lake	and	estuarine	circulation	
processes	(Herzfeld	et	al.,	2020)	will	be	run	as	ensemble	pre-
diction systems. Meshes that adapt resolution according to ar-
eas	of	most	rapidly	growing	geophysical	instabilities,	such	as	
in	tropical	cyclone,	tsunami,	and	flood	forecasting	(Beisiegel	
et	al.,	2021)	will	also	be	run	as	ensemble	prediction	systems.	

As	systems	continue	to	be	developed,	improving	the	accura-
cy of forecast error covariance estimates will deliver coupled 
downscaled analyses and forecasts with greater skill. With 
advances	 to	 observation	 systems,	 relatively	 higher	 resolu-
tion	monitoring	and	ensemble	prediction	of	sea-ice,	waves,	
currents,	 sea-levels,	 temperatures,	 biogeochemistry,	 and	
the	tracing	of	river	plumes	containing	sediments,	contami-
nants,	and	pollutants	may	be	made	possible	using	ensem-
ble prediction systems. Access to future higher resolution 
ocean in-situ and satellite data may enable prediction of the 

Figure 12.2. Quantifying the dynamics of system uncertainty. This image shows forecast ensemble spread in 
sea	surface	temperature	(K)	and	sea	ice	concentration	on	28th	September	2017	(in	observation	space)	from	a	96	
member,	0.1o	horizontal	resolution	coupled	ocean-sea-ice	EnKF	prediction	system,	known	as	ACCESS-OM2-EnKF-C	
(Sakov,	2014;	Kiss	et	al.,	2020).	SST	spread	is	related	to	uncertainty:	the	forecast	dynamical	state	of	Tropical	Insta-
bility Waves and sea ice spread shows that forecast uncertainty at this time of year is greatest in certain areas.

ocean	sub-mesoscale	circulation	and	near-field	currents	for	
search	 and	 rescue,	 ship-routing,	 safety,	 and	 recreation.	 As	
science,	technology,	networking,	and	connectivity	improves,	
real-time assimilation of user-supplied observations into 
ensemble prediction systems to augment local predictability 
may become possible.  
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Recent developments in AI open many interesting opportu-
nities in the context of operational oceanography and ocean 
forecasting systems. Operational forecasting systems are 
indeed not only based on observational data but also on 
algorithms. These algorithms gather and encode our under-
standing	of	physical	systems	and	their	dynamics,	as	well	as	
of observation networks and associated uncertainties. They 
also	reflect	our	collective	knowledge	on	the	relevant	criteria	
for evaluating ocean data products. As in many activities re-
lying	on	algorithms,	the	emergence	of	artificial	intelligence,	
and	especially	of	deep	learning,	opens	a	number	of	new	pos-
sibilities,	and	is	therefore	the	subject	of	growing	interest	in	
our community. 

The ML generally refers to all the methods used to build 
algorithms whose components and parameters are not 
defined	 a	 priori	 but	 are	 trained	 according	 to	 a	 given	 ob-
jective.	This	field	encompasses	a	large	number	of	different	
methods,	 algorithms,	 and	 training	 strategies.	 It	 is	 a	 wide	
and	fast-moving	research	field	that	includes,	but	is	not	re-
stricted	to,	deep	learning.	ML	is	also	intimately	linked	to	a	
technological landscape and a software ecosystem in con-
stant evolution. These technologies allow researchers and 
engineers to assemble complex algorithms from elementary 
building	blocks	in	a	very	versatile	and	modular	way,	with	in-
teresting performances compared to state-of-the-art meth-
ods in many disciplines.  

Applications	of	artificial	 intelligence	are	currently	 in	vogue	
but,	 beyond	 the	 hype,	 artificial	 intelligence	 and	 machine	
learning can help us to overcome some of the current limita-
tions of ocean forecasting systems. Ocean models and data 
assimilation	methods,	which	are	the	scientific	underpinning	
of	current	ocean	forecasting	systems,	are	indeed	facing	im-
portant challenges. Performing large ensemble simulations 
with	 full	 ocean	models	 at	 increasingly	 fine	 spatial	 resolu-
tion	 is	 becoming	more	 and	more	 difficult	 computationally.	
We still do not know how to fully exploit hybrid computing 
architectures in our systems. We do not have a robust and 
plug-and-play framework to adapt their complexity to new 
custom applications. Although they are constantly being 
improved,	 our	 systems	 are	 also	 becoming	 increasingly	 dif-
ficult	to	modify	and	maintain.	As	developed	in	the	following	
subsections,	AI	and	ML	may	well	help	us	to	overcome	these	
limitations and may even deeply impact on the structure of 
our operational systems. 

12.6.1. Expected contributions of machine 
learning to ocean forecasting pipelines

Machine learning has long been used in ocean sciences 
and	operational	oceanography.	However,	these	applications	
have so far mostly been limited to data retrieval algorithms 
upstream	 of	 forecasting	 systems	 (remote	 sensing,	 quality	
control),	or	to	data	processing	and	analysis	 in	downstream	
applications	 (data	mining,	data	 fusion).	 In	 this	 context,	ML	
algorithms have been essentially seen as black boxes with-
out much physical basis. This perception is fundamental-
ly renewed with the emergence of physics based machine 
learning	 and	differentiable	 programming,	which	 now	allow	
to	bridge	physical	sciences,	scientific	computing,	uncertainty	
quantification,	and	machine	learning	(Carleo	et	al.,	2019).	

If	we	adopt	a	data-centric	viewpoint,	ocean	forecasting	sys-
tems can indeed be described as a succession of independent 
data	processing	steps	in	sequential	pipelines	(see	Figure	4.1).	
These pipelines include the collection of past observation-
al	 data,	 data-assimilation	 to	 reconstruct	 the	 current	 state	
of	 the	ocean,	 forecasting	with	a	physics-based	model,	 and	
eventually the post-processing and dissemination to users. 
Data is being processed with algorithms at each step of the 
pipelines. It is now obvious that modern machine learning 
has the potential to impact each step of the data-processing 
pipelines of operational oceanography and ocean forecast-
ing systems.

As	 mentioned	 above,	 many	 applications	 can	 be	 identified	
upstream or downstream of the core engines of ocean fore-
casting systems. Typical applications of ML upstream of core 
engines	include,	for	instance,	algorithms	for	alleviating	ob-
servational	noise,	for	retrieving	parameters	(Malmgren-Han-
sen,	2021),	or	for	data	quality	control	(Castelão,	2021).	ML	can	
thus	be	used	for	detecting	outliers	in	Argo	profiles	(Maze	et	
al.,	 2017).	 The	 range	 of	 possible	 downstream	 uses	 of	 core	
forecasting engines is even wider. ML is here expected to help 
design tailored services addressing key challenges (Persello 
et	al.,	2022),	such	as	improving	the	prediction	of	Lagrangian	
drift or detecting anomalous extreme events. 

However,	what	is	probably	more	difficult	to	perceive	is	how	
machine learning may soon affect the core engine of ocean 
forecasting	systems,	and	eventually	all	the	services	to	users.	
Machine learning and differentiable programming are in-
deed	opening	many	opportunities	in	computational	fluid	dy-

12.6. 
Opportunities of artificial intelligence for ocean forecasting systems
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namics	(Vinuesa	and	Brunton,	2021),	while	deeply	renewing	
inverse	methods	in	many	areas	(Cranmer	et	al.,	2020).	These	
recent advances could be leveraged for improving ocean 
models,	e.g.	for	better	accounting	for	unresolved	processes	
(Brunton	 et	 al.,	 2020;	 Zanna	 and	 Bolton,	 2021).	 They	 could	
also help improve data assimilation schemes (Bonavita and 
Laloyaux,	2020),	or	even	possibly	replace	full	inversion	pipe-
lines	(Fablet	et	al.,	2021).	

These recent advances open the possibility to design and 
train our core forecasting engines in such a way that their 
complexity	and	performance	could	be	optimised	for	specific	
applications,	ultimately	improving	our	ability	to	meet	the	di-
versity of user needs.

12.6.2. Designing fully trainable ocean 
forecasting systems core engines

The core engines of current ocean forecasting systems are 
based on two types of objects that are still quite indepen-
dent,	namely	ocean	circulation	models	and	data	assimilation	
methods.	 Ocean	 models,	 data	 assimilation	 methods,	 and	
their implementation in forecasting systems are being con-
tinuously improved. But our core forecasting engines are still 
rather	 static	 in	 their	 design	 and	 structure,	 due	 to	 techno-
logical,	 organisational	 and	historical	 reasons.	 For	 instance,	
ocean models are generally developed without taking into 
account how they will be implemented with data assimila-
tion.	As	such,	there	is	no	guarantee	of	the	optimality	of	the	
overall	design	of	our	systems	and	its	fit	for	purpose	in	spe-
cific	contexts.	

Recent developments at the interface of machine learning 
and	scientific	computing	could	open	the	possibility	of	opti-
mising the design of our core prediction engines according 
to	predefined	objectives.	Indeed,	beyond	the	improvements	
of	 specific	 components	 of	 ocean	models	 or	 data	 assimila-
tion	schemes,	the	real	benefit	to	be	expected	from	machine	
learning in forecasting systems is the ability to optimise 
entire pipelines with end-to-end strategies. The term end-
to-end here refers to the ability to optimise components of 
processing pipelines based on metrics measuring the per-
formance of the entire pipeline. End-to-end strategies may 
eventually	allow	the	design	of	fit	for	purpose	and	user-cen-
tric processing chains and products. 

There are obviously technological conditions to realise this 
potential. Integrating trainable components in core forecast-
ing engines is indeed greatly facilitated if these engines are 
already composed of independent modules with robust and 
stable interfaces. It is therefore necessary a gradual evo-
lution to make the system more modular and composable. 
Moreover,	if	we	want	to	take	advantage	of	end-to-end	strat-
egies,	 the	 core	 engines	 should	be	 fully	 differentiable.	 This	
would	allow	to	back-propagate	a	misfit	in	the	prediction	into	

an increment in the parameters of the engine. This is only 
possible if the core engine is written in a high-level differen-
tiable language or programming framework.

Such	prerequisites	may	at	first	appear	daunting,	but	a	grad-
ual	evolution	towards	modular,	composable,	and	differentia-
ble	 core	 engines	would	 also	have	 important	 side	benefits.	
First,	 this	effort	 to	redesign	our	core	engines,	may	actually	
provide a viable strategy for exploiting upcoming comput-
ing	architectures,	starting	 from	GPUs	(Kochkov	et	al.,	2021).	
It	may	also	simplify	the	maintenance	of	our	engines,	as	for	
instance	the	development	of	adjoint	models	(Hatfield	et	al.,	
2021),	 therefore	 speeding	 up	 the	 transfer	 from	 research	 to	
operation	 (R2O).	 Another	 benefit	 is	 also	 the	 built-in	 treat-
ment	of	uncertainties,	thanks	to	recent	advances	in	probabi-
listic	programming	(van	de	Meent	et	al.,	2021)	and	Bayesian	
Machine Learning 🔗6.  

12.6.3. Towards user-centric, ocean digital 
twins leveraging lightweight emulators

Looking	further	ahead,	it	can	be	guessed	what	future	digital	
twins of the ocean will eventually look like. The integration 
of AI components may indeed gradually change the under-
lying paradigm of ocean forecasting systems. While current 
systems essentially implement “single-core engines” with a 
predefined	level	of	complexity,	future	systems	may	be	based	
on	collections	of	core	engines,	tailored	to	the	specific	needs	
of particular users. These tailored core engines would in-
stantiate core methods and building blocks in a versatile and 
user-centric	way,	providing	fit	 for	purpose	 tools	and	prod-
ucts to users.

Whatever	form	digital	twins	will	eventually	take,	a	key	method-
ology will be the ability to train emulators of existing systems 
at reduced costs and with controlled complexity. As described 
above,	a	gradual	evolution	of	our	core	forecasting	engines	will	
be needed for leveraging the full potential of AI and ML. This 
transition may in particular leverage DDEs. They provide ap-
proximations	of	pre-existing	algorithms	(Kasim	et	al.,	2021)	and	
can be integrated in data assimilation schemes (Nonnenmacher 
and	Greenberg,	2021).	As	such,	DDEs	offer	a	good	solution	for	
building	 upon	 existing	 expertise	 and	 tools,	 while	 benefiting	
from	the	pace	of	scientific	and	technological	advances	in	AI.	

6.  https://jorisbaan.nl/2021/03/02/introduction-to-bayes-
ian-deep-learning.html 
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Palmer	et	al.	(2008)	used	“seamless”	to	refer	to	predictions	
across	 the	 range	 of	 weather	 and	 climate	 time	 scales,	 e.g.	
ranging from forecast in days to projections in decades. The 
WMO,	 in	 its	 document	 “Seamless	 prediction	 of	 the	 Earth	
system:	 from	minutes	 to	months”	 (WMO,	 2015),	 further	de-
veloped	 this	 concept,	 with	 a	 main	 focus	 on	 the	 weather	
component but also starting to consider its importance for 
the	ocean.	Then,	within	EuroGOOS	this	concept	has	been	ex-
panded to promote next generation of ocean services able 
to seamlessly span spatially from global ocean to coastal 
areas and estuaries as a continuum with high resolution in-
formation	(She	et	al.,	2021).	To	achieve	the	objectives	of	the	
seamless	approach,	numerical	ocean	models	need	to	evolve	
(Chassignet	and	Xu,	2021;	Fox-Kemper	et	al.,	2019)	towards:

• Use	of	nested	and	regional	downscaling	simulations,	
by means of high-resolution spatial grid spacing or us-
ing variable-resolution and multi-scale modelling;
• New parameterizations and improvement of the ex-
isting	 ones	 (e.g.	 air-sea	 parameterization,	 turbulence	
and	mixing,	 internal	 tides,	vertical	convection,	coastal	
estuaries	interface	with	open	ocean);
• More direct simulation of sea level changes and tides.

Seamless is also connected to coupling as global coupled 
ocean-atmosphere-land-ice modelling systems are used 
to	 perform	 climate	 change	 projections	 and	 studies,	 from	
decadal	 to	 seasonal	 timescales	 (Hewitt	 et	 al.,	 2017).	 The	
overall	advancements	of	numerics	 in	ocean	dynamics,	bio-
geochemistry,	weather	modelling,	and	hydrology	open	new	
opportunities for coupled systems to address predictions on 
short-range timescales from regional to coastal scales.

In	order	to	establish	a	seamless	marine	information	service,	
integrated	and	unified	ocean	observing	systems	and	seam-
less	 unified	 modelling	 and	 forecasting	 systems	 should	 be	
developed. Integrated ocean observing implies that ocean 
observations made by multiple sectors for all subsystems 
with	multiple	means	-	remote	sensing,	robotics,	and	in-situ	

-	are	 integrated,	while	monitoring	schemes	and	data	man-
agement	are	designed	in	an	unified	way,	so	that	the	observa-
tions,	after	being	integrated	with	the	seamless	models,	will	
be	able	to	fit	users’	purposes.	Furthermore,	ocean	observing	
should be cost effective and sustainable.

The seamless models can be based on mathematical equa-
tions	or	statistical	and	AI	algorithms,	which	simulate	or	em-
ulate marine physical-chemical-geological-biological sys-
tems.	 There	are	 still	 significant	 gaps	 in	 current	 forecasting	
capacity to reach seamless predictability. The development 
of a seamless modelling capacity will be discussed in the 
next	 subsections	 from	 three	aspects:	 space,	 time,	and	sys-
tem of systems. The seamless ocean earth system prediction 
models should be based on UOMs and including atmospher-
ic	models.	Development	of	UOMs	has	been	identified	as	one	
of	the	four	EuroGOOS	research	priorities	(She	et	al.,	2016).	

12.7.1. Optimal use of modelling workforce and 
model consolidation 

A seamless UOM modelling framework should be developed to 
leverage global efforts to enable joint code development. One 
notable feature of the ocean modelling community is the great 
diversity of the models but the very limited research workforce 
for each model. An incomplete survey of ocean circulation 
modelling by EuroGOOS (🔗7)	showed	that	EU	countries	use	
32 ocean models for operational and/or ocean climate model-
ling,	among	which	24	were	developed	in	the	EU	and	8	from	the	
US. Twenty ocean circulation models have been used in Eu-
rope	for	operational	forecasting	(Capet	et	al.,	2020).	In	the	US,	
at least ten ocean models are currently used for operational 
forecasts. If this count would be extended to ocean circulation 
models	developed	and	used	in	other	countries	(i.e.	Australia,	
Canada,	China,	and	Japan)	the	number	of	ocean	models	in	use	
could	be	huge.	 It	 is	well-known	 that	 a	 significant	workforce	
is needed to keep an ocean model at the state-of-the-art. 

7. https://eurogoos.eu/models/

12.7. 
Seamless prediction 

In	conclusion,	it	appears	that	we	are	at	the	beginning	of	an	excit-
ing	phase	in	the	evolution	of	ocean	forecasting	systems,	which	
could deeply transform the entire service offered to users. The 
integration of AI in ocean forecasting systems will require a 
gradual but profound change of the algorithms that constitute 
their underpinnings. This transition will take advantage of the 

wealth	of	expertise	on	ocean	physics,	observing	networks,	and	
user needs available in ocean forecasting centres. It will also 
require developing and nurturing new collaborations with the 
broader	AI	technological	and	scientific	community,	and	benefit	
from the adoption of open science practices.

CHAPTER 12. CHALLENGES AND FUTURE PERSPECTIVES IN OCEAN PREDICTION 358

https://eurogoos.eu/models/
https://eurogoos.eu/models/


However,	each	ocean	modelling	group	has	only	a	very	limited	
workforce for ocean model development. Even though joint or 
community model development has improved the situation for 
a	small	number	of	models,	the	number	of	ocean	model	devel-
opers	is	still	far	from	sufficient	for	most	of	the	models.	There-
fore,	 it	 is	necessary	 to	optimise	 the	use	of	ocean	modelling	
workforces focusing only on a limited number of models. The 
future UOMs can be made so that one model would have op-
tions	with	multiple	coordinates	and	parameterizations,	hence	
emulating different model behaviours. 

Optimal use of modelling workforce should be coordinated 
in	 national,	 regional	 (such	 as	 the	GRAs),	 and	 global	 scales	
so that the UOMs in different scales can be well addressed 
and consolidated with a critical mass of model developers. 
However,	it	is	not	always	possible	to	have	a	critical	mass	of	
model	 developers	 at	 the	 national	 level,	 as	 only	 countries	
with strong national investment in ocean science have such 
a capacity. It is easier to reach a critical mass at the regional 
or	global	levels.	In	fact,	most	of	the	effective	modelling	co-
operation is carried out at regional level. The global co-de-
velopment of models is probably less active due to both ad-
ministrative and political barriers. It is highly recommended 
to strengthen global collaboration on UOM development.

12.7.2. Development of seamless UOM for 
multiple temporal scales 

Predictability	in	an	ocean	earth	system	has	a	multi-scale	feature,	
relating to the spatiotemporal scales of its subsystems as well as 
their	interactions,	which	can	be	divided	into	forcing-based	pre-
dictability,	self-constrained	subsystem	predictability,	and	cou-
pled	system	predictability.	For	atmospheric	systems,	according	
to	the	high-resolution	global	forecast	model	experiments,	the	
upper limit of the self-constrained predictability for determinis-
tic prediction is two weeks. Longer-scale predictability is related 
to	blocking	events	with	time	scales	ranging	from	weeks	to	years,	
e.g.	MJO,	PNA,	NAO,	AO,	ENSO,	QBO,	which	relies	on	interaction	
between atmosphere and ocean-ice systems and solar radiation. 
It is well-known that the surface ocean is mainly dominated by 
forcing-based	predictability,	i.e.	variability	of	waves,	ice	and	sea	
level in synoptic scale are largely determined by weather condi-
tions. Subsurface ocean and sea ice can store forcing signals and 
release them to affect the atmosphere at a “slower” pace. This 
generates longer predictability in the coupled ocean-ice-atmo-
spheric	system.	MJO,	PNA,	NAO,	AO,	and	ENSO	are	all	phenomena	
generated in such a coupled system. As stated by Brian Hoskins 
in the WMO Lecture 20118: “The background provided by the lon-
ger	time-scales	and	by	external	conditions,	and	the	phenomena	
that occur on each range of time-scales in the seamless weath-
er-climate	prediction	problem,	give	the	promise	of	some	predic-
tive power on all time-scales”. 

8.  https://public.wmo.int/en/bulletin/predictability-be-
yond-deterministic-limit 

Most of these long-scale processes can still not be predicted 
successfully by current coupled-system models. UOM devel-
opment is a key to improve the earth system predictability 
in	the	current	stage	as	it	will	provide	insight	knowledge,	as	
well	as	simulate	the	processes	that	the	ocean-ice	system	fil-
ters,	absorbs,	and	 transfers	 the	atmospheric	signals	 into	a	
slow-motion signal and then feeds back to the atmosphere. 

To	reach	breakthroughs	in	longer-scale	predictability,	it	is	im-
portant	to	consider	that:	i)	ocean	earth	system	forecast	is	a	
probability	prediction	problem;	ii)	multi-model	ensemble	has	
shown expanded atmospheric forecasting skills than the de-
terministic	prediction;	 iii)	shorter-scale	phenomena,	although	
constrained	by	longer-scale	ones,	are	also	a	statistical	forc-
ing	to	the	 longer-scale,	 thus	should	not	be	treated	only	as	
noise;	and	iv)	solar	radiation,	volcano	eruption,	and	changes	
of pollutants in both ocean and atmosphere can affect the 
intrinsic signals in the system and then should be included. 
UOM development should address these issues. 

12.7.3. Geographic configurations and 
seamless UOM in space and in a marine system 
of systems

For	 a	 coordinated	 UOM	 development,	 proper	 geographic	
scales	should	be	defined	as	well,	 so	 that	both	scientific	 re-
quirements and collaboration needs are met. Three types of 
forecast	UOMs	can	be	expected:	i)	global-scale	coupled	UOMs	
aiming	at	longer-scale	prediction	of	the	earth	system,	which	
is not necessarily high resolution but should be able to use 
short-scale	as	a	statistical	forcing;	ii)	global	and	regional	scale	
coupled	models	aiming	at	produce	refined	forecast	within	a	
“foreseeable”	time,	e.g.	a	month,	for	which	high	resolution	will	
be	important;	and	iii)	for	“touchable”	spatiotemporal	scale,	i.e.	
inland water-estuary-coastal-regional sea in space and a few 
days in time. It should also be noted that the smaller-scale 
UOMs can be easily applied to long-term forecast applications 
when	forecasts	at	boundaries	are	well	defined.	

The coupled UOMs will mainly be developed for global and 
regional scale to address longer scales from months to sea-
sons.	For	the	regional	scale	coupled	UOMs,	geographic	cov-
erage	 should	be	 sufficiently	 large	 to	 reflect	 impacts	of	 the	
atmosphere-ocean coupling. The resolution of the coupled 
UOMs	can	be	a	few	kilometres	(mesoscale	resolving)	for	global	
scale and hundreds to thousands metres for regional scale to 
resolve sub-mesoscale eddies and narrow straits connecting 
sea	basins.	Therefore	for	regional	scale	coupled	UOMs,	flex-
ible grid and high-performance computing are two basic re-
quirements. For one regional scale there might be more than 
one coupled UOM.  

High resolution is required to provide a seamless prediction 
in	 space.	 For	 example,	 narrow	 straits	 connecting	 two	 large	
water bodies and archipelago water areas may need a res-
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olution	of	 100-1000 m;	 inland	waters-estuary-coastal-open	
sea	continuum,	essential	for	pollutant	transport	modelling,	
nutrient	 cycle,	 and	 carbon	 cycle	 modelling,	 needs	 also	 a	
similar model resolution. An even higher resolution (10-100 
m)	may	 be	 required	when	 dealing	with	 river	 inputs	 to	 the	
sea,	 impact	 of	 flooding,	 hydropower,	 barriers	 to	 pollutant	
transport,	 coastal	 inundation,	 compound	 flooding-surge	
events,	 and	 port	 management.	 Hence,	 a	 spatial	 seamless	
UOM	should	have	flexible	grids,	either	unstructured	grid	or	
dynamic two-way nested grid.

12.7.4. Evolution in short-, mid- and long-term 
perspectives

In	short-	to	mid-term	(3-5	years)	perspectives,	the	objective	
would be to develop a UOM framework and continuous im-
provement of prediction skills of the marine earth system 
models with a forecast range of 10 days to 1 month. The re-
search	should	focus	on:	(i)	establishing	UOM	global	coopera-
tion	framework	to	harmonise,	coordinate,	and	further	evolve	
existing	UOM	development	work;	(ii)	designing	the	UOM	con-
cept,	 framework,	 and	 multiple	 configurations	 for	 different	
scales,	 considering	 international	 cooperation	 and	 sharing	
of	best	practices,	optimal	use	of	workforce,	critical	mass	for	

UOM	development,	code	portability,	relocatability,	scalabili-
ty,	flexibility,	 resolvability,	and	 reducing	 the	 redundancy	of	
models;	 (iii)	 improving	model	 process	 description,	 so	 that	
each UOM sub-model can effectively model major features 
in	the	subsystem;	(iv)	investigate	possibility	for	establishing	
forecasting	 capacity	 in	 emerging	modelling	 areas,	 such	 as	
SPM,	marine	litter,	underwater	noise,	and	fisheries,	and	also	
develop	prototype	pre-operational	models	in	these	areas;	v)	
improving high-performance computing through code mod-
ernization;	(vi)	improving	the	UOM	subsystem	coupling;	and	
(vii)	develop	high-resolution	models	with	flexible	grids	and	
interfaces	with	basin	and	global	scale	models,	as	well	as	re-
solving coastal processes for downstream applications  

In	the	long-term	(10	years),	the	objective	is	to	improve	pre-
diction skills in time scales from months to seasons for cli-
mate,	physical,	and	biogeochemical	 systems,	establish	and	
improve	forecasting	capacity	in	emerging	areas	such	as	SPM,	
marine	litter,	underwater	noise,	and	fisheries.	For	the	ESP	in	
seasonal	and	longer	scales,	coupled	UOMs	including	atmo-
sphere-ocean-wave-ice coupling and ocean-optics-SPM-bio-
geochemical coupling will be developed for ensemble pre-
diction.	UOM	code	will	also	be	optimised	for	efficient	hybrid	
parallel computing. 

12.8. 
Operational forecasting and scenarios in a digital ocean 
A	Digital	Twin	of	the	Ocean	(DTO)	is	a	highly	accurate	model	
of	the	ocean	to	monitor	and	predict	environmental	change,	
human	 impact,	 and	 vulnerability,	 with	 the	 support	 of	 an	
openly accessible and interoperable dataspace that can 
function as a central hub for informed decision making (Fig-
ure	12.3)	 (see	 for	example	🔗9 ).	 	Such	an	 information	sys-
tem consists of one or more digital replicas of the state and 
temporal evolution of the oceanic system constrained by the 
available	observations	and	the	laws	of	physics,	making	im-
perative to integrate a set of models or software that pairs 
the	digital	world	with	physical	assets,	and	 to	 feed	 this	set	
with information from sensors. 

A DTO aims to deliver a holistic and cost-effective solution 
for the integration of all information sources related to seas 
and	oceans,	like	in	situ-data	and	satellite	information	com-
bined	with	 IoT	techniques,	Citizen	science,	state-of-the-art	

9. https://digitaltwinocean.mercator-ocean.eu/

ocean modelling together with AI and HPC resources into a 
digital,	 consistent,	 high-resolution,	multi-dimensional,	 and	
near real-time representation of the ocean. This will result 
in	a	shared	capacity	to	access,	manipulate,	analyse,	and	vi-
sualise marine information. The knowledge generated by 
the	DTO	platform	will	empower	scientists,	citizens,	govern-
ments,	and	industries	to	collectively	share	the	responsibility	
to	monitor,	preserve	and	enhance	marine	and	coastal	hab-
itats,	while	promoting	action	and	 sustainable	measures	 in	
the	framework	of	the	blue	economy	(tourism,	fishing,	aqua-
culture,	transport,	renewable	energy,	etc.),	contributing	to	a	
healthy and productive ocean.
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Figure 12.3. Schematic representation of Digital Twin of the Ocean concept.

12.8.1. Construction of an open DTO  
service platform

To	properly	address	the	construction	of	a	digital	twin,	break-
throughs are needed in various aspects of the digital twin 
information	 system,	 including	 information	 completeness	
and	quality,	 information	access	and	intervention,	as	well	as	
the	underlying	supporting	infrastructure,	tools,	and	services.	
The	operational	pilot	of	DTO,	under	development	at	Europe-
an	level,	will	encompass	the	production	of	a	new	quality	of	
information,	incorporating	human	systems	in	the	prediction	
problem and leveraging advances in information theory and 
digital technologies. Ensembles of simulations combining 
models	 from	 different	 disciplines,	 informed	 by	 spatial	 cor-
relations determined from high-resolution observations and 
by data-driven learning of unknown processes and missing 
constraints,	will	enable	the	DTO	to	reduce	uncertainty	in	esti-
mation	and	forecasting	of	ocean	states,	changes,	and	impacts.	

Enhancing information quality requires a step change in 
computational complexity. This means adequate infrastruc-
ture	including	support	of	very	high	computing	throughputs,	
concurrency,	and	extreme-scale	hardware.	However,	it	is	im-
portant to conceal this complexity so that users can run and 
configure	 involved	 workflows	 and	 access	 the	 information	
but	 without	 requiring	 expert	 intervention.	 In	 addition,	 the	
underlying	models	and	data	need	to	be	scientifically	sound.	

This will require a multi-layered software framework where 
tasks	 like	 simulations,	 observational	 data	 ingestion,	 and	
post-processing are treated as objects that are executed on 
federated	 computing	 infrastructures,	 feed	 data	 into	 virtual	
data	repositories	with	standardised	metadata,	and	from	which	
a heavily machine-learning-based toolkit extracts information 
that can be manipulated in any possible way. The result should 
be	the	provision	of	on-demand,	conveniently	accessible	mod-
elling	and	simulation	products,	data	and	processes	or	MSaaS.
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Figure 12.4. DTO Architecture.

12.8.2. Underlying architecture

The multi-layered framework enabling this digital twin ocean 
pilot operational service comprises 3 major interrelated 
structural	elements	(Figure	12.4):	

• A DTO data access layer that mixes results and tools 
from ongoing projects and existing infrastructures with 
new	developments	 targeting	data	 ingestion,	 and	data	
harmonising into a Data lake for subsequent use in the 
DTO engine; 

• A DTO engine comprising a set of modelling capabil-
ities,	including	on-demand	modelling	and	what-if	sce-
nario	modelling	that	fill	the	observational	gaps	in	space	
and	time	 in	a	physically	consistent	way,	and	observa-
tion-driven learning of unknown processes and missing 

constraints,	which	will	enable	to	reduce	uncertainty	in	
estimation and forecasting; 

• A	 DTO	 interactive	 service	 layer	 supplying	 tools,	 li-
braries,	and	interfaces	to	simplify	running	and	config-
uration	of	workflows,	as	well	as	access	to	information,	
including its analysis and visualisation. 
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As described in Chapter 4,	PQ	assessment	is	an	essential	ser-
vice component for any operational oceanographic centre. In 
the	case	of	climate	and	short-term	forecasting	services,	val-
idation	of	ocean	models	 (physical	 and	biogeochemical)	 is	 a	
crucial issue. Despite the continuous progress of the services 
towards	providing	regularly	updated	quality	information,	there	
are	still	gaps	and	deficiencies	 in	the	operational	capacity	to	
assess model solutions. It is still challenging to properly quan-
tify the uncertainties in real time and in a way that is directly 
understandable	and	useful	to	the	users.	Capet	et	al.	(2020),	in	
their review of the operational modelling capacity in European 
Seas,	pointed	out	that	only	20%	of	operational	coastal	model	
services provide a dynamic uncertainty together with the fore-
cast	products.	This	deficit	in	terms	of	operational	model	vali-
dation processes may be mainly linked to the lack of real-time 
access to a local ocean observation network. 

This limitation seems to be partially alleviated within core 
services that have a regional or global focus. In these ser-
vices,	 the	PQ	processes	seems	to	be	favoured	by:	1)	a	wid-
er scope (services dealing not only with forecast models but 
also with the monitoring component and observational data 
products);	2)	a	more	integrated	data	use	(for	instance	through	
data	assimilation	in	ocean	analysis	and	reanalysis	products);	
and	3)	wider	spatial	coverages	(allowing	the	use	of	a	higher	
number of observational data sources to validate model pre-
dictions).	The	Copernicus	Marine	Service	is	one	of	these	core	
comprehensive services and in recent years has built some 
standards for model assessments and delivery of PQ infor-
mation	to	end-users.	This	service,	and	its	evolution	roadmap	
in	terms	of	PQ	processes,	can	illustrate	the	main	expectations	
for the future evolution of validation and quality information 
on operational oceanography products. 

As	described	 in	Sotillo	et	al.	 (2021),	 the	Copernicus	Marine	
Service ensures:

• Standardised processes to assess each product’s sci-
entific	quality	against	appropriate	metrics;
• Product quality information regularly updated and avail-
able	from	a	central	website,	called	the	“PQ-Dashboard”	
(https://pqd.mercator-ocean.fr/);
• Specific	PQ	documentation	delivered	with	each	Coperni-
cus	Marine	Service	product,	completed	by	regularly	updated	
quality	summaries,	including	fit	for	purpose	information,	
and evolving towards peer reviewed technical reports.

From	this	baseline,	the	Copernicus	Marine	Service	Prod-
uct Quality Strategic Plan 🔗10,	identified	a	list	of	developments,	
challenges and opportunities foreseen for the next Coperni-
cus-2	service	phase	period	(2022-2028).	The	availability	of	an	
increasing number of ocean observations should enable and 
support	new	developments,	and	eventually	improve	the	infor-
mation quality associated with oceanographic products. The 
three main working lines  along which the plan will unfold 
are discussed in the following subsections and shown in Fig-
ure	12.5:	 future	observations,	 future	developments	 in	OO	cen-
tres,	and	future	quality	information.	These	lines	are	the	way	
forward for the future development of model validation and 
quality assessment techniques.

12.9.1. New observations for improved quality 
assessment

The use of new satellite products (e.g. from next Sentinel 
missions	or	wide	swath	altimetry)	will	enable	a	significant	
increase	of	data	coverage	towards	higher	resolution,	allow-
ing not only a quality increase but also more validation op-
portunities for a wide range of operational oceanography 
products. The continuation of the BGC-Argo and Deep Argo 
missions and networks are crucial for providing quality in-
formation in areas and on variables that are still highly un-
dersampled. The potential extension of Argo coverage to-
wards coastal areas may also be essential for its important 
socio-economic	impact	and	the	benefit	for	coastal	model	as-
sessments.	In	that	sense,	there	are	some	on-going	initiatives	
in the framework of R&D Projects (such as the Euro-Argo RISE 
H2020	one)	to	test	Argo	on	shelf	extensions,	targeting	shal-
lower waters in European marginal seas. 

Additionally,	 operational	 oceanography	 centres	 should	 im-
prove the effective use of existing observing products and 
networks through:

• Upgrade of PQ processes to properly assess high fre-
quency datasets: PQ metrics are generally computed 
daily.	However,	currently,	and	to	a	greater	extent	in	the	
future,	some	near	real-time	(NRT)	model	product	data-
sets that are delivered with higher frequency (i.e. every 
15	minutes)	would	need	a	dedicated	assessment.	

10.  https://marine.copernicus.eu/about/service-evolu-
tion-strategy 

12.9. 
Quality assessment for intermediate and end users 
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• Enhancement of water mass assessment at synoptic 
scales:	at	present,	sampled	only	partially.	To	improve	
their	characterisation	in	the	upper	ocean,	it	is	neces-
sary to extend the use of available observational plat-
forms	 (i.e.	more	ship	of	opportunity	measurements,	
thermosalinograph/ferry	box	data,	new	glider	oppor-
tunities,	sea	mammals).	Below	2000m,	water	mass	dis-
tributions	are	still	poorly	understood,	and	historical	
data do not guarantee the reliability of existing cli-
matologies.	Deep	floats	and	deep	ocean	observations	
also need to be considered to support global predic-
tion assessment.   

• Promote	the	use	of	data	from	specific	multi-platform	
campaigns	(specially	in	hot	spots):	regular	and	periodic	
campaigns in the same waters are necessary for climate 
monitoring and periodic model assessments (i.e. glider 
periodic	missions	along	straits);	current	measurements	
are also much needed (both Lagrangian and Eulerian 
observations),	not	only	for	temperature	and	salinity.

• Ensure easy access to historic observations: there are 
large amounts of data from research surveys that are 
either not available or available only in operational cat-
alogues. These independent data (in the sense of not 
assimilated)	can	be	crucial	for	assessing	model	perfor-
mance. A progressive integration of this kind of data will 
be	advantageous	for	forecasters,	and	its	“discovery”	is	
foreseen to increase. Access to these sources should be 
automated,	data	 loss	reduced,	and	the	 investment	on	
data collection will be recovered. In the context of Co-
pernicus	Marine	Service,	EMODNET,	EuroGOOS	alliances	
or	other	networks,	it	is	crucial	for	OO	centres	and	data	
providers to connect initiatives and efforts to better in-

tegrate	the	existing	ocean	observing	systems,	as	well	as	
the new expected instruments/observations.

12.9.2. Expected development of quality 
assessment techniques

The use of ensemble data assimilation methods and the ex-
pected increase in the use of prediction systems based on 
model	ensembles	should	significantly	improve	the	quantifica-
tion	of	model	product	uncertainty	using	probabilistic	scores,	
the	evaluation	of	error	propagation,	and	of	model	systematic	
errors and attractors. An increasing number of high-resolution 
observations will be used to characterise model skill at all ob-
served	scales,	while	advanced	statistical	techniques	(such	as	
deep	learning)	should	contribute	to	improve	cross-validation	
capabilities	between	different	types	of	observations,	and	be-
tween observations and models. 

Errors	in	the	ocean	circulation	models,	in	particular	on	ver-
tical	transport	and	mixing,	strongly	impact	the	coupled	bio-
geochemical	model	solutions.	Thus,	monitoring	errors	in	key	
parameters of the physical forcing should characterise errors 
(their	 causes)	 and	 subsequent	 impacts	 in	 biogeochemical	
solutions. The mixed layer depth variable is a typical exam-
ple of this due to its impact on biogeochemistry processes.

Quality assessment of model downscaling should be eased 
in the future by advances in integrated systems (following 
on the idea of monitoring uncertainties “propagating” along 
the	 value	 chain).	 The	 added	 value	 of	 downscaling	 (higher	
resolution with better representation of the ocean process-
es)	needs	 to	be	assessed	 through	a	more	systematic	 com-
parison of global vs. regional and coastal models. To this 
aim,	alternative/innovative	validation	metrics	are	needed	for	

Figure 12.5. New	observations	enable	new	developments	in	operational	oceanography	centres,	which	will	
also	benefit	from	growing	computational	resources	and	advanced	AI	and	big	data	techniques.	This	will	allow	
significant	improvements	of	the	quality	information,	improving	its	relevance	and	its	frequency.
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The	first	operational	phase	2014-2021	of	 the	Copernicus	Ma-
rine Service has successfully implemented a service chain 
devoted	to	ocean	information,	involving	committed	producers	
throughout	Europe,	and	serving	expert	users	worldwide.	The	
Copernicus Marine Service will develop an ambitious 7-year 
plan	 (Copernicus	 2,	 2021-2027)	 with	 staged	 implementation	
that	answers	to	increasing	user	and	policy	(e.g.	EU	Green	Deal)	
needs. The objective is to fully embrace the capabilities of new 
digital services and implement the next generation of ocean 
monitoring and forecasting for the Blue/White/Green ocean.

Copernicus Marine Service products and services are deliv-
ered	by	means	of	 state-of-the-art,	user-oriented,	 scientific	
and	 technical	 methodologies,	 which	 induces	 openness	 to	
newly developing ideas and associated capacities. Apart 
from	guaranteeing	service	continuity,	the	Copernicus	Marine	
Service is continuously evolving to ensure that its services 
and products remain state-of-the-art and meet a wide range 

of existing and emerging user and policy needs related to 
all	marine	and	maritime	sectors:	maritime	safety,	coastal	en-
vironment	monitoring,	trade	and	marine	navigation,	fishery,	
aquaculture,	marine	renewable	energy,	marine	conservation	
and	biodiversity,	ocean	health,	climate	and	climate	adapta-
tion,	recreation,	education,	science	and	innovation.

The	 following	major	 improvements	 of	 current	 products,	 as	
well	as	new	products	benefiting	from	science	and	technology	
advances,	are	already	planned	to	ensure	an	enhanced	con-
tinuity	of	the	service,	keeping	the	service	at	the	state-of-art	
and	at	internationally	competitive	and	fit	for	purpose	stan-
dards,	 considering	 the	 European	 policies’	 priorities	 (Green	
Deal,	 Common	Fisheries	Policy,	Marine	Strategy	 Framework	
Directive,	and	Convention	on	Biological	Diversity):

• High	 resolution	monitoring,	modelling,	 and	 forecast-
ing of the blue ocean with an increase of the horizontal 

12.10. 
Expected future evolution of Copernicus Marine Service 
products and services

model assessment that avoid double penalty when compar-
ing	different	resolution	models	(Ebert,	2009).	More	relevant	
skill	 scores	 are	 needed	 for	 forecasting,	 implementing	 new	
approaches	to	validate	and	inter-compare	new	physical,	and	
biogeochemical model products at very high-resolution.

Finally,	 there	 is	 a	 growing	 need	 to	 identify	 and	 understand	
long-term trends in ocean parameters and their impact at re-
gional to coastal scale. The validation of such signals is chal-
lenging for physical and even more for biogeochemical param-
eters,	such	as	carbon,	oxygen,	and	ocean	acidification,	which	
are of great interest on both regional and global scales. It is 
crucial to improve the validation methodology and to increase 
the number of reference observations as much as possible.

12.9.3. Quality information communication 
improvements

There	is	an	increasing	demand	for	regional	fit	for	purpose	
assessments,	especially	in	coastal	areas.	The	quality	infor-
mation content must evolve following users’ needs. The cur-
rent OceanPredict product quality metric monitoring has to 
be	complemented	with	process-	(and	user-)	oriented	met-
rics,	and	better	quantification	of	uncertainties.	Probabilis-
tic scores and robustness assessments with multi-product 

(model	and	observed)	 intercomparisons	should	help	an-
swer many user requirements. The use of application-ori-
ented	metrics,	 such	as	 Lagrangian	drift	metrics	or	 “event	
oriented” metrics (e.g. categorical scores based on thresh-
olds)	should	also	be	generalised.	

The collaboration among forecasting services to agree on in-
ternational validation standards must continue. Collabora-
tion between forecast services and users should result in the 
introduction of new user-oriented metrics to be considered 
as local case studies and validation “benchmarks”. 

Operational oceanography centres will have to develop both 
high-level summarised quality information and high-resolution 
uncertainty estimates to be delivered alongside the products 
following	 FAIR	 guidelines,	 as	 initiated	by	 Peng	 et	 al.	 (2021a,	
2021b).

High-level	 quality	 summaries,	 such	 as	 product	 “maturity	
matrices”,	will	guide	users	 to	choose	the	most	appropriate	
product	 for	 a	 given	use,	while	 the	uncertainty	 information	
delivered alongside the product will enable the access to tai-
lored	product	quality	information,	as	a	valuable	addition	to	
many oceanographic applications. 
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resolutions of the current systems by a factor of at least 
3	(e.g.	global	1/36°,	regional	1/108°).	Coupling	and	inter-
action	with	waves,	sea	ice,	atmosphere,	biogeochemistry,	
and rivers will also be implemented for improved ocean 
forecasts. New high-resolution sea level observations 
from	the	SWOT	wide	swath	altimeter	mission,	new	ocean	
topography,	 sea	 surface	 temperature,	 salinity	 from	 the	
Sentinel,	HPMC,	CRISTAL,	and	CIMR	missions	will	be	 in-
cluded as observational products. These improvements 
will impact the different Copernicus Marine Service areas 
and	their	key	applications:	maritime	security	and	safety,	
maritime	 transport,	 pollution	 monitoring	 and	 offshore	
operations,	and	coastal	zone	monitoring	and	forecasting.

• Probabilistic	 forecasting	 and	 extended	 (1-month)	
forecasts	based	on	model	ensembles,	allowing	a	better	
characterization of model uncertainties in analyses and 
forecast. Data assimilation techniques will evolve to-
ward more multivariate schemes to constrain in a more 
extended and coherent way the different inanimate 
components	 of	 the	marine	 environment	 (physics,	 sea	
ice,	and	biogeochemistry).	Coupled	ocean/atmosphere	
data assimilation will also be implemented. Probabilis-
tic forecasts will be instrumental for early warning sys-
tems,	and	to	support	decision-making	based	on	opera-
tional	products	by	better	characterising	the	confidence	
level associated with the provided information.

• Reanalyses of the 20th century physical and biogeo-
chemical data for the global ocean and the European 
regional	 seas,	 assimilating	 historical	 in-situ	 obser-
vations (e.g. sea surface temperature and tige gauges 
mainly	for	the	first	half	of	the	century	and	temperature	
and	salinity	profiles	from	1950	onwards).	The	purpose	
of these reanalyses is to better assess the past evolu-
tion of the ocean in response to climate change and to 
better monitor Essential Ocean Variables and Essential 
Climate Variables related to the ocean.

• Step	changes	in	Arctic	Ocean	monitoring,	modelling,	
and	 forecasting	 through	 upgrade	 in	 sea-ice	 models,	
improved coupling with the atmosphere and hydrology 
(river	discharge	and	nutrient	loads),	higher-resolution,	
extended	 forecasting	 ranges	 from	a	week	 to	a	month,	
and ensemble forecasting for an improved characteriza-
tion of forecasting uncertainties. Provision of icebergs’ 
forecasts will complement the information produced 
for ice services. Improved satellite products on sea-ice 
detection and a pan-Arctic ice chart will complete the 
offer. These evolutions will address user needs regard-
ing	maritime	 transport	 (e.g.	 ship	 routine)	 and	marine	
safety	 in	sea-ice	and	 iceberg	 infested	regions,	marine	
resources	 (fisheries	 and	 conservation)	 and	 climate	
change impact in the Arctic.

• Air/sea	 fluxes	 of	 CO2	monitoring	 and	modelling,	 in-
cluding advanced modelling/data assimilation systems 
at global and regional scales as well as including er-
ror estimations. Foreseen developments also include 
processing and quality control of novel in-situ obser-
vations from the BGC Argo array and improvement of 
observation-based products derived from Neural Net-
work methods. These evolutions are required by the Co-
pernicus anthropogenic CO2 service as well as for blue 
carbon monitoring.

• Coastal zone monitoring and forecasting with im-
proved capacities to link and co-production between 
coastal systems with Copernicus Marine Service up-
stream systems. Consistency and river-ocean conti-
nuity will be ensured by using standardised methods 
to	couple	hydrological	models	(for	river	run-offs)	with	
global,	regional,	and	coastal	ocean	models.	Time-series	
(past,	present,	forecasts)	of	standardised	modelled	riv-
er	discharges	of	freshwater,	nutrients,	particulate,	and	
dissolved matter will be provided. Coastal zone mon-
itoring will also be enhanced through satellite obser-
vations	–	based	on	Sentinel	(especially	S1,	S2,	S3,	and	
S6)	and	other	missions	-	for	nearshore	bathymetry	and	
shoreline	position	and	their	evolution,	high-resolution	
winds,	 spectral	wave	 information,	detection	of	plastic	
debris,	monitoring	of	marine	 litter,	 ecosystems,	water	
quality,	 and	 sea	 surface	 temperature.	 Given	 the	 huge	
social,	economic,	and	biological	value	of	coastal	zones,	
these improvements will contribute to a wide range of 
applications	(coastal	zone	management,	climate	adap-
tation,	 coastal	 modelling,	 aquaculture	 and	 fisheries,	
navigation	and	shipping,	marine	renewable	energy,	oil	
spill	management	and	search	and	rescue),	 supporting	
various policies and resilience to climate change.

• Marine biology monitoring and forecasting with ma-
jor improvement in numerical models to represent 
processes	 (e.g.	 benthic/pelagic	 coupling,	 riverine	 in-
puts)	 increasing	 accuracy,	 advanced	 data	 assimilation	
techniques (e.g. combining state and parameter esti-
mation),	 and	 new	 modules	 linking	 optical	 properties	
in the near-surface ocean to biomass to better couple 
ocean colour and subsurface data from in-situ such as 
BGC Argo. End-to-end ecosystem modelling will also be 
included to link along the food web low trophic levels 
(e.g.	 plankton)	 to	 mid-trophic	 levels	 (e.g.	 micronek-
ton),	 and	 to	 high-trophic	 levels	 (e.g.	 predator	 fishes	
and	marine	mammals).	Marine	biology	monitoring	will	
also be enhanced through the improvement of gather-
ing,	processing,	quality	control,	and	characterization	of	
biogeochemical and marine biology in-situ (e.g. optical 
and	acoustic	sensors)	and	satellite	(e.g.	S2,	S3	and	hy-
perspectral)	 observations	 in	open	and	 coastal	 oceans.	
These products will support international and European 
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At	the	beginning	of	the	third	millennium,	ocean	science	was	
largely	 competent	 for	diagnosing	problems.	However,	 its	
ability to offer solutions of direct relevance to sustainable 
development requires a massive upgrade. 11 12

The world needed a large-scale and adequately resourced 
campaign to transform ocean science empowering and engag-
ing	stakeholders	across	disciplines,	geographies,	generations,	
and	genders,	and	of	sufficiently	 long	duration	to	deliver	the	
lasting	change	that	is	required.	In	2016,	the	IOC	of	UNESCO	
(🔗13)	initiated	a	concept	for	this	campaign.	In	December	2017,	
this work culminated in the proclamation by the 72nd Session	of	
the UNGA of the UN Decade of Ocean Science for Sustainable 
Development	2021-2030	(referred	to	as	‘the	Ocean	Decade’).	
UNGA called on the IOC to prepare an Implementation Plan for 
the	Ocean	Decade	in	consultation	with	Member	States,	United	
Nations	partners,	and	diverse	stakeholder	groups.

In	2021,	the	United	Nations	launched	the	Ocean	Decade	(2021-
2030)	(🔗14)	whose	aim	is	to	‘support efforts to reverse the 

11.	 	https://marine.copernicus.eu/sites/default/files/me-
dia/pdf/2021-09/CMEMS%20Service_evolution_strategy_RD_
priorities_v5-June-2021.pdf	
12.  http://marine.copernicus.eu/science-learning/ser-
vice-evolution/about-stac 
13. https://ioc.unesco.org/
14. https://www.oceandecade.org

cycle of decline in ocean health and gather ocean stakehold-
ers worldwide behind a common framework that will ensure 
ocean science can fully support countries in creating improved 
conditions for sustainable development of the Ocean’. In this 
framework,	the	IOC	plays	an	important	role:	it	coordinates	the	
Decade’s	design	and	preparation,	 identifies	programmatic	
contributions,	and	implements	the	Decade.

The vision of the Ocean Decade is ‘the science we need for 
the ocean we want’. The mission is ‘to catalyse transforma-
tive ocean science solutions for sustainable development, 
connecting people and our ocean’.

Seven outcomes describe what should be the ‘ocean we 
want’ at the end of the Ocean Decade:

1. A clean ocean where sources of pollution are identi-
fied	and	reduced	or	removed.
2. A healthy and resilient ocean where marine ecosystems 
are	understood,	protected,	restored	and	managed.
3. A productive ocean supporting sustainable food sup-
ply and a sustainable ocean economy.
4. A predicted ocean where society understands and can 
respond to changing ocean conditions.
5. A safe ocean where life and livelihoods are protected 
from ocean-related hazards.
6. An accessible ocean with open and equitable access to 
data,	information	and	technology	and	innovation.

12.11.The United Nations Decade of Ocean Science for 
Sustainable Development

Union	objectives	in	terms	of	biodiversity,	development	
of	sustainable	food	resources,	water	quality,	assessment	
of blue carbon in the overall carbon stake accounting.

• Long-term projections of the marine environment (both 
physics,	biogeochemistry,	and	marine	ecosystems)	under	
climate change from global to regional scales (downscal-
ing	of	climate	scenarios),	and	associated	consequences	
for	main	stocks	of	exploited	fishes.	These	products	will	
support climate assessments for decision-making on 
adaptation  and mitigation of climate risks (e.g. coastal 
floods,	surges,	etc.).

• Enhanced digital services with online cloud processing 
capabilities for manipulating and processing data with 
advanced	analytics	and	scientific	computing	software	(e.g.	

artificial	intelligence	toolboxes),	access	to	Sentinel	Level	
1&2	data,	marine	data	(e.g.	from	EMODnet,	SAF,	etc.),	and	
connection to HPC computing nodes. This will consoli-
date the Copernicus Marine Service as a one-stop shop 
for operational and digital ocean services.

A document 🔗11 presenting the Copernicus Marine Service 
Evolution Strategy for R&D priorities has been prepared by 
its STAC 🔗12 and reviewed by MOI. This document details the 
expected future products and services by Copernicus Marine 
Service and the required developments. It is a living doc-
ument,	 as	 it	 is	 updated	periodically	 according	 to	 feedback	
from	users	and	policy	needs,	the	status	of	scientific	devel-
opments achieved within and outside the Copernicus Marine 
Service	community,	and	to	the	high-level	Copernicus	Marine	
Service evolution strategy. 
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7. An inspiring and engaging ocean where society un-
derstands and values the ocean in relation to human 
wellbeing and sustainable development.

The	 decade	will	 be	 implemented	 via	 “Actions”,	 which	 are	
the tangible initiatives that will be carried out across the 
globe	 over	 the	 next	 ten	 years	 to	 fulfil	 the	 Ocean	 Decade	
vision. They will be implemented by a wide range of propo-
nents,	 including	 research	 institutes	 and	universities,	 gov-
ernments,	 UN	 agencies,	 intergovernmental	 organisations,	
other	 international	 and	 regional	 organisations,	 business	
and	 industry,	 philanthropic	 and	 corporate	 foundations,	
NGOs,	educators,	community	groups	or	individuals.	Actions	
can	be	implemented	by	promoting	Activities,	Contributions,	
specific	Programs	or	Projects.	

The Ocean Decade will involve a large number of partners 
and	actors	around	 the	world,	and	hence	 it	 cannot	be	 rig-
idly	governed.	A	simple,	robust	coordination	structure	will	
manage	day-to-day	implementation.	The	DCU,	to	be	locat-
ed	 at	 the	 IOC	 Secretariat,	 will	 be	 the	 central	 hub	 for	 the	
coordination of Ocean Decade activities. Governments or 
partners will host a number of Decade Coordination Of-
fices	and	DCCs	–	referred	to	as	decentralised	coordination	
structures – that will be located in different regions around 
the world. These structures will help to coordinate efforts 
between	 national,	 regional,	 and	 global	 initiatives,	 share	
knowledge	and	tools	developed	through	the	Ocean	Decade,	
create	links	between	potential	Decade	partners,	and	moni-
tor and report on the impact of the Decade. One DCC will be 
devoted to Ocean Prediction 🔗15.

The following subsections describe some examples of Ac-
tions and Collaborative Centres that will be linked to OOFS.

12.11.1. The Decade Collaborative Centre for 
Ocean Prediction

DCCs serve as the main interface between Decade Actions 
and the DCU at the IOC-UNESCO Secretariat. MOI has been 
selected to host the DCC for Ocean Prediction. It will provide:

• A communication and collaboration hub bringing to-
gether Decade programmes with ocean prediction activi-
ties,	institutes,	and	organisations	outside	of	the	Decade;

• A global technical and organisational structure to 
establish	a	pilot	 for	a	Global	Ocean	Data	Processing,	
Modelling,	and	Forecasting	System,	building	on	the	in-
novations generated by the Decade programmes and 
other	national,	regional,	and	international	partners.

15.  https://www.oceandecade.org/news/decade-collabo-
rative-centres-to-provide-focused-regional-and-themat-
ic-support-for-decade-actions/

The DCC for Ocean Prediction will ensure that the efforts of 
multiple Decade programmes combine to meet Decade ob-
jectives and that innovations are integrated into operational 
ocean forecasting systems through a harmonised global net-
work with shared information and services.

12.11.2. CoastPredict Program

The	University	of	Bologna	(Italy)	was	selected	for	another	the-
matic DCC which will focus on coastal resilience in a changing 
climate. The same University is also leading the CoastPredict 
Programme that was endorsed as a Decade Programme of 
Ocean	Science	in	June	2021.	

CoastPredict is one of the 3 Programmes co-designed with 
GOOS,	and	 it	has	the	purpose	of	revolutionising	the	global	
coastal ocean observing and forecasting sector (🔗16).	 The	
high-level objectives of CoastPredict are:

1. A predicted global coastal ocean;
2. The	upgrade	to	a	fit	for	purpose	oceanographic	infor-
mation infrastructure;
3. Co-design and implementation of an integrated coastal 
ocean observing and forecasting system adhering to best 
practices	and	standards,	designed	as	a	global	framework,	
and implemented locally.

The Global Coastal Ocean is a concept central to the trans-
formative science pursued by CoastPredict. CoastPredict 
will	re-define	the	concept	of	the	Global	Coastal	Ocean	that	
was	 firstly	 described	 as	 follows	 by	 Robinson	 and	 Brink	
(2006; concept developed in volumes 10 to 14 of “The Sea” 
series):	 ‘the coastal ocean – that area, extending inshore 
from the estuarine mouths to river catchments affected by 
salt waters and offshore from the surf zone to the continen-
tal shelf and slope where waters of continental origins meet 
open ocean currents.’

According	to	this	concept,	all	coastal	ocean	regions	are	an	in-
terface	area	where	atmosphere,	land,	ice,	hydrology,	coastal	
ecosystems,	 open	 ocean,	 and	 humans	 interact	 on	 a	multi-
plicity of space and time scales that need to be resolved with 
a	proper	observing	and	downscaling	methodology,	including	
the consideration of uncertainties. 

The legacy of CoastPredict will be new science for the observ-
ing	systems,	and	new	methods	for	the	development	of	reli-
able predictions extending as far as possible into the future 
to	solve	problems	co-defined	with	stakeholders.	Additional-
ly,	it	will	enhance	the	capacity	to	formulate	R2O	practices,	a	
new set of coastal observing and modelling standards for all. 
This will go hand-in-hand with the organisation and upgrade 
of the basic global ocean information infrastructure for open 

16. https://www.coastpredict.org/
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and free access to coastal information using standards and 
best practices. 

CoastPredict will capitalise on three previous major interna-
tional initiatives:

1. GOOS Coastal observation panels (i.e. COOP and  suc-
ceeding	PICO).	COOP	started	in	2000	to	define	a	strategy	
for integrated observing and forecasting in the coastal 
areas. One of the main outcomes was the recommenda-
tion	 that	 a	 global	 network	 of	 observations,	 data	 com-
munications,	data	management,	and	data	analysis/fore-
casting should be secured providing economies of scale. 
Another important COOP/PICO outcome was the initial 
definition	 of	 common	 variables	 to	 be	 monitored	 and	
forecasted	in	the	coastal	areas.	However,	PICO’s	work	did	
not continue because the international ocean observing 
network was not adequately organised and technology 
was	not	yet	ready	for	data	collection	on	biogeochemistry,	
biodiversity,	and	other	marine	environmental	variables.	
Furthermore,	 the	 satellite	observing	 system	 for	 coastal	
areas was still under development (except for coastal 
ocean	colour).

2. OceanPredict and its COSS-TT. OceanPredict organised 
the global ocean observation uptake for the develop-
ment of global and regional forecasting systems. In ad-
dition,	OceanPredict/COSS-TT	defined	 the	 international	
quality	 control	 standards	 for	 ocean	 analyses,	 reanaly-
ses,	and	 forecasts	 in	 the	coastal	ocean	and	shelf	seas.	
COSS-TT promoted the use of OceanPredict large scale 
products for seamless integration of ocean to coastal 
forecasting,	 defined	 the	 state-of-the-art	 methodology	
for	 downscaling,	 data	 assimilation,	 array	 design	 in	 the	
coastal/shelf areas. COSS-TT focuses on advancing sci-
ence in support of coastal forecasting and is one of the 
backbones of CoastPredict. 

3. The	JCOMM.	From	2000	to	2019,	JCOMM	has	coordinat-
ed	 ocean	 observing	 networks,	 in	 particular	 the	 GLOSS	
network for tide gauges and the HF radar network. Fur-
thermore,	it	started	to	develop	coastal	services	for	wave	
and	storm	surges	by	meteorological	offices	in	developing	
countries.	Moreover,	it	has	coordinated	the	development	
of	marine	environmental	emergency	services.	However,	
such	 developments	 led	 by	 JCOMM	were	 not	 fully	 inte-
grated and connected with the growing oceanographic 
research communities of OceanPredict and COSS-TT. 
While the observing systems and the large-scale ocean 
forecasting	 systems	are	now	 coordinated	 in	GOOS,	 the	
coastal downscaling and forecasting research develop-
ments are not currently connected to coastal services.

All these activities have been partly disconnected and have 
not produced a global international network bringing to-

gether	the	fragmented	scientific	communities	for	advancing	
the research on the global coastal ocean. New advances that 
make a science-focused programme such as CoastPredict ur-
gent	and	achievable	are:	a)	operational	oceanography	is	now	
implemented	from	the	global	to	the	regional	scales,	making	
available open and free data for coastal downscaling; and 
b)	major	technology	advancements	have	taken	place	in	ob-
serving,	from	satellites	to	in-situ	robotics	to	the	use	of	Arti-
ficial	Intelligence,	which	makes	the	monitoring	of	the	coastal	
ocean practical and feasible. CoastPredict will capitalise on 
this game-changing operational oceanography framework 
and	extend	to	coastal	predictive	capabilities,	including	the	
land-water	cycle	(rivers,	underground	and	transitional	wa-
ters)	and,	 for	 the	first	 time,	 integrating	the	coastal	ocean,	
through	estuaries	and	rivers,	with	the	“urban	ocean”	(waters	
within	and	around	coastal	cities).

CoastPredict will be implemented through several projects 
focusing on 6 areas:

• Focus Area 1 - Integrated Observing and Modelling for 
short term coastal forecasting and early warnings. This 
area will contribute to Ocean Decade Challenge 6 ‘In-
crease community resilience to ocean hazards’: enhance 
multi-hazard	early	warning	services	 for	all	geophysical,	
ecological,	biological,	weather,	climate	and	anthropogen-
ic	 related	 ocean	 and	 coastal	 hazards,	 and	mainstream	
community preparedness and resilience (🔗17).		

• Focus Area 2 - Future Coastal Ocean climates: Earth 
system observing and modelling. This area will contrib-
ute to Challenge 5 ‘Unlock ocean-based solutions to cli-
mate change’: enhance understanding of the ocean-cli-
mate nexus and generate knowledge and solutions to 
mitigate,	 adapt	 and	 build	 resilience	 to	 the	 effects	 of	
climate	change	across	all	geographies	and	at	all	scales,	
and to improve services including predictions for the 
ocean,	climate	and	weather.

• Focus Area 3 - Solutions for Integrated Coastal Man-
agement. This area will contribute to Challenge 8 ‘Create a 
digital representation of the Ocean’: through multi-stake-
holder	 collaboration,	 develop	 a	 comprehensive	 digital	
representation	of	 the	ocean,	 including	a	dynamic	ocean	
map,	which	provides	free	and	open	access	for	exploring,	
discovering,	and	visualising	past,	current,	and	future	ocean	
conditions in a manner relevant to diverse stakeholders. 

• Focus area 4 - Coastal Ocean and Human Health. This 
area	does	not	match	with	a	specific	Decade	Challenge	but	
it is cross-cutting to all the 10 Challenges. 

17. https://www.oceandecade.org/challenges/
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• Focus Area 5 - Coastal Information integrated in the open 
and free exchange international infrastructure. This area 
will contribute to Challenge 7 ‘Expand the Global Ocean Ob-
serving System’: ensure a sustainable ocean observing sys-
tem	across	all	ocean	basins	that	delivers	accessible,	timely,	
and actionable data and information to all users. 

• Focus Area 6 - Equitable coastal ocean capacity. This 
area	will	contribute	to	Challenge	9	‘Skills,	knowledge	
and technology for all’: ensure comprehensive capacity 
development	and	equitable	access	to	data,	informa-
tion,	knowledge	and	technology	across	all	aspects	of	
ocean science and for all stakeholders.

12.11.3. ForeSea Program

ForeSea is hosted by OceanPredict (🔗18),	a	science	programme	
for the coordination and improvement of global and regional 
ocean analysis and forecasting systems. ForeSea aims to build 
the next generation of ocean predictions pursuing a strong co-
ordination	of	the	scientific	community	and	institutes	at	the	
international level (🔗19).	Its	main	goals	are:

• To	improve	the	science,	efficiency,	use,	and	impact	of	
ocean prediction systems; 

• To	build	a	seamless	ocean	information	value	chain,	
from	observations	to	end	users,	able	to	support	the	
economy and society.

ForeSea 🔗20 focuses on 2 main themes:

1. Catalysing transformative ocean prediction science solu-
tions	for	sustainable	development,	connecting	people	and	
ocean prediction;
2. Increasing impact and relevance: improving science and 
science capacity for the ocean we want.

Such themes are developed through a number of items. In 
theme 1 they span from integrating forecasts of ocean hazards 
with socioeconomic forecasts for supporting policy and man-
agement to maximisation of the impact and value of observa-
tions,	from	capacity	building	and	training	to	contribution	to	a	
digital	ocean.	In	theme	2,	they	cover	from	usage	of	advanced	
ocean prediction technologies in weather and climate predic-
tions	 to	 coupled	systems	 (in	partnership	with	CoastPredict),	
from	usage	of	Earth	system	models	(ESM)	to	development	of	
limited ESM areas with coupled components to improve model 
predictability	(in	collaboration	with	CoastPredict).

18. https://oceanpredict.org/
19. https://oceanpredict.org/foresea/
20. https://oceanpredict.org/foresea/foresea-planned-activities/ 

Expected outcomes21 are considerable as ForeSea should 
contribute to:

• An operational oceanography information value-chain 
where	verified/certified	information	and	knowledge	are	
exchanged freely enabling all operational oceanograph-
ic	components,	 integrated	from	the	open	ocean	to	the	
coastal	areas,	to	effectively	synergize;
• A continuously optimised ocean observing system 
integrated from the open ocean to the coastal areas 
that	provides	maximum	information	benefit	with	man-
ageable cost;An ocean information delivery system that 
provides the right information at the right time for facil-
itating marine decisions in support of human safety and 
environmental	 safety,	 and	 an	 efficient	 and	 sustainable	
blue economy;
• Improved extended range forecasting capabilities for 
ocean prediction systems;
• Better assessment and prediction of the ocean state 
(including	 reliable	 uncertainty	 estimates)	 and	 ocean	
impact on forecasts of other earth system components 
(e.g.	atmosphere,	ice,	waves,	marine	ecosystems,	estu-
aries,	etc.);
• An informed ocean literate society and global economy;
• Coordinated capacity building across all elements of 
the operational oceanography value chain to sustain 
production and delivery of ocean prediction;
• Demonstrated impact and value of predictions for 
coastal communities;
• Effective use of ocean prediction technologies for 
weather and climate predictions.

To	 facilitate	 realisation	of	 the	expected	outcomes,	 ForeSea	
established	through	OceanPredict	 	connections	with	GOOS,	
WMO,	IOC,	JCOMM,	Argo,	GHRSST,	GEO,	and	GEO	BluePlanet.

21.  https://oceanpredict.org/foresea/foresea-expect-
ed-outcomes/ 
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Conservation of Atlantic Tunas

ICESat Ice,	Cloud,	and	land	Elevation	Satellite

ICZM Integrated Coastal Zone Management

IEO Instituto	Español	de	Oceanografía

IFS Integrated Forecasting System

IHO International Hydrographic Organization

IIEE Integrated Ice Edge Error

IMO International Maritime Organization

INCOIS Indian National Centre for Ocean 
Information Services

INS In-Situ
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IOCCG International Ocean Colour  
Coordinating Group

IOCCP International Ocean Carbon  
Coordination Project

IOC Intergovernmental Oceanographic 
Commission

IOOS Integrated Ocean Observing System

IOP Inherent Optical Property

IoT Internet of Things

IPCC Intergovernmental Panel on Climate Change

ITD Ice Thickness Distribution

ITIC International Tsunami Information Center

ITU International Telecommunications Union

JAXA Japan	Aerospace	Exploration	Agency

JCOMM Joint	Technical	Commission	for	
Oceanography and Marine Meteorology

JEDI Joint	Effort	for	Data	assimilation	Integration

JMA Japan	Meteorological	Agency

JPL Jet	Propulsion	Laboratory

JPSS Joint	Polar	Satellite	System

KPI Key performance indicators

LEO Low Earth Orbit

LiDAR Laser Imaging Detection and Ranging

LKF Linear Kinematic Features

LOCEAN Laboratoire	d’Océanographie	et	du	Climat:	
Expérimentation	et	Approches	Numériques

MEAP-TT Marine Ecosystem Analysis and Prediction 
Task Team

MedFS Mediterranean Forecast System

MEDUSA Model	of	Ecosystem	Dynamics,	nutrient	
Utilisation,	Sequestration	and	Acidification

MEOP Marine Mammals Exploring the Oceans  
Pole to Pole

MFC Monitoring and Forecasting Centre

MFWAM Météo-France	WAve	Model

MISST Multi-sensor Improved Sea Surface 
Temperature

MITgcm MIT general circulation model

MIZ Marginal Ice Zone

MJO Madden-Julian	Oscillation

ML Machine Learning

MLD Mixed Layer Depth

MODIS Moderate Resolution Imaging 
Spectroradiometer

MOI Mercator Ocean International

MOM Modular Ocean Model

MOTHY Modèle	Océanique	de	Transport	
d’HYdrocarbures

MPA Marine Protected Area

MPAS Model for Prediction Across Scales

MPQ Model product quality

MSaaS Modelling and Simulation as a Service

MSE Mild-slope equation

MSP Maritime Spatial Planning

MTCSWA Multi-platform Tropical Cyclone Surface 
Winds Analysis

MY Multi	Year

MYI Multiyear Ice

NAO North Atlantic Oscillation

NAVOCEANO US	Naval	Oceanographic	Office

NcML NetCDF Markup Language

NDBC National Data Buoy Center

NEMO Nucleus for European Modelling  
of the Ocean

NGO Non-governmental organization

NIVA Norwegian Institute for Water Research

NOAA National Oceanic and Atmospheric 
Administration

NODC National Oceanographic Data Centres

NORWECOM Norwegian Ecological Model

NPP Net Primary Production

NRT Near-Real-Time

NSIDC DAAC National Snow and Ice Data Center 
Distributed Active Archive Center

NSR Northern Sea Route

NSWE Non-linear Shallow Water Equations

NWP Numerical weather prediction

NWS North West Shelf

OBC Open Boundary Condition

OC Ocean Colour

OC Ocean Colour

ODV Ocean Data View

OGCM Ocean general circulation model

OI Optimal Interpolation

OMI Ocean Monitoring Indicator

ONR Office	of	Naval	Research

OO Operational Oceanography

OOFS Operational Ocean Monitoring and 
Forecasting Systems

OOPC Ocean Observations Physics and Climate

OOPS Object-Oriented Prediction System

OpenFOAM Open source Field Operation  
and Manipulation
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OS-Eval Observing System Evaluation

OSCAR Oil Spill Contingency and Response

OSE Observing System Experiment

OSI SAF Ocean and Sea Ice Satellite  
Applications Facility

OSPO Office	of	Satellite	and	Product	Operations

OSR Ocean State Report

OSSE Observing System Simulation Experiment

PAR Photosynthetically Available Radiation

PDAF Parallel Data Assimilation Framework

PDF Probability density function

PFT Phytoplankton Functional Type

PICO Panel for Integrated Coastal Observations

PISCES Pelagic Interactions Scheme for Carbon and 
Ecosystem Studies

PMOST Parallel Model Of Surge from Typhoon

PNA Pacific-North	American	Pattern

PO.DAAC Physical Oceanography Distributed Active 
Archive Centre

POC Particulate Organic Carbon

POM Princeton Ocean Model

PQ Product Quality

PSMSL Permanent Service for Mean Sea Level

PSS Practical Salinity Scale

QBO Quasi-Biennial Oscillation

QC Quality Control

QUID Quality Information Document

R/COFS Regional/Coastal Ocean Forecasting Systems

R2O Research to Operations

RADS Radar Altimeter Database System

RANS Reynolds-Averaged Navier–Stokes

RCP Representative Concentration Pathways

RFMOs Regional Fisheries Management 
Organisations

RHS Right Hand Side

RIOPS Regional Ice Ocean Prediction System

RMSD Root Mean Square Difference

ROC Receiver Operator Characteristic

ROMS Regional Ocean Modeling System

ROSE-L Copernicus Radar Observation System for 
Europe in L-band

RRR Rolling Review of Requirements

Rrs Remote	Sensing	Reflectance

SAMOA System of Meteorological and Oceanographic 
Support for Port Authorities

SANGOMA Stochastic Assimilation for the Next 
Generation Ocean Model Applications

SANIFS Southern Adriatic - Northern Ionian 
Forecasting System

SARAL Satellite with ARgos and ALtika

SAR Synthetic Aperture Radar

SCDA Strongly Coupled Data Assimilation

SCHISM Semi-implicit Cross-scale Hydroscience 
Integrated System Model

SCOBI Swedish Coastal and Ocean  
Biogeochemical Model

SCVTs Spherical Centroidal Voronoi Tessellations

SD Standard Deviation

SDGs Sustainable Development Goals

SEEK Singular	Evolutive	Extended	Kalman	filter

SHYFEM Shallow	water	HYdrodynamic	Finite	 
Element Model

SI Scatter Index

SI International System of Units

SIDFEx Sea Ice Drift Forecast Experiment

SIS Sea Ice Simulator

SIT System Information Table

SKEB Stochastic Kinetic Energy Backscatter

SLA Sea Level Anomaly

SLOSH Sea,	Lake,	and	Overland	Surges	from	
Hurricanes

SMAP Soil Moisture Active Passive

SMMR Scanning Multi-channel Microwave 
Radiometer

SMOS Soil Moisture and Ocean Salinity mission

SOCAT Surface	Ocean	CO₂	Atlas

SOCIB Balearic Islands Coastal Observing and 
Forecasting System

SONEL Système	d’Observation	du	Niveau	des	 
Eaux Littorales

SOOP Ship-of-opportunity

SPM Suspended Particulate Matter

SPOT Satellite	pour	l'Observation	de	la	Terre

SPP Stochastic Perturbed Parameters

SPPT Stochastic Perturbed Parametrized 
Tendencies

SPUF Stochastic Parameterization of  
Unresolved Fluctuations

SSES Sensor	Specific	Error	Statistics

SSH Sea Surface Height

SSM/I Special Sensor Microwave Imager

SSS Sea surface salinity

SST Sea surface temperature
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STAC Science and Technological  
Advisory Committee

SURF Structured and Unstructured Relocatable 
Ocean Model for Forecasting

SWAN Simulating WAves Nearshore

SWASH Simulating WAves till SHore model

SWE Shallow Water Equations

SWH, or Hs Significant	Wave	Height

SWOT Surface Water and Ocean Topography

TAC Thematic Assembly Center

TGTT Tide Gauge Task Team

TSG Thermosalinographs

TVD Total Variation Diminishing

UHSLC University of Hawaii Sea Level Centre

UKMO UK	Met	Office

UN United Nations

UNCTAD United Nations Conference on Trade  
and Development

UNDP United Nations Development Programme

UNFCCC United Nations Framework Convention on 
Climate Change

UNGA United Nations General Assembly

UOM Unified	Ocean	system	Model

US United States

USA United States of America

USSR Union of Soviet Socialist Republics

VARANS Volume-Averaged Reynolds Averaged 
Navier–Stokes

VIIRS Visible Infrared Imaging Radiometer Suite

VISIR DiscoVerIng Safe and effIcient Routes

VOF Volume-O-Fluid

VP Viscous-plastic

WAM Wave prediction Model

WAVERYS Global Ocean Waves Reanalysis

WCDA weakly coupled data assimilation

WCOFS West Coast Operational Forecasting System

WMO World Meteorological Organization

WMO/LC-WFV World Meteorological Organisation Lead 
Centre	for	Wave	Forecast	Verification

WOA World Ocean Atlas

WOD World Ocean Database

WRF Weather Research and Forecasting Model

XBT Expendable bathythermograph
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This guide hopes to be a guideline and inspiration to professionals 
all around the globe, stimulating the reader to research deeper 
knowledge on this vast field. If this objective is achieved, this 
publication is expected to foster the generation of valuable 
information that will be used in decision making processes and, 
therefore, to advocate a wiser and more sustainable relation with 
our always generous ocean.
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