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Abstract 

We present in this paper the Model Based System Synthesis (MBSS) approach for the design of complex systems that are correct by 

construction. Where the usual Model Based System Engineering (MBSE) approach offers formalisms and tools to represent a candidate system, 

to analyze it, to simulate it and even to optimize it, MBSS proposes to represent the global design problem using a problem representation 

language and then to solve it by using adapted synthesis tools producing one or several solutions necessarily satisfying the expressed 

requirements. The two approaches are therefore complementary; the MBSS being more adapted to the preliminary design and system 

integration stages. After presenting the different categories of problems encountered in system design (sizing, configuration, allocation, 

architecture generation), MBSS and MBSE will be positioned in relation to each other. The main concepts of MBSS will be detailed in order to 

understand the specific representation needs of the approach. The structural and behavioral notions related to the sub-definite systems will be 

explained as well as the links to be established with the functional and non-functional requirements. The approach is illustrated using the DEPS 

design problem specification language and the DEPS Studio modeling and solving tool on a system design case study. The DEPS language 

combines structural modeling features specific to object-oriented principles and ontology definition capabilities for engineers with problem 

specification features from constraint programming. DEPS Studio is an integrated modeling and solving environment designed to model and 

resolve system synthesis problems. It allows the engineer to edit, compile, debug and solve problems expressed in DEPS. It integrates a mixed 

constraint programming solver. The approach can be applied on physical systems, software intensive or mixed systems (embedded or cyber-

physical). 
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1. Introduction 

The current general principle in system design is to start 

with a candidate system, then evaluate its performance and 

compare its performance with the expected requirements. If 

the requirements are verified, then the candidate is a solution, 

otherwise a new candidate should be proposed and the process 

repeated (cf Fig.1). It is an iterative method of point-to-point 

design [1] and it is also a generate-and-test method [2] where 

we move from one candidate to another until we find a valid 

solution, i.e. a solution that verifies all the requirements of the 

specifications.  The IEEE1220 standard [3] proposes a system 

design approach based on this method (cf Fig. 1), modeled on 

the V-cycle [4]. Depending on the point of view adopted with 

regard to the type of requirements to be validated, we speak of 

Design For X [5]: Design For Sustainability, Design For 

Safety, Design for Cost, ... 

Thus, several formalisms exist and allow the user to express 

the definition of a candidate system. The formalisms are 

adapted to the systems to be defined but also to the behaviors 

to be modeled: AADL [6], SysML [7], Modelica [8], ... 
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Fig. 1. Iterative design process 

 

From these formalisms, the computational tools that are 

used allow the user to evaluate performances either by 

analytical approach or by simulation. The calculation models 

used are direct models; performance indicator values are 

calculated according to the given values of the design 

variables of the candidate system. It is thus possible to verify 

a posteriori on a candidate system the validity of the 

requirements, specialty by specialty with the appropriate 

behavioral models and tools. Thus the requirements are 

considered separately, discipline by discipline. For a given 

and fully defined candidate architecture, the structural 

specialist will, for example, build an adapted finite-element 

model to enable him to verify the structural requirements. The 

acoustical specialist will do the same on his side. The 

reliability specialist will build a reliability model of the 

architecture to evaluate the reliability of the system. Similarly, 

the eco-design specialist will perform an Life Cycle Analysis 

(LCA) of the system in order to evaluate the environmental 

performance. The performances are evaluated using dedicated 

simulation and analysis tools such as Modelica [8] for the 

dynamics of the system and Simapro [9] for the LCA studies. 

Mathematical optimization methods or meta-heuristics can be 

used in order to try to approach an admissible solution, i.e. 

one that satisfies all the requirements. In the multidisciplinary 

case, this approach is generalized by methods such as 

Multidisciplinary Design Optimization (MDO) [10]. 

We propose in this paper a new approach called MBSS for 

Model Based System Synthesis. Where classical MBSE 

approaches represent a candidate system, MBSE models the 

design problem. Where MBSE evaluates the performance of 

the modeled candidate system to verify a posteriori the 

validity or invalidity of the requirements, MBSS proposes to 

use the requirements to build one or several solutions 

guaranteed correct-by-construction since they satisfy the 

requirements. 

The main question we address in this paper is the design of 

correct systems by construction. We propose for this purpose 

a way of looking at system design problems from the 

synthesis point of view called MBSS. This point of view is 

equipped with a formal problem modeling language called 

DEPS and with an integrated modeling and solving 

environment called DEPS Studio. The observation made by 

several authors is that the current MBSE tools do not allow a 

correct by construction approach and we detail in this paper 

our proposal to lift this lock. 

This paper is organized as follows: After presenting the 

typologies of system design problems and their 

characteristics, we present the case study that will be used to 

illustrate our point of view. Then the MBSS approach is 

detailed from the point of view of the methodology, the 

modeling and the tool-based problem solving. A comparison 

with the MBSE will also be proposed before a conclusion. 

 

2. Complex systems design characteristics 

2.1. Typology of design problems 

Several categories of system design problems can be 

identified: 

 System sizing: problem for which the architecture of the 

system is known but the values of its structural parameters 

are unknown (e.g. the length of an object). Unknowns are 

variables that are often continuous, sometimes discrete. 

Functional requirements can be quite complex and can be 

expressed as linear or non-linear algebraic relationships of 

constants and variables. 

 System configuration: Configuration problems involve the 

choice of components based on a set of compatibility 

relationships, options, and cardinality. They are most often 

discrete-dominant problems. 

 Resource allocation: Allocation problems involve 

allocating physical resources to system functions based on 

a set of functional and non-functional requirements.  

 Architecture generation: System architecture problems 

combine the three previous problems. They are based on a 

specification combining requirements and constraints to 

produce architectures that will meet the specification. We 

can also talk about architecture synthesis. 

2.2. Characteristics 

A technical system is generally characterized by the 

structure of its architecture and its behavior. A system design 

problem must therefore contain a set of unknowns related to 

the structure of the architecture (size, dimensions, number of 

components, type of components, allocation ...) and 

unknowns of behavior (performance and functioning 

variables). 

A system can have several functioning modes subject to 

the respect of different properties depending on the mode 

considered. 

A system is also subject to the respect of a set of functional 

requirements (laws of physics and technology, missions to be 

fulfilled ...) and non-functional requirements (safety, security, 

eco-design ...). 

Depending on the case, these requirements can be: 

 Minimum or maximum threshold values on performance 

indicators calculated by behavioral models. For example, 

when we want the power delivered by a system to be 

between two values. We call this “behavioral 

requirements”. 

 Necessary properties for the structure of any solution 

architecture. For example, in the field of operational 

safety, when specialists recommend duplicating or 

triplicating certain functional chains in an onboard aircraft 

system. This will be expressed by properties on the system 

architecture that we call “structural requirements”. 

Analysis 
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3. Use case 

3.1. Description 

This problem, described in its entirety in [11], is that of 

the configuration and positioning of an onboard camera. This 

system is composed of sensors (one to n) whose role is to 

ensure the stabilization of the image as well as the automatic 

focus. These sensors are themselves connected to processors 

(CPUs) (one to n) via a digital video bus. Then, the processors 

will process the image and compress it to detect obstacles and 

trigger the vehicle's automatic decision making by transferring 

the information through "Transceivers" (one to n). In addition, 

the transceivers are connected to the CPUs through a parallel 

digital port. Sensors, processors and transceivers have their 

cost and reliability characteristics available in catalogs. Thus, 

the camera is stereoscopic when it has two sensor-cpu-

transceiver chains or simple in the case of a single chain. All 

sensors, CPUs and transceivers in the catalogs are not 

compatible with each other. 

In order to obtain a camera that is both efficient and as 

inexpensive as possible, it is necessary to optimize cost and 

reliability, which are the two main performance indicators 

when designing the system. This is done by minimizing the 

total cost of the system and maximizing the reliability. In 

addition to optimizing the cost and reliability of the system, it 

is also necessary to optimize the performance of the system 

by maximizing it. To do this, the positioning of the camera in 

the vehicle must be addressed. Correctly positioned, the 

camera must be able to detect an obstacle that can be very 

close or far away. 

To model this configuration, we rely on the principle of 

stereoscopic optics to calculate the distance that separates us 

from an object from the comparison of images in the two 

views of the cameras. This is called the disparity which is a 

nonlinear function of the height of the obstacle, the horizontal 

position of the obstacle, the till angle of the camera, the height 

of the camera and the characteristics of the sensors (focal 

length, and size of a pixel). 

The system must also be able to operate in two modes: 

detection of a close obstacle and detection of a distant 

obstacle. For that, we rule that the image of a distant obstacle 

on the sensors must have a minimal size that we fix at 50 

pixels and the image of the close obstacle must be able to be 

contained by the sensors. 

3.2. Modeling and solving the problem with the common way 

This is a problem of architecture configuration and 

simultaneous positioning. 

 

 

 

 

 

 

 

 

Fig. 2. Architecture of the embedded camera 

 

The camera is characterized by the following six to nine 

design variables: 

 The number of channels nbChan (one or two) of discrete 

nature. 

 The reference of the sensorRef chosen in each discrete 

channel. 

 The reference of the CPU CPURef chosen in each channel 

of discrete nature 

 The reference of the transceiver TransRef chosen in each 

channel of discrete nature. 

 The positioning height h of continuous nature 

 The positioning angle 𝜃 of continuous nature. 

 

The requirements are as follows: 

 Compatibility of the components in each channel. 

 Minimum cost of the architecture. 

 Maximum reliability of the architecture. 

 Detection of near obstacles. 

 Detection of distant obstacles. 

 

The classical iterative design process will therefore consist in 

checking each requirement for a given candidate and iterating 

until a valid solution is found (cf Fig.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. MBSE way for modeling and solving the problem 

4. MBSS approach 

4.1. Methodological point of view 

Several basic principles characterize the MBSS approach: 

 The Set-based design [1] approach in which the design 

space is reduced as the requirements are placed on the 

potential solutions. 

 Modeling the design problem rather than a candidate 

system. 

 Taking into account simultaneously several heterogeneous 

requirements. 

 Using requirements to reduce the space of requirement 

based solutions. 

The approach for solving the problem is said to be "by 

satisfying requirements" and not by "validation and 

verification", since at all times we try to find solutions within 

the boundaries of the design space represented by the 
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requirements. The solutions found are then necessarily correct 

by construction. We then tend towards an I-cycle (cf Fig. 4) of 

design rather than a V-cycle one. 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Toward an I cycle 

4.2. Modeling the problem 

An object whose unknown values are not fixed a priori will 

be called a sub-definite object. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.Part of the MBSS meta-model 

 

Modeling the problem requires the following capabilities 

within a dedicated formalism: 

 Modeling a sub-definite architecture: the architecture 

unknowns, their possible domain of values, the structural 

properties to be satisfied necessarily by any solution 

architecture and the hierarchical decomposition of the sub-

definite architecture. 

 Modeling a set of sub-definite behaviors: the behavioral 

unknowns, their possible domain of values, the behavioral 

properties and the hierarchical decomposition of the 

behaviors. 

 Sharing of the sub-definite architecture between several 

behaviors. Indeed, a solution of the problem will be an full 

instantiation of the architecture model satisfying the union 

of all the expressed behaviors. 

 Setting requirements: in the form of structural and 

behavioral properties on the sub-definite architecture and 

behavior models. 

 Because of the diversity of the design problems addressed 

(cf §2.1), the unknowns must be able to take their values 

in mixed domains: intervals of real numbers, intervals of 

integers, enumerations of real values, enumerations of 

integer values.  

 The expressed properties must be able to be expressed in 

the form of linear and non-linear algebraic equations and 

inequalities but also in the form of specialized properties 

such as values to be taken in catalogs. 

All these capabilities are represented in a UML format on the 

MBSS meta-model of figure 5. A sub-definite system is thus 

composed of a sub-definite architecture and a set of sub-

definite behaviors and takes the subdefinite architecture as an 

argument. The sub-definite architecture can be decomposed in 

a tree-like manner down to the sub-definite components. The 

same reasoning applies to each sub-definite behavior. The 

system, behaviors and sub-definite architecture are composed 

of a set of unknown values inside domains and a set of  

properties to be satisfied. 

The problem modeling aspects of the MBSS approach  are 

available by using the DEPS language. DEPS (Design 

Problem Specification) is a declarative problem modeling 

language for system design problems [12]. The distribution 

and evolution of the language is now supported by the DEPS 

Link non-profit organization [13]. Its grammar is defined with 

a "context free" BNF (Backus-Naur-Form) notation. DEPS 

combines some structural modeling features of object-

oriented and ontology description capabilities for engineers 

with problem specification features from constraint 

programming.. From the former, it has borrowed the 

characteristics of structuring and abstraction that allow us to 

represent the components and the (possibly partial) 

architecture of the system under study. From the latter, the 

possibility to describe ordinal and cardinal quantities used by 

the engineer (current, voltage, length, angle ...) were 

borrowed. From the third, the logical-mathematical concepts 

necessary to solve the engineer's problems were borrowed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. DEPS model of the architecture of the camera 

 

This combination of declarative paradigms leads to a 

declarative language that allows the designer to model the 

organization of the studied systems and the properties that 

govern them. DEPS addresses problems of sizing, 

Subdefinite System Requirements 

Synthesis Process 

One (or several) guarantied 

solution(s)  

correct-by-construction 

Model Camera() 

Constants 

Hc : HeightPix = 480;       v0 : PositionPix = Hc/2 ; 

f : Distance = 0.0028;        tu : Height = 0.000015;  
alpha : Real = f/tu; 

Variables 

theta : Angle in [0,1] ;             h : Height in [0.2,1] ; 
expr v : PositionPix;             expr TotalCost : Cost;       

expr TotalRel : Reliability; 

Elements 

ch1 : Channel();     ch2 : Channel(); 

exclCh : OneOrTwoChannel(ch1, ch2); 

Properties 

TotalCost <= 200;       TotalCost := ch1.Cist + ch2.Cost; 

TotalRel :=  ch1.Rel*ch2.Rel; 

End 
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configuration, allocation and more generally of architecture 

generation or synthesis encountered in system design. The 

systems can be physical systems, software intensive or mixed 

systems (embedded or cyber-physical). The main feature of 

the language is the Model. A Model encapsulates constants, 

variables, instances of other Models called Elements and 

properties. Models have a signature and can be overloaded, 

extended, shared (aggregation) and composed (composition) 

In the case of the problem of configuration and positioning of 

the camera, we describe in DEPS the architecture model of 

the camera (cf Fig. 6) consisting of one or two channel, a 

channel being composed of a sensor, a CPU and a transceiver. 

The latter are models derived from an abstract component 

model (cf Fig. 7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. DEPS models of Channel, Component and Sensor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Some DEPS behavioral models of the camera 

The behavioral models of the sub-definite camera architecture 

will then be realized (cf Fig.8). 

The architectural requirements will be set in terms of 

properties on the camera, while the behavioral requirements 

will be expressed in behavioral models. 

Finally the problem will be posed by specifying that we create 

a sub-definite camera architecture and a set of behaviors to be 

satisfied (cf Fig. 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. DEPS problem modeling  

4.3. Solving the problem 

To solve the problems modeled in this way, we propose to 

use the framework of constraint programming (CP) on mixed 

domains. Each variable of the problem naturally takes its 

values in an expressed domain. Properties can be considered 

as constraints. A set of variables, domains and constraints is 

called a CSP (Constraint Satisfaction Problem)[18]. A CSP is 

declarative. The CP methods for solving CSP follow the set-

based-design principle. The domains of the variables are 

iteratively reduced so that at any time the reduced domains 

contain all the solutions of the problem. It is therefore a 

guaranteed method of generating a solution that is correct-by-

construction with respect to the constraints expressed [18-20]. 

If the solver does not find a solution, it guarantees that there is 

none. If the solver finds one or more solutions, it guarantees 

that they all satisfy the set of constraints expressed. It is also 

possible to minimize or maximize variable values. 

 

DEPS Studio [12], the environment associated with the 

DEPS language includes a model editor, a project manager, a 

compiler and a solver. Experience shows that the first 

specification of a system design problem is never the right 

one and that many modeling errors are only detectable by 

calculation. DEPS Studio integrates a dedicated constraint 

programming solver on mixed domains so that the solution 

finding contributes effectively to the adjustment of the 

problem modeling process. This is a rapid model development 

approach (analogous to a RAD approach) which, contrary to a 

model transformation approach, reduces the execution time of 

the model development loop. It also allows errors to be traced 

back to the correct level of abstraction.  

DEPS and DEPS Studio have been used for the design of 

electrical batteries [14], mechanical systems [15] and 

embedded systems such as integrated avionics [16] or aircraft 

Model Channel()        Model Component() abstract 

Constants         Constants 

Variables         Variables 

isIn : Boolean ;        Ref : Reference; 

expr Cost : Cost ;        Cost : Cost; 

expr Rel : Reliability;        Rel : Reliability; 

Elements         Elements 

s : Sensor();        Properties 

t : Trans();         End 

cpu : CPU(); 

        Model Sensor() extends Component[] 

      Constants 

      Variables 

      Elements 

      Properties 

     Catalog([Ref, Cost, Rel], Sensors); 

     End   

Properties 

Catalog([s.c1.Ref, t.c1.Ref, cpu.c1.Ref], CompatibilityTable); 

Catalog([s.c2.Ref, t.c2.Ref, cpu.c2.Ref], CompatibilityTable); 

Cost := IsIn*(s.Cost+t.Cost+cpu.Cost) 

Rel := max(1-isIn, s.Rel*t.Rel*cpu.Rel); 

End 

Model Obstacle(Cam,Y)  

Constants 

Y : Position; (*distance between obstacle and camera*) 

Z : Height = 1.0; default ; (*default size *) 

Variables 

Elements 

Cam : Camera[]; 

Properties 

Cam.v := ((Cam.v0*cos(Cam.theta)+Cam.alpha*sin(Cam.theta))*Y+ 

(Cam.v0*sin(Cam.theta)-Cam.alpha*cos(Cam.theta))*(Z-
Cam.h))/(Y*cos(Cam.theta)+(Z-Cam.h)*sin(Cam.theta)); 

End 

 

Model NearObstacle() extends Obstacle[Camera[], Position] 

Constants 

Z : Height = 0.22; redefine ; (* football balloon*) 

Variables 

Elements 

Properties 

Cam.v < Cam.Hc; 

End 

 

Model ObstacleLoin() extends Obstacle[Camera[], Position] 

Constants 

Z : Height = 1.8; redefine ; (* pedestrian *) 

Variables 

Elements 

Properties 

Cam.v > 50; 

End 

 

Problem CameraProblem 

Constants 

Variables 

Elements 

Camera : Camera(); 

 
Near1 : NearObstacle(Camera,0);  

Near2 : NearObstacle(Camera, 1) ; 

Near3 : NearObstacle(Camera, 2) ; 

 

Far1 :  FarObstacle(Camera,3);   

Far2 :  FarObstacle(Camera,4); 
Far3 :  FarObstacle(Camera,5);  

Far4 :  FarObstacle(Camera,6); 

Far5 :  FarObstacle(Camera,7); 

Properties 

End 
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electrical generation and distribution system [17] under 

functional and safety requirements. 

As for the problem of positioning and configuration of the 

embedded camera modeled in DEPS, it is solved in DEPS 

Studio in a few seconds on a Pentium CoreI5 type machine. 

4.4. Related work 

From the point of view of the MBSS approach as we have 

explained and formalized previously (cf fig 5), we have not 

found any equivalent work. Concerning the modeling 

formalisms, the authors of [21] underline the difficulties of 

using formalisms such as SysML (System Modeling 

Language), initially built for representing fully defined 

systems to model problems. They propose in their work to use 

as us a dedicated formalism called the Clafer associated with 

the Choco constraint programming library to model and solve 

a problem of allocating computers to embedded tasks. 

Nevertheless, Clafer remains a language dedicated to the 

configuration of software product lines with discrete variables 

and constraints. On the other hand, [11] proposes to add a first 

level of variability to SysML. The approach is coupled with 

the Choco constraint programming library to solve simple 

configuration problems. However, since these first research 

works, this initiative has not progressed significantly because 
it remains difficult to introduce more structural variability in a 

system definition language. The current limitations of the 

approach are the low level of variability that can be taken into 

account, the use of a solver dealing mainly with discrete 

constraints and a weak coupling between the formalism and 

the solver. This last point means that the debugging of the 

models is done, in case of bug or modeling problem, in the 

host language of the solver, in this case Java and not in the 

SysML language. 

5. Conclusion 

 MBSE MBSS 

Method Point to point design 
Solution oriented 

Generate and test 

V cycle 

Set based design 
Problem oriented 

Requirement based 

I cycle 

Modeling System modeling 

Defined System 

Local 

Problem modeling 

Sub-definite system 

Global 

Computing Iterations 

Evaluation 
Simulation 

Optimization 

Verification and validation 

Problem Solving 

Constraint Programming 
Correct by construction 

Satisfaction 

Languages UML, SysMl, AADL, 

DEVS, Modelica, … 

DEPS 

Tools Capella, OpenModelica, 

MDO, … 

DEPS Studio 

Fig. 10. MBSE vs MBSS 

In this paper we have proposed a possible evolution of 

MBSE summarized in figure 10. The MBSS approach 

supports the idea of modeling the problem rather than the 

solution candidate and then solving the problem instead of 

evaluating the performance of a solution candidate. The 

approach is tooling with the declarative problem modeling 

language DEPS and the DEPS Studio IDE for modeling and 

solving based on mixed domain constraint programming. The 

formalism allows the creation of generic, reusable and 

extensible sub-definite models. Modeling and solving are 

integrated in a single environment for easy model 

development. 

The MBSS approach, the DEPS language and the DEPS 

Studio tool evolve according to the design problems 

addressed and the requirements considered. 
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