
HAL Id: hal-03798676
https://hal.science/hal-03798676v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Toward a correct by construction design of complex
systems : The MBSS approach

Pierre-Alain Yvars, Laurent Zimmer

To cite this version:
Pierre-Alain Yvars, Laurent Zimmer. Toward a correct by construction design of complex systems :
The MBSS approach. Procedia CIRP, 2022, 109, pp.269-274. �10.1016/j.procir.2022.05.248�. �hal-
03798676�

https://hal.science/hal-03798676v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Available online at www.sciencedirect.com

ScienceDirect

Procedia CIRP 00 (2022) 000–000

 www.elsevier.com/locate/procedia

2212-8271 © 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

32nd CIRP Design Conference

Towards a correct by construction design of complex systems: The MBSS

approach

 Pierre-Alain Yvars
a
*, Laurent Zimmer

b

aISAE-Supméca, QUARTZ EA7393, 3 rue Fernand Hainaut, 93407 Saint Ouen Cedex, France
bDassault Aviation, Direction de la prospective,78 quai Marcel Dassault , 92552 Saint Cloud, France

* Corresponding author. Tel.: +33-(0)49-452-2925; fax: +33-(0)49-452-2929. E-mail address: pierre-alain.yvars@isae-supmeca.fr

Abstract

We present in this paper the Model Based System Synthesis (MBSS) approach for the design of complex systems that are correct by

construction. Where the usual Model Based System Engineering (MBSE) approach offers formalisms and tools to represent a candidate system,

to analyze it, to simulate it and even to optimize it, MBSS proposes to represent the global design problem using a problem representation

language and then to solve it by using adapted synthesis tools producing one or several solutions necessarily satisfying the expressed

requirements. The two approaches are therefore complementary; the MBSS being more adapted to the preliminary design and system

integration stages. After presenting the different categories of problems encountered in system design (sizing, configuration, allocation,

architecture generation), MBSS and MBSE will be positioned in relation to each other. The main concepts of MBSS will be detailed in order to

understand the specific representation needs of the approach. The structural and behavioral notions related to the sub-definite systems will be

explained as well as the links to be established with the functional and non-functional requirements. The approach is illustrated using the DEPS

design problem specification language and the DEPS Studio modeling and solving tool on a system design case study. The DEPS language

combines structural modeling features specific to object-oriented principles and ontology definition capabilities for engineers with problem

specification features from constraint programming. DEPS Studio is an integrated modeling and solving environment designed to model and

resolve system synthesis problems. It allows the engineer to edit, compile, debug and solve problems expressed in DEPS. It integrates a mixed

constraint programming solver. The approach can be applied on physical systems, software intensive or mixed systems (embedded or cyber-

physical).

© 2022 The Authors. Published by ELSEVIER B.V.

This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)

Peer-review under responsibility of the scientific committee of the 32nd CIRP Design Conference

 Keywords: Model-based approach; System Synthesis; constraint programming; sub-definite system.

1. Introduction

The current general principle in system design is to start

with a candidate system, then evaluate its performance and

compare its performance with the expected requirements. If

the requirements are verified, then the candidate is a solution,

otherwise a new candidate should be proposed and the process

repeated (cf Fig.1). It is an iterative method of point-to-point

design [1] and it is also a generate-and-test method [2] where

we move from one candidate to another until we find a valid

solution, i.e. a solution that verifies all the requirements of the

specifications. The IEEE1220 standard [3] proposes a system

design approach based on this method (cf Fig. 1), modeled on

the V-cycle [4]. Depending on the point of view adopted with

regard to the type of requirements to be validated, we speak of

Design For X [5]: Design For Sustainability, Design For

Safety, Design for Cost, ...

Thus, several formalisms exist and allow the user to express

the definition of a candidate system. The formalisms are

adapted to the systems to be defined but also to the behaviors

to be modeled: AADL [6], SysML [7], Modelica [8], ...

© 2022 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S2212827122006977
Manuscript_ed4ef665a84d988fa585f4d234813b0b

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S2212827122006977
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S2212827122006977

2 Author name / Procedia CIRP 00 (2022) 000–000

Fig. 1. Iterative design process

From these formalisms, the computational tools that are

used allow the user to evaluate performances either by

analytical approach or by simulation. The calculation models

used are direct models; performance indicator values are

calculated according to the given values of the design

variables of the candidate system. It is thus possible to verify

a posteriori on a candidate system the validity of the

requirements, specialty by specialty with the appropriate

behavioral models and tools. Thus the requirements are

considered separately, discipline by discipline. For a given

and fully defined candidate architecture, the structural

specialist will, for example, build an adapted finite-element

model to enable him to verify the structural requirements. The

acoustical specialist will do the same on his side. The

reliability specialist will build a reliability model of the

architecture to evaluate the reliability of the system. Similarly,

the eco-design specialist will perform an Life Cycle Analysis

(LCA) of the system in order to evaluate the environmental

performance. The performances are evaluated using dedicated

simulation and analysis tools such as Modelica [8] for the

dynamics of the system and Simapro [9] for the LCA studies.

Mathematical optimization methods or meta-heuristics can be

used in order to try to approach an admissible solution, i.e.

one that satisfies all the requirements. In the multidisciplinary

case, this approach is generalized by methods such as

Multidisciplinary Design Optimization (MDO) [10].

We propose in this paper a new approach called MBSS for

Model Based System Synthesis. Where classical MBSE

approaches represent a candidate system, MBSE models the

design problem. Where MBSE evaluates the performance of

the modeled candidate system to verify a posteriori the

validity or invalidity of the requirements, MBSS proposes to

use the requirements to build one or several solutions

guaranteed correct-by-construction since they satisfy the

requirements.

The main question we address in this paper is the design of

correct systems by construction. We propose for this purpose

a way of looking at system design problems from the

synthesis point of view called MBSS. This point of view is

equipped with a formal problem modeling language called

DEPS and with an integrated modeling and solving

environment called DEPS Studio. The observation made by

several authors is that the current MBSE tools do not allow a

correct by construction approach and we detail in this paper

our proposal to lift this lock.

This paper is organized as follows: After presenting the

typologies of system design problems and their

characteristics, we present the case study that will be used to

illustrate our point of view. Then the MBSS approach is

detailed from the point of view of the methodology, the

modeling and the tool-based problem solving. A comparison

with the MBSE will also be proposed before a conclusion.

2. Complex systems design characteristics

2.1. Typology of design problems

Several categories of system design problems can be

identified:

 System sizing: problem for which the architecture of the

system is known but the values of its structural parameters

are unknown (e.g. the length of an object). Unknowns are

variables that are often continuous, sometimes discrete.

Functional requirements can be quite complex and can be

expressed as linear or non-linear algebraic relationships of

constants and variables.

 System configuration: Configuration problems involve the

choice of components based on a set of compatibility

relationships, options, and cardinality. They are most often

discrete-dominant problems.

 Resource allocation: Allocation problems involve

allocating physical resources to system functions based on

a set of functional and non-functional requirements.

 Architecture generation: System architecture problems

combine the three previous problems. They are based on a

specification combining requirements and constraints to

produce architectures that will meet the specification. We

can also talk about architecture synthesis.

2.2. Characteristics

A technical system is generally characterized by the

structure of its architecture and its behavior. A system design

problem must therefore contain a set of unknowns related to

the structure of the architecture (size, dimensions, number of

components, type of components, allocation ...) and

unknowns of behavior (performance and functioning

variables).

A system can have several functioning modes subject to

the respect of different properties depending on the mode

considered.

A system is also subject to the respect of a set of functional

requirements (laws of physics and technology, missions to be

fulfilled ...) and non-functional requirements (safety, security,

eco-design ...).

Depending on the case, these requirements can be:

 Minimum or maximum threshold values on performance

indicators calculated by behavioral models. For example,

when we want the power delivered by a system to be

between two values. We call this “behavioral

requirements”.

 Necessary properties for the structure of any solution

architecture. For example, in the field of operational

safety, when specialists recommend duplicating or

triplicating certain functional chains in an onboard aircraft

system. This will be expressed by properties on the system

architecture that we call “structural requirements”.

Analysis

Process

 A System
Definition Results

Set of

Requirements

KO OK

 Author name / Procedia CIRP 00 (2022) 000–000 3

3. Use case

3.1. Description

This problem, described in its entirety in [11], is that of

the configuration and positioning of an onboard camera. This

system is composed of sensors (one to n) whose role is to

ensure the stabilization of the image as well as the automatic

focus. These sensors are themselves connected to processors

(CPUs) (one to n) via a digital video bus. Then, the processors

will process the image and compress it to detect obstacles and

trigger the vehicle's automatic decision making by transferring

the information through "Transceivers" (one to n). In addition,

the transceivers are connected to the CPUs through a parallel

digital port. Sensors, processors and transceivers have their

cost and reliability characteristics available in catalogs. Thus,

the camera is stereoscopic when it has two sensor-cpu-

transceiver chains or simple in the case of a single chain. All

sensors, CPUs and transceivers in the catalogs are not

compatible with each other.

In order to obtain a camera that is both efficient and as

inexpensive as possible, it is necessary to optimize cost and

reliability, which are the two main performance indicators

when designing the system. This is done by minimizing the

total cost of the system and maximizing the reliability. In

addition to optimizing the cost and reliability of the system, it

is also necessary to optimize the performance of the system

by maximizing it. To do this, the positioning of the camera in

the vehicle must be addressed. Correctly positioned, the

camera must be able to detect an obstacle that can be very

close or far away.

To model this configuration, we rely on the principle of

stereoscopic optics to calculate the distance that separates us

from an object from the comparison of images in the two

views of the cameras. This is called the disparity which is a

nonlinear function of the height of the obstacle, the horizontal

position of the obstacle, the till angle of the camera, the height

of the camera and the characteristics of the sensors (focal

length, and size of a pixel).

The system must also be able to operate in two modes:

detection of a close obstacle and detection of a distant

obstacle. For that, we rule that the image of a distant obstacle

on the sensors must have a minimal size that we fix at 50

pixels and the image of the close obstacle must be able to be

contained by the sensors.

3.2. Modeling and solving the problem with the common way

This is a problem of architecture configuration and

simultaneous positioning.

Fig. 2. Architecture of the embedded camera

The camera is characterized by the following six to nine

design variables:

 The number of channels nbChan (one or two) of discrete

nature.

 The reference of the sensorRef chosen in each discrete

channel.

 The reference of the CPU CPURef chosen in each channel

of discrete nature

 The reference of the transceiver TransRef chosen in each

channel of discrete nature.

 The positioning height h of continuous nature

 The positioning angle 𝜃 of continuous nature.

The requirements are as follows:

 Compatibility of the components in each channel.

 Minimum cost of the architecture.

 Maximum reliability of the architecture.

 Detection of near obstacles.

 Detection of distant obstacles.

The classical iterative design process will therefore consist in

checking each requirement for a given candidate and iterating

until a valid solution is found (cf Fig.3).

Fig. 3. MBSE way for modeling and solving the problem

4. MBSS approach

4.1. Methodological point of view

Several basic principles characterize the MBSS approach:

 The Set-based design [1] approach in which the design

space is reduced as the requirements are placed on the

potential solutions.

 Modeling the design problem rather than a candidate

system.

 Taking into account simultaneously several heterogeneous

requirements.

 Using requirements to reduce the space of requirement

based solutions.

The approach for solving the problem is said to be "by

satisfying requirements" and not by "validation and

verification", since at all times we try to find solutions within

the boundaries of the design space represented by the

Channel Camera

Sensor CPU

1

1

1..2

1

1

1

Transceiver

1

1

AND
correct

solution

Structural evaluation and

checking

Cost evaluation and checking

Reliability evaluation and

checking

Near obstacle evaluation and

checking

Distant obstacle evaluation and

checking

Non

correct

solution

SensorRef

CPURef

TransRef
nbChan

ℎ

𝜃

4 Author name / Procedia CIRP 00 (2022) 000–000

requirements. The solutions found are then necessarily correct

by construction. We then tend towards an I-cycle (cf Fig. 4) of

design rather than a V-cycle one.

Fig. 4. Toward an I cycle

4.2. Modeling the problem

An object whose unknown values are not fixed a priori will

be called a sub-definite object.

Fig. 5.Part of the MBSS meta-model

Modeling the problem requires the following capabilities

within a dedicated formalism:

 Modeling a sub-definite architecture: the architecture

unknowns, their possible domain of values, the structural

properties to be satisfied necessarily by any solution

architecture and the hierarchical decomposition of the sub-

definite architecture.

 Modeling a set of sub-definite behaviors: the behavioral

unknowns, their possible domain of values, the behavioral

properties and the hierarchical decomposition of the

behaviors.

 Sharing of the sub-definite architecture between several

behaviors. Indeed, a solution of the problem will be an full

instantiation of the architecture model satisfying the union

of all the expressed behaviors.

 Setting requirements: in the form of structural and

behavioral properties on the sub-definite architecture and

behavior models.

 Because of the diversity of the design problems addressed

(cf §2.1), the unknowns must be able to take their values

in mixed domains: intervals of real numbers, intervals of

integers, enumerations of real values, enumerations of

integer values.

 The expressed properties must be able to be expressed in

the form of linear and non-linear algebraic equations and

inequalities but also in the form of specialized properties

such as values to be taken in catalogs.

All these capabilities are represented in a UML format on the

MBSS meta-model of figure 5. A sub-definite system is thus

composed of a sub-definite architecture and a set of sub-

definite behaviors and takes the subdefinite architecture as an

argument. The sub-definite architecture can be decomposed in

a tree-like manner down to the sub-definite components. The

same reasoning applies to each sub-definite behavior. The

system, behaviors and sub-definite architecture are composed

of a set of unknown values inside domains and a set of

properties to be satisfied.

The problem modeling aspects of the MBSS approach are

available by using the DEPS language. DEPS (Design

Problem Specification) is a declarative problem modeling

language for system design problems [12]. The distribution

and evolution of the language is now supported by the DEPS

Link non-profit organization [13]. Its grammar is defined with

a "context free" BNF (Backus-Naur-Form) notation. DEPS

combines some structural modeling features of object-

oriented and ontology description capabilities for engineers

with problem specification features from constraint

programming.. From the former, it has borrowed the

characteristics of structuring and abstraction that allow us to

represent the components and the (possibly partial)

architecture of the system under study. From the latter, the

possibility to describe ordinal and cardinal quantities used by

the engineer (current, voltage, length, angle ...) were

borrowed. From the third, the logical-mathematical concepts

necessary to solve the engineer's problems were borrowed.

Fig. 6. DEPS model of the architecture of the camera

This combination of declarative paradigms leads to a

declarative language that allows the designer to model the

organization of the studied systems and the properties that

govern them. DEPS addresses problems of sizing,

Subdefinite System Requirements

Synthesis Process

One (or several) guarantied

solution(s)

correct-by-construction

Model Camera()

Constants

Hc : HeightPix = 480; v0 : PositionPix = Hc/2 ;

f : Distance = 0.0028; tu : Height = 0.000015;
alpha : Real = f/tu;

Variables

theta : Angle in [0,1] ; h : Height in [0.2,1] ;
expr v : PositionPix; expr TotalCost : Cost;

expr TotalRel : Reliability;

Elements

ch1 : Channel(); ch2 : Channel();

exclCh : OneOrTwoChannel(ch1, ch2);

Properties

TotalCost <= 200; TotalCost := ch1.Cist + ch2.Cost;

TotalRel := ch1.Rel*ch2.Rel;

End

Subdefinite Item

Unknown

Properties

Domain

Interval Enumeration

Subdefinite System

Subdefinite

Behavior
Subdefinite

Architecture

Subdefinite

Component
Subdefinite

Component

Behavior

1 0..*

0..*

0..* 0..*

0..*

1
1

1 1

1

1
1

1

0..*

1..*

 Author name / Procedia CIRP 00 (2022) 000–000 5

configuration, allocation and more generally of architecture

generation or synthesis encountered in system design. The

systems can be physical systems, software intensive or mixed

systems (embedded or cyber-physical). The main feature of

the language is the Model. A Model encapsulates constants,

variables, instances of other Models called Elements and

properties. Models have a signature and can be overloaded,

extended, shared (aggregation) and composed (composition)

In the case of the problem of configuration and positioning of

the camera, we describe in DEPS the architecture model of

the camera (cf Fig. 6) consisting of one or two channel, a

channel being composed of a sensor, a CPU and a transceiver.

The latter are models derived from an abstract component

model (cf Fig. 7).

Fig. 7. DEPS models of Channel, Component and Sensor

Fig. 8. Some DEPS behavioral models of the camera

The behavioral models of the sub-definite camera architecture

will then be realized (cf Fig.8).

The architectural requirements will be set in terms of

properties on the camera, while the behavioral requirements

will be expressed in behavioral models.

Finally the problem will be posed by specifying that we create

a sub-definite camera architecture and a set of behaviors to be

satisfied (cf Fig. 9).

Fig. 9. DEPS problem modeling

4.3. Solving the problem

To solve the problems modeled in this way, we propose to

use the framework of constraint programming (CP) on mixed

domains. Each variable of the problem naturally takes its

values in an expressed domain. Properties can be considered

as constraints. A set of variables, domains and constraints is

called a CSP (Constraint Satisfaction Problem)[18]. A CSP is

declarative. The CP methods for solving CSP follow the set-

based-design principle. The domains of the variables are

iteratively reduced so that at any time the reduced domains

contain all the solutions of the problem. It is therefore a

guaranteed method of generating a solution that is correct-by-

construction with respect to the constraints expressed [18-20].

If the solver does not find a solution, it guarantees that there is

none. If the solver finds one or more solutions, it guarantees

that they all satisfy the set of constraints expressed. It is also

possible to minimize or maximize variable values.

DEPS Studio [12], the environment associated with the

DEPS language includes a model editor, a project manager, a

compiler and a solver. Experience shows that the first

specification of a system design problem is never the right

one and that many modeling errors are only detectable by

calculation. DEPS Studio integrates a dedicated constraint

programming solver on mixed domains so that the solution

finding contributes effectively to the adjustment of the

problem modeling process. This is a rapid model development

approach (analogous to a RAD approach) which, contrary to a

model transformation approach, reduces the execution time of

the model development loop. It also allows errors to be traced

back to the correct level of abstraction.

DEPS and DEPS Studio have been used for the design of

electrical batteries [14], mechanical systems [15] and

embedded systems such as integrated avionics [16] or aircraft

Model Channel() Model Component() abstract

Constants Constants

Variables Variables

isIn : Boolean ; Ref : Reference;

expr Cost : Cost ; Cost : Cost;

expr Rel : Reliability; Rel : Reliability;

Elements Elements

s : Sensor(); Properties

t : Trans(); End

cpu : CPU();

 Model Sensor() extends Component[]

 Constants

 Variables

 Elements

 Properties

 Catalog([Ref, Cost, Rel], Sensors);

 End

Properties

Catalog([s.c1.Ref, t.c1.Ref, cpu.c1.Ref], CompatibilityTable);

Catalog([s.c2.Ref, t.c2.Ref, cpu.c2.Ref], CompatibilityTable);

Cost := IsIn*(s.Cost+t.Cost+cpu.Cost)

Rel := max(1-isIn, s.Rel*t.Rel*cpu.Rel);

End

Model Obstacle(Cam,Y)

Constants

Y : Position; (*distance between obstacle and camera*)

Z : Height = 1.0; default ; (*default size *)

Variables

Elements

Cam : Camera[];

Properties

Cam.v := ((Cam.v0*cos(Cam.theta)+Cam.alpha*sin(Cam.theta))*Y+

(Cam.v0*sin(Cam.theta)-Cam.alpha*cos(Cam.theta))*(Z-
Cam.h))/(Y*cos(Cam.theta)+(Z-Cam.h)*sin(Cam.theta));

End

Model NearObstacle() extends Obstacle[Camera[], Position]

Constants

Z : Height = 0.22; redefine ; (* football balloon*)

Variables

Elements

Properties

Cam.v < Cam.Hc;

End

Model ObstacleLoin() extends Obstacle[Camera[], Position]

Constants

Z : Height = 1.8; redefine ; (* pedestrian *)

Variables

Elements

Properties

Cam.v > 50;

End

Problem CameraProblem

Constants

Variables

Elements

Camera : Camera();

Near1 : NearObstacle(Camera,0);

Near2 : NearObstacle(Camera, 1) ;

Near3 : NearObstacle(Camera, 2) ;

Far1 : FarObstacle(Camera,3);

Far2 : FarObstacle(Camera,4);
Far3 : FarObstacle(Camera,5);

Far4 : FarObstacle(Camera,6);

Far5 : FarObstacle(Camera,7);

Properties

End

6 Author name / Procedia CIRP 00 (2022) 000–000

electrical generation and distribution system [17] under

functional and safety requirements.

As for the problem of positioning and configuration of the

embedded camera modeled in DEPS, it is solved in DEPS

Studio in a few seconds on a Pentium CoreI5 type machine.

4.4. Related work

From the point of view of the MBSS approach as we have

explained and formalized previously (cf fig 5), we have not

found any equivalent work. Concerning the modeling

formalisms, the authors of [21] underline the difficulties of

using formalisms such as SysML (System Modeling

Language), initially built for representing fully defined

systems to model problems. They propose in their work to use

as us a dedicated formalism called the Clafer associated with

the Choco constraint programming library to model and solve

a problem of allocating computers to embedded tasks.

Nevertheless, Clafer remains a language dedicated to the

configuration of software product lines with discrete variables

and constraints. On the other hand, [11] proposes to add a first

level of variability to SysML. The approach is coupled with

the Choco constraint programming library to solve simple

configuration problems. However, since these first research

works, this initiative has not progressed significantly because
it remains difficult to introduce more structural variability in a

system definition language. The current limitations of the

approach are the low level of variability that can be taken into

account, the use of a solver dealing mainly with discrete

constraints and a weak coupling between the formalism and

the solver. This last point means that the debugging of the

models is done, in case of bug or modeling problem, in the

host language of the solver, in this case Java and not in the

SysML language.

5. Conclusion

 MBSE MBSS

Method Point to point design
Solution oriented

Generate and test

V cycle

Set based design
Problem oriented

Requirement based

I cycle

Modeling System modeling

Defined System

Local

Problem modeling

Sub-definite system

Global

Computing Iterations

Evaluation
Simulation

Optimization

Verification and validation

Problem Solving

Constraint Programming
Correct by construction

Satisfaction

Languages UML, SysMl, AADL,

DEVS, Modelica, …

DEPS

Tools Capella, OpenModelica,

MDO, …

DEPS Studio

Fig. 10. MBSE vs MBSS

In this paper we have proposed a possible evolution of

MBSE summarized in figure 10. The MBSS approach

supports the idea of modeling the problem rather than the

solution candidate and then solving the problem instead of

evaluating the performance of a solution candidate. The

approach is tooling with the declarative problem modeling

language DEPS and the DEPS Studio IDE for modeling and

solving based on mixed domain constraint programming. The

formalism allows the creation of generic, reusable and

extensible sub-definite models. Modeling and solving are

integrated in a single environment for easy model

development.

The MBSS approach, the DEPS language and the DEPS

Studio tool evolve according to the design problems

addressed and the requirements considered.

References

[1] Singer DJ, Doerry N, Buckley ME. What is Set-Based Design?. Naval

Engineering Journal 121(4): 31-43; October 2009.

[2] Bass L. Generate and test as a software architecture design approach. Joint
Working IEEE/IFIP Conference on Software Architecture & European

Conference on Software Architecture; 2009.

[3] IEEE 1220-2005 - IEEE Standard for Application and Management of
the Systems Engineering Process; 2005.

https://standards.ieee.org/standard/1220-2005.html

[4] Graessler I, Hentze J and Bruckmann T. V-models for interdisciplinary
systems engineering. proc of International Design Conference – ICED;

2018.

[5] Kahng A.B, DfX and Signoff: The Coming Challenges and
Opportunities, Keynote Address, IEEE Computer Society Annual

Symposium on VLSI (ISVLSI), 2012.
[6] AADL standard web site:

https://www.sae.org/standards/content/as5506c/.

[7] Friedenthal S, Moore A, Steiner R. A practical guide to SysML. In:
TheSystems Modeling Language, 3rd ed. The MK/OMG Press; 2015.

[8] Fritzson P. Principles of Object-Oriented Modeling and Simulation with

Modelica 3.3: A Cyber-Physical Approach; Wiley Ed; 2014.
[9] Goedkoop M, Oele M, Leijting J, Ponsioen T, Meijer E. Introduction to

LCA with Simapro; 2016.

https://presustainability.com/files/2014/05/SimaPro8IntroductionToLCA.
pdf

[10] Papageorgiou A, Ölvander J. The role of multidisciplinary design

optimization (MDO) in the development process of complex engineering

products. Proc of the 21st International Conference on Engineering

Design (ICED 17); Vancouver; Canada; 2017.

[11] Leserf P, de Saqui-Sannes P, Hugues J, Trade-off analysis for sysml
models using decision points and csps, Software and Systems

Modeling,18(6):3265–3281 2019.

[12]Yvars PA, Zimmer L. Integration of Constraint Programming and Model-
Based Approach for System Synthesis. IEEE International Systems

Conference - SYSCON 2021; Vancouver Canada; 2019.

[13]DEPS language website. https://www.depslink.com
[14]Diampovesa S, Hubert A, Yvars PA. Designing Physical Systems

through a Model-Based Synthesis Approach - Example of a Li-ion

Battery for Electrical Vehicles. Computers In Industry Journal; vol 129;
2021.

[15] Yvars P.A, Zimmer L, A Model-based Synthesis approach to system

design correct by construction under environmental impact requirements,
Procedia CIRP, Vol 103, 2021.

[16] Zimmer L, Yvars PA, Lafaye M. Models of requirements for avionics

architecture synthesis: safety, capacity and security. Complex System
Design and Management conference – CSD&M 2020; Paris France;

December 2020.

[17] Zimmer L, Yvars PA. Synthesis of software architecture for the control
of embedded electrical generation and distribution system for aircraft

under safety constraints: The case of simple failures. Proc of the 14th

International Conference of Industrial Engineering - CIGI-QUALITA;
Grenoble France; 2021.

[18]Tsang E. Foundations of Constraint Satisfaction. London and San

Diego:Academic Press; 1993.
[19] Beldiceanu N, Carlsson M, Rampon J.X. Global Constraint Catalog.

SICS Technical Report T2010:07; 2010.

 http://sofdem.github.io/gccat/gccat/titlepage.html
[20] Benhamou F, Goualard F, Granvilliers L, Puget JF. Revising Hull and

Box consistency. Proc of the 16th International Conference on Logic

Programming; 1993.
[21] S. Creff, J. Le Noir, E. Lenormand and S. Madelenat, “Towards facilities

for modeling and synthesis of architec-tures for resource allocation

problem in systems engineering”, In Proc of 24th Systems and Software
Product Line Conference, 2020.

