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Gaël Berthaud-Müller
Afnic

Yvelines, France
gael.berthaud-muller@afnic.fr

Sandoche Balakrichenan
Afnic

Yvelines, France
sandoche.balakrichenan@afnic.fr

Kinda Khawam
Laboratoire DAVID
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Abstract—The current Public Key Infrastructure on the Inter-
net depends on binding names to public keys via the digital X.509
certificates. These certificates are issued by certificate authorities
(CAs), and only certificates verified by one of these CAs are
accepted. This model requires TLS (Transport Layer Security)
clients to store dozens of trusted CA certificates and has proved
to lack immunity against security breaches. The Domain Name
System (DNS) could reinforce and complement the functioning of
CAs. The DNS-Based Authentication of Named Entities (DANE)
protocol is designed to use DNS to bind certificates or keys to
domain names by adding TLSA resource records (RRs) to zones.
Verification is done by fetching the certificate’s TLSA RR and
matching it against it. DANE utilizes DNSSEC, which guarantees
the integrity and authenticity of DNS responses. Besides TLS
servers, TLS clients could also have TLSA RR and be verified
via DANE, allowing mutual authentication between clients and
servers. In this paper, we implement DANE and perform mutual
authentication for IoT backend servers. Our use case is a mutual
authentication process between LoRaWAN’s Join and Network
servers upon receiving a join request from a LoRaWAN end-
device. We study the latency introduced by mutual authentication
via DANE and compare it to traditional CA.

Index Terms—DNS, DANE, DANCE, IoT, LoRaWAN, Authen-
tication

I. INTRODUCTION

Almost every connection to a server on the Internet involves
two basic steps: a Domain Name System (DNS) resolution and
public key certificate verification. DNS maps between domain
names and IP addresses, allowing clients to use names to ini-
tiate connections. The Public Key Infrastructure using X.509
digital certificates (PKIX), on the other hand, helps the clients
verify the server’s identity and eventually set up a secure con-
nection. Clients in this connection model, the commonly used
model for web communications, are not required to prove their
identity, and this burden falls solely on the servers. Having
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mutual authentication between clients and servers requires that
clients also possess the equivalent of a public key certificate
(e.g., X.509 certificate) that they should provide to servers.
Mutual authentication is desirable to reinforce session security,
and it is more so in IoT environments. IoT networks could
benefit from mutual authentication between their different
network elements. Such networks usually involve end-devices
that communicate with gateways via radio frequencies and
IP-enabled backend servers that receive and send data to the
end-devices via the gateways. The prevalent security practices
in IoT today include having keys pre-shared and saved on
end-devices and backend servers to allow secure sessions
between the two and using the PKIX for authenticating the
communication between the IP-enabled backend servers in
the network. Sharing keys is done by different methods. Hard
coding keys on the device and servers, printing them on the
device, or even sending them by email, for example, are all
key-sharing methods used today that clearly pose a security
risk. For communication between backend servers, setting up
secure sessions requires using the PKIX, which, besides its
cost, has some drawbacks and is not necessarily optimal. It
relies on multiple root certificate authorities (CAs) for issuing
digital certificates. The root CAs have self-signed certificates
and can sign and provide certificates to intermediary CAs.
Intermediary CAs are responsible for issuing certificates to
domains and servers. Being authenticated is based chiefly on
owning a certificate issued by an intermediary CA and entities
that trust that CA will trust the certificate and the information
it contains. These CAs are distributed in nature and do not
have a central trust anchor, and each major vendor, Google and
Apple, for example, has its list of CAs (root store) that it trusts
[1]. Moreover, these CAs could be compromised and could
issue rogue certificates [2]. On the other hand, abandoning
public CAs and resorting to self-signed certificates to cut
down on expenses does not work smoothly, especially when
multiple stakeholders are involved. For example, in our work
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on IoT Roaming [3], the stakeholders were universities, and
they voiced their discontent about having our company acting
as a single root CA for the different servers in the network.

Ameliorating the PKIX is not only feasible but, given
the preceding, is also encouraged. The approach we deal
with in this paper builds on DNS and its security extensions
(DNSSEC) to reinforce the PKIX. Using DNS gives some
control back to entities that require being authenticated by
allowing them to publish information about their certificate in
their DNS zones which, alongside the DNS security extensions
which provide data integrity and authentication, mitigates the
drawbacks of the PKIX in its current form.

The remainder of the paper is structured as follows. Sec-
tion II discusses how DNS could be used to implement
mutual authentication. Our set-up and how we used mutual
authentication between two backend servers in a LoRaWAN
network is presented in Section III. An evaluation of our
implementation is done in section IV, and, finally, we conclude
the paper in section V.

II. DNS COMPLEMENTING THE PKIX IN IOT
ENVIRONMENTS

A. The Current PKIX

The Transport Layer Security (TLS) protocol [4], [5] is one
of the main elements of security in today’s Internet that relies
on the Public Key Infrastructure (PKI). For the most part,
secure communications over the Internet start with a TLS
handshake, as depicted in Fig. 1. A TLS client connecting
to a TLS server will receive that server’s X.509 certificate.
The elements of the certificate include information about
the certificate issuer, information about the recipient of the
certificate and the certificate’s digital signature. The client
ensures that the server is whom it claims to be by verifying
that the certificate the server sent is legitimate. A chain of
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trust exists to help TLS clients verify the authenticity of
certificates. This chain of trust starts at the top with root
CAs. Root CAs are trusted by default and have self-signed
certificates that allow them to issue other certificates creating
intermediary CAs. Intermediary CAs, which the root CAs
trust, can issue certificates for servers and websites. An X.509
certificate contains several fields describing the issuing CA and
its owner. The issuing CA signs the certificate by encrypting
the hash (digest) of the certificate fields with its private key.
The problem with the current model is that certificates are not
required to be verified by the CA that issued them. Moreover,
a CA that wants its certificates to be trusted must be added to
the root store containing the list of trusted root CA certificates.
Different vendors and browsers have different root stores.
Moreover, the root and intermediary CAs are not immune
to security breaches [6], [7], and could, in theory, issue
certificates for any domain like the root authority Diginotar
did when it issued a fraudulent Google certificate in 2011 [2].

B. Using DNS for Certificate Verification

The typical DNS resolution process starts at the root zone.
The recursive resolver sends the query to one of the root
name servers, and the root name server will send back to
the resolver a referral to the appropriate Top Level Domain
(TLD) such as .com, .net, for example. The original design
of DNS did not account for security and is therefore prone
to security and privacy risks. Consequently, in addition to
the referral, a DNSSEC [8]–[10] chain of trust comprised
of digital signatures is also sent to authenticate the referred
TLD. The process is repeated down the DNS tree until the
authoritative name server of the requested domain is reached
as demonstrated in Fig. 2. DNSSEC ensures that the received
data’s origin is authentic and that it has not been tampered
with on the way. It is evident, however, that DNSSEC does
not ensure the privacy of DNS traffic.

The DNS-Based Authentication of Named Entities (DANE)
[11]–[13] gives control back to zone owners regarding verify-



ing their certificates. DANE’s main feature is the TLSA Re-
source Record (RR) that owners can add to their zone. TLSA
RRs form an association between certificates and the domains
to which those certificates were given. A typical TLSA RR for
a TLS server having the hostname www.example.com, using
TCP, and listening on port 443 looks something like Fig. 3.

The fields of the TLSA RR are [11]:
• Certificate Usage Field (1 byte): could be ’0’ to specify

a CA certificate or the public key of such a certificate
limiting the CAs that can issue certificates for domains
owning the TLSA RR, ’1’ to specify an end entity
certificate or its public key, and ’2’ to specify a certificate
or its public key.

• Selector Field (1 byte): this specifies which part of
the certificate received from the server will be matched
against the association data. It could be ’0’ for ’Full
Certificate’ or ’1’ for SubjectPublicKeyInfo.

• Matching Type Field (1 byte): this specifies how the
certificate association is presented. It could be ’0’ for
’Exact match’, ’1’ for SHA-256 hash, or ’2’ for SHA-
512 hash.

• Certificate Association Data Field: this specifies the ’cer-
tificate association data’ to be matched depending on the
Selector value.

Clients intending to connect to a TLS server will receive a
certificate, and instead of validating that certificate using a
traditional CA, they will perform a DNS query to fetch the
TLSA RR from the zone the server to which they are con-
necting belongs. If the information in the TLSA RR matches
the information received from the TLS server, validation
is complete, and a secure connection can be initiated. The
question may arise: why would zone owners trust DANE since
DNS’s infrastructure is not designed with security capabilities?
Furthermore, why would zone owners move from dealing with
CAs to dealing with DNS? In fact, DANE uses DNS Security
Extensions (DNSSEC) [8]–[10] to guarantee the authenticity
and integrity of the TLSA RRs.

DNSSEC provides data integrity and data origin authenti-
cation. In addition, DNSSEC can explicitly answer in case of
record non-existence. In each DNSSEC-enabled zone, there
should be two pairs of keys: a private/public Key Signing Key
(KSK) pair and a private/public Zone Signing Key (ZSK) pair.
KSKs are used to sign keys, while ZSKs are used to sign
non-key data. The anchor of trust that DNSSEC depends on
is the root zone’s public KSK. This key should be known to
all resolvers using the DNSSEC chain of trust.

C. Mutual Authentication via DANE

In its original form [11], [13], DANE is concerned with
authenticating TLS servers. TLS clients, on the other hand,
were not thought to have certificates that needed verifica-
tion. This was the main driver behind creating the DANE
Authentication for Network Clients Everywhere (DANCE)
IETF working group [14]. The Internet Engineering Task
Force (IETF) is a standardization body responsible for issuing

Internet Standards as Request for Comments (RFCs). IETF
has several working groups, each with a primary theme that
it addresses. The DANCE working group aims to extend
DANE to enable TLS client authentication using certificates
or raw public keys. Like TLS servers, TLS clients will have
their raw public keys or certificates and corresponding TLSA
RRs in the DNS zone they belong to. This allows mutual
authentication via DANE between the TLS clients and servers
where a client can check and authenticate the public key or
certificate received from the server, which in turn could verify
the public key of the certificate received from the client. The
DANCE working group have issued two internet drafts so
far, TLS Client Authentication via DANE TLSA RRs [15] and
TLS Extension for DANE Client Identity [16]. Both drafts are
active at the time of writing. The first draft [15] describes
how to publish TLSA RRs for TLS clients. Client identities
here are assumed to be represented by a DNS domain name.
Just as it is when verifying servers, TLS clients that plan on
being authenticated via DANE must have a raw public key
or a certificate binding them to a public key. The keys or
certificates have corresponding TLSA RRs allowing verifying
them via DNS. The clients should always signal their intent
to be verified with DANE to spare the server from sending
unnecessary DNS queries. The second draft [16] addresses that
as it specifies a TLS extension that allows clients to express
their support for DANE and their intent to be verified and
allows them to share their DANE identity with the server.

III. SYSTEM MODEL

This paper aims to implement the DANCE WG’s drafts
[15], [16] in an IoT environment where a reliable mutual
authentication is vital. We modified the Golang TLS library
and added support for the DANE client ID extension in
TLS 1.3 (client and server sides). Moreover, we adapted
the implementation to add support for TLS 1.2, where the
extension was added in the client Hello message allowing
the client id to be sent in it. We chose to implement in a
LoRaWAN network by allowing mutual authentication be-
tween two backend servers. LoRaWAN stands for Long Range
Wide Area Network, one of several Low Power Wide Area
Network (LPWAN) protocols. We have chosen LoRaWAN
since it fits the criteria we seek: constrained end-devices in
the radio space and several IP-enabled backend servers in the
IP-space. These backend servers communicate with each other
and could benefit from mutual authentication. Another reason
for choosing LoRaWAN is its low cost and ease of deployment
compared to other IoT LPWAN technologies. The source code
is available at https://gitlab.rd.nic.fr/dance.

The basic architecture of a LoRaWAN network is de-
picted in Fig. 4. LoRaWAN end-devices are constrained radio
transceivers that send data to backend servers or receive data
from backend servers. The backend servers are IP-enabled
servers and are separated from the radio frequency space via
a gateway which sits between the radio and IP spaces. The
set-up is demonstrated in Fig. 5. Usually in a LoRaWAN
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network, if a device wants to join the network, it will send
a join request that the gateway will receive. The gateway
forwards the join request to the Network Server, which then
connects to the Join Server to verify it. The join accept is then
sent back to the gateway, which delivers it to the end-device.
Before the Network Server contacts the Join Server, the two
servers perform mutual authentication via a TLS handshake
that includes a certificate exchange. In our implementation,
each server verifies the other’s certificate using DNS. Each
server would have already added a TLSA RR of its certificate
in its DNS zone. The TLSA RR of one server is retrieved by

the other to verify the certificate it received. Several scenarios
are tested to study the effect of using DNS.

For our experiments, the end-device, Gateway, Network
Server and Application/Join Server are located in France, and
we vary the location of the DNS resolver to study the effect
it has on performance. We start with a local resolver on the
Network Server and the Application/Join Server and study the
difference between enabling caching and not enabling it. We
also study the case of remote resolvers using Google’s public
DNS resolver (8.8.8.8) and a resolver we set up in Singapore.
Singapore was chosen to maximize the distance between the
DNS clients and the resolver. These scenarios are compared to
the baseline case of not using DANE for certificate verification
and instead using a single CA. The single CA, in our case,
is our company that owns both servers. It has a self-signed
certificate which allows it to issue certificates for both servers
and act as a trusted CA for both. Hence, both servers will trust
it and the certificates it issues, allowing mutual authentication
to happen.

IV. EVALUATION

In this section, we provide the results of the measurements
we did in various scenarios: A baseline case to which we
compare the results of our implementation, and then several
scenarios of mutual authentication via DANE but with a
varying configuration and location of the recursive resolver.
We start with a local resolver on each server and study the
effect of caching. We then move to use a remote resolver. The
remote resolvers we used are Google’s public DNS resolver
(8.8.8.8) and a resolver in Singapore. The metric we are
considering is the time elapsed starting when the gateway
receives the join request from the end-device and until it
receives back the join accept from the Network Server. We
study how using DANE for mutual authentication affects the
duration of the join request. In each scenario, the end-device
sent a join request every 10 seconds for 7 hours. However,
due to duty cycle restrictions (1% in our region), not all
join requests were successful. The baseline case to which we
compare our results is the case where DANE is not used,
but instead, authentication is done by using a CA. The CA
in the baseline case is our company which has a self-signed
certificate which allows it to issue certificates to the servers.
While mutually authenticating, the servers exchange and verify
each other’s certificates because both servers trust the CA.
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Figure 6 is the histogram of the duration of successful join
requests in the baseline case where DANE is not used. The
average join request duration is around 0.412 seconds.

A. Using a Local DNS Resolver

The first scenario we tested included using a local resolver
on each server. A resolver is installed separately on the
Network Server and on the Application/Join Server. Each
server is configured to use its local resolver when retrieving
the TLSA RR of the server it is authenticating. We ran the test
and did our measurements once without enabling caching at
the resolver and another with caching enabled with 20-minute
TTL values on both servers. In the context of DNS, caching
allows the resolvers to save the query responses and to reply
directly to such requests (i.e. without repeating the whole DNS
query process). The responses stay in the cache according to
their TTL values. Resolvers will initiate a recursive resolving
process to fetch a RR if this RR is not in the cache or
if it is but has been there for more than the TTL value
specified in it. Figure 7 is the histogram of the duration of
successful join requests in the case where a local DNS resolver
is used. Caching is not enabled at the resolvers; hence, the
resolvers will have to recursively go through the DNS query
process to fetch the TLSA RR every time. This resulted in an
increased delay, and the average join request duration went
up to around 1.037 seconds. This delay went down again
to around 0.442 seconds after caching was enabled on both
servers with a TLSA RR Time To Live (TTL) of 20 minutes.
This is demonstrated in Figure 8.

Figures 7 and 8 show that using DANE for mutual authenti-
cation does introduce a significant delay to the joining process
as the average join request duration more than doubled and
went from 0.412 seconds for the baseline case to 1.037 seconds
when using a local resolver without caching. However, the
caching at the recursive resolver reduced the latency, and the
average join request duration went down to 0.442 seconds.
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B. Using Remote DNS Resolvers

The caching proved useful in decreasing the latency intro-
duced from the DNS resolving process even if the resolvers
were remote. Figure 9 is the histogram of the duration of
successful join requests in the case where the resolver is
Google’s public DNS resolver (8.8.8.8). The average join
request duration is around 0.489 seconds. Figure 10 is the
histogram of the duration of successful join requests in the case
where the resolver is in Singapore. The average join request
duration is around 0.887 seconds.

Figures 9 and 10 demonstrate the importance of caching to
reduce the latency introduced by using DANE. The average
join request duration in both cases (0.489 seconds for Google
public DNS and 0.887 seconds for Singapore DNS resolver)
is less than the average join request duration when using a
local resolver but without caching.
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V. CONCLUSION

Mutual authentication in IoT environments is crucial to
enhance the overall security of networks. The current PKIX is
prone to security risks and could benefit from using DNS to
reinforce it. DNSSEC guarantees the integrity and authenticity
of answers received via DNS. In this paper, we used DANE
to perform mutual authentication between LoRaWAN Network
and Join Servers. We evaluated the performance by measuring
the time elapsed between join requests and join accepts at
the level of the gateway. The implementation showed that
DNS could be used for authenticating certificates by adding
appropriate TLSA RRs in the DNS zone of the domain
whose certificate is to be verified. The performance evaluation
showed that DNS seems to add latency to the authentication
process, but that could be overcome by caching, which can
achieve latency values close to the baseline case. The next
step is to extend the mutual authentication process to the end-
device and have it perform mutual authentication with the

Application Server, for example. This is not straightforward for
constrained IoT devices as the exchange required to perform
this authentication is much larger than the MTU (Maximum
Transfer Unit) values in the radio space. Compression and
fragmentation techniques could be beneficial. Moreover, this
paper did not take into account the transport protocol used
during DNS resolution. Some DNS-encrypting protocols like
DNS-over-TLS and DNS-over-HTTPS preserve the privacy of
DNS requests and responses, but use TCP, which introduces
additional latency.
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