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The current Public Key Infrastructure on the Internet depends on binding names to public keys via the digital X.509 certificates. These certificates are issued by certificate authorities (CAs), and only certificates verified by one of these CAs are accepted. This model requires TLS (Transport Layer Security) clients to store dozens of trusted CA certificates and has proved to lack immunity against security breaches. The Domain Name System (DNS) could reinforce and complement the functioning of CAs. The DNS-Based Authentication of Named Entities (DANE) protocol is designed to use DNS to bind certificates or keys to domain names by adding TLSA resource records (RRs) to zones. Verification is done by fetching the certificate's TLSA RR and matching it against it. DANE utilizes DNSSEC, which guarantees the integrity and authenticity of DNS responses. Besides TLS servers, TLS clients could also have TLSA RR and be verified via DANE, allowing mutual authentication between clients and servers. In this paper, we implement DANE and perform mutual authentication for IoT backend servers. Our use case is a mutual authentication process between LoRaWAN's Join and Network servers upon receiving a join request from a LoRaWAN enddevice. We study the latency introduced by mutual authentication via DANE and compare it to traditional CA.

I. INTRODUCTION

Almost every connection to a server on the Internet involves two basic steps: a Domain Name System (DNS) resolution and public key certificate verification. DNS maps between domain names and IP addresses, allowing clients to use names to initiate connections. The Public Key Infrastructure using X.509 digital certificates (PKIX), on the other hand, helps the clients verify the server's identity and eventually set up a secure connection. Clients in this connection model, the commonly used model for web communications, are not required to prove their identity, and this burden falls solely on the servers. Having This work was supported by the French National Research Agency (ANR) -PIVOT (ANR-20-CYAL-0002) mutual authentication between clients and servers requires that clients also possess the equivalent of a public key certificate (e.g., X.509 certificate) that they should provide to servers. Mutual authentication is desirable to reinforce session security, and it is more so in IoT environments. IoT networks could benefit from mutual authentication between their different network elements. Such networks usually involve end-devices that communicate with gateways via radio frequencies and IP-enabled backend servers that receive and send data to the end-devices via the gateways. The prevalent security practices in IoT today include having keys pre-shared and saved on end-devices and backend servers to allow secure sessions between the two and using the PKIX for authenticating the communication between the IP-enabled backend servers in the network. Sharing keys is done by different methods. Hard coding keys on the device and servers, printing them on the device, or even sending them by email, for example, are all key-sharing methods used today that clearly pose a security risk. For communication between backend servers, setting up secure sessions requires using the PKIX, which, besides its cost, has some drawbacks and is not necessarily optimal. It relies on multiple root certificate authorities (CAs) for issuing digital certificates. The root CAs have self-signed certificates and can sign and provide certificates to intermediary CAs. Intermediary CAs are responsible for issuing certificates to domains and servers. Being authenticated is based chiefly on owning a certificate issued by an intermediary CA and entities that trust that CA will trust the certificate and the information it contains. These CAs are distributed in nature and do not have a central trust anchor, and each major vendor, Google and Apple, for example, has its list of CAs (root store) that it trusts [START_REF] Kemmerer | What is a root store?[END_REF]. Moreover, these CAs could be compromised and could issue rogue certificates [START_REF]An update on attempted man-in-the-middle attacks[END_REF]. On the other hand, abandoning public CAs and resorting to self-signed certificates to cut down on expenses does not work smoothly, especially when multiple stakeholders are involved. For example, in our work Fi ni sh ed H TT P G ET Fig. 1. TLS-handshake on IoT Roaming [START_REF] Balakrichenan | IoTRoam: design and implementation of an open LoRaWAN roaming architecture[END_REF], the stakeholders were universities, and they voiced their discontent about having our company acting as a single root CA for the different servers in the network.

Ameliorating the PKIX is not only feasible but, given the preceding, is also encouraged. The approach we deal with in this paper builds on DNS and its security extensions (DNSSEC) to reinforce the PKIX. Using DNS gives some control back to entities that require being authenticated by allowing them to publish information about their certificate in their DNS zones which, alongside the DNS security extensions which provide data integrity and authentication, mitigates the drawbacks of the PKIX in its current form.

The remainder of the paper is structured as follows. Section II discusses how DNS could be used to implement mutual authentication. Our set-up and how we used mutual authentication between two backend servers in a LoRaWAN network is presented in Section III. An evaluation of our implementation is done in section IV, and, finally, we conclude the paper in section V.

II. DNS COMPLEMENTING THE PKIX IN IOT ENVIRONMENTS

A. The Current PKIX

The Transport Layer Security (TLS) protocol [START_REF] Rescorla | The Transport Layer Security (TLS) Protocol Version 1.2[END_REF], [START_REF] Rescorla | The Transport Layer Security (TLS) Protocol Version 1.3[END_REF] is one of the main elements of security in today's Internet that relies on the Public Key Infrastructure (PKI). For the most part, secure communications over the Internet start with a TLS handshake, as depicted in Fig. 1. A TLS client connecting to a TLS server will receive that server's X.509 certificate. The elements of the certificate include information about the certificate issuer, information about the recipient of the certificate and the certificate's digital signature. The client ensures that the server is whom it claims to be by verifying that the certificate the server sent is legitimate. A chain of trust exists to help TLS clients verify the authenticity of certificates. This chain of trust starts at the top with root CAs. Root CAs are trusted by default and have self-signed certificates that allow them to issue other certificates creating intermediary CAs. Intermediary CAs, which the root CAs trust, can issue certificates for servers and websites. An X.509 certificate contains several fields describing the issuing CA and its owner. The issuing CA signs the certificate by encrypting the hash (digest) of the certificate fields with its private key. The problem with the current model is that certificates are not required to be verified by the CA that issued them. Moreover, a CA that wants its certificates to be trusted must be added to the root store containing the list of trusted root CA certificates. Different vendors and browsers have different root stores. Moreover, the root and intermediary CAs are not immune to security breaches [START_REF]Operation black tulip: Certificate authorities lose authority[END_REF], [START_REF] Corbitt | Do you "trust" me?[END_REF], and could, in theory, issue certificates for any domain like the root authority Diginotar did when it issued a fraudulent Google certificate in 2011 [START_REF]An update on attempted man-in-the-middle attacks[END_REF].

B. Using DNS for Certificate Verification

The typical DNS resolution process starts at the root zone. The recursive resolver sends the query to one of the root name servers, and the root name server will send back to the resolver a referral to the appropriate Top Level Domain (TLD) such as .com, .net, for example. The original design of DNS did not account for security and is therefore prone to security and privacy risks. Consequently, in addition to the referral, a DNSSEC [START_REF] Rose | DNS Security Introduction and Requirements[END_REF]- [START_REF] Rose | Protocol Modifications for the DNS Security Extensions[END_REF] chain of trust comprised of digital signatures is also sent to authenticate the referred TLD. The process is repeated down the DNS tree until the authoritative name server of the requested domain is reached as demonstrated in Fig. 2. DNSSEC ensures that the received data's origin is authentic and that it has not been tampered with on the way. It is evident, however, that DNSSEC does not ensure the privacy of DNS traffic.

The DNS-Based Authentication of Named Entities (DANE) [START_REF] Hoffman | The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA[END_REF]- [START_REF] Dukhovni | The DNS-Based Authentication of Named Entities (DANE) Protocol: Updates and Operational Guidance[END_REF] gives control back to zone owners regarding verify-ing their certificates. DANE's main feature is the TLSA Resource Record (RR) that owners can add to their zone. TLSA RRs form an association between certificates and the domains to which those certificates were given. A typical TLSA RR for a TLS server having the hostname www.example.com, using TCP, and listening on port 443 looks something like Fig. 3.

The fields of the TLSA RR are [START_REF] Hoffman | The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA[END_REF]:

• Certificate Usage Field (1 byte): could be '0' to specify a CA certificate or the public key of such a certificate limiting the CAs that can issue certificates for domains owning the TLSA RR, '1' to specify an end entity certificate or its public key, and '2' to specify a certificate or its public key. • Selector Field (1 byte): this specifies which part of the certificate received from the server will be matched against the association data. It could be '0' for 'Full Certificate' or '1' for SubjectPublicKeyInfo. • Matching Type Field (1 byte): this specifies how the certificate association is presented. It could be '0' for 'Exact match', '1' for SHA-256 hash, or '2' for SHA-512 hash. • Certificate Association Data Field: this specifies the 'certificate association data' to be matched depending on the Selector value. Clients intending to connect to a TLS server will receive a certificate, and instead of validating that certificate using a traditional CA, they will perform a DNS query to fetch the TLSA RR from the zone the server to which they are connecting belongs. If the information in the TLSA RR matches the information received from the TLS server, validation is complete, and a secure connection can be initiated. The question may arise: why would zone owners trust DANE since DNS's infrastructure is not designed with security capabilities? Furthermore, why would zone owners move from dealing with CAs to dealing with DNS? In fact, DANE uses DNS Security Extensions (DNSSEC) [START_REF] Rose | DNS Security Introduction and Requirements[END_REF]- [START_REF] Rose | Protocol Modifications for the DNS Security Extensions[END_REF] to guarantee the authenticity and integrity of the TLSA RRs.

DNSSEC provides data integrity and data origin authentication. In addition, DNSSEC can explicitly answer in case of record non-existence. In each DNSSEC-enabled zone, there should be two pairs of keys: a private/public Key Signing Key (KSK) pair and a private/public Zone Signing Key (ZSK) pair. KSKs are used to sign keys, while ZSKs are used to sign non-key data. The anchor of trust that DNSSEC depends on is the root zone's public KSK. This key should be known to all resolvers using the DNSSEC chain of trust.

C. Mutual Authentication via DANE

In its original form [START_REF] Hoffman | The DNS-Based Authentication of Named Entities (DANE) Transport Layer Security (TLS) Protocol: TLSA[END_REF], [START_REF] Dukhovni | The DNS-Based Authentication of Named Entities (DANE) Protocol: Updates and Operational Guidance[END_REF], DANE is concerned with authenticating TLS servers. TLS clients, on the other hand, were not thought to have certificates that needed verification. This was the main driver behind creating the DANE Authentication for Network Clients Everywhere (DANCE) IETF working group [START_REF]Dane authentication for network clients everywhere (dance)[END_REF]. The Internet Engineering Task Force (IETF) is a standardization body responsible for issuing Internet Standards as Request for Comments (RFCs). IETF has several working groups, each with a primary theme that it addresses. The DANCE working group aims to extend DANE to enable TLS client authentication using certificates or raw public keys. Like TLS servers, TLS clients will have their raw public keys or certificates and corresponding TLSA RRs in the DNS zone they belong to. This allows mutual authentication via DANE between the TLS clients and servers where a client can check and authenticate the public key or certificate received from the server, which in turn could verify the public key of the certificate received from the client. The DANCE working group have issued two internet drafts so far, TLS Client Authentication via DANE TLSA RRs [START_REF] Huque | TLS Client Authentication via DANE TLSA records[END_REF] and TLS Extension for DANE Client Identity [START_REF] Huque | TLS Extension for DANE Client Identity[END_REF]. Both drafts are active at the time of writing. The first draft [START_REF] Huque | TLS Client Authentication via DANE TLSA records[END_REF] describes how to publish TLSA RRs for TLS clients. Client identities here are assumed to be represented by a DNS domain name. Just as it is when verifying servers, TLS clients that plan on being authenticated via DANE must have a raw public key or a certificate binding them to a public key. The keys or certificates have corresponding TLSA RRs allowing verifying them via DNS. The clients should always signal their intent to be verified with DANE to spare the server from sending unnecessary DNS queries. The second draft [START_REF] Huque | TLS Extension for DANE Client Identity[END_REF] addresses that as it specifies a TLS extension that allows clients to express their support for DANE and their intent to be verified and allows them to share their DANE identity with the server.

III. SYSTEM MODEL

This paper aims to implement the DANCE WG's drafts [START_REF] Huque | TLS Client Authentication via DANE TLSA records[END_REF], [START_REF] Huque | TLS Extension for DANE Client Identity[END_REF] in an IoT environment where a reliable mutual authentication is vital. We modified the Golang TLS library and added support for the DANE client ID extension in TLS 1.3 (client and server sides). Moreover, we adapted the implementation to add support for TLS 1.2, where the extension was added in the client Hello message allowing the client id to be sent in it. We chose to implement in a LoRaWAN network by allowing mutual authentication between two backend servers. LoRaWAN stands for Long Range Wide Area Network, one of several Low Power Wide Area Network (LPWAN) protocols. We have chosen LoRaWAN since it fits the criteria we seek: constrained end-devices in the radio space and several IP-enabled backend servers in the IP-space. These backend servers communicate with each other and could benefit from mutual authentication. Another reason for choosing LoRaWAN is its low cost and ease of deployment compared to other IoT LPWAN technologies. The source code is available at https://gitlab.rd.nic.fr/dance.

The basic architecture of a LoRaWAN network is depicted in Fig. 4. LoRaWAN end-devices are constrained radio transceivers that send data to backend servers or receive data from backend servers. The backend servers are IP-enabled servers and are separated from the radio frequency space via a gateway which sits between the radio and IP spaces. The set-up is demonstrated in Fig. 5. Usually in a LoRaWAN Local/remote DNS resolver DNS Fig. 5. System Model network, if a device wants to join the network, it will send a join request that the gateway will receive. The gateway forwards the join request to the Network Server, which then connects to the Join Server to verify it. The join accept is then sent back to the gateway, which delivers it to the end-device. Before the Network Server contacts the Join Server, the two servers perform mutual authentication via a TLS handshake that includes a certificate exchange. In our implementation, each server verifies the other's certificate using DNS. Each server would have already added a TLSA RR of its certificate in its DNS zone. The TLSA RR of one server is retrieved by the other to verify the certificate it received. Several scenarios are tested to study the effect of using DNS.

For our experiments, the end-device, Gateway, Network Server and Application/Join Server are located in France, and we vary the location of the DNS resolver to study the effect it has on performance. We start with a local resolver on the Network Server and the Application/Join Server and study the difference between enabling caching and not enabling it. We also study the case of remote resolvers using Google's public DNS resolver (8.8.8.8) and a resolver we set up in Singapore. Singapore was chosen to maximize the distance between the DNS clients and the resolver. These scenarios are compared to the baseline case of not using DANE for certificate verification and instead using a single CA. The single CA, in our case, is our company that owns both servers. It has a self-signed certificate which allows it to issue certificates for both servers and act as a trusted CA for both. Hence, both servers will trust it and the certificates it issues, allowing mutual authentication to happen.

IV. EVALUATION

In this section, we provide the results of the measurements we did in various scenarios: A baseline case to which we compare the results of our implementation, and then several scenarios of mutual authentication via DANE but with a varying configuration and location of the recursive resolver. We start with a local resolver on each server and study the effect of caching. We then move to use a remote resolver. The remote resolvers we used are Google's public DNS resolver (8.8.8.8) and a resolver in Singapore. The metric we are considering is the time elapsed starting when the gateway receives the join request from the end-device and until it receives back the join accept from the Network Server. We study how using DANE for mutual authentication affects the duration of the join request. In each scenario, the end-device sent a join request every 10 seconds for 7 hours. However, due to duty cycle restrictions (1% in our region), not all join requests were successful. The baseline case to which we compare our results is the case where DANE is not used, but instead, authentication is done by using a CA. The CA in the baseline case is our company which has a self-signed certificate which allows it to issue certificates to the servers. While mutually authenticating, the servers exchange and verify each other's certificates because both servers trust the CA. Figure 6 is the histogram of the duration of successful join requests in the baseline case where DANE is not used. The average join request duration is around 0.412 seconds.

A. Using a Local DNS Resolver

The first scenario we tested included using a local resolver on each server. A resolver is installed separately on the Network Server and on the Application/Join Server. Each server is configured to use its local resolver when retrieving the TLSA RR of the server it is authenticating. We ran the test and did our measurements once without enabling caching at the resolver and another with caching enabled with 20-minute TTL values on both servers. In the context of DNS, caching allows the resolvers to save the query responses and to reply directly to such requests (i.e. without repeating the whole DNS query process). The responses stay in the cache according to their TTL values. Resolvers will initiate a recursive resolving process to fetch a RR if this RR is not in the cache or if it is but has been there for more than the TTL value specified in it. Figure 7 is the histogram of the duration of successful join requests in the case where a local DNS resolver is used. Caching is not enabled at the resolvers; hence, the resolvers will have to recursively go through the DNS query process to fetch the TLSA RR every time. This resulted in an increased delay, and the average join request duration went up to around 1.037 seconds. This delay went down again to around 0.442 seconds after caching was enabled on both servers with a TLSA RR Time To Live (TTL) of 20 minutes. This is demonstrated in Figure 8.

Figures 7 and8 show that using DANE for mutual authentication does introduce a significant delay to the joining process as the average join request duration more than doubled and went from 0.412 seconds for the baseline case to 1.037 seconds when using a local resolver without caching. However, the caching at the recursive resolver reduced the latency, and the average join request duration went down to 0.442 seconds. 

B. Using Remote DNS Resolvers

The caching proved useful in decreasing the latency introduced from the DNS resolving process even if the resolvers were remote. Figure 9 is the histogram of the duration of successful join requests in the case where the resolver is Google's public DNS resolver (8.8.8.8). The average join request duration is around 0.489 seconds. Figure 10 is the histogram of the duration of successful join requests in the case where the resolver is in Singapore. The average join request duration is around 0.887 seconds.

Figures 9 and 10 demonstrate the importance of caching to reduce the latency introduced by using DANE. The average join request duration in both cases (0.489 seconds for Google public DNS and 0.887 seconds for Singapore DNS resolver) is less than the average join request duration when using a local resolver but without caching. V. CONCLUSION Mutual authentication in IoT environments is crucial to enhance the overall security of networks. The current PKIX is prone to security risks and could benefit from using DNS to reinforce it. DNSSEC guarantees the integrity and authenticity of answers received via DNS. In this paper, we used DANE to perform mutual authentication between LoRaWAN Network and Join Servers. We evaluated the performance by measuring the time elapsed between join requests and join accepts at the level of the gateway. The implementation showed that DNS could be used for authenticating certificates by adding appropriate TLSA RRs in the DNS zone of the domain whose certificate is to be verified. The performance evaluation showed that DNS seems to add latency to the authentication process, but that could be overcome by caching, which can achieve latency values close to the baseline case. The next step is to extend the mutual authentication process to the enddevice and have it perform mutual authentication with the Application Server, for example. This is not straightforward for constrained IoT devices as the exchange required to perform this authentication is much larger than the MTU (Maximum Transfer Unit) values in the radio space. Compression and fragmentation techniques could be beneficial. Moreover, this paper did not take into account the transport protocol used during DNS resolution. Some DNS-encrypting protocols like DNS-over-TLS and DNS-over-HTTPS preserve the privacy of DNS requests and responses, but use TCP, which introduces additional latency.
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