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ARTICLE

Cerebellar connectivity maps embody individual
adaptive behavior in mice
Ludovic Spaeth 1,5,8, Jyotika Bahuguna 2,6,8, Theo Gagneux 1, Kevin Dorgans1,7, Izumi Sugihara 3,

Bernard Poulain 1, Demian Battaglia2,4,9 & Philippe Isope 1,9✉

The cerebellar cortex encodes sensorimotor adaptation during skilled locomotor behaviors,

however the precise relationship between synaptic connectivity and behavior is unclear.

We studied synaptic connectivity between granule cells (GCs) and Purkinje cells (PCs) in

murine acute cerebellar slices using photostimulation of caged glutamate combined with

patch-clamp in developing or after mice adapted to different locomotor contexts. By trans-

lating individual maps into graph network entities, we found that synaptic maps in juvenile

animals undergo critical period characterized by dissolution of their structure followed by the

re-establishment of a patchy functional organization in adults. Although, in adapted mice,

subdivisions in anatomical microzones do not fully account for the observed spatial map

organization in relation to behavior, we can discriminate locomotor contexts with high

accuracy. We also demonstrate that the variability observed in connectivity maps directly

accounts for motor behavior traits at the individual level. Our findings suggest that, beyond

general motor contexts, GC-PC networks also encode internal models underlying individual-

specific motor adaptation.
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Sensorimotor adaptation and motor learning rely on a com-
bination of neuronal computations performed in different
brain areas which communicate through cerebello-thalamo-

cortical loops1–7. Population dynamics in cortical networks
encoding stimulus features route information to different parts of
the brain dedicated to motor planning and motor control. If these
neuronal dynamics eventually succeed in producing an adapted
behavior, they are stabilized through synaptic plasticity yielding to
a mutual structuring of circuit connectivity and activity patterns
across the brain8–11. Recent experiments described how different
types of neurons in the cerebral cortex are selectively and func-
tionally connected depending on stimulus features they have to
encode12–15. Similarly, in the cerebellar cortex, structured synaptic
maps across individuals have been described in identified
modules16,17. However, how they are related to adaptive behavioral
conditions is not well understood.

One of the major roles of the cerebellum in sensorimotor
adaptation is to learn to predict the sensory feedback of motor
commands using stored and adaptable internal models of body
coordinates18–21. By computing the actual sensory feedback, cere-
bellar networks estimate prediction errors, which are then used to
adapt the ongoing motor sequence and internal models. Indeed,
many studies demonstrated that the cerebellum can learn and store
complex adaptive behavior22,23, such as walking on a split-belt
treadmill24,25. However, how locomotor adaptation is encoded in
cerebellar cortical synapses is unknown. One hypothesis would be
that synaptic connectivity maps encode movement features in each
specific context (e.g., limb movement when walking or running).
Connectivity maps would then represent individual-specific
engrams of adaptive behaviors established throughout motor
learning and such feature-based maps would be animal and context
specific20,21. To address this hypothesis, we investigated whether
functional synaptic maps between granule cells (GC) and Purkinje
cells (PC) in the anterior cerebellar vermis, an area involved in
adaptation of locomotion26–30, are modified in different locomotor
contexts (after training in a wheel or following impairment of
locomotion) and during development. Many studies suggest that
GC-PC synapses are a major site of sensorimotor information
storage in the cerebellar cortex17,22,31,32. GCs integrate sensor-
imotor information conveyed by mossy fibers (MFs) and carry
motor commands or current body sensory state from many pre-
cerebellar nuclei33–36. GCs compute and distribute this information
to many different PCs via their long axons, the parallel fibers (PFs),
leading to specific excitatory, functional connectivity maps16,17. The
second major excitatory input to the cerebellar cortex, the climbing
fibers (CF), target PCs, controls plasticity at the GC-PC synapses
and its topographical organization defines an array of anatomo-
functional modules called microzones37–43 (Supplementary Fig. 1).

We used a combination of electrophysiological recordings and
glutamate uncaging to establish GC-PC functional connectivity
through excitatory synaptic maps and described their spatial orga-
nization using a graph-based description of synaptic weights.
Through functional reconstruction, graph representations, and the
quantification of their graph-theoretical features, we showed that
the behavioral context leaves a trace in the spatial organization of
maps. We also found that while connectivity maps are correlated to
behavioral conditions, each mouse developed a specific individual
combination of connectivity traits linked to its individual and highly
specific locomotor activity, suggesting that behavior may causally
shape the spatial (re)organization of functional connectivity maps,
biased but not fully determined by somatotopic hardwiring.

Results
GC-PC functional synaptic connectivity maps in the cerebellar
cortex. We established functional synaptic connectivity maps

between GCs and PCs in acute cerebellar slices of the anterior
vermis (lobules III to V) and selected a group of medial PCs
(0–130 µm from midline17, Fig. 1a and Supplementary Fig. 1). To
enable PC recordings at the same location in different slices and
mice, we took advantage of the specific expression of a family of
neurochemical markers (e.g .zebrin II)39 in subsets of PCs
arranged in parasagittal stripes. These markers, which are highly
conserved between individuals, delimit zebrin positive (e.g. P1+

and P2+) and negative (e.g., P1− and P2−) bands of PCs
matching with the topographical arrangement of the CF
inputs43,44, outlining cerebellar microzones in the cortex (Sup-
plementary Fig. 1). PCs were then whole-cell patch-clamped in
P1− bands of AldolaseC-Venus fluorescent transgenic mice45

(N= 84 mice, Table 1) expressing Venus in PCs of zebrin II
positive bands (Fig. 1a). Small groups of GCs were sequentially
activated (in grids of 128 or 384 square sites of 40 × 40 µm or
20 × 20 µm, yielding low- and high-resolution photostimulation
respectively) using Rubi-Glutamate uncaging46 while synaptic
excitatory currents (EPSCs) were recorded in PCs (n= 153 PCs,
Fig. 1a, b, Supplementary Fig. 2a, b, and Table 1; Methods sec-
tion). For each PC, a unique GC-PC functional map was built
from the averaged EPSCs elicited by each of the 128 or 384
photostimulated sites (Fig. 1b; Methods section). To define
whether a site is functional or silent, EPSC amplitudes were
normalized to noise level and expressed as z-scores17 (i.e., z-score
≥3 was considered an active site; Fig. 1b and Supplementary
Fig. 2; Methods section). MF inputs originating in a specific
precerebellar nuclei project onto GCs in most of the GC layer
height and at several locations in a lobule, defining a fractured
and patchy columnar somatotopy (Supplementary Fig. 1; see
refs. 34,47–49). We therefore treated the GC layer either as a grid or
as a series of GC columns of 40 or 20 µm width corresponding to
either low or high-resolution photostimulation, respectively. Each
functional connectivity map was then represented either as a map
or a projected synaptic profile of the maximal synaptic weight in
each GC column and aligned to the zebrin bands (Fig. 1b and
Supplementary Fig. 3; and Methods section).

We also developed an analytical method to investigate how GC
columns connected to a given PC relate to each other, accounting
for the fractured and patchy somatotopy of MF projections. To do
this, we used an analytic workflow based on a mathematical graph
representation of the functional maps (Fig. 1c, d, Methods
section). Graphs (or networks) are generic abstract entities
composed of nodes and links between them50. We considered
each map as a matrix M, whose Mxy is the mean EPSC amplitude
recorded at the GC site coordinates (x,y) and Cx the column at
coordinate x of a stimulation grid (Fig. 1c; one column= one node
of the graph network). We computed the normalized Pearson
correlations (Cxx’) for every pair of columns x and x′ along the
mediolateral axis of the functional connectivity maps. Cxx′ entries
become the weights of edges between graph nodes associated to
the positions x and x′. Cxx′ values were compiled in a correlation
matrix C(M) (Raw Graph Matrix in Fig. 1c) which can be
considered as the adjacency matrix of an undirected weighted
graph (Methods section). GC columns belonging to one or
multiple patches will have similar synaptic profiles, and the
corresponding graph nodes will thus be strongly connected,
forming network modules. These modules are highlighted as
matrix blocks, appearing in the adjacency matrix after sorting its
rows and columns according to a Louvain community detection
algorithm51,52 (Re-arranged Graph Matrix in Fig. 1c). In Fig. 1c,
nodes belonging to three different modules have been colored into
two alternative visualizations of the graph associated with a single
map. A linear layout (Fig. 1c, left), in which node positions follow
the original mediolateral axis alignment illustrates that modules
tend to be composed of spatially contiguous nodes, with some
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exceptions. Therefore, spatially distant GC columns can belong to
the same graph module, accounting for MF fractured somatotopy
and the multimodal MF inputs on individual GC columns35,36. An
alternative network layout was optimized for module visualization
by a force-spring algorithm (Fig. 1c, right). In this representation,
modules of strongly connected nodes appear as clusters of tightly
interconnected nodes at close spatial distance.

We then quantified the topology of these graph representations
of the synaptic maps using 4 standard metrics (Fig. 1d,

Supplementary Fig. 4, and its supplementary note; Methods
section). (1) The modularity index is a measure of how modular
a graph is, eventually related to the “patchiness” of the associated
GC-PC synaptic map. (2) The average module degree z-score
quantifies whether the connectivity of a node to its neighbors
within the same module is stronger (or weaker) than average. This
metric can detect degree heterogeneity within modules, possibly
reflecting the existence of patches in the associated map with
simpler or more complex shapes. (3) The average participation

Fig. 1 Description of GC-PC synaptic maps and profiles. a Schematic diagram (top left panel) and corresponding picture of an acute slice from an ALDOC-
Venus mouse (bottom left panel) illustrating cerebellar cortical anatomy. Recorded PCs (red) are close to the midline (<130 μm) and belong to the P1−

microzone of lobule III/V. Zebrin II positive (ZII+, green) and ZebrinII negative (ZII−, light gray) PCs coincide with microzonal boundaries (Supplementary
Fig. 1). MFs (orange) project onto columns of GCs. Scale bar= 300 μm. Right panel, photo-stimulation apparatus for glutamate uncaging using patterned
blue light illumination (site size: 20 × 20 or 40 × 40 μm). PCs were whole-cell patch-clamped. gcl, granule cell layer; ml, molecular layer; pcl, Purkinje cell
layer. b Building GC-PC synaptic maps and profiles. Upper part, post-hoc reconstruction of an acute slice. green, endogenous aldolase-C-Venus
fluorescence; magenta, recorded PC; scale bar= 50 μm. Light-evoked EPSCs from each stimulation site were averaged. Significant EPSCs are shown in
magenta (z-score≥ 3). Lower part, resulting synaptic maps are translated into z-score maps (Methods and Supplementary Fig. 2). Maximal z-score value
in each GCL column (magenta-dashed box) along the mediolateral axis was projected on a synaptic profile. Blue areas show GC columns connected to the
recorded PC. c Connectivity map preprocessing for graph-network analyses. Column-wise Pearson correlations (e.g., x and x′ columns) of synaptic weights
lead to a spatial correlation matrix (Raw graph matrix). The raw matrix was rearranged using the Louvain community detection algorithm giving the
Rearranged graph matrix with well-defined graph modules (A, B, C). The resulting graph can be visualized using a force-spring algorithm (Force spring
layout,) or according to node positions along the mediolateral axis, thus respecting the original spatial arrangement rather than using an arbitrary space
(linear layout; Methods section). d Schematic description of graph parameters (see Supplementary Fig. 4). Networks can be characterized by partitioning
them into modules and assessing modularity. Detailed information on modular organization is obtained evaluating module degree z-score, (highlighting
strong hubs organizing connectivity within modules) or participation (highlighting nodes serving as interfaces between modules). Assortativity, illustrates
whether strongly (weakly) connected nodes tend to connect with other strongly (weakly) connected nodes. These metrics capture different specific traits
of the map spatial organization.
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coefficient measures the probability that a node in a module is also
connected to nodes in other modules. This metric may capture the
tendency of patches in the map to partially overlap. (4) The average
local assortativity measures the tendency of nodes to connect to
other nodes with similar strength (i.e., the sum of weights of
connections to a node). Strong assortativity in a map may
correspond to the co-existence of narrower and broader patches.
Together these abstract metrics convey concrete and complemen-
tary information about the geometry of the connectivity maps. A
detailed illustration of how synaptic map traits are translated into
graph-level features is given by Supplementary Fig. 4, which
also provides examples of maps with relatively larger or smaller
graph feature values. In the following, unless otherwise specified,
we will show graph metrics values as normalized percent
differences (denoted by the Δ% symbol) with respect to chance
level expectations (see Methods). Significantly positive (or
negative) Δ% values indicate non-trivial over- (or under)-
expression of a given graph property as compared to its null
counterpart. Such relative normalization allows easier comparison
of maps sampled at different resolutions. Using functional
activation and graph-based properties, we assessed how functional
connectivity maps change during postnatal development (Fig. 2)
and whether they are modified after an injury (right-hindlimb
impairment via sciatic nerve cuffing) or locomotor training in a
running wheel (Figs. 3 and 4, Table 1, Methods section).

Network connectivity rules mature during development. We
first addressed how GC-PC functional connectivity maps were
established and structured during normal postnatal development.
If these maps reflect the establishment of the input/output rela-
tionships in a topographic manner, we expect to observe a pro-
gressive and regular evolution of their structuration as GCs
migrate from the external granule cell layer during the first three
weeks after birth and connect to MFs53. However, key periods of
locomotor adaptation have been observed in postnatal develop-
ment of mice. For example, mice open their eyes and start
walking between postnatal day 12 (PND12) and PND1854–56. At
this age, they are hyperactive with bouts of vigorous jumping
called ‘hoppy’ or ‘popcorn’ stage resulting from synchronous
contraction of fore and hind limb extensors55,57. To assess whe-
ther these behavioral features correlate with specific synaptic map
adaptation, we recorded GC-PC functional connectivity maps at
low resolution (40 × 40 µm site area, 128 sites per grid) at dif-
ferent time points during mouse development: from PND9-10,
before proper quadrupedal locomotor activity, to young adults
(PND > 30) when locomotion is well adapted (Fig. 2 and Table 1).

We observed that EPSC amplitudes elicited by individual GC sites
increased between PND10 and PND14-18, while no significant
differences were observed between PND14-18 and adulthood
(Fig. 2a). In addition, the number of active sites increased linearly
by 7-fold between PND9-10 and PND14-18, then remained stable
in adults (Fig. 2b). This increase in functional synaptic con-
nectivity may be the result of new functional GC-PC synapses
rather than a change in GC excitability as no difference could be
observed in GC firing rates between pups and PND14 following
glutamate uncaging (Supplementary Fig. 5a).

However, the evolution of the spatial and structural organiza-
tion of the maps follows different rules. At PND9-10, functional
GC sites were mostly observed below the recorded PC (Fig. 2c, d),
nonetheless distant GC inputs were already, albeit rarely,
observed (Fig. 2c) as PF lengths in the medial vermis already
exceed several hundred µm long (Supplementary Fig. 5b). A
patchy organization (i.e., patches of functional sites surrounded
by silent ones) was observed at PND12-13 and after PND30
(Fig. 2c, d). By aligning synaptic maps on zebrin bands
(Supplementary Fig. 3 and Methods section), the median synaptic
profile was computed for each group of mice (Fig. 2d) and
showed that the distributions of functionally connected GC
columns were not randomly distributed with multiple hotspots of
connectivity or silent areas at specific locations as already
observed in a previous study17. On the contrary, at PND14-18,
both synaptic maps and profiles were homogeneous, and almost
all GC columns appeared functionally connected to the recorded
PC (Fig. 2d).

To quantify the degree of patchiness and the structure of the
maps, we calculated the four relative graph metrics (Fig. 1d and
Supplementary Fig. 4, Methods section) for each synaptic map
during development (Fig. 2e–i). Overall, GC columns are organized
in distinct modules with a high modularity index and module
degree z-score in average as these two graph metrics are well above
chance level values (positive Δ% values, Fig. 2f, g). Confirming the
existence of well-separated patches in the map, participation
coefficients were significantly smaller than the chance level at all
developmental stages (negative Δ% values, Fig. 2h). Assortativity, on
the contrary, was always strikingly above chance level (Fig. 2i), like
modularity and degree z-score, illustrating patch diversity and
specificity.

Nevertheless, graph metrics varied with age. Modularity index
(Fig. 2f) first decreases, then recovers to near original values in
adults. The participation coefficient at all ages was significantly
lower than the values for PND9-10 (Fig. 2h), and the local
assortativity showed a non-monotonic change with age (Fig. 2i).

Table 1 Group description and experimental conditions.

Condition Nmice nmaps Description Mapping
resolution (µm)

Pups (PND9–10) 5 11 Mice raised in standard conditions. Maps were recorded between PND9-10 40 × 40
Juvenile (PND12–13) 6 12 Mice raised in standard conditions. Maps were recorded between PND12-13
Adolescent (PND14–18) 7 15 Mice raised in standard conditions. Maps were recorded between PND14-18
Adults (PND > 30) 7 10 Mice raised in standard conditions. Maps were recorded after PND-30

Control 9 14 Mice raised in standard conditions. Maps were recorded after PND-30 20 × 20
Short training 7 13 7 daily & consecutive sessions in the running wheel. Maps were recorded

7–8 days after training start
Long training 6 11 19 daily & consecutive sessions in the running wheel. Maps were recorded

19–20 days after training start
Early sham 7 11 Cuff surgery, no cuff. Maps were recorded 2–9 days after surgery
Early cuff 13 25 Cuff surgery+ cuff. Maps were recorded 2–9 days after surgery
Adapted sham 9 14 Cuff surgery, no cuff. Maps were recorded 28–35 days after surgery
Adapted cuff 8 17 Cuff surgery+ cuff. Maps were recorded 28–35 days after surgery
Total 84 153 – –
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Altogether, these changes suggest that graph modules in adults
became more compact, better defined, and overlapped less (see
Supplementary Fig. 4). On the contrary, during the PND 14-18
epoch, modularity and assortativity indexes reached transitory
minimal value (Fig. 2f, i). These results indicate that, at this age,
boundaries between patches are blurry with responses organized

around a center with a maximum amplitude as if only one
extended module persisted (i.e. the Δ% modularity index is close
to chance level, Fig. 2f). These findings suggest a loss of network
structure at this critical age. Therefore, as suggested by functional
connectivity maps (Fig. 2d), analysis of graph properties showed
that network properties do not mature linearly with age. Rather,
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they display denser and relatively unstructured functional
connectivity in PND14-18 mice, resuming the appearance of a
more structured patchy functional connectivity at adulthood.
Altogether, these results suggest that connectivity maps are not
built solely by following strict anatomical input/output rules, but
likely rely on adaptive mechanisms occurring during development.

Adapted locomotor activity correlates with specific con-
nectivity maps. Development leads to adult functional con-
nectivity maps sharing spatial similarities, which may illustrate
that, in normal conditions, locomotion is a conserved behavior.
We now asked whether different locomotor contexts (six different
contexts and a control group, Table 1) in which adult mice must
develop new adaptive behaviors could also re-organize functional
synaptic maps. Since locomotor contexts may have subtler effects
on maps organization than development, we recorded functional
maps at a higher spatial resolution (20 × 20 µm photostimulation
sites) and at two different time points during adaptation. (1) Two
groups of mice were trained to run in a wheel (1 h/day) for 7
(short training) or 19 (long training) consecutive days (Fig. 3a),
learning “gallop”, a new type of gait for animals living in a cage58.
In the last session, long training mice have traveled 2.8-fold more
distance per session compared to first session (Fig. 3a). Synaptic
maps were recorded on days 7–8 (short training) or days 19–20
(long training). (2) In two other groups, locomotion was impaired
by inserting a cuff around the sciatic nerve of the right hindlimb59

(Fig. 3b) and functional connectivity maps were recorded at
2–9 days (early cuff) or after 21 days (adapted cuff) after the
surgery, allowing the animals to fully re-adapt their locomotion.
Finally, two sham groups underwent only surgeries (i.e., no cuff
was inserted) and were recorded at the same time as cuffed mice
(early sham and adapted sham). It should however be noted that
the sham surgery itself, as it requires manipulation of the sciatic
nerve, is likely to induce a mild inflammation in the right
hindlimb.

We evaluated locomotor deficits in cuffed and sham mice in a
corridor equipped with two streams of force sensors to monitor
weights from either side of the body when walking (Fig. 3b, c,
Methods section). We defined a balance index (BI) as the log of
the ratio of the total weight generated by the left vs the right side
of the body along the corridor (Fig. 3b, c). The BI was measured
twice a week during one month after cuff or sham surgery. As
expected, before surgery, BI index was close to 0 in all mice. After

surgery balance was altered in cuffed and sham animals (Fig. 3c).
During the first week post-surgery, sham and cuffed mice limp on
the right side, which coincide with a negative BI illustrating a
higher weight on the side of the surgery (early phase in Fig. 3c).
The following week, sham and cuff mice did not recover full
balance. BI switched to a positive value, illustrating compensatory
behavioral strategies, with a peak two weeks after surgeries (late
phase in Fig. 3c). Ultimately, after one month, all mice recovered
balance and no apparent locomotor impairment remained
(adapted phase in Fig. 3c). While we observed that sham animals
quickly recovered their ability to walk after the surgery, balance
recovery followed a similar time-course than cuffed animals albeit
with a smaller impairment (Fig. 3d). Functional GC-PC maps
were then recorded in acute slices either during locomotor re-
adaptation (short training, early sham and cuff) or after full
adaptation (long training, adapted sham and cuff, Fig. 4).

We first compared maps at the level of inter-group differences
(Fig. 4a). We observed that synaptic weights elicited by connected
GC sites (z-score ≥ 3) were significantly larger in all but early cuff
groups when compared to control group (Fig. 4a). However, the
overall proportion of active sites per map was not significantly
different between conditions (Fig. 4b). We then analyzed the
spatial organization of GC-PC synaptic maps. As in the control
condition (Fig. 4c), synaptic maps from every group showed a
clear patchy organization (Fig. 4e). Subtracting averaged maps
from the control condition suggested that, in all groups, most GC
sites elicited larger synaptic weights albeit some displayed a
decrease (Supplementary Fig. 6a). Median synaptic profiles
showed that local GC columns systematically elicited significant
inputs and distal hotspots of functionally connected columns
were interleaved with non-connected areas as confirmed by a
bootstrap analysis (Fig. 4c, e and Supplementary Fig. 3c; Methods
section). Even if these profiles presented a substantial degree of
inter-individual variability (see Median Absolute Deviation,
MAD, dispersions in Fig. 4c, e), locomotor adaptation led to a
consistent increase in the group-level cumulative synaptic weights
when compared with the control group (Fig. 4d, f). Finally, as
seen in cumulative plots of median synaptic profiles from injured
mice (sham and cuff), complete behavioral re-adaptation (i.e.,
adapted sham and adapted cuff groups) was associated with an
additional increase in synaptic weights when compared to early
conditions (Fig. 4f). Moreover, in adapted cuff animals, in the
ipsilateral side of the map, synaptic weights and proportion of

Fig. 2 Postnatal development of GC-PC synaptic maps. a Distribution of GC-PC significant synaptic weights (z-score ≥ 3) during postnatal development.
Mean ± SD in pA: PND9-10, 62 ± 55, n (GC sites/maps/mice)= 78/11/5; PND12-13, 87 ± 94, n= 271/12/6; PND14-18, 113 ± 128, n= 647/15/7; PND > 30,
92 ± 88, n= 392/10/7. Whisker bounds: minima/maxima, median, interquartile range. Kruskal-Wallis test (KW, all conditions), p= 1.99.10−11.
Mann–Whitney U (MWU) post-hoc, p-values in graph. P-value > 0.05 in Source Data. b Proportion of GC active sites (z-score≥ 3) measured in GC-PC
maps. Mean ± SD per slice in %: PND9-10, 5.5 ± 3.5, n (maps)= 11; PND12-13, 17.6 ± 10, n= 12; PND14-18, 34.7 ± 15.6, n= 15; PND > 30 30.6 ± 11.4, n= 10.
KW (all conditions), p= 4 × 10−6. MWU, p-values in graph. P > 0.05 in data source. Whisker bounds: minima/maxima, median, interquartile range.
c Examples of synaptic profile (top of each subpanel) and synaptic maps (bottom of each subpanel) at PND9-10, PND12-13, PND14-18, and in adult mice.
The red PC indicates the position of the recorded PC. Connected cols: z-score≥ 3 in at least one site of the column; n.s.: z-score < 3 in all sites of the
columns. d Median synaptic profiles (top of each subpanel) and averaged synaptic maps (bottom of each subpanel) recorded at PND9-10, PND12-13,
PND14-18, and in adult mice. The white bar represents the averaged position of the recorded PCs. Median absolute deviation (MAD) is shown in light gray.
e Force-spring graph representation of example maps at PND9-10, PND12-13, PND14-18, and in adult mice. Nodes of a given color belong to the same
module. f, g, h, i Graph properties (modularity index, module degree z-score, participation, and assortativity respectively) of GC-PC synaptic maps,
expressed relative to the median of chance-level distributions (Δ%; see Methods section). Values above (below) the dashed horizontal line at 0 represent
an over- (under) representation of the considered connectivity trait compared to its null-model counterpart. Whisker bounds: minima/maxima, center:
median, box: interquartile range. Modularity (mean ± SD in Δ%): PND9-10, 228 ± 40, n(maps)= 11; PND12-13, 146 ± 58, n= 12; PND14-18, −34 ± 61,
n= 15; PND > 30, 137 ± 112, n= 10. KW (all conditions), p= 1.03 × 10−5. MWU, p-values in graph. Module degree z-score (mean ± SD in Δ%): PND9-10,
308 ± 172; PND12-13, 453 ± 177; PND14-18, 422 ± 120; PND > 30, 460 ± 94. KW (all conditions), p= 0.076. Participation (mean ± SD in Δ%): PND9-10,
−26 ± 11; PND12-13, −44 ± 15; PND14-18, −39 ± 6; PND > 30, −45 ± 19. KW (all conditions), p= 0.0053. MWU, p-values in graph. Assortativity
(mean ± SD in Δ%): PND9-10, 277 ± 73; PND12-13, 566 ± 61; PND14-18, 385 ± 132; PND > 30, 605 ± 105. KW (all conditions), p= 7.68 × 10−6. MWU,
MWU, p-values in graph. P > 0.05 in Source Data. Source data are provided as a Source Data file.
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active sites were also significantly higher than in the contralateral
side (Supplementary Fig. 6b). These results suggest that successful
behavioral adaptation following invasive modifications of the
locomotor apparatus recruit more GCs or potentiate existing GC-
PC synapses.

Altogether, these results demonstrate that behavioral adapta-
tion within different locomotor contexts directly influenced
functional connectivity in the cerebellar cortex, inducing notice-
able differences already at the level of group median maps, despite
large inter-individual differences (Fig. 4e). Such findings may be
related to the topographic organization of MF inputs received by
GC columns (Supplementary Fig. 1), so that the spatial structure

of inputs driving plasticity at the GC-PC synapses is different for
alternative contexts, each associated to a specific locomotor
adaptation. To test this hypothesis, we addressed whether the
anatomical organization of the cerebellar cortex, which reflects
the hardwired organization of external inputs, could account for
the observed spatial organization of functional connectivity maps.
We therefore compared the segmentation of the map in terms of
anatomical microzones (structural zones defined by zebrin bands;
see Supplementary Fig. 1) with an alternative segmentation
derived for each map in terms of its graph representation
(functional zones). Notably, we assigned any two locations along
the mediolateral axis of the map to the same functional zone if

Fig. 3 Locomotor adaptation in different contexts. a Left panel, distance traveled by mice in the wheel across sessions. Short training: 1 h/day for 7
consecutive days, n(mice)= 7; long training: 1 h/day for 19 consecutive days, n= 6. Two-tailed paired t-test between training session #1 and training
session #19, p-value in graph. Dashed line, logistic regression, p= 2.75 × 10−26. Right panels, total distance and slope of the distance across sessions for
short (n= 6) and long (n= 7) training animals. Total distance mean ± SD in km: short training, 3.1 ± 0.4; long training, 12.2 ± 2.6. Slope mean ± SD in m/
session: short training, 38.6 ± 19.8; long training, 24.9 ± 6.7. Whisker bounds: minima/maxima, median, interquartile range. Two-sided MWU, p-value in
graph. P > 0.05 in Source Data. b Upper panel, cuff model of locomotor impairment. In cuff animals, a 2-mm-long polyethylene cylinder (cuff) was
surgically wrapped around the main branch of the right sciatic nerve. Sham animals underwent only surgeries. Lower panel, illustration of a trial on the force
pressure corridor. c Balance deficits in cuff (n= 10) and sham (n= 10) groups. Left panel, examples of raw data measurements from the force-sensor
corridor in a cuffed mouse before surgery (baseline), 15 days after surgery and 33 days after surgery. AU, arbitrary unit. Balance Index (BI) corresponds to
the log of the ratio of the integrated force-signal from each side of the body. Right panel, averaged (±SEM) time-course of the BI in cuffed (n= 10, red),
sham (n= 10, black), and controls (n= 4, blue). Values were normalized to baseline. Early phase, from day 0 to day 9 post surgery; late phase, from day
9–21 post surgery; adapted phase, from 21 days post-surgery. One-way repeated measurements MANOVA from day 2–28, F=2.16; post hoc ANOVA,
early phase/late phase, F= 7.17/F=8.23, p-values in graph. d Left panel, normalized BI measured at Day 15 post surgery. Mean ± SD: control, −0.06 ± 0.19
(n= 4); cuff, 0.83 ± 0.37 (n= 10); sham, 0.29 ± 0.43 (n= 10). Whisker bounds, same as in a. KW (all groups), p= 0.00354; post hoc two-sided MWU,
p-values in graph. Right panel, area under the curves (AUC) of balance time course shown in c for cuffed, sham and control groups. Mean ± SD in early
phase: control, 0.1 ± 0.1; cuff, −0.4 ± 0.4; sham, −0.3 ± 0.4. Mean ± SD in late phase: control, 0.1 ± 0.4; cuff, 1.3 ± 0.8; sham, 0.6 ± 0.9. Mean ± SD in
adapted phase: control, 0.08 ± 0.3; cuff, 0.14 ± 0.4; sham, −0.03 ± 0.4. Whisker bounds same as in a. Levene’s test, early phase, p= 0.0205; two-sided
MWU, p-values in graph. P > 0.05 in Source Data. Source data are provided as a Source Data file.
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both the following conditions were met: (i) their associated graph
nodes belong to the same graph module; and, (ii) all locations
between them are also assigned to the same functional zone. Such
constructive procedure (see Methods section) guarantees that
each map is completely partitioned into contiguous spatial ranges,
each of them being a different functional zone (Supplementary
Fig. 7). To assess how structural zones accounted for functional
zones (potentially completely independent from them), we then
quantified the relative mutual information (MI) between the two
alternative map-tailored partitions (see Methods section). As
shown by Supplementary Fig. 7a, the measured partition overlaps
were in the range of 50–57% which is well above chance level
for all groups (at most ~39%, 95%, confidence interval, CI,

permutation testing; see also Supplementary Fig. 7b for an
alternative, more relaxed definition of functional zones confirm-
ing the same result). Although significant, this overlap between
structural (microzones) and functional zones (graph modules)
was far from complete which may illustrate the multimodal origin
of MF inputs in each GC layer area. We conclude that maps could
be re-shaped by activity-dependent plasticity and are still able to
partially override anatomical constraints.

Graph descriptions of connectivity maps can discriminate
different locomotor adaptation conditions. The large inter-
individual variability and the non-perfect alignment between
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functional and structural zones (microzones) may limit the
condition-specificity of GC-PC connectivity maps. To verify
whether locomotor contexts could still be discriminated even at
the level of individual maps, beyond group-level comparisons, we
resorted to a supervised machine-learning approach, in which a
random forest classifier was trained to infer the underlying
locomotor condition based on alternative characterizations of the
spatial organization of each individual map.

In a first attempt, we described each map’s organization
through eight-dimensional vectors whose entries were given by
synaptic weights averaged over the eight structural microzones
(gweights_zonewise(M), zone-wise synaptic weights in Fig. 5; see
Supplementary Fig. 1). Figure 5a shows a bi-dimensional
visualization of the distributions of single-map vectors in our
dataset, obtained via a non-linear dimensionality reduction
algorithm (t-Stochastic Neighbor Embedding technique, t-SNE,
see Methods section) to visualize clusters of maps with similar
synaptic weight profiles. When maps were labeled by conditions,
2D projections showed strong scattering and overlapping centers of
gravity (i.e., group medians of t-SNE projection coordinates,
Fig. 5a), indicating a poor separation of behavioral groups. This
intuition was confirmed by the poor performance of random forest
classifiers trained on these input vectors (Methods section), as
revealed by a confusion matrix analysis (giving the probabilities of
correct classification or of misclassification among the adaptive
conditions, Fig. 5b). Cross-validated classification performance was
poor and comparable to chance level (average accuracy for all
conditions upon cross-validation trials: 0.16 ± 0.01 for actual labels
vs 0.16 ± 0.01 for shuffled labels, Fig. 5c). Therefore, we could not
extract sufficient information from synaptic weights distribution in
microzones to identify connectivity maps from different locomotor
conditions.

In a second attempt, we described the fine structuration of
connectivity maps in terms of a set of graph-based metrics (Fig. 5e
and Supplementary Fig. 8). We provided as input a seven-
dimensional vector (gbilateral(M)) with the following entries: the
modularity index for the whole map, and graph participation,
degree z-score, and assortativity averaged separately over nodes
associated to the ipsi- or the contralateral map sections (bilateral
graph properties in Fig. 5d–f). Unlike zone-wise synaptic weights,
graph metrics have a complex dependency on map details and thus
transcend anatomical subdivisions. Yet, all considered properties
(apart from modularity) are evaluated for each single node, so that
a tie to anatomy can still be maintained. For all groups and for all
features we found once again a large variability across different
maps and specimens, preventing us from detecting any significant
group-level differences of individual graph metrics between the
different adaptive conditions and the control maps (Supplementary

Fig. 9). Nevertheless, when considered collectively, graph metrics
carried useful information for condition discrimination. A t-SNE
projection based on these alternative vectors of graph-based
metrics showed that the cloud of maps for the different conditions
were now more displaced with respect to the control maps
(Fig. 5d). Furthermore, adapted sham/early sham and adapted cuff/
early cuff clouds were shifted away from the cloud of the short/long
training conditions. Correspondingly, our supervised machine
learning classifier now yielded a cross-validated classification
performance larger than with synaptic parameters as well above
chance level (average accuracy: 0.51 ± 0.1 for actual labels vs
0.18 ± 0.07 for shuffled labels, Fig. 5e, f). Some confusion in
classification was still observed between the short training and the
long training classes and between the early cuff and the early sham
classes. Nevertheless, the mean cross-validated accuracy was ≥36%
for all subtypes compared to ~18% of chance level and could rise to
values as large as ~81% for the early cuff group (Fig. 5e). We also
considered alternative graph parameterizations: a coarse one, in
which graph features were averaged globally (gglobal(M)), thus fully
ignoring anatomy; and a second, finer one, in which graph features
were averaged by microzones (gzonewise(M), Supplementary Fig. 8a;
Methods section). Both these alternatives, however, yielded worse
performance, suggesting that fully ignoring anatomy is detrimental,
but that information relevant for classification is not localized
within individual microzones. In any case, Fig. 5e, f suggests that
condition-specific map reorganization can be captured by graph
descriptors for each behavioral condition.

As shown by Supplementary Fig. 8b, we also constructed
random forest classifiers to discriminate maps at different
developmental stages (cf. Fig. 2). Maps from the control groups
of both the datasets of Fig. 2 (developmental) and 4 (adaptive)
were correctly classified in a common class by the classifier. This
fact confirms that our approach robustly operates even when
maps are (down-)sampled to the lower spatial resolution of Fig. 2.

Individual connectivity maps reflect individual-specific beha-
vioral features. The large variability between maps may be due to
experimental “noise” or reflect on the contrary fine levels of
behavioral differences across individuals in normal or adaptive
conditions. To investigate this hypothesis, we tried predicting
individual-level specificities in adaptive locomotor behavior from
graph descriptions of the global synaptic maps (gglobal(M)) and
behavioral performance either on the wheel (short/long training)
or on the force pressure corridor (adapted sham/cuff). We again
used multi-dimensional vectors of graph-based map (gglobal(M))
descriptors as input and trained generalized linear models
(GLMs) to predict individual-level behavior from spatial organi-
zation of their maps. The workflow of this analysis is described in

Fig. 4 Synaptic GC-PC maps and profiles during and after locomotor adaptation. a Distributions of GC-PC significant synaptic weights recorded in each
behavioral condition. Whisker bounds: minima/maxima, median, interquartile range. Mean ± SD in pA; control, 72.3 ± 50, n (sites/maps/mice)= 588/14/
9; short training, 89.8 ± 71, n= 481/13/7; long training, 86.7 ± 48.3, n= 375/11/6; early sham, 91.9 ± 60, n= 534/11/7; early cuff, 78.7 ± 62, n= 1582/25/
13; adapted sham, 116.2 ± 69, n= 581/14/9; adapted cuff, 88.8 ± 59, n= 985/17/8. KW (all conditions), p= 1.27 × 10−71. Two-sided MWU with control
group, p-values in graph. P-values > 0.05 in Source Data. b Proportion of active sites in maps from each condition. Whisker bounds as in previous figures.
Mean ± SD in %: control, 12.4 ± 7, n= 14; short training, 11.6 ± 9, n= 13; long training, 9.9 ± 6, n= 11; early sham, 14.2 ± 10, n= 11; early cuff, 16.5 ± 9, n= 25;
adapted sham, 13.3 ± 9.8, n= 14; adapted cuff, 15.3 ± 7, n= 17. KW test (all conditions), p= 0.55. c GC-PC synaptic connectivity maps recorded in control
mice. Upper part of the panel, median synaptic profile. White bar, averaged position of recorded PCs. In dark blue, connected columns (connected cols); in
dark gray, non-connected columns (n.s.); in light gray, median absolute deviation (MAD). Lower part of the panel, averaged synaptic map. d Cumulative
strength (from synaptic profile) of evoked response along the mediolateral axis in the control group. Mean ± SD in nA at 600 µm: 19.7 ± 8.57 (n= 14).
e Same as in c for short & long training, early/late sham, and early/late cuff groups. White bar, averaged position of recorded PCs. In dark gray, non-
connected columns (n.s.); in dark colors, connected columns (connected cols); in light gray, MAD. f Cumulative strength (from synaptic profiles) of evoked
response along the mediolateral axis in each condition and compared to the control group (in blue). Mean ± SD in nA at 600 µm (same n as above): short
training, 26 ± 18.6; long training, 21.2 ± 11; early sham, 25.5 ± 13.2; early cuff, 26 ± 13.5; adapted sham, 31.2 ± 20; adapted cuff, 31.8 ± 14. Two-tailed KS test,
p-values in graph. P values were corrected with Holm method for multiple comparison. Source data are provided as a Source Data file.
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Fig. 6a. Being now interested in individual-level differences,
beyond group-level differences, we fitted jointly a GLM on all the
individuals for which each given target behavioral feature had
been measured. We thus pooled prior to GLM fitting: the short
training and the long training groups, for both of which we
measured slope and total distance in the wheel training (Fig. 3a);
and the adapted cuff and adapted sham groups, for which we
measured the BI time-course (Fig. 3c, d). Nevertheless, we took
advantage of the GLM framework, to also include in the pre-
diction model further interaction terms with the categorical label
of the distinct groups being pooled (Methods). This allowed us to
infer from data the possible existence of different graph-to-
behavior relations within the groups being pooled, without
assuming that these differences necessarily exist, as we implicitly
did in the analyses of Fig. 5. We tested the efficacy of the GLM by
testing the model on pooled data as well as the individual groups.

In Fig. 6b, c respectively we show a scatter plot of the actual
values of total training distance/training slope and the corre-
sponding values predicted by the GLM on the pooled, short
and long training groups (Methods section). As revealed by

superimposed trend lines, a correlation seems to hold between
actual and predicted values, at the level of the pooled group, and
sometimes even stronger when restricted to subgroups (Fig. 6c).
We used two performance metrics to quantify the cross-validated
performance of generalization prediction and avoid overfitting
(i.e., prediction performed by models on data points for which
they were not trained on, see Methods section): the Pearson
correlation between actual and GLM-predicted values (R-value;
top right insets of Fig. 6b, c); and the Mean Square Error of
prediction (MSE; bottom right insets of Fig. 6b, c). Both these
metrics were evaluated over the whole pooled short and
long training groups or separately over the two groups. For the
larger pooled dataset, both metrics were significantly better than
chance expectations. R-values for pooled data reached 0.81 ± 0.04
(actual) vs 0.02 ± 0.08 (shuffled, Fig. 6c) for total distance and
0.3 ± 0.07 (actual) vs −0.04 ± 0.06 (shuffled, 95% CI, permutation
testing, Fig. 6b) for motor training slope. The MSE for the pooled
total distance data was 1.33 × 107 ± 3.3 × 106 (actual) vs
5.30 × 107 ± 7.5 × 106 (shuffled, Fig. 6c). Performances were even
better when model was restricted to the short training group

Fig. 5 Graph features can predict locomotor conditions. a Dimensionally-reduced representation of synaptic connectivity maps, described in terms of
averaged synaptic weights. Individual synaptic maps were parameterized as an eight-dimensional vector with entries given by the normalized, average
synaptic weight in each microzone (Supplementary Fig. 1). These vectors were visualized in a 2D space via t-SNE, a non-linear dimensional reduction
algorithm. Individual dots represent the position of each map in the projection space. Dots are colored according to the groups. Bigger dots represent the
median of map positions for each group, and error bars the dispersion (interquartile range). n (maps/mice) control, 14/9; short training, 13/7; long training,
11/6; early sham, 11/7; early cuff, 25/13; adapted sham, 14/9; adapted cuff, 17/8. b Classification of synaptic maps based on synaptic weights. Map vectors
described in a were maps used to train a supervised random forest classifier (n trial= 100). Accuracy of classification is displayed via a confusion matrix,
the entries of which provide probabilities of correct classification (diagonal entries) or of misclassification (off-diagonal entries). c Average global accuracy
of the trials performed with the random forest classifier shown in b for actual and shuffled labels (i.e., chance-level). Mean ± SD; 0.161 ± 0.01, n
(actual)= 100; 0.163 ± 0.01, n (shuffle)= 100. Magenta dot, average; dashed-black line, interquartile range; solid black line, median. d Alternative t-SNE
projection of synaptic maps reparametrized using graph properties (i.e., modularity index, ipsi- and contralateral assortativity, module degree z-score and
participation coefficient; n (maps/mice) same as above. e Classification of synaptic maps based on bilateral graph properties using a random forest
classifier (n trial= 100). Same representation as in b. f Average global accuracy of the trials performed with the random forest classifier shown in e for
actual and shuffled labels (i.e., chance-level). Mean ± SD; 0.51 ± 0.1, n (actual)= 100; 0.18 ± 0.07, n (shuffle)= 100. Two-tailed MWU, p-value in graph.
Magenta dot, average; dashed-black line, interquartile range; solid black line, median. Source data are provided as a Source Data file.
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(Fig. 6c), while they were worse for the long training groups
(Fig. 6c), possibly reflecting non-linear relations that the GLM
framework cannot capture. The MSE for the slope followed a
similar trend, for pooled data, 224.5 ± 24.7 (actual) vs 451.8 ± 75.6
(shuffled, Fig. 6b). The MSE are lower when only long training
data is considered but worse when only short training data is

considered (Fig. 6b). Even if behavior predictions are performed
in terms of the multi-dimensional input vector of whole graph
metrics, the model coefficients for the assortativity feature had a
larger absolute value than all other features and a negative sign
for the prediction of both slope and total distance of wheel
training (Supplementary Fig. 10a, b). It means that maps with a
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lower assortativity, i.e., with a more variegated continuum of
patch sizes (cf. Supplementary Fig. 4) tended to emerge in mice
more eager to train in the wheel and/or in mice which were
trained longer. The interaction coefficients with the class label in
the GLM models of Fig. 6b, c were in most cases small, indicating
that the relations between graph structure on one side and
training behavior on the other are overall similar for the short and
long training groups (especially for slope of training prediction,
cf. Supplementary Fig. 10a).

In the case of the pooled adapted cuff and adapted sham
groups, it was possible to follow the locomotor recovery on the
force pressure corridor for weeks after surgery. We focused here
on the BIday15 and AUCearly features (see Fig. 3c, d) as possible
prediction targets monitoring behavioral recovery (see Supple-
mentary Fig. 11 for AUCearly and AUClate prediction). BIday15 is
the behavioral feature with the larger dispersion of individual
values. Indeed, we were able to significantly predict the evolution
of locomotor unbalance monitored by the BIday15 component
from graph description characterizations of functional connec-
tivity maps (Fig. 6d), with a cross-validated R-value fit of
0.66 ± 0.04 (actual) vs 0.002 ± 0.06 (shuffled) for the pooled
adapted cuff and sham groups. The R-value fit was lower, yet
highly significant when the data were restricted to the adapted
cuff group only, i.e 0.48 ± 0.07 (actual) vs 0.03 ± 0.09 (shuffled).
The MSE for all the three groups of data, pooled, adapted cuff and
sham were significantly lower than their shuffled counterparts
(Fig. 6d). We were also able to predict to a certain extent the
inter-individual differences in the early component AUCearly.
Although prediction performance was only marginally significant
when mixing conditions (Supplementary Fig. 11), it improves
up to 0.26 ± 0.11 (actual) vs 0.01 ± 0.12 (shuffled) when limiting
the analysis uniquely to adapted cuff specimens. The prediction
of the late component (AUClate) was also marginally significant
(Supplementary Fig. 11). For the prediction of locomotor
recovery features, GLM models had generally more homogeneous
coefficients (Supplementary Fig. 10c, d), making it difficult to
predict the effects of the variance in individual graph features on

the behavioral features, as they could be modified by the variance
in other features. Furthermore, interaction terms with the
subgroup tended also to be greater, revealing a larger hetero-
geneity between the adapted sham/cuff groups than between the
short/long training groups.

To conclude, the quality of prediction was heterogeneous across
the different target behavioral features and subgroups (Supplemen-
tary Fig. 10c, d) as for some of the features, variability was smaller
and thus inter-individual differences too fine to track. Therefore, we
demonstrated that the graph features variability within each of
the conditions, reflecting fine variations in the spatial structure of
GC-to-PC connectivity maps, was not mere “noise” but carried
information about the specific overtraining or post-traumatic
recovery adaptation undergone by each individual.

Discussion
We identified patchy GC functional synaptic connectivity maps
to medial PCs as observed in our previous study17. These maps
are acutely modified as a function of the locomotor context and
during postnatal development. In this study, we took advantage of
the zebrin band pattern to reliably compare and align con-
nectivity maps between animals39,43,44. This framework defines
specific boundaries of the cortical part of cerebellar modules,
the microzones42,60. Indeed, many anatomical experiments
tracing CF or MF projections in the cerebellar cortex showed
that precerebellar inputs are well aligned with zebrin band
boundaries43,44,61 (Supplementary Figs. 1 and 3). We found that
synaptic maps re-organization across different locomotor con-
texts leads to an increase in the total GC-PC synaptic weights
while on average the number of connected GC sites is conserved
(Fig. 4a, b). Moreover, the more invasive was the condition (i.e.,
cuffed animals) the more important was the increase in synaptic
weights and the full re-adaptation after surgery lead to a further
increase in synaptic weights. Finally, a majority of GC layer sites
undergo synaptic potentiation or awakening albeit some appear
depressed as shown in ref. 17 (Fig. 4 and Supplementary Fig 6a).

Fig. 6 Graph-based prediction of individual performances. a Graphical illustration of the analytical pipeline to predict behavioral features from graph-
based descriptions of synaptic maps. Locomotor performances in the wheel or in the force pressure corridor were summarized as behavioral features (see
Fig. 3). Graph properties were computed from synaptic maps recorded in mice after completion of the behavioral tasks. Graph properties were then used as
inputs to machine learning classifiers and GLM regression models in order to predict behavioral features at the level of single mice. b–d Behavioral feature
predictions based on whole graph properties of synaptic maps using Generalized Linear Models (GLMs). In short (n= 13 maps/N= 7 mice) and long
trained (n= 11/N= 6) animals, b the slope of performance and c the total traveled distance in the running wheel were considered as prediction targets. For
adapted cuff (n= 17/N= 8) and sham (n= 14/N= 9) groups, d maximal impairment 15 days post surgeries was considered for prediction. For every
prediction model, we show a scatter plot (with fitted line fits) of the actual vs the predicted values of the considered target feature. We quantified
prediction performance using two metrics: Pearson correlation between actual and predicted values (r-values); and Mean Squared Error (MSE). The
significance of performance (always in generalization conditions, i.e. performing predictions on synaptic maps not used for training) was assessed via
comparison with chance-levels (from shuffled data, always shown in gray). We show tendency lines and performance indicators for the whole set of maps
over which each model was fitted (purple) or restricted to specific subgroups (green or red hues). Center: average, error bars: 95% confidence intervals. R-
value (slope, pooled, n= 200, mean ± SD): actual, 0.3 ± 0.47; shuffled, −0.04 ± 0.46; two-sided MWU, all p-values in graph. R-value (slope, short training,
n= 200, mean ± SD): actual, 0.37 ± 0.63; shuffled, −0.01 ± 0.69; two-sided MWU. R-value (slope, long training, n= 200, mean ± SD): actual, 0.16 ± 0.7;
shuffled, 0.02 ± 0.73; two-sided MWU. MSE (slope, pooled, n= 200, mean ± SD): actual, 224.5 ± 182.8; shuffled, 451.5 ± 539.2; two-sided MWU. MSE
(slope, short training, n= 200, mean ± SD): actual, 285.3 ± 292.1; shuffled, 510.3 ± 504.4; two-sided MWU. MSE (slope, long training, n= 200,
mean ± SD): actual, 142.03 ± 142.2; shuffled, 319.5 ± 749; two-sided MWU. R-value (total distance, pooled, n= 200, mean ± SD): actual, 0.81 ± 0.32;
shuffled, 0.02 ± 0.57; two-sided MWU. R-value (total distance, short training, n= 200, mean ± SD): actual, 0.37 ± 0.63; shuffled, −0.02 ± 0.7; two-sided
MWU. R-value (total distance, long training, n= 200, mean ± SD): actual, −0.41 ± 0.66; shuffled, 0.01 ± 0.77; two-sided MWU. MSE (total distance,
pooled, n= 200, mean ± SD): actual, 133 × 105 ± 234 × 105; shuffled, 530 × 105 ± 532 × 105; two-sided MWU. MSE (total distance, short training, n= 200,
mean ± SD): actual, 12 × 105 ± 17 × 105; shuffled, 419 × 105 ± 420 × 105; two-sided MWU. MSE (total distance, long training, n= 200, mean ± SD): actual,
253 × 105 ± 483 × 105; shuffled, 578 × 105 ± 797 × 105; two-sided MWU. R-value (BI15, pooled, n= 200, mean ± SD): actual, 0.66 ± 0.64; shuffled,
0.00 ± 0.52; two-sided MWU. R-value (BI15, adapted sham, n= 200, mean ± SD): actual, 0.12 ± 0.7; shuffled, 0.06 ± 0.7; two-sided MWU. R-value (BI15,
adapted cuff, n= 200, mean ± SD): actual, 0.48 ± 0.62; shuffled, 0.03 ± 0.74; two-sided MWU. MSE (BI15, pooled, n= 200, mean ± SD): actual, 0.91 ± 2.25;
shuffled, 1.94 ± 2.9; two-sided MWU. MSE (BI15, adapted cuff, n= 200, mean ± SD): actual, 0.52 ± 0.58; shuffled, 1.58 ± 1.52; two-sided MWU. MSE (BI15,
adapted sham, n= 200, mean ± SD): actual, 1.23 ± 3.55; shuffled, 2.2 ± 4.82; two-sided MWU. Source data are provided as a Source Data file.
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Although automatic locomotion does not involve cerebellar
control62, adaptive locomotor behavior has been associated with
the cerebellar cortex24,63. Therefore, our results strongly suggest
that re-adapted locomotion is underpinned by strong synaptic
plasticity in the cerebellar cortex re-organizing GC-PC synaptic
maps at least for a month after an injury or learning of new motor
skills. We acknowledge that other areas of the cerebellar cortex
are certainly involved in these adaptations as recently suggested
using mesoscale CF imaging64,65, but our recordings demon-
strated that the vermal lobules III-IV encode at least partly this
adaptive behavior. The patchy and context-specific reorganization
of the GC-PC functional connectivity is also in agreement with
the fractured somatotopy identified during in vivo micro map-
pings in the GC layer47. Remarkably, the characterization of the
spatial organization of individual maps in terms of functional
zones defined exclusively from graph descriptions and without
any reference to anatomy retrieved functional zones which still
bear information about zebrin band boundaries (Fig. 4, Supple-
mentary Fig. 7). It confirms that anatomical structure contributes
to shape the map reorganization under conditions involving
locomotor adaptation. Indeed, based on the zebrin patterning, we
showed that in control animals, medial PCs are connected by
GCs integrating information from distal and proximal hindlimbs
via bilateral lumbar and thoracic spinocerebellar (P2+/P1−lateral

and P1−/P1+medial) or ponto-cerebellar MFs (P1+ and
P2+)17,48,49,66–69 (see Supplementary Fig. 1). Conversely, PCs are
only sparsely connected by central P1− GCs, which convey
information from external cuneate nucleus and mediate forelimb
proprioceptive inputs48,66. These results indicate that in natural
locomotion medial PCs integrate both somatosensory and cere-
bral MF information from hindlimbs. In cuffed animals, denser
connectivity maps including new GC layer areas receiving MFs
from both forelimbs and hindlimbs were observed (e.g., in P2−

bands, Fig. 4e, Supplementary Figs. 1 and 6). Dense GC activity
has been indeed observed in vivo when animals perform new
complex task70. In addition, in all conditions except adapted
sham and controls, hotspots of GC connections were observed at
the middle of the ipsilateral P2 − band (~500 µm from midline).
This part of the P2− microzone receives information from both
hindlimbs and forelimbs and targets hindlimb extensor muscles
through the lateral vestibular nucleus71,72. We therefore postulate
that in cuffed and wheel-trained animals, an intense reorganiza-
tion of the coordination between forelimbs and hindlimbs is
required for gait adaptation.

Many computational models suggest that the cerebellar
microcircuits learn internal models of the body that are designed
to predict an expected sensory feedback of a given command or
simply update a motor command18,20. A change in the rela-
tionships between muscles or a modification of limb alternation
during locomotion as we have induced in our experiments
should affect the workflow of computation involving internal
models as also suggested in refs. 5,24. We provide strong evidence
that PCs learn to adapt locomotor behavior by adjusting GC-PC
connectivity maps in a context-dependent manner. In medial
PCs, each context (e.g., gallop versus walk or sham versus cuff)
leads to functional connections with a specific set of microzones
through GCs. Moreover, multi-dimensional analysis of graph
parameters (Figs. 5 and 6) defines a mathematical fingerprint of
each connectivity map, which is predictive of individual beha-
vioral features. The performance of the prediction may even be
enhanced by further consideration of the GC-molecular layer
interneuron-PC inhibitory pathway that could sharpen the graph
representation of the synaptic maps. We therefore argue that the
specific distribution of GC sites associated with medial PCs in the
different behavioral conditions underlies locomotor adaptation
and internal model adjustments.

Graph-based modules describe the complex functional struc-
turation of the GC-PC connection. They were built by aggre-
gating correlated columns of the GC layer in an unsupervised
manner (Fig. 1 and Methods section), without preconceptions
about the map’s spatial organization. As such, features of the
graph community structure can account simultaneously for the
degree of patchiness (high modularity index) and for the tight
links between distant GC patches, thus being able to account for
the complexity of MF somatotopy without presuming its role in
the structuration of GC-PC maps. Graph networks are a powerful
tool in the description of fractured functional microcircuit
organization. For example, during postnatal development, we
observed that between PND14 and PND18, synaptic maps were
highly variable and median synaptic profiles close to a rando-
mized, gaussian-like organization73. Graph parameters allowed us
to quantify and highlight significant changes in the graph
encoding of synaptic maps, notably modularity dropping to
chance level values (Fig. 2f) indicating that modular structuration
vanished at this stage before resuming to higher values in
adulthood. Between PND14-18, mice not only start to walk and
open their eyes54–56, several important molecular and morpho-
logical modifications also occur. For example, the GluN2C sub-
unit incorporation in GC NMDA receptors leads to an
enhancement of GC excitability74 and the regression of CF multi-
innervation allows proper CF-dependent plasticity induction at
the GC-PC synapses75. Therefore, we postulate that the PND14-
PND18 period is a critical period allowing thorough reorgani-
zation of connectivity maps as observed in the visual cortex76.

Synaptic maps are non-randomly organized and their organi-
zation is highly and specifically adaptive (Figs. 4 and 5). It is
therefore a question of utmost importance to understand how to
appraise the spatial complexity of adaptive reorganization of these
maps into a few quantitative metrics. Here, we translated synaptic
functional connectivity maps to graph descriptions and described
their topological features. The pertinence of our mapping was
validated post-hoc by the quantitative superiority in the predic-
tion that graph metrics confer with respect to other descriptions
that were more tightly linked to anatomy (note dramatically
reduced rates of class misclassification in Fig. 5d with respect to
Fig. 5c). It is worth noting that graph metrics also reflect concrete
properties of actual synaptic maps, even if they may seem more
abstract than direct average measure of synaptic activation.
Indeed, graph metrics are also computed exclusively in terms of
synaptic map measurements (e.g., graph metrics on the level of
microzones). However, they do not reflect uniquely local varia-
tions of connectivity (as the synaptic features used in Fig. 5a) but
depend more generally on shorter- or longer-range correlations
between connectivity at different distributed sites. Thus, the
superior performance achieved by graph metrics may be inherent
to the fact that they captured aspects of the spatial organization
which are neither purely local (depending on a single map
location), nor exclusively global (properties common to all map
locations), as for example the redundancy of specific MF inputs in
lobule III–V (Supplementary Fig. 1). Even when they are site-
specific and heterogeneous across map locations, graph features
describe properties of the coupling of these locations with many
other locations. They thus reflect structure at many different and
nested intermediate scales77, that overlap only imperfectly with
traditional anatomical subdivisions (Supplementary Fig. 7) and
that reveals a mixture of “segregation” and “integration”, two
notions more commonly invoked in reference to neuroimaging
data78. As a matter of fact, individual-specific adaptive behavior
can be predicted by graph features even when averaged over all
the sites in the map, thus fully ignoring anatomy (Fig. 6). At the
same time, the discrimination between conditions is improved by
using lateralized (ipsi vs contra) with respect to global graph
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metric averages but averaging to the level of individual micro-
zones does not yield additional improvement (Fig. 5d vs Sup-
plementary Fig. 8). It is thus likely that the number of available
data for classifier training puts a limit to the amount of infor-
mation that can be extracted without overtraining79 and that
more precise characterizations could be still achieved by using
larger datasets.

In conclusion, we postulate that classification and prediction of
adaptive behavior is necessarily polythetic80, i.e. requires simul-
taneous monitoring of correlations between multiple graph fea-
tures, because features taken one at a time have a stark variability
and largely overlapping ranges between classes (see plots in
Supplementary Fig. 9), as it is also observed for neuronal types81.
Different adaptive conditions thus give rise to broad phenotypes
of maps, in which connectivity is, nevertheless, not determinis-
tically constrained, but preserves a large degree of freedom,
exploitable to give rise to accurate individual behavioral adjust-
ments. Graph-based features are only a first step toward the
quantitative characterizations of the connectivity maps specifi-
cities at the single individual level. In the future, more powerful
and general topological data analysis approaches82 may be used to
capture the unique “shape” of each map and how the indi-
vidualities of this shape reflect individual behavioral histories83.

Methods
Ethics and animals. All experiments were conducted in accordance with the
guidelines of the Ministère de l’Education Supérieure et de la Recherche and the
local ethical committee, the Comité Régional En Matière d’Expérimentation Ani-
male de Strasbourg (CREMEAS) under the agreement no A67-2018-38 (delivered
to the animal facility Chronobiotron, UMS3415, Université de Strasbourg). 83
AldoC-venus45 (+/− or +/+) male mice (Mus musculus) from PND9 to PND100
under CD1 background were used for this study. Mice were housed with all lit-
termates and parents from birth to weaning age (PND21). Older mice from all
experimental groups were housed by 3–5 littermates per cage, in conditions
required to fulfill their ethogram, with nesting material, as well as food and water
ad libitum in a 12/12 h light/dark cycle with constant hygrometry (45–50%) and
temperature (21–22 °C; i.e., standard conditions described in Table 1).

Surgical procedures for cuff and sham mice. Mice were anesthetized by inha-
lation of isoflurane (Verflurane, Virbac, France, 4% for induction then 1–2% for the
surgery), then laid at rest on the left side of the body to expose the right hindlimb.
A mix of lidocaïn/bupivacaïne (2 mg/kg each) was subcutaneously injected at the
level of the upcoming incision. A 0.5 cm incision was made parallel to the femur to
expose leg muscles. Muscles were gently separated using sterilized wooden sticks to
expose the main branch of the sciatic nerve. The nerve was pulled out of the limb
and a sterile 2 mm section of split PE-20 polyethylene tubing (cuff), 0.38 mm ID/
1.09 mm OD, was wrapped around the nerve with the help of a pointed steel stick
and a bulldog clamp. The nerve was then pushed back under the muscle fascia, and
skin was sutured59. For sham mice, the exact same procedure was followed except
that no cuff was implanted (i.e., the sciatic nerve was triturated, pulled out then
pulled back under the muscle). After surgeries mice received a unique intraper-
itoneal injection of non-steroidal anti-inflammatory drug (Metacam, 2 mg/kg) and
were left at rest for 24 h minimum before behavioral assessment. In cuffed animals,
the plastic cuff remained around the sciatic nerve until the killing of the animals.

Monitoring balance. To assess and quantify cuff-induced gait and balance
impairments during locomotion, we built a force-sensor device. Mice were trained
to voluntarily walk along an 80-cm-long corridor covered with two parallel strip-
shaped force-sensors on each side of the corridor. The width of the corridor and
the space between the two strips were adjusted to ensure that left and right limbs of
CD1 adult mice are monitored by the corresponding strip (i.e., the force of the left
limbs are measured exclusively by the left force sensor and vice versa). Force
sensors (FSR, 10 × 622 mm each, FSR 408, Interlink Electronics, USA) are two-wire
devices with a resistance that depends on applied force according to a logarithmic
law, allowing simple force-to-voltage conversion when tied to a measuring resistor
in a voltage divider. As mice enter the corridor, an IR-barrier connected to a
Raspberry Pi microcomputer (Raspberry Pi Foundation, UK) triggers force and
video acquisition. Force signals from the voltage-divider output were digitized at
15–20 kHz (NI USB 6211, National Instruments, USA). Force signals of the left and
right side of the body were acquired simultaneously using WinWCP 4.2.2 freeware
(John Dempster, SIPBS, University of Strathclyde, UK).

The balance index (BI; Fig. 3) corresponds to the log of the ratio of the integrated
force signal from each side of the body. All recordings contained at least five
consecutive strides, otherwise they were discarded. A unique datapoint was

established as the average of minimum three trials for each mouse in each session. For
further technical details (i.e., apparatus dimensions, scripts, and wiring diagrams) see
https://github.com/ludo67100/cerebellarMaps/tree/main/Balance_supplementary.

In cuffed, sham, and control animals, the BI was determined before and after
surgeries every 2–3 days for 1 month. A time-course was established, and we
estimated the cumulative gait imbalance during the early days (AUCearly for the
area under the curve; see Fig. 3), late phase (4–21 days after surgery; AUClate), and
maximum imbalance (BI at day 15th after surgery).

Locomotor training in a wheel (short and long training). Trained mice had
access to a running wheel for 1 h/day during 7 (short training) or 19 (long training)
consecutive days. For each session, mice were placed in an individual cage
equipped with a vertical, access-free running wheel. Locomotor activity was
monitored using a piezoelectric sensor on the cage coupled to a magnet on the
wheel to count the number of wheel turns during each session. We measured the
total distance covered during individual sessions and during all the training periods
of 7 or 19 days, and the slope of the training trajectory using linear regression
analysis.

DiI injections and measurement of parallel fiber extension. PND8-9 CD1 pups
were placed in crushed ice for 2–3 min to be anesthetized. A small incision was
rapidly made over the cerebellum and 0.5 to 1 µL fluorescent dye (Vybrant DiI cell
labeling solution, ThermoFisher) was injected at the midline of lobules IV/V of the
cerebellar cortex using a glass pipette and a pressure pump (Picospritzer III, Parker,
USA). Location and depth of the injection were determined by eye using visual
cues. After injection, the opened skin was closed with a drop of a biocompatible
glue (Vetbond, 3 M, USA) and pups were placed on a heat pad a few minutes, then
they returned to their homecage.

PND30 CD1 mice were anesthetized by inhalation of isoflurane (Verflurane,
Virbac, France, 4% for induction then 1–2% for the surgery) and mounted on a
stereotaxic frame (Model 68526, RWD Life Science). Body temperature was
monitored using a rectal probe and maintained with a heating pad. A mix of
lidocaïn/bupivacaïne (2 mg/kg each) was subcutaneously injected over the skull
prior to incision, followed by an intraperitoneal injection of a non-steroidal anti-
inflammatory drug (Metacam, 2 mg/kg). A parasagittal incision was made over the
skull to expose lambda and bregma landmarks. The skull was cleaned using cotton
sticks soaked in sterile 0.9% NaCl solution (saline). A 0.5 mm diameter hole was
drilled at AP=−2 mm, ML= 0 (from Lambda) to expose vermal lobules IV/V.
DiI was injected as described for pups. The skin was sutured after injection and
animals were put back in their home cage

Slice preparation for electrophysiology and photo-stimulation. Acute cerebellar
slices were prepared from PND9–PND90 male CD1 ALDOC mice. PND12 to
PND90 Mice were anesthetized by inhalation of isoflurane 4% (Verflurane, Virbac,
France) and then killed by decapitation. PND9 and PND10 pups were sedated by
hypothermia prior to decapitation. The cerebellum was rapidly dissected out and
placed in ice-cold (≤4 °C) artificial cerebrospinal fluid (ACSF) continuously bub-
bled with carbogen (95% O2, 5% CO2), containing (in mM): NaCl (120), KCl (3),
NaHCO3 (26), NaH2PO4 (1.25), CaCl2 (2.5), MgCl2 (2), glucose (10), and mino-
cycline (0.00005) (Sigma- Aldrich, USA). In all, 300-µm-thick transverse acute
cerebellar slices were then prepared with a vibratome (HM 650 V, Microm,
Germany) in ice-cold (≤4 °C) N-methyl-D-glucamine (NMDG) based solution
containing (in mM): NMDG (93), KCl (2.5), NaH2PO4 (1, 2), NaHCO3 (30),
HEPES (20), Glucose (25), sodium ascorbate (5), Thiourea (2), sodium pyruvate
(3), N-acetylcysteine (1), Kynurenic acid (1), MgSO47H2O (10), and CaCl2.2H2O
(0.5). After cutting, slices were maintained at 34 °C in bubbled ACSF for at least
45 min, then kept at room temperature until use (1–5 h).

Patch-clamp recordings. Whole-cell patch-clamp recordings in voltage-clamp
mode were obtained using a Multiclamp 700B amplifier (Molecular Devices, USA)
and acquired with WinWCP 4.2.2 freeware (John Dempster, SIPBS, University of
Strathclyde, UK). Patch pipettes (3–4MΩ) were pulled from borosilicate capillaries
using a gravitational puller (model PC12, Narishige, Japan). Series resistance was
monitored and compensated (60–80% typically) in all experiments, and cells were
held at −60 mV to isolate excitatory postsynaptic currents (EPSCs). The internal
pipette solution contained (in mM): CsMeSO4 (135), NaCl (6), HEPES (10),
MgATP (4), and Na2GTP (0.4). pH was adjusted to 7.3 with NaOH and osmolarity
was set at 295–300 mOsm. Biocytin (Sigma Aldrich) or neurobiotin (Vector
Laboratories, USA) were added (1 mg/ml each) for cell reconstruction. Voltages
were not corrected for the liquid junction potential, which was calculated to be
9.8 mV (i.e., the membrane potential was 9.8 mV more hyperpolarized than
reported). We accepted recordings for which the inward current at −60 mV did
not exceed 1 nA. Synaptic currents in PCs were low pass filtered at 2.4–2.6 kHz,
then sampled at 20–50 kHz. All cells were recorded in vermal lobules III, IV, or V,
up to 130 μm from the midline. All experiments were performed at room tem-
perature using the same bubbled ACSF than for dissection with inhibition blocked.
We systematically blocked NMDA, adenosine, CB1, GABAA, GABAB, and mGluR1

receptors to limit the modulation of EPSCs amplitude by activity-dependent
activation of these receptors. They were respectively blocked using (in mM): D-AP5
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(0.05) (Ascent Scientific, Abcam Inc), DPCPX (0.0005), AM-251 (0.001), picro-
toxin (0.1), CGP-52432 (0.001), and JNJ-16259685 (0.002) (Tocris-Cookson, UK).

Photo-stimulation. Uncaging (i.e., photolysis of caged glutamate) experiments were
performed using RuBi-Glutamate (100 µM, Abcam, UK) perfused in the recording
chamber in a closed circuit. In ALDOC mice45, Venus fluorescence allowed direct
visualization of PCs in the P1−medial zebrin band (Supplementary Fig. 1). A
micromirror DMD device (Mosaïc, Andor Technology, Belfast, Ireland) mounted on
an upright microscope (Olympus BX51, Japan) allowed systematic photo-
stimulation (steady single pulses of 30ms) with a high-power LED (460 nm,UHP,
Prizmatix, Israel) through a ×40 immersion objective (N-achroplan, NA: 0.8, Zeiss,
Germany; Fig. 1a). The developmental dataset was performed with an orthogonal
grid of 32 sites (40 × 40 µm per site; low-resolution) while synaptic maps recorded
after locomotor adaptation were obtained with an orthogonal grid containing 96 sites
(20 × 20 µm per site, high-resolution). A single grid covers 320 µm of the GC layer in
the mediolateral axis. One synaptic map is composed of 2–4 adjacent fields of view
(yielding 64 to 128/192 to 384 sites in total for low/high resolution respectively)
covering up to 1280 µm along the mediolateral axis (see Fig. 1). Two photo-
stimulations of a given site were separated by 60 s minimum. A single site of the
granular layer was photo-stimulated between 5 and 10 times in total (yielding 5–10
recordings for averaging and analysis, Supplementary Fig. 2). Based on previous
experiments and studies about light scattering in biological tissue, we estimated that
light penetration was limited to <100 μm in the deepness of the slice84–86. Con-
sidering a volume of 20 × 20 × 100 μm (4 × 10−5mm3) with a density of 1.92 × 106

GCs per mm3 (as described in Harvey and Napper87), the photo stimulation of this
area activates at least 4 × 10−5 × 1.92 × 106= 76.8 GCs. Conversely, the stimulation
of a 40 × 40 × 100 μm area activates 2 × 10−4 × 1.92 × 106= 384 GCs. These values
might be underestimated since dendrites from GCs located in adjacent sites can be
activated.

Immunohistochemistry. After recordings, the patch pipette was gently pulled out
from the soma to close the membrane and the slice was immediately transferred
from the recording chamber to a fixation solution composed of 4% paraf-
ormaldehyde (Electron Microscopy Sciences) in ACSF for a maximum of 24 h at
4 °C. Zebrin bands were identified using intrinsic Venus fluorescence. Recorded
cells were labeled using Alexa 555-Streptavidin (Thermo-Fisher, 1/1000, 3 h at
room temperature). Ipsi- and contralateral P1+, P1−, P2+, and P2− Zebrin bands
and distance between the recorded PC and the midline (P1+) were measured in
each experiment. In adult CD1 mice, Zebrin band lengths in lobule III/IV/V were
(µm, average ± SD, n= 100): P2- contralateral 416.6 ± 70.72; P2+ contralateral
71.56 ± 24.59; P1- contralateral 320.516 ± 62.94; P1+ 34.63 ± 16.18; P1- ipsilateral
320.46 ± 60.54; P2+ ipsilateral 69.75 ± 22.53; and P2- ipsilateral 438.04 ± 64.25.
Recorded PCs were located at 52.42 ± 29.8 µm from the midline of lobules III/IV/V,
corresponding to the cluster 1 defined in Valera et al.17.

Data processing and analysis. Data processing and analysis of synaptic maps and
graph parameters were performed with customized scripts and routines written in
Python 3.6 with the following packages: Pandas 1.3, Scipy 1.6, statsmodels 0.12,
Sci-kit learn 0.24, Numpy 1.19, Neo 0. 1088, Orange 2.789, bctpy 0.5.2. Plots were
generated with Matplotlib 3.4 and/or Seaborn 0.11. Python-based code is available
in the following repository: https://github.com/ludo67100/CereballarMaps-
GraphProperties.

Reconstruction of synaptic maps and profiles. For each experiment, the absolute
positions of the recorded PC and photo-stimulation sites were normalized to the
size of the corresponding P1− ipsilateral Zebrin band (% of P1−). Median profiles
and average maps were therefore obtained from spatially aligned maps within a
global referential defined by the Zebrin band patterning, highly conserved between
individuals (Supplementary Figs. 1 and 3; see also Apps and Hawkes)39. Each GC
site was photostimulated 5–10 times and EPSCs were averaged. EPSCs elicited by
RuBi-glutamate uncaging were measured in a 200-ms time window from stimu-
lation onset (Astim in Supplementary Fig. 2). For comparison, spontaneous activity
in the slice was measured on each averaged recording of the map as the minimum
amplitude in a 200-ms window before or after the photostimulation (Anoise in
Supplementary Fig. 2). Such a measure of spontaneous activity was performed at all
sites, yielding the distribution of the synaptic noise (X in Supplementary Fig. 2). Z-
scores of the synaptic amplitudes for each site were calculated as follow:

Zscore ¼ A� Xð Þ
σ

ð1Þ

Where A=maximal evoked synaptic amplitude, X= average of the synaptic noise,
σ= standard deviation of the synaptic noise. A GC site having a z-score ≥3
corresponds to an input that is statistically superior to the background noise and
elicit a current above ~15 pA in PCs, which corresponds to <2 connected GCs in
the photostimulated area containing tens to hundreds of GCs16. Z-scores were then
used to threshold synaptic maps (Fig. 1b and Supplementary Fig. 3). For each GCL
column, we used the maximum z score value of the column to define a projected
profile along the mediolateral axis (Fig. 1b and Supplementary Fig. 2).

Median synaptic profiles, cumulative synaptic weights, and averaged
synaptic maps. We built the median GC-PC synaptic profiles and the averaged
synaptic maps by pooling individual profiles and maps from each group. Individual
synaptic profiles (described above) were interpolated and convolved with a trian-
gular kernel (half-width= 9 or 18 µm for high- and low-resolution mappings
respectively, see Supplementary Fig. 3a), then the median synaptic profile was
calculated. These synaptic profiles were summed along the mediolateral axis and
then averaged to build cumulative synaptic profiles shown in Fig. 4d, f. For aver-
aged maps, individual maps and corresponding positional arrays were con-
catenated in separate vectors. The positional vector (containing relative positions)
was sorted in ascending order along the mediolateral axis (from contralateral to
ipsilateral positions in the GC layer) and the exact same sorting rule was applied in
parallel to the map-based vector (containing synaptic amplitudes; Supplementary
Fig. 3d). The resulting spatially sorted meta-map vector was then divided in 30
(high-resolution) or 60 (low-resolution) µm-wide bins for averaging. After aver-
aging, and for visual purpose only, the maps were smoothed with a Whittaker-
Shanon function.

Maps down sampling. In order to compare maps from the development data set
(low resolution) and the maps from control locomotion data set (high resolution)
using graph-parameters (see below), high-resolution control maps were down-
sampled. This was done by convolving the high-resolution maps with a 2 × 2 box
kernel and then downsampling it by (2, 2).

Graph properties
Construction of the graph representation of GC-PC maps. To quantitatively para-
meterize and therefore compare the spatial structure of synaptic maps, we introduced
a mathematical translation into graph representations (see Fig. 1 and Supplementary
Fig. 4). The construction of the graph representation associated with each individual
map relied on evaluating the spatial covariance matrix across the EPSC amplitudes
profiles recorded for different map columns, since we note that patchiness in the map
will tend to increase the overlap and then covariance between the profiles of columns
occupied by a same set of patches. In each two-dimensional connectivity map, we
considered the matrix M, whose Mxy entry denotes the EPSC amplitude recorded at
the position coordinates (x, y). We then focused on the column vectors Mx of this
matrix, giving the EPSC amplitude profile for a specific column at position x, and for
every pair of positions x and x′ along the scanned mediolateral axis we computed the
normalized Pearson correlations Cxx′= corr(Mx, Mx′) between the connectivity
profiles at the two considered positions. Cxx′ values were then compiled in a cor-
relation matrix C(M) (“Raw matrix” in Fig. 1c) that captured the patchy structure of
the original map. C(M) can be considered as the adjacency matrix of a weighted
undirected graph. The entries Cxx′ thus become the strengths of links between graph
nodes associated to the positions x and x′. The more similar are the connectivity
profiles between two positions x and x′ and the stronger will be the weight Cxx′ of the
connection between them. A standard Louvain algorithm52 is then used to optimally
partition graph nodes into non-overlapping communities such that total weight of
within group edges are maximized and weight of between-group edges are mini-
mized. A resorting of node labels according to the extracted community labels leads
to the “Rearranged Graph Matrix” in Fig. 1c in which a block structure is better
visible than before reordering of nodes. The resulting graph can be represented using
a linear layout, in which the positions of nodes reflect exactly the ordering x of the
original columns, or a “force-spring” embedding, in which nodes belonging to the
same module are also positioned to be spatially closer between them, to emphasize
the existence of modules in the graph visualization.

Graph-based features. All the absolute graph properties were calculated using the
Brain Connectivity Toolbox for python (https://pypi.org/project/bctpy/) designed
by Rubinov and Sporns90.

We characterized the GC-PC maps using graph properties such as:
(a) Modularity index - modularity index maximizes the number of within-

group edges and minimizes the number of between-group edges using the Louvain
community detection algorithm. It is a measure of how modular or “patchy” a
graph is, i.e. higher the modularity index, the more distinct “patches” are in a
graph. See Supplementary Fig. 4 for an intuitive accounting of how different map
appearances translate into higher or lower modularity values. We use a variant of
modularity index measure designed for weighted graphs given by the following
equation90,91:

Qw ¼ 1
lw
∑ij2N wij �

kwi k
w
j

lw

� �
δmi;mj

ð2Þ

Where lw= total weight of the graph; Wij=weight of the edge between node i and
node j; kwi , k

w
j = weighted degrees of node i and j respectively; δmi;mj

¼ 1 if mi ¼ mj

and 0 otherwise; mi;mj are the modules containing nodes i and j respectively.
(b) Module degree z-score (weighted) – is a measure of how relatively stronger

or weaker is the connectivity of a node within a given module. It can be seen, in this
sense, as a form of “degree centrality”, restricted to individual modules. A high
average module degree z-score for the graph representation of a map indicates that
patches in the map tend to be organized around a center, fading in a graded
manner into the background which does not elicit stimulation responses in the
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considered PC. On the contrary, maps with lower average module degree z-score
have internally homogeneous patches with sharper edges (cf. specific examples and
pedagogic cartoon in Supplementary Fig. 4c). The weighted module degree z-score
is given by the following equation90:

zwi ¼ kwi mi

� �� �k
w
mi

� �
σk

w mið Þ ð3Þ

Where kwi mi

� �
=weighted degree of node i with links between i and all nodes in mi;

mi= module containing the node i; �k
w
mi

� �
=mean of the within-module degree

distribution; σk
w mið Þ = standard deviation of the within-module degree distribution.

(c) Participation coefficient (weighted) - measures how strongly does a node in
a module connects to nodes of the other modules. The participation coefficient is
close to 1 if the connections received by the node are uniformly distributed among
all modules and close to 0 if it favors connections to the nodes within its own
modules. A high participation coefficient for a graph indicates that patches in the
map tend to be partially overlapping in their range or imperfectly separated, as
islands in an archipelago linked by narrow “piers” (cf. specific examples and
pedagogic cartoons in Supplementary Fig. 4d). The weighted participation
coefficient is calculated as the equation90:

ywi ¼ 1�∑m2M
kwi mð Þ
kwi

� �2

ð4Þ

Where M= set of modules; kwi mð Þ=weighted degree of links between node i and
all nodes in module m; kwi =weighted degree of links between node i and all nodes.

(d) Local assortativity (weighted) - is a measure of the tendency of a node to
connect to other nodes with the similar degree. A positive local assortativity
coefficient indicates that nodes tend to link to other nodes with similar degrees
(e.g., if hubs tend to connect to hubs). Note that the node degree of a site within a
map patch measures how many other sites the response profile of the considered
site is similar to and that it is thus an indirect measure of the patch size scale. Thus,
a map displaying both smaller and large patches well separated between them
would result in a graph with a large assortativity (cf. specific examples and
pedagogic cartoons in Supplementary Fig. 4e). The weighted local assortativity is
calculated with the following equation90:

rw ¼
l�1∑ i;jð Þ2Lwijk

w
i k

w
j � l�1∑ i;jð Þ2L 1

2wij kwi þ kwj

� 	h i2

l�1∑ i;jð Þ2L 1
2wij kwi

� �2 þ kwj

� 	2
� �

� l�1∑ i;jð Þ2L 1
2wij kwi þ kwj

� 	h i2 ð5Þ

Where l= total weight of all links in the network; L= set of links between pairs of
nodes i and j; wij=weight of the link between node i and j; kwi =weighted degree of
node i; kwj = weighted degree of node j.

Negative entries in the adjacency matrix were interpreted as an absence of
similarity between the response profiles of two columns. Since our graph
representations intend to describe relations of similarity, we thus ignored negative
entries, treating them as zero for the computation of all graph features. All these graph
metrics are then summarized into multi-dimensional vectors providing a
parameterization of the spatial structure of each individual map. Modularity index is a
graph centric measure and hence we get one value per map/graph. Module degree z-
scores, participation and assortativity metrics are local node centric measures i.e, we
get a different value per each node of the graph. We can then average these node-wise
values through different coarser or finer averaging schemes, notably extracting: a
single whole map median (yielding a four-dimensional vector gglobal(M) for each
map); two medians, evaluated separately over nodes on the ipsilateral and the
contralateral sides of the maps (yielding thus a seven-dimensional vector gbilateral(M)
for each map); and, finally, different median values for nodes within each distinct
anatomical microzone (yielding an eight-dimensional vector gzonewise(M)).

Relative values for graph-based features. Absolute values of graph features do not
have a straightforward meaning. Furthermore for small graphs as the ones con-
sidered here may strongly fluctuate in value depending on graph size. However,
values can be reported in a more informative way, by expressing them as percent
differences with respect to chance level expectations for their corresponding null
graphs. We then computed normalized percent differences:

4% ¼ Actual�Nullð Þ
Null

´ 100 ð6Þ

where, Actual= graph features of the actual graphs, Null=median of the graph
features evaluated over a suitable null-hypothesis graph ensemble. Various
instances of null graphs were created by re-wiring the original graphs but pre-
serving their degree distributions. The routine randmio_und_signed from bctpy
was used to generate the null graphs. The medians of graph properties over the
generated ensemble of null graphs (minimum ten instances per each individual
map) were used for the calculation of the relative values of the graph features.

Dimensionality reduction using t-SNE. t-SNE is a non-linear dimensionality reduc-
tion technique that transforms vectors in a high dimensional metric space into vectors
within a lower dimension metric space (usually 2 or 3 target dimensions for the sake
of visualization) while ensuring that close points in the higher dimensional space are

mapped to points which are still close in the lower dimensional space, whereas
dissimilar points are mapped farther away. t-SNE projections were used to reduce the
dimensionality for two kinds of data: (1) the zone wise distribution of synaptic
weights (gweights_zonewise(M)) and (2) lateralized absolute values of graph properties
(gbilateral(M)). The sklearn.manifold.TSNE function in python was used. Centroids of
point clouds corresponding to maps obtained in similar locomotor adaptation con-
ditions have been obtained by computing the median projected coordinates of all the
maps in the considered point cloud.

Subtype Classification using random forest classifier. The absolute graph features of
three different resolutions (gglobal(M), gbilateral(M), and gzonewise(M)) and zone wise
synaptic weights (gweights_zonewise(M)) were used to train and test four random forest
classifiers in order to classify the different locomotion contexts (control, short and
long training, early cuff and sham, and adapted cuff and sham). A random forest
classifier uses multiple decision trees and combines their results to enhance the
classification performance. The classifier used 150 individual tree estimators per tree
ensemble, each with a maximum depth of 30. The data was divided into 100 stratified
trials, with training:testing ratio of 80:20%. Proportion of correctly and misclassified
samples (evaluated as generalization performance, i.e., applying the classifier on the
testing subset not used for training) were quantified in a confusion matrix and the
accuracy was calculated as a percentage of samples that were correctly classified. To
compare the accuracy score with chance level scores, random forests were also trained
on shuffled data, using identical hyper parameters but by shuffling target prediction
labels. The sklearn.ensemble.RandomForestClassifier function from the sklearn
package in python was used. We also used an analogous procedure to train a classifier
to discriminate maps from different developmental stages.

Generalized linear models. In order to check how well the behavioral features of
individual mice are predicted from the graph features of individual maps, we
trained and cross-validated generalized linear models for 100 trials with trai-
ning:testing split of 75:25%. The accuracy of the predictions on testing data (once
again, generalization performance) was quantified by calculating r-values of fit and
mean squared error between predicted and actual data for all 100 cross validation
trials. To check the comparison with the chance level prediction, GLM was also
trained and tested for the shuffled values of behavioral features in the training data.
The r-value and mean squared error distributions of actual and shuffled GLMs are
shown for comparison. The GLM equation posed the behavioral feature as a
dependent variable and the graph-based features as independent variables. The
contingency of graph features on the animal group (adapted cuff/sham or short/
long training) is encoded as a bias variable (±1, e.g., adapted cuff= 1, adapted
sham=−1) that is multiplied with the graph features:

Yi ¼ β0 þ∑j2Nβj : Gji þ∑j2Nγj : Ti : Gji þ ϵi ð7Þ
Where I= trial number; Yi= behavioral feature for trial i; β0= common intercept;
N= set of all graph-based features; βj= slope for graph feature j; Gji= value for
graph property j in trial i; γj= group specific slope for graph feature j; Ti= ±1, for
the two groups adapted cuff/sham & short/long training); ϵi = error. The stats-
models.api.GLM routine from the python statsmodels package was used.

Correspondence between anatomy- and graph-based zones. A mutual information
analysis was used to quantify the degree of similarity between subdivisions of maps
into zones based on anatomy (structural zones) or based on graph representations
(functional zones).We thus first assigned structural and functional labels to each
map column position x in the following way (cf. Supplementary Fig. 7 for a
cartoon). Structural labels of a position, denoted by latin letters (a,b,c…), always
refer to specific anatomical microzones. We then used two alternative ways of
defining functional zones. In the first definition, two positions along the 1D map
were assigned to a same functional zone if: they belonged to the same graph
module; and all the positions lying between them also belonged to the same graph
module. Such definition guarantees that the resulting functional zones are always
spatially connected ranges (as anatomical microzones). The functional labels of a
position are given by greek letters with a progressive integer index (α1, α2, α3, …,
β1, β2,…, γ1…). Each greek letter is associated to a different connectivity module in
the modular partition of the graph representation. If the same module includes
nodes associated to distant, non-contiguous positions then multiple functional
zones are generated out of the same module, one for each spatially connected range
(numbered by the progressive index). The second definition of functional zones
was similar to the first one (positions are grouped in the same functional zone if
belonging to the same graph module), however, we dropped the criterion of spatial
connectedness of the resulting range. In this way the partition in functional zones
mirrored exactly the one of the graph into modules, however, some of the gen-
erated functional zones could be made of spatially disconnected ranges. In this
second definition, functional zones were simply labeled by the greek letters of the
corresponding graph module, without index (α, β, γ …). In all cases, we computed
MI between the structural and functional labelings of column positions as:

I X; Yð Þ ¼ ∑x2X;y2Yp X;Yð Þlog
p X; Yð Þ
pXpY

ð8Þ

where X and Y respectively represent the strings of structural and functional zone
labels for each map. p(x, y), where x ∈ X, y ∈ Y, is joint probability distribution of
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X and Y, that quantifies the overlap between structural and functional zone labels,
whereas p(x) and p(y) represent the marginal probability distribution of X and Y.
Chance-level values of MI could be estimated as well, by shuffling structural
microzone labels and re-evaluating MI. MI values, for both actual and shuffled
zoning, were normalized by the largest entropy value, among the entropies of
structural and functional zone labeling:

H Xð Þ ¼ �∑x2X pðxÞlog pðxÞ ð9Þ

H Yð Þ ¼ �∑y2Y pðyÞ log pðyÞ ð10Þ
so that 0 ≤MI/H ≤ 1, with a value of one denoting perfect overlap between
structural and functional zoning.

Statistics. Only biological replicates were used for statistics. Statistics were performed
on independent experiments (i.e. one PC cell= one map= one slice= one experi-
ment, 1–3 slices per animals) except in Figs. 2a and 4a in which the distribution of
EPSC size of individual connected GC sites were used. Normality and homo-
scedasticity of the distributions were assessed with Shapiro-Wilk and Levene’s tests
respectively in order to determine if statistical comparisons should be computed with
parametric or non-parametric tests. Univariate statistical tests (Kruskal–Wallis, KW;
Mann–Whitney U, MWU; Kolmogorov–Smirnov, KS; Levenes; Shapiro-Wilk, SW
and paired or independent t-tests) were performed with the corresponding functions
from the Scipy package. Unless reported differently, alternative and method argu-
ments were set to ‘two-tailed’ and ‘auto’. Correction of Kolmogorov–Smirnov p-values
with Holm method was performed with statsmodels.stats.multitest.multipletests
function. Repeated Measure ANOVA on activity in the wheel and multivariate
analysis of the BI time course (one-way repeated MANOVA and post hoc ANOVA)
were performed using the Real Statistics Resource Pack (release 6.8), Copyright
(2013–2021), Charles Zaiontz, www.real-statistics.com. Permutation testing was done
by multiple bootstraps92 where a permutation of indices was used to calculate r-values
and MSE for actual and shuffled data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. Raw data were depositied in a public repository
and accessible at https://doi.org/10.5281/zenodo.5714670. Source data are provided with
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