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INTEGRATION OF OSCILLATORY AND SUBANALYTIC FUNCTIONS

RAF CLUCKERS, GEORGES COMTE, DANIEL J. MILLER, JEAN-PHILIPPE ROLIN,
AND TAMARA SERVI

Abstract. We prove the stability under integration and under Fourier transform of a con-
crete class of functions containing all globally subanalytic functions and their complex expo-
nentials. This paper extends the investigation started in [26] and [8] to an enriched framework
including oscillatory functions. It provides a new example of fruitful interaction between anal-
ysis and singularity theory.
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1. Introduction

In this paper we prove the stability under parameterized integration of a class of functions
containing all globally subanalytic functions and their complex exponentials, with methods
pertaining to subanalytic geometry. Note that the theories of holonomic D-modules and
holonomic distributions (and, further away, of `-adic cohomology and of motivic integration)
have the richness of combining geometry with Fourier transforms, and that these theories all
have found far reaching applications. Applications of our setting are to be expected, but are
not the content of the present paper. Let us just mention that, in the context of motivic and
p-adic integration [7], similar stability results have found recent applications in the Langlands
program [6], [5]. The stability under integration of certain classes of real functions was already
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OSCILLATORY AND SUBANALYTIC FUNCTIONS 2

considered in [26], [10], [8], [21], but none of these classes allows oscillatory behavior, let alone
stability under Fourier transforms. Let us explain our results in detail.

Definition 1.1. A set X ⊆ Rm is globally subanalytic if in any standard euclidean chart
Rm of Pm (R), the image of X in Pm (R) is a subanalytic subset of this chart in the sense of [3]
and [11]. Equivalently, X ⊆ Rm is globally subanalytic if it is the image under the canonical
projection from Rm+n to Rm, of a globally semianalytic subset of Rm+n (i.e. a set Y ⊆ Rm+n

such that in a neighbourhood of every point of P1 (R)m+n, Y is described by a finite number
of analytic equations and inequalities). Given a set X ⊆ Rm, a map f : X → Rn is globally
subanalytic if its graph is a globally subanalytic subset of Rm+n (this definition implies that
X is a globally subanalytic subset of Rm, since the collection of globally subanalytic sets is
closed under projections).

In model-theoretic terms, a set is globally subanalytic if and only if it is definable in the
structure Ran, the expansion of the ordered real field by all restricted analytic functions (as
defined in [15]). By [17, 12, 13], this is an o-minimal structure and therefore the reader may
refer for instance to [14], [16] for the basic geometric properties of globally subanalytic sets
and functions that we will use in the sequel.

For the sake of brevity, from now on we will use the word “subanalytic” as an abbreviation
for the phrase “globally subanalytic”. So in this usage of the word, the natural logarithm
log : (0,+∞) → R and the trigonometric functions sin : R → R and cos : R → R are not
subanalytic, although the restriction of any one of these functions to any compact subinterval
of its domain is subanalytic.

Given a subanalytic set X ⊆ Rm, we denote by S (X) the algebra of all real-valued suban-
alytic functions on X, and we write

S := {S (X) : m ∈ N, X ⊆ Rm subanalytic}
for the system of all real-valued subanalytic functions.

Our aim is to provide a full description of the smallest system

E := {E (X) : m ∈ N, X ⊆ Rm subanalytic}
such that E (X) is a C-algebra of complex-valued functions on X ⊆ Rm satisfying

(1) S (X) ∪ {eif : f ∈ S (X)} ⊆ E (X)

and such that E is stable under integration.
Here stability under integration for E means that if X ⊆ Rm is a subanalytic set, n ∈ N,

and f ∈ E (X × Rn) is such that f (x, ·) ∈ L1 (Rn) for all x ∈ X, then the function F : X → C
defined by

(2) F (x) =

ˆ
y∈Rn

f (x, y) dy, for x ∈ X,

is in E (X).
Note that the existence of E is guaranteed by the fact that the collection on the left side

of (1) is contained in the class of all complex-valued measurable functions, a class stable
under parameterized integration. We will describe in detail the system E in the next section.
Our main result is that E coincides with the system Cexp of C-algebras Cexp (X) defined in
Definition 2.7 (see Remark 2.14(1), for which we have an explicit description of the generators
(Definition 2.15). It is worth noting that the generators of the algebra E (X) are defined in
terms of 1-variable integrals of a particularly simple form (see Definition 2.5).
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A strong motivation to allow oscillatory functions in our system comes from singularity
theory, where oscillatory integrals have been heavily investigated for decades (for an intro-
duction, and among numerous other references, see in particular [2], [28], [33]). A series of
preparation and monomialization results ([30], [25], [8], [9], [29]) for subanalytic functions and
their logarithms, provides a powerful tool to study the nature of oscillatory integrals with
subanalytic phase and amplitude.

As indicated in the introduction of [26], the idea of using a preparation theorem to under-
stand the integration of subanalytic functions was suggested by L. van den Dries, and indeed
successfully used in [26] and [10], where it is proved (use [26, Theorem 1] and [10, Proposition
1], or directly [10, Theorem 1’]) that the parameterized integrals of subanalytic functions be-
long to the class C := (C (X))X of constructible functions (the algebra C (X) of functions on
the subanalytic set X is generated as a C-algebra by the subanalytic functions on X and their
logarithm, see Definition 2.1). In particular, the function volume of fibres of a subanalytic
family and the density function along a subanalytic set also belong to the class C (see [10]).

The question of finding a system of C-algebras of functions containing S and stable under
parameterized integration has been attacked and solved in [8] (see also [9]), where the authors
show that the class C itself is stable under parameterized integration (see [21] for an interesting
subcollection of C, also stable under integration). Here again the main tool of proof is a
preparation theorem for functions of C. Note that the class C is a class of functions definable
in the o-minimal structure Ran,exp, the expansion of Ran by the full real exponential function.

As already mentioned, the problem we address and solve here is the problem of explicitly de-
scribing a system of C-algebras (actually the smallest), stable under parameterized integration,
containing S and containing the complex-valued oscillatory functions eif , for all subanalytic
functions f . Since we consider oscillatory functions, we are no longer in an o-minimal set-
ting. However, the preparation results mentioned above (see Section 3) prove extremely useful
and powerful even for dealing with oscillatory functions. To prove our results, we combine
these preparation techniques with the theory of continuously uniformly distributed maps (see
Section 6), a new ingredient in this context.

Oscillatory integrals are central in many branches of mathematics and physics. Following
Stein [32], an oscillatory integral of the first kind is a parameterized integral I (x), x ∈ R,
defined by

(3) I (x) =

ˆ
y∈Rn

f (y) eixΦ(y) dy,

where the amplitude f and the phase Φ are in general C∞ functions. The principle of
stationary phase asserts, when the phase Φ has no critical point on the support of f (assume
for simplicity that f has compact support), that x 7→ I (x) is in S (R), the Schwartz space
of rapidly decreasing functions. As a consequence, the asymptotic behaviour of I (x) at +∞,
modulo S (R), presents some interest only at critical points of the phase. If the phase is
analytic, one can show that this asymptotic behaviour only depends on the Taylor series of
the amplitude function at critical points of the phase, and that I (x) can be expanded in an
asymptotic series ∑

p

x−p/r
n−1∑
k=0

cp,k logk (x) ,

where r is a positive integer not depending on f and pis ∈ N \ {0} (see [28] Section 7 and
[2], Chapter 7). Using Hironaka’s resolution of singularities on the phase function, one can
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prove this result by reducing to the case of a monomial phase. The exponents −p/r and k
are related to the monodromy of the phase, in case the phase has an isolated singular point
in the complex domain: e2πi( pr−1) is actually an eigenvalue of multiplicity ≥ k + 1 of the
monodromy operator of the phase (see [28] for more details). Furthermore the principal part
of the exponents −p/r, called the oscillation index (see [2], Section 6.1.9), can be computed
in terms of Newton’s diagram of the Taylor expansion of the phase at its critical point (see
[2], [33]).

Similarly, in this paper, we estimate and compare the asymptotics at infinity of different
terms appearing in our parameterized integrals, namely integrals as in (2), and in this situ-
ation the preparation theorem for constructible functions (Proposition 3.10) appears as the
counterpart of Hironaka’s theorem. Of course in our general context, no geometric interpre-
tation for exponents appearing in the asymptotics considered can be given, but there might
be connections with the classical cases still to be discovered.

An oscillatory integral of the second kind has the form

(4) I (x) =

ˆ
y∈Rn

f (x, y) eiΦ(x,y) dy,

where now x = (x1, . . . , xm) is a tuple of variables. A classical example of oscillatory integral
of the second kind is given by Fourier transforms. A second more complicated example is
given by the Fourier Integral Operator (see [19, 32]), which plays a role in approximating the
solutions of a large class of PDEs (for example, the wave equation). A natural question arises:
how to describe the nature of (4), according to the nature of the amplitude and of the phase?

Note that in (4) the parameters x are “intertwined” with the integration variables y in
the expressions for the amplitude f and the phase Φ. If we consider oscillatory integrals of
the second kind with subanalytic amplitude and phase, then the aforementioned preparation
results prove a very powerful tool to monomialize the phase while respecting the different
nature of the variables x and y.

The main result of this paper (Theorem 2.12) implies that oscillatory integrals (of the first
and second kind) with subanalytic phase and amplitude belong to the system E . Moreover, still
by stability of E under integration, oscillatory integrals with subanalytic phase and amplitude
in E , still belong to E .

In particular, for X ⊆ Rm subanalytic, the algebra E (X × R) is stable under taking para-
metric Fourier transforms:

(5)
if f (x, t) ∈ E (X × R) and ∀x ∈ X, f (x, ·) ∈ L1 (R) ,

then f̂ (x, y) =

ˆ
R
f (x, t) e−2πiyt dt ∈ E (X × R) .

On the other hand, E can also be viewed as the smallest system of C-algebras containing
the class C of constructible functions and stable under composition with subanalytic functions
and parametric Fourier transform (see Remark 2.14(3)). Since there are not many systems
(of algebras) of functions which are stable under Fourier transforms, we would like to insist
in this introduction on the fact that E is such a system, which is moreover fully described by
its generators.
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Like E (Rn), the space of Schwartz functions S (Rn) is also an algebra stable under taking
Fourier transforms. Since the Fourier transform operator

F : (S (Rn) , ‖ ‖2)→ (S (Rn) , ‖ ‖2)

is continuous, using the density of S (R2) in the space L2 (Rn), one can extend F : S (Rn)→
S (Rn) to

(6) F̃ : L2 (Rn)→ L2 (Rn) .

One obtains thus the classical stability of L2 (Rn) under the Fourier-Plancherel extension F̃
of the Fourier transform F. In Section 7 we prove that E is even stable under the extension
F̃ of the Fourier transform: the image of E (Rn) ∩ L2 (Rn) under F̃ is E (Rn) ∩ L2 (Rn)
(Theorem 8.3). To this end, we need to develop in Section 8 elements of a theory of uniformly
distributed family of maps.

Let us also mention that, since the function e−|x| is in E (R) (see Example 7.4), one may
interpolate families of exponential periods with functions from E . More precisely, following [4]
and Section 4.3 of [22], a real number a is called an exponential period if there exist ∆ ⊂ Rn

(for some n ∈ N) and functions f, g : ∆ → R such that ∆, f, g are semi-algebraic over Q
(i.e. they are described by first order formulas in the language of ordered rings with no other
constant symbols than rational numbers) and

a =

ˆ
y∈∆

f (y) eg(y) dy.

A natural version in families of this concept is the following: let X ⊆ Rm, ∆ ⊆ X × Rn and
f, g : ∆→ R be semi-algebraic over Q. Suppose that for each x ∈ X,

a (x) =

ˆ
y∈∆x

fx (y) egx(y) dy

is finite, where ∆x = {y ∈ Rn : (x, y) ∈ ∆} and fx (y) = f (x, y) , gx (y) = g (x, y). Then the
collection {a (x) : x ∈ X ∩Qm} forms a natural family of exponential periods. Suppose that
there is a constant N such that g < N on ∆. It then follows from stability under integration
of E (Theorem 2.12) and Example 7.4 that the interpolating function R 3 x 7→ a (x) ∈ R
belongs to E (X).

Finally, the work in this paper can be seen as addressing a question raised by D. Kazhdan
at the 2009 Model Theory Conference in Durham, about a possible model-theoretic under-
standing of real oscillatory integrals, in analogy to the understanding of motivic oscillatory
integrals in [7] and [20].
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(ANR-11-LABX-0007-01). The author G. Comte is supported by ANR-15-CE40-0008. The
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The authors are very grateful to the anonymous referees for their careful reading and for
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2. Notation, main results and layout of this paper

This section states the main definitions, theorems and corollaries of the paper.
We proceed to construct E by first defining some systems of rings of functions intermediary

between S and E .

Definition 2.1. For each subanalytic set X ⊆ Rm, define C (X) to be the ring of real-valued
functions on X generated by

S (X) ∪ {log f (x) : f ∈ S (X) , f > 0}.

We call C (X) the ring of constructible functions on X, and we say that a function is con-
structible if it has a subanalytic domain X and is a member of C (X). Write

C := (C (X))X is subanalytic

for the system of all constructible functions.
Thus f ∈ C (X) if and only if f can be expressed as a finite sum of finite products of the

form

(7) f (x) =
∑
j

fj (x)
∏
k

log fj,k (x)

with fj, fj,k ∈ S (X) and fj,k > 0.

It is easy to see that any constructible function can be defined as a parameterized integral of
a subanalytic function, and it was shown in [8, Theorem 1.3] that the constructible functions
are stable under integration. Therefore the constructible functions form the smallest class of
functions defined on the subanalytic sets that is stable under integration and that contains
all subanalytic functions.

It follows that
C (X) ∪ {eif(x) : f ∈ S (X)} ⊆ E (X)

for each subanalytic set X. This leads us to the following definition.

Definition 2.2. For each subanalytic set X ⊆ Rm, define Cexp
naive (X) to be the ring of functions

on X generated by
C (X) ∪ {eif(x) : f ∈ S (X)}.

Write
Cexp

naive := (Cexp
naive (X))X is subanalytic .

Thus f ∈ Cexp
naive (X) if and only if f can be written as a finite sum

f (x) =
J∑
j=1

fj (x) eiφj(x), with fj ∈ C (X) and φj ∈ S (X).

The elements of Cexp
naive (X) are complex-valued functions. Hence, it is convenient to give the

following definition.
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Definition 2.3. If f : X → C is such that its real and imaginary components are in S (X) (in
C (X), respectively), then we call f a complex-valued subanalytic (constructible, respectively)
function.

Notice that, if φ (x) is a bounded subanalytic function, then eiφ(x) is a complex-valued
subanalytic function.

Remark 2.4. We will see in Section 7 that the elements of Cexp
naive ([0,+∞)) have certain con-

vergent asymptotic expansions at +∞. This implies that there are no Schwartz functions in
Cexp

naive ([0,+∞)). In particular, the function f (x) = e−x is not in Cexp
naive ([0,+∞)), while it can

be easily shown that f ∈ E ([0,+∞)). Now consider the function Si (x) =
´ x

0
sin(t)
t

dt, which is
clearly in E ([0,+∞)). However, Si (x) is easily seen to have a divergent asymptotic expansion
at +∞, therefore Si cannot be in Cexp

naive ([0,+∞)) (the details of the proof of this remark will
be carried out in Section 7).

This example suggests that to construct E , we cannot avoid including functions computable
from single-variable integrals. Our main claim is that we shall only need to consider single-
variable integrals of the following special form.

Definition 2.5. For each ` ∈ N, subanalytic set X ⊆ Rm and h ∈ S (X × R) such that
∀x ∈ X, t 7→ h (x, t) ∈ L1 (R), define γh,` : X → C by

γh,` (x) =

ˆ
R
h (x, t) (log |t|)` eit dt.

This definition makes sense because for each x ∈ X, requiring that t 7→ h (x, t) is in L1 (R)

is equivalent to requiring that t 7→ h (x, t) (log |t|)` is in L1 (R). This is easily justified using
elementary calculus and expanding t 7→ h (x, t) as in Remark 3.1.

Remark 2.6. If g ∈ S (X), sometimes it will be convenient to see g as a function of type γh,`.
To see this, take ` = 0 and h (x, t) = 1

2
g (x)χ (t), where χ (t) is the characteristic function of

the interval
[
−π

2
, π

2

]
. In particular, the constant function 1 can be viewed as a function of

type γh,` (and for the rest of the paper we will implicitly assume so).

Note that for x ∈ X, γh,` (x) =
´
R h̃(x, t) dt, where h̃ (x, t) = h (x, t) (log |t|)` eit if t 6= 0

and h̃ (x, 0) = 0. Since h̃ ∈ Cexp
naive (X × R) and Cexp

naive (X × R) ⊆ E (X × R), we must have
γh,` ∈ E (X). This leads us to the following definition.

Definition 2.7. For each subanalytic set X ⊆ Rm, define Cexp (X) to be the Cexp
naive (X)-module

of functions on X generated by

{γh,` : ` ∈ N and h ∈ S (X × R) with t 7→ h (x, t) in L1 (R)}.

We write
Cexp := (Cexp (X))X is subanalytic .

Thus f ∈ Cexp (X) if and only if f can be written as a finite sum

f (x) =
J∑
j=1

fj (x) γhj ,`j (x) , with fj ∈ Cexp
naive (X), hj ∈ S (X × R) and `j ∈ N,

where ∀x ∈ X, t 7→ hj (x, t) ∈ L1 (R) for each j.
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Remark 2.8. Notice that Cexp is stable under composition with subanalytic functions, in the
following sense: if X ⊆ Rm, Y ⊆ Rn are subanalytic sets, G : Y → X is a subanalytic map
and if f ∈ Cexp (X), then f ◦G ∈ Cexp (Y ).

For each subanalytic set X ⊆ Rm, it is clear that Cexp (X) ⊆ E (X). Hence, our next task
is to study the parametric integrals of functions f ∈ Cexp (X × Rn).

Notation 2.9. Write (x, y) = (x1, . . . , xm, y1, . . . , yn) for the standard coordinates on Rm+n.
Define Πm : Rm+n → Rm by Πm (x, y) = x. For each set D ⊆ Rm+n, define the fibre of D over
x by

Dx = {y ∈ Rn : (x, y) ∈ D}.

Definition 2.10. For any Lebesgue measurable function f : D → C with D ⊆ Rm+n and
Πm (D) = X, define the locus of integrability of f over X by

Int (f,X) :=
{
x ∈ X : f (x, ·) ∈ L1 (Dx)

}
.

Remark 2.11. Let f ∈ Cexp (X × Rn) and suppose that f (x, ·) ∈ L1 (Rn) for all x ∈ X.
To compute F (x) =

´
y∈Rn f (x, y) dy, one typically works by induction on n, using Fubini’s

theorem to express it as an iterated integralˆ
Rn−1

(ˆ
R
f (x, y1, . . . , yn−1, yn) dyn

)
dy1 ∧ . . . ∧ dyn−1.

But then one is confronted with the fact that

(8) (x, y1, . . . , yn−1) 7−→
ˆ
R
f (x, y1, . . . , yn−1, yn) dyn

might not be defined on all of X × Rn−1; all we know is that (8) is defined for all x ∈ X and
almost all (y1, . . . , yn−1) ∈ Rn−1. So in order to have a stable framework that considers (8) to
be a “parameterized integral” as well, it is useful to consider the more general situation from
the start where one drops the assumption that f (x, y) is integrable in y for all x ∈ X, but
one then additionally studies the locus of integrability of f over X (see Theorem 2.20).

We are now ready to state the main result of this paper.

Theorem 2.12 (Stability under integration). Let f ∈ Cexp (X × Rn) for some subanalytic set
X ⊆ Rm and n ∈ N. Then there exists F ∈ Cexp (X) such that

F (x) =

ˆ
Rn
f (x, y) dy, for all x ∈ Int (f,X).

It is clear from the definition that the module Cexp (X) is closed under addition, but it is not
so apparent from the definition alone whether Cexp (X) is closed under multiplication. That
Cexp (X) is a ring is in fact a consequence of our main result.

Corollary 2.13. For each subanalytic set X, Cexp (X) is a ring.

Proof. For any n ∈ N and functions γh1,`1 , . . . , γhn,`n , writing y = (y1, . . . , yn) we have
n∏
j=1

γhj ,`j (x) =
n∏
j=1

(ˆ
R
h (x, yj) (log |yj|)`j eiyj dyj

)

=

ˆ
Rn

(
n∏
j=1

h (x, yj) (log |yj|)`j eiyj

)
dy,
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which is in Cexp (X) by Theorem 2.12. It follows that Cexp (X) is closed under multiplication.
�

Remarks 2.14.
(1) Theorem 2.12 and Corollary 2.13 imply that Cexp is indeed the smallest collection of

C-algebras containing S ∪ {eif : f ∈ S} and stable under parametric integration.
Hence Cexp = E .

(2) Notice that Cexp is closed under complex conjugation, hence the real and imaginary
parts of functions in Cexp are also in Cexp. Moreover, Cexp is closed under taking Fourier
transforms (over Rm and over R with parameters, as in Equation (5)).

(3) Cexp (X) can also be described as the smallest C-algebra A (X) containing C (X) and
stable by composition with subanalytic functions (the operation defined in Remark
2.8, where we take n = m) and by taking parametric Fourier transform (the operation
defined in Equation (5)). To see this, notice that Remark 2.8 and the previous remark
imply that A (X) ⊆ Cexp (X). To prove the other inclusion, notice first that a function
of type γh,` (as in Definition 2.5) is a parametric Fourier transform of a function in
C (X). To see this, remark that the parametric Fourier transform of the function
t 7→ h (x, t) (log t)` is the function

F (x, y) =

ˆ
R
h (x, t) (log t)` e−2πity dt

and we have γh,` (x) = F
(
x,− 1

2π

)
, where evaluating F at the points

(
x,− 1

2π

)
is al-

lowed, thanks to the stability by composition with subanalytic functions. Moreover,
the function (x1, . . . , xm) 7→ eix1 belongs to A (X), since the functions sinx1

x1
, cosx1

x1
are

Fourier transforms of the characteristic function of a suitable interval (see for example
[18]). Finally, by stability under composition with subanalytic functions, if ϕ ∈ S (X),
then eiϕ(x) ∈ A (X).

We now illustrate the main steps of the proof of Theorem 2.12.

Definition 2.15. Consider a subanalytic set X. Call f : X → C a generator for Cexp (X)
if f is of the form

(9) f (x) = g (x) eiφ(x)γ (x) ,

where g ∈ C (X), φ ∈ S (X), and γ = γh,` for some ` ∈ N and h ∈ S (X × R) with t 7→ h (x, t)
in L1 (R). When γ = 1, we shall also call f a generator for Cexp

naive (X). Note that a function
is in Cexp (X) if and only if the function can be expressed as a finite sum of generators for
Cexp (X), and likewise for Cexp

naive (X).

Remark 2.16. The function f given in (9) is determined by the data (g, φ, h, l). However, the
choice of underlying data is not uniquely determined by the function f itself (see Remark
2.6). In what follows, we shall always assume that when we have a generator f , a choice of
underlying data has been specified.

The purpose of the next two definitions is to identify a particular type of generators for
Cexp (X × Rn) which are integrable everywhere and whose integral can be computed using the
Fubini-Tonelli Theorem.
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Definition 2.17. To the function (9) we associate the function f abs : X → [0,+∞) defined
by

f abs (x) := |g (x)| γabs (x) ,

where γabs : X → [0,+∞) is defined by

γabs (x) =

ˆ
R

∣∣∣h (x, t) (log |t|)`
∣∣∣ dt.

For f as in (9), note that for any x ∈ X we have |γ (x) | ≤ γabs (x), so |f (x)| ≤ f abs (x),
and these inequalities can be strict. Observe that for any given generator f for Cexp (X), f abs

is uniquely determined by the underlying data used to define f as in (9), not by the function
f itself.

Definition 2.18. We say that a generator f for Cexp (X × Rn) is superintegrable over X
if f abs (x, ·) ∈ L1 (Rn) for all x ∈ X.

In Section 4 we will prove the following result.

Proposition 2.19 (Integration of superintegrable generators). Let f be a generator for
Cexp (X × Rn) that is superintegrable over X, and define F : X → C by

F (x) =

ˆ
Rn
f (x, y) dy.

Then F ∈ Cexp (X).

The key step to the proof of Theorem 2.12 is given by the following interpolation result,
which holds whenever we integrate with respect to a single variable y ∈ R. This result also
gives a structure theorem for the locus of integrability of functions in Cexp (X × R).

Theorem 2.20 (Interpolation and locus). Let f ∈ Cexp (X × R) for some subanalytic set
X ⊆ Rm. Then there exists g ∈ Cexp (X × R) such that

Int (g,X) = X

and
f (x, y) = g (x, y) , for all x ∈ Int (f,X) and all y ∈ R.

Moreover, g can be written as a finite sum of generators for Cexp (X × R) that are superinte-
grable over X.

Finally, there exists h ∈ Cexp (X) such that

Int (f,X) = {x ∈ X : h (x) = 0}.

Once we have established Theorem 2.20, the proof of Theorem 2.12 follows easily: the case
n = 1 is implied by Theorem 2.20 and Proposition 2.19. For n > 1 we will use Fubini’s
Theorem and induction on the number of variables with respect to which we integrate, as
explained below.

Notation 2.21. Write (x, y) = (x1, . . . , xm, y1, . . . , yn) for coordinates on Rm+n. For each
k ∈ {1, . . . , n} and � ∈ {<,>,≤,≥}, write y�k for (yj)j�k. For example, y<k = (y1, . . . , yk−1)

and y≤k = (y1, . . . , yk), and also Πk (y) = y≤k and Πm+k (x, y) = (x, y≤k).
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Proof of Theorem 2.12. If n = 1, then by Theorem 2.20 there exists g ∈ Cexp (X × R) such
that

f (x, y) = g (x, y) , for all x ∈ Int (f,X) and all y ∈ R.

Moreover, g is a finite sum of superintegrable generators. The sum of their integrals belongs
to Cexp (X), thanks to Proposition 2.19, and gives us the required F .

Let n > 1. By Fubini’s Theorem, for all x ∈ Int (f,X), the function gx : y<n 7→
´
R f (x, y) dyn

is defined for all y<n belonging to some set Ex ⊆ Rn−1 such that the set Rn−1\Ex has measure
zero. Moreover, gx is integrable with respect to y<n, and

´
Rn f (x, y) dy =

´
Ex
gx (y<n) dy<n.

If we apply the case n = 1 just proved to the function f seen as an element of Cexp
(
X̃ × R

)
,

where X̃ = X × Rn−1, then we obtain the existence of F1 ∈ Cexp
(
X̃
)
such that ∀ (x, y<n) ∈

Int
(
f, X̃

)
, F1 (x, y<n) =

´
R f (x, y) dyn. So in particular

ˆ
Rn−1

F1 (x, y<n) dy<n =

ˆ
Ex

gx (y<n) dy<n,

for all x ∈ Int (f,X). By the inductive hypothesis applied to F1, we obtain the existence
of F ∈ Cexp (X) such that ∀x ∈ Int (F1, X) , F (x) =

´
Rn−1 F1 (x, y<n) dy<n. Note that this

argument shows that Int (f,X) ⊆ Int (F1, X), hence we are done. �

The structure of the paper is the following.
In Section 3, we establish some notation and we review a series of known results about

subanalytic and constructible functions. Such results are mainly due to [25] and [8, 9].
In Section 4 we prove Proposition 2.19.
Section 5 is the core of the paper. In this section we prove a preparation theorem for

functions in Cexp (X × R), Theorem 5.2. This states that for each f there is a partition of
X × R into finitely many subanalytic sets such that on each of these sets, f can be written
as a finite sum of generators, each of which is either superintegrable, or “naive in the last
variable” (see Definition 5.1). As a consequence of the proof of this theorem we obtain that
the functions in Cexp are piecewise analytic (see Remark 5.8).

In Section 6 we complete the proof of Theorem 2.20. In order to do this, we apply Theorem
5.2. Subsequently, we show that any nonzero linear combination of non-integrable generators
for Cexp

naive (R) such that the arguments of the exponentials are distinct polynomials, cannot be
integrable (Proposition 6.5(3)). The proof of this latter result uses the theory continuously
uniformly distributed maps and is postponed to Section 6.

Finally, in Section 7 we deduce a series of consequences of our main results: we prove
an asymptotic result for elements of Cexp

naive (R), we give two examples of functions that are in
Cexp (R) but not in Cexp

naive (R), we prove that Cexp is stable under taking pointwise limits and also
has an analogue for parametric families of the completeness theorem for Lp-spaces. Moreover,
we prove that the extension of the Fourier transform to L2 (Rn) sends Cexp (Rn)∩L2 (Rn) onto
Cexp (Rn) ∩ L2 (Rn).

For the reader’s convenience, we describe the dependence relations between the results in
the two following diagrams.

The first diagram concerns the stability of Cexp under integration (Theorem 2.12).
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Proposition 6.5

��

Theorem 5.2

uu

Theorem 2.20

��

Proposition 2.19

uu

Theorem 2.12

The second diagram concerns Lp-completeness and the stability of Cexp under the Fourier-
Plancherel transform (Proposition 8.2 and Theorem 8.3).

Remark 8.5

((

Lemma 8.9

��

Proposition 8.7oo Lemma 8.6oo

Theorem 5.2

((

Lemma 8.10

��

Proposition 8.2

��

Theorem 8.3

3. Preparation of subanalytic and constructible Functions

This section gives the version of the preparation theorem for subanalytic and constructible
functions that we shall use throughout the paper. It is mostly a review of ideas from [25, 9]
but is formulated in a way that is convenient for our current purposes.

Remark 3.1. It is well known that every subanalytic function of one variable admits a con-
vergent Puiseux expansion at +∞ (see for example [27, 12]). More precisely, if g ∈ S (R),
then there are c ∈ R, d ∈ N, r ∈ Q (which can be chosen as an integer multiple of 1

d
) and

an absolutely convergent power series H ∈ R{y}, with H (0) = 0, such that for x sufficiently
large,

(10) g (x) = cxr
(

1 +H
(
x−

1
d

))
.

In particular, for x large, g can be written as

(11) g (x) = p
(
x

1
d

)
+ g0 (x) ,

where p ∈ R[y], with p (0) = 0, and g0 is a bounded subanalytic function.
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The subanalytic preparation theorem given in [25, Théorème 1] can be viewed as a para-
metric version (in several variables) of the above remark, and the constructible preparation
theorem given in [9, Corollary 3.5] is the natural extension of this latter result to the context
of constructible functions.

We fix some notation.

Definition 3.2. A set A ⊆ Rm+n is open over Rm if the fibre Ax is open in Rn for all
x ∈ Πm (A).

For any set X ⊆ Rm, call a map f : X → Rn analytic if f extends to an analytic map on
a neighbourhood of X in Rm.

Recall Notation 2.21.

Definition 3.3. A set A ⊆ Rm+n is a cell over Rm if A is subanalytic and for each j ∈
{1, . . . , n}, Πm+j (A) is either the graph of an analytic function in S (Πm+j−1 (A)) or else

Πm+j (A) = {(x, y≤j) : (x, y<j) ∈ Πm+j−1 (A) , aj (x, y<j) < yj < bj (x, y<j)}
for some analytic, subanalytic functions aj (x, y<j) < bj (x, y<j), where we also allow the
possibility that aj ≡ −∞ and the possibility that bj ≡ +∞.

If m = 0, we will just say that A is a subanalytic cell.

Definition 3.4. Let A ⊆ Rm+1 be a cell over Rm that is open over Rm, and write (x, y) =
(x1, . . . , xm, y) for coordinates on Rm+1. Call θ : Πm (A)→ R a centre for A if the following
hold.

(1) θ is an analytic subanalytic function.
(2) The graph of θ is disjoint from A and is either contained in, or is disjoint from, the

closure of A in Πm (A)× R.
(3) The image of θ is contained in one of the sets (−∞, 0), {0} or (0,+∞). Moreover,

when θ 6= 0, the closure of {|y/θ (x) | : (x, y) ∈ A} in R is a compact subset of (0,+∞).
(4) The set {y − θ (x) : (x, y) ∈ A} is contained in one of the sets (−∞,−1), (−1, 0),

(0, 1) or (1,+∞).
Note that when θ is a centre for A, there exist unique σ, τ ∈ {−1, 1} such that

{σ (y − θ (x))τ : (x, y) ∈ A} ⊆ (1,+∞) ,

and A is of the form

(12) A = {(x, y) : x ∈ Πm (A) , a (x) < σ (y − θ (x))τ < b (x)}
for some analytic subanalytic functions 1 ≤ a (x) < b (x), where either b < +∞ on Πm (A) or
b ≡ +∞ on Πm (A).

Define Pθ = (Pθ,1, . . . , Pθ,m+1) : Πm (A)× (1,+∞)→ Πm (A)× R by

(13) Pθ (x, y) = (x, σyτ + θ (x)) .

Define Aθ = P−1
θ (A), and note that

(14) Aθ = {(x, y) : x ∈ Πm (A) , a (x) < y < b (x)}
and that Pθ restricts to a bijection Pθ : Aθ → A whose inverse is given by

P−1
θ (x, y) = (x, σ (y − θ (x))τ ) .

We shall henceforth restrict Pθ to Aθ, considering it to be a bijection from Aθ to A.
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Remark 3.5. When b ≡ +∞ then necessarily τ = 1 and the second sentence of Condition (3)
of Definition 3.4 implies that θ = 0.

For any polyradius r = (r1, . . . , rN) ∈ (0,+∞)N , define

Br (C) =
{
z ∈ CN : |z1| ≤ r1, . . . , |zN | ≤ rN

}
and Br (R) = Br (C) ∩ RN ,

where z = (z1, . . . , zN).

Definition 3.6. Let ψ : X → RN be a subanalytic map such that ψ (X) ⊆ Br (R), for some
r ∈ (0,+∞)N . We call f : X → R a ψ-function if there exists a real analytic function F
such that f = F ◦ψ and F is given by a single convergent power series in N variables, centred
at 0 and converging in some open neighbourhood of Br (R) in RN .

Observe that F extends uniquely to a complex analytic function on a neighbourhood of
Br (C) in CN .

If we additionally have that

|F (z)− 1| < 1 for all z ∈ Br (C) ,

then we call f a ψ-unit .

Remarks 3.7. Let f = F ◦ ψ be a ψ-unit, with r as above.

(1) There exist strictly positive constants k < K such that k < |F (x) | < K for every
x ∈ Br (R).

(2) The set F (Br (C)) is compact. Therefore there exists ε ∈ (0, 1) such that |F (z)−1| <
1− ε for all z ∈ Br (C).

(3) The previous remark shows that the natural logarithm extends to a holomorphic func-
tion on a neighbourhood of F (Br (C)) in CN , so logF is given by a single convergent
power series on Br (C) centred at 0. Therefore log f : X → R is a ψ-function.

Definition 3.8. Consider the cell A in (12) and a bounded, analytic, subanalytic map ψ,
defined on A, of the form

ψ (x, y) =

(
c1 (x) , . . . , cN (x) ,

(
a (x)

σ (y − θ (x))τ

)1/d

,

(
σ (y − θ (x))τ

b (x)

)1/d
)
, if b < +∞,

ψ (x, y) =

(
c1 (x) , . . . , cN (x) ,

(
a (x)

σ (y − θ (x))τ

)1/d
)
, if b ≡ +∞,

for some positive integer d and some analytic functions c1, . . . , cN .
We say that a subanalytic function f : A→ R is ψ-prepared if

f (x, y) = f0 (x) |y − θ (x) |νu (x, y)

on A for some analytic f0 ∈ S (Πm (A)), ν ∈ Q and u a ψ-unit.
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Remark 3.9. We shall frequently apply this concept to the situation when A = Aθ (namely,
θ = 0 and σ = τ = 1), in which case

(15)

ψ (x, y) =

(
c1 (x) , . . . , cN (x) ,

(
a (x)

y

)1/d

,

(
y

b (x)

)1/d
)
, if b < +∞,

ψ (x, y) =

(
c1 (x) , . . . , cN (x) ,

(
a (x)

y

)1/d
)
, if b ≡ +∞,

and

(16) f (x, y) = f0 (x) yνu (x, y) ,

on Aθ for some analytic f0 ∈ S (Πm (A)), ν ∈ Q and u a ψ-unit.

Proposition 3.10 (Preparation of Constructible Functions). Let D ⊆ Rm+1 be subanalytic
and F ⊆ C (D) be a finite set of constructible functions. Then there exists a finite partition A
of D into cells over Rm such that for each A ∈ A that is open over Rm there exists a centre θ
for A such that, for each f ∈ F , we can write f ◦ Pθ as a finite sum

(17) f ◦ Pθ (x, y) =
∑
j∈J

gj (x) yrj (log y)sj hj (x, y)

on Aθ, where:
(1) Aθ is as in Equation (14);
(2) Pθ is as in Equation (13);
(3) the functions hj are ψ-functions (see Definition 3.6), where ψ is as in Equation (15)

for some analytic functions c1, . . . , cN and some integer d > 0;
(4) sj ∈ N and the rj are integer multiples of 1/d;
(5) the functions gj are analytic and in C (Πm (A)).

Proof. We apply [9, Corollary 3.5] and we obtain a cell decomposition A such that Equation
(17) holds, with Conditions (1) and (2) satisfied. Up to refining A, we may assume that
(5) also holds. We must now show that, up to some refinement of A, we may assume that
Conditions (3) and (4) hold as well. By [9, Corollary 3.5], we know that a weaker version of
Condition (3) holds, namely the hj are of the form F̃j ◦ψ̃, where F̃j is a power series converging
on some open set Oj containing the closure of the image of ψ̃ and ψ̃ is a bounded map whose
components are

c1 (x) , . . . , cM (x) , (e1 (x) /y)1/d , (e2 (x) y)1/d

for some M ≥ 0, some d > 0, and some analytic subanalytic functions c1, . . . , cM , e1, e2. We
now explain, in the case that b (x) < +∞, how we can obtain the quotients a (x) /y and
y/b (x) as arguments instead of e1 (x) /y and e2 (x) y (the case b (x) = +∞ is similar and even
easier). Since e1 (x) /y and e2 (x) y are bounded, and since y runs from a (x) to b (x), one has
that e1 (x) /a (x) and e2 (x) b (x) are also bounded. Let ψ (x, y) be(

c1 (x) , . . . , cM (x) , (e1 (x) /a (x))1/d , (e2 (x) b (x))1/d ,

(
a (x)

y

)1/d

,

(
y

b (x)

)1/d
)

and
π : RM+4 3 (z1, . . . , zM , Z1, Z2, Z3, Z4) 7→ (z1, . . . , zM , Z1Z3, Z2Z4) ∈ RM+2.
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Then ψ is bounded, ψ̃ = π ◦ ψ and the closure of the image of ψ is contained in the open
sets π−1 (Oj). We rename cM+1 = (e1 (x) /a (x))1/d and cM+2 = (e2 (x) b (x))1/d, and set
N = M + 2. It is clear that the power series Fj = F̃j ◦ π converge on π−1 (Oj) and that
Fj (ψ) = F̃j

(
ψ̃
)
on Aθ. Hence Condition (3) holds.

Finally, by replacing d by an integer multiple if necessary, we can assume that condition
(4) also holds. �

Remark 3.11. We have stated Proposition 3.10 in the transformed coordinates (via Pθ) out of
convenience. In the original coordinates, (17) becomes

f (x, y) =
∑
j∈J

g̃j (x) |y − θ (x)|r̃j (log |y − θ (x) |)sj h̃j (x, y)

on A, where g̃j (x) = τ sjgj (x), r̃j = τrj and h̃ (x, y) = h ◦ P−1
θ (x, y).

Remark 3.12. If F ⊆ S (D) is a finite collection of subanalytic functions, then the proof of
Proposition 3.10 (where we replace the use of [9, Corollary 3.5] by the use of [9, Theorem 3.4])
shows that for each f ∈ F , on Aθ we can write f ◦ Pθ in the ψ-prepared form in Equation
(16). In addition, it follows from the proof of the subanalytic preparation theorem in [24]
that if ε ∈ (0, 1) is given beforehand, then the preparation can be constructed so that each
ψ-unit u, as given in Equation (16), is within ε of 1, by which we mean that u = U ◦ ψ for
some r ∈ (0,∞)M (where M = N + 2 when b < +∞, and M = N + 1 when b ≡ +∞)
such that ψ(Aθ) ⊆ Br(R) and some real analytic function U on Br(R) that extends to a
complex analytic function on a neighbourhood of Br(C) in CM such that |U(z) − 1| < ε for
all z ∈ Br(C).

Remark 3.13. In the situation described in Proposition 3.10, we may also assume that the
following two properties hold when b ≡ +∞. Let J1 = {j ∈ J : hj = 1}. Then,

(1) for each j ∈ J \ J1, rj < −1;
(2) ((rj, sj))j∈J1

is a family of distinct pairs in Q× N.
To see this, notice that because b ≡ +∞, we may write hj as a convergent power series

hj (x, y) =
+∞∑
k=0

hj,k (x)

(
a (x)

y

)k/d
for (c1, . . . , cN)-functions hj,k. To obtain Property (1), for each j ∈ J , fix nj ∈ N such that

rj −
nj
d
< −1,

and write the j-th term of (17) as
nj−1∑
k=0

gj (x)hj,k (x) a (x)k/d yrj−k/d (log y)sj +Rj (x, y) ,

where

Rj (x, y) = gj (x) a (x)nj/d yrj−nj/d (log y)sj

 +∞∑
k=nj

hj,k (x)

(
a (x)

y

)(k−nj)/d
 .

To obtain Property (2), simply sum up terms in (17) for j ∈ J1 with equal powers rj and sj.
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We now study the integrability properties of the prepared form given in (17). The following
remarks will be useful in Sections 4 and 6.

Remarks 3.14. Consider the situation described in Proposition 3.10 for some A ∈ A. In the
notation of Proposition 3.10, for each j ∈ J , write

Gj (x, y) := gj (x) yrj (log y)sj hj (x, y) .

(1) Note that we have

∂yPθ (y) :=
∂Pθ,m+1

∂y
(x, y) = στyτ−1,

that τ − 1 equals either 0 or −2, and that

Int (f � A,Πm (A)) = Int ((f ◦ Pθ) ∂yPθ,Πm (A)) .

(2) For each j ∈ J and x ∈ Πm (A), y 7→ Gj (x, y) extends to a continuous (in fact,
analytic) function on the closure in R of the fibre (Aθ)x, and likewise for ∂yPθ.
In particular, when b < +∞, Int (Gj∂yPθ,Πm (A)) = Πm (A) for each j ∈ J .

(3) Let b ≡ +∞ and recall Property (1) of Remark 3.13.
For each j ∈ J \ J1 and x ∈ Πm (A), the function y 7→ Gj (x, y) ∂yPθ (y) is o (yτ−2) as
y → +∞, and is therefore integrable.
For each j ∈ J1,

Gj (x, y) ∂yPθ (y) = στgj (x) yrj+τ−1 (log y)sj ,

which is integrable in y if and only if gj (x) = 0 or rj + τ < 0.
Therefore by defining

J Int = (J \ J1) ∪ {j ∈ J1 : rj + τ < 0},
we see that for each j ∈ J ,

Int (Gj∂yPθ,Πm (A)) =

{
Πm (A) , if j ∈ J Int,
{x ∈ Πm (A) : gj (x) = 0} , if j ∈ J \ J Int.

(4) In the situation of the previous remark, define the constructible functions

g (x, y) =
∑
j∈JInt

Gj (x, y) , for all (x, y) ∈ Aθ,

h (x) =
∑

j∈J\JInt

g2
j (x) , for all x ∈ Πm (A).

Then
Int (f � A,Πm (A)) = {x ∈ Πm (A) : h (x) = 0},

Int (g∂yPθ,Πm (A)) = Πm (A) ,

and

f ◦ Pθ (x, y) = g (x, y) for all (x, y) ∈ Aθ with x ∈ Int (f � A,Πm (A)).

To see this, note that the previous remark shows that Int (g∂yPθ,Πm (A)) = Πm (A),
and clearly

f ◦ Pθ = g on the set {(x, y) ∈ Aθ : h (x) = 0},
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so {x ∈ Πm (A) : h (x) = 0} ⊆ Int (f � A,Πm (A)). To show that Int (f � A,Πm (A)) ⊆
{x ∈ Πm (A) : h (x) = 0}, note that if x ∈ Πm (A) is such that h (x) 6= 0, then by
choosing j0 in the set {j ∈ J \ J Int : gj (x) 6= 0} with (rj0 , sj0) greatest with respect to
the lexicographical order on Q× R, it follows from Property (2) in Remark 3.13 that

lim
y→+∞

f (x, y)

Gj0 (x, y)
= 1,

so f (x, ·) 6∈ L1 (Ax) by the previous remark.
(5) In particular, if Int (f,X) = X, then Remarks (2) and (4) above show that for each

j ∈ J , we have Int (Gj∂yPθ,Πm (A)) = Πm (A).

4. Integrating superintegrable generators

This section is dedicated to the proof of Proposition 2.19, of which we recall the statement.

Proposition. Let f be a generator for Cexp (X × Rn) that is superintegrable over X, and
define F : X → C by

F (x) =

ˆ
Rn
f (x, y) dy .

Then F ∈ Cexp (X).

Proof. Assume that X ⊆ Rm, and write

f (x, y) = g (x, y) eiφ(x,y)γ (x, y) , for (x, y) ∈ X × Rn,

where g ∈ C (X × Rn), φ ∈ S (X × Rn) and γ = γh,` for some ` ∈ N and h ∈ S (X × Rn × R)
with Int (h,X × Rn) = X × Rn.

Because |f (x, y) | ≤ f abs (x, y) for all (x, y) ∈ X × Rn (see Definition 2.17), it follows that
f (x, ·) ∈ L1 (Rn) for all x ∈ X . Moreover, the Fubini-Tonelli theorem shows that for each
x ∈ X,

(y, t) 7→ g (x, y)h (x, y, t) (log |t|)`

is in L1 (Rn × R), and the iterated integralˆ
Rn
f (x, y) dy =

ˆ
Rn

(ˆ
R
g (x, y) eiφ(x,y)h (x, y, t) (log |t|)` eit dt

)
dy

can be computed as a product integralˆ
Rn×R

g (x, y) eiφ(x,y)h (x, y, t) (log |t|)` eit dy ∧ dt.

Therefore up to replacing n by n+ 1, we may simply assume that γ = 1.
Now construct a finite partitionA ofX×Rn into cells over Rm such that for each A ∈ A that

is open over Rm, either φ (x, y) = φ0 (x) on A for some φ0 ∈ S (Πm (A)), or else the function
y 7→ φ (x, y) is C1 on Ax with σ ∂φ

∂yj
> 0 on Ax for some σ ∈ {−1, 1} and j ∈ {1, . . . , n}.

When φ = φ0,

(18)
ˆ
Ax

f (x, y) dy = eiφ0(x)

ˆ
Ax

g (x, y) dy, .

The fact that C is stable under integration [8, 9] shows that the integral of g with respect to
y is in C (Πm (A)). Hence, (18) is in Cexp

naive (Πm (A)).
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In the other case, by pulling back by the inverse of the map (x, y) 7→ (x, φ (x, y) , y<j, y>j)
and multiplying by the Jacobian of this map, we may simply assume that φ (x, y) = y1. Write
Ã = Πm+1 (A), and note that the function g̃ : Ã→ R defined by

g̃ (x, y1) =

ˆ
A(x,y1)

g (x, y1, y>1) dy>1, for each (x, y1) ∈ Ã,

is constructible and thatˆ
Ax

g (x, y) eiφ(x,y) dy =

ˆ
Ãx

g̃ (x, y1) eiy1 dy1, for each x ∈ Πm (A).

We apply Proposition 3.10 to g̃ (x, y1) and then work piecewise, thereby focusing on one
open cell B̃ ⊆ Ã given by the preparation which is open over Rm.

By applying Remark 3.14(5), we may writeˆ
B̃x

g̃ (x, y1) eiy1 dy1

as a finite sum of terms of the form

(19) g0 (x)

ˆ
B̃x

|y1 − θ (x) |r ũ (x, y1) (log |y1 − θ (x) |)s eiy1 dy1,

where g0 ∈ C
(

Πm

(
B̃
))

, r ∈ Q, s ∈ N, ũ is a ψ-function (for some ψ) and θ is the centre

given by the preparation on B̃. Thus for some σ ∈ {−1, 1}, by applying the coordinate change
(x, y1) 7→ (x, σy1 + θ (x)) we may write (19) as

(20) σg0 (x) eiθ(x)

ˆ
Bx

yr1 (log y1)s u (x, y1) eiσy1 dy1,

where Bx ⊆ (0,+∞) and u are the pullbacks of B̃x and ũ by this coordinate change. Note that
up to performing the coordinate transformation y1 7→ σy1, the one-variable integral in (20) is
of the form γh,l with l = s and h (x, y1) = yr1u (x, y1)χBx (y1), where χBx is the characteristic
function of the subanalytic set Bx. This concludes the proof of Proposition 2.19. �

5. Preparation of functions in Cexp

Throughout this section X denotes a subanalytic subset of Rm, and we write (x, y) for coor-
dinates on Rm×R. This section states and proves our main preparation theorem for functions
in Cexp. The purpose of the preparation theorem is to express a given f ∈ Cexp (X × R) as a
finite sum of generators for Cexp (X × R) that are either superintegrable over X or are “naive
in y” (in the sense that the γ-functions in these terms depend only on x and not on y, see
Definition 5.1).

Definition 5.1. Let A ⊆ Rm+1 be a subanalytic set and T (x, y) ∈ Cexp (A) be a generator.
We say that T is naive in y if T is of the form

T (x, y) = f (x) yr (log y)s eiφ(x,y),

where f ∈ Cexp (Πm (A)), r ∈ Q, s ∈ N, and φ ∈ S (A).
Notice that, if T is naive in y, then the function γ appearing in the expression (9) for T

does not depend on y.

We use the notation from Definition 3.4 in the following theorem.
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Theorem 5.2. Let X ⊆ Rm be a subanalytic set and f ∈ Cexp (X × R). Then there exists a
finite partition A of X ×R into cells over Rm such that for each A ∈ A that is open over Rm,
there exists a centre θ for A for which we may express f ◦ Pθ as a finite sum

f ◦ Pθ (x, y) =
∑
j∈J

Tj (x, y)

on Aθ = {(x, y) : x ∈ Πm (A) , a (x) < y < b (x)}, where each Tj is a generator for Cexp (Aθ),
such that:

(1) if b < +∞, then for each j, Tj is superintegrable over Πm (A);
(2) if b ≡ +∞, then there exists a positive integer d and a partition J = J int ∪ Jnaive such

that:
(a) for each j ∈ J int, Tj is superintegrable over Πm (A);
(b) for each j ∈ Jnaive, Tj is naive in y, is not superintegrable over Πm (A) and is of

the form

(21) Tj (x, y) = fj (x) yrj (log y)sj eiφj(x,y),

where fj ∈ Cexp (Πm (A)), rj ∈ Q ∩ [−1,+∞), sj ∈ N, and φj is a polynomial in
y1/d (for some d ∈ N) with coefficients in S (Πm (A)) such that φj (x, 0) = 0 for
all x ∈ Πm (A); moreover,

((rj, sj, φj (x, y)))j∈Jnaive

is a family of distinct tuples in Q× N× R[y1/d].

Remark 5.3. Let us restrict our attention to a cell of the form

(22) A = {(x, y) : x ∈ Πm (A) , y > a (x)}
(by Remark 3.5, we have A = Aθ). The proof of Theorem 5.2 will actually show that, for
every j ∈ J , there are rj ∈ Q, sj ∈ N and a function gj (x, y) ∈ Cexp (X × R) which is
bounded in y (more precisely, there is a subanalytic function η : Πm (A)→ [0,+∞) such that
∀y > a (x) , |gj (x, y) | < η (x)), such that

(23) Tj (x, y) = yrj (log y)sj gj (x, y) .

Moreover, if j ∈ J Int, then rj < −1, and if j ∈ Jnaive, then, in the notation of Equation (21),
we have gj (x, y) = fj (x) eiφj(x,y).

The proof of the above theorem will be broken down into several propositions and lemmas.

Definition 5.4. Let X ⊆ Rm be a subanalytic set and A ⊆ X × R be a cell over Rm which
is open over Rm. Let θ be a centre for A, so that we can write

Aθ = {(x, y) : x ∈ Πm (A) , a (x) < y < b (x)},
for some analytic subanalytic functions 1 ≤ a (x) < b (x), where we also allow the case when
b ≡ +∞ on Πm (A), as in Definition 3.4.

Fix d ∈ N \ {0} and a bounded, analytic, subanalytic map ψ on Aθ, of the form

(24)

ψ (x, y) =

(
c1 (x) , . . . , cN (x) ,

(
a (x)

y

)1/d

,

(
y

b (x)

)1/d
)
, if b < +∞,

and ψ (x, y) =

(
c1 (x) , . . . , cN (x) ,

(
a (x)

y

)1/d
)
, if b ≡ +∞.
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Let J be an index set and, for all j ∈ J , let

Aj = {(x, y, t) : (x, y) ∈ Aθ, aj (x, y) < t < bj (x, y)},

for some analytic, subanalytic functions 1 ≤ aj < bj, where we also allow the case when
bj ≡ +∞ on Aθ.

Suppose also that aj, bj and bj − aj are ψ-prepared on Aθ as follows:

aj (x, y) = aj,0 (x) yαjuaj (x, y) ,

bj (x, y) = bj,0 (x) yβjubj (x, y) ,

bj (x, y)− aj (x, y) = cj,0 (x) yδjucj (x, y)

for some analytic, subanalytic aj,0, bj,0, cj,0, some αj, βj, δj ∈ Q and some ψ-units uaj , ubj , ucj
(when bj = +∞ we stipulate that bj,0 = cj,0 = +∞, βj = δj = 0 and ubj = ucj = 1).

In this situation, given dj ∈ N \ {0}, we define the bounded, analytic, subanalytic map ψj
on Aj as

(25)

ψj (x, y, t) =

(
ψ (x, y) ,

(
aj,0 (x) yαj

t

)1/dj

,

(
t

bj,0 (x) yβj

)1/dj
)
, if bj < +∞,

and ψj (x, y, t) =

(
ψ (x, y) ,

(
aj,0 (x) yαj

t

)1/dj
)
, if bj ≡ +∞.

The next proposition establishes that, after writing f as a sum of generators and after
preparing suitably all the subanalytic and constructible functions appearing in the generators,
we obtain a decomposition of X × R into cells over which each of the generators has a well
organized form. In particular, the generators are superintegrable over every cell in the partition
whose fibres over Rm are bounded (see Remark 5.7(2) below).

Proposition 5.5. Let f ∈ Cexp (X × R), for some subanalytic set X ⊆ Rm. Then there exists
a finite partition A of X × R into cells over Rm such that for each A ∈ A that is open over
Rm, there exists a centre θ for A for which we may express f ◦ Pθ as a finite sum

(26) f ◦ Pθ (x, y) =
∑
j∈J

Tj (x, y)

on Aθ = {(x, y) : x ∈ Πm (A) , a (x) < y < b (x)}, where each Tj is a generator for Cexp (Aθ)
of the form

(27) Tj (x, y) = fj (x) ypj (log y)qj eiφj(x,y)γj (x, y)

for some fj ∈ C (Πm (A)), pj ∈ Q, qj ∈ N, φj ∈ S (Aθ) and function γj, where

(28) γj (x, y) =

ˆ bj(x,y)

aj(x,y)

Γj (x, y, t) dt

with
Γj (x, y, t) = trjhj (x, y, t) (log t)sj eiσjt

for some rj ∈ Q, sj ∈ N, σj ∈ {−1, 1} and analytic subanalytic functions aj, bj as in Definition
5.4, and for some ψj-function hj (where ψj is as in Equation (25), for some d, ψ, dj).

We may furthermore assume that the rational numbers αj, βj and δj (see Definition 5.4)
are integer multiples of 1/d.
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Proof. Write f as a finite sum of generators for Cexp (X × R), say

f (x, y) =
∑
j∈J

Tj (x, y) ,

where
Tj (x, y) = gj (x, y) eiφj(x,y)γj (x, y) ,

with

γj (x, y) =

ˆ
R
Hj (x, y, t) (log |t|)`j eit dt.

Apply Proposition 3.10 (in the form in Remark 3.11) to the collection

(29) {Hj (x, y, t) (log |t|)`j}j∈J ⊆ C (X × R× R) .

This gives a finite partition B of (X × R) × R into cells over Rm+1. By further partitioning
in (x, y), we may assume that A := {Πm+1 (B) : B ∈ B} is a partition of X ×R. By working
piecewise, we may focus on one A ∈ A. There are finitely many disjoint cells B ∈ B such that
Πm+1 (B) = A. Pick one such B which is open over Rm+1. Write

B = {(x, y, t) : (x, y) ∈ A, ã (x, y) < t−Θ (x, y) < b̃ (x, y)},

where Θ is the centre given by the preparation of the collection in Equation (29). We fix an
element of this collection and we focus on one summand of the preparation of such an element.
This will have the form

f0 (x, y) |t−Θ (x, y) |r (log |y −Θ (x, y) |)s h (x, y, t) ,

where f0 ∈ C (A) and h is a Ψ-function (for a suitable bounded subanalytic Ψ).
We write eit = ei(t−Θ(x,y))eiΘ(x,y). By factoring out of the integral the term f0 (x, y) eiΘ(x,y),

and by absorbing f0 in the constructible coefficient g and eiΘ(x,y) in the exponential term
eiφ(x,y), we can reduce to studying generators of the form

(30) g (x, y) eiφ(x,y)

ˆ b̃(x,y)

ã(x,y)

|t−Θ (x, y)|r h (x, y, t) (log |t−Θ (x, y) |)s ei(t−Θ(x,y)) dt

on A. Now, the set

(31) {t−Θ (x, y) : (x, y, t) ∈ B}

is contained in one of the sets (−∞,−1), (−1, 0), (0, 1) or (1,+∞).
Suppose first that (31) is contained in either (−1, 0) or (0, 1). Then ei(t−Θ(x,y)) is a complex-

valued subanalytic function onA (see Definition 2.3), so the integral in (30) is a complex-valued
constructible function on A. This implies that (30) is in Cexp

naive (A) (because C is stable under
integration), hence we can apply Proposition 3.10 to the constructible part of (30), preparing
it with respect to the variable y. Now, we can view the ψ-function obtained in this preparation
as a γ-function of the form (28) (see Remark 2.6), and we are done.

Now suppose that (31) is contained in (−∞,−1) or (1,+∞). Then by applying the change
of coordinates t 7→ σt + Θ (x, y) for an appropriate choice of σ ∈ {−1, 1}, and adjusting the
definitions of ã, b̃ and h accordingly, we may assume that 1 ≤ ã (x, y) < b̃ (x, y) and that (30)
is of the form

g (x, y) eiφ(x,y)

ˆ b̃(x,y)

ã(x,y)

trh (x, y, t) (log t)s eiσt dt.
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Summing up, we have constructed a finite partition A of X × R into subanalytic sets such
that for each A ∈ A we may write f as a finite sum

(32) f(x, y) =
∑
j∈J

gj(x, y)eiφj(x,y)γj(x, y)

on A, where gj ∈ C(A), φj ∈ S(A), and

(33) γj(x, y) =

ˆ b̃j(x,y)

ãj(x,y)

Γ̃j(x, y, t) dt

with

(34) Γ̃j(x, y, t) = trj h̃j(x, y, t)(log t)sjeiσjt,

where 1 ≤ ãj < b̃j (with either b̃j < +∞ or b̃j ≡ +∞), rj ∈ Q, sj ∈ N, σj ∈ {−1, 1}, and h̃j
is a ψ̃j-function, with

ψ̃j(x, y, t) =

c̃j,1(x, y), . . . , c̃j,Nj(x, y),

(
ãj(x, y)

t

)1/dj

,

(
t

b̃j(x, y)

)1/dj
 , if b̃j <∞,

and ψ̃j(x, y, t) =

(
c̃j,1(x, y), . . . , c̃j,Nj(x, y),

(
ãj(x, y)

t

)1/dj
)
, if b̃j ≡ +∞,

defined on
Ãj = {(x, y, t) : (x, y) ∈ A, ãj(x, y) < t < b̃j(x, y)}.

We may additionally assume that the positive integer dj has been chosen so that rj is an
integer multiple of 1/dj.

In order to have a more uniform notation, we will assume that ψ̃j maps into RNj+2 for
each j ∈ J . (This is the case when b̃j < +∞, and the argument adapts to the case that

b̃j ≡ +∞ by simply ignoring the last component of ψ̃j involving
(

t

b̃j(x,y)

)1/dj
.) For each j ∈ J ,

fix pj = (pj,1, . . . , pj,Nj+2) and ηj = (ηj,1, . . . , ηj,Nj+2) in (0,∞)Nj+2 and also a real analytic
function H̃j on Bp(R) such that ψ̃j(Ãj) ⊆ Bp(R), h̃j = H̃j ◦ ψ̃j, and H̃j extends to a complex
analytic function on a neighbourhood of Bp+η(C). We may assume that pj,Nj+1 = pj,Nj+2 = 1.
Fix ε ∈ (0, 1) sufficiently small so that for all j ∈ J and k ∈ {1, . . . , Nj + 2},

(35)

{
1+ε
1−εpj,k < pj,k + ηj,k if k ∈ {1, . . . , Nj},(

1+ε
1−ε

)1/dj < 1 + ηj,k if k = Nj + 1 or k = Nj + 2.

For each set A ∈ A, apply Proposition 3.10 (with respect to the variable y) to

{gj}j∈J ⊆ C(A) and {c̃j,1, . . . , c̃j,Nj , ãj, b̃j, b̃j − ãj}j∈J ⊆ S(A)

so that the units occurring in the preparation of {c̃j,1, . . . , c̃j,Nj , ãj, b̃j, b̃j − ãj}j∈J are within ε
of 1 (see Remark 3.12), and then redefine A to be the finer partition of X ×R into cells over
Rm thus created.

Focus on one cell A ∈ A that is open over Rm, and let θ be the center of A given by
the preparation. We now use the notation set up in Definition 5.4, where aj = ãj ◦ Pθ and
bj = b̃j ◦Pθ, and where the positive integer d in Definition 5.4 has been chosen to be a common
denominator of the set of rational exponents {αj, βj, δj : j ∈ J} and also of the rational
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exponents of y in the ψ-prepared forms of each of the functions cj,k := c̃j,k ◦Pθ with j ∈ J and
k ∈ {1, . . . , Nj}. Since each constructible function gj ◦ Pθ is prepared on Aθ, it is apparent
from equations (32), (33), and (34) that f ◦Pθ is of the form asserted in the conclusion of the
proposition except for one detail: although each function hj(x, y, t) := h̃j(Pθ(x, y), t) is clearly
a ψ̃j(Pθ(x, y), t)-function, the conclusion of the proposition asserts that hj is a ψj-function for
the map ψj defined in Definition 5.4. To finish the proof, we will show that hj is a ψj-function
after ψj is modified by extending its list of component functions c1(x), . . . , cN(x) in x alone
by some additional functions in x obtained from the ψ-prepared forms of the functions in
{cj,k}j,k.

In order to have a more uniform notation when showing this, we shall assume that ψ maps
into RN+2 (as would be the case when b < +∞). For each j ∈ J , define K+

j to be the set of
all k ∈ {1, . . . , Nj} such that the exponent of y in the ψ-prepared form of cj,k is greater than
or equal to 0, and define K−j = {1, . . . , Nj} \ K+

j . For each j ∈ J and k ∈ {1, . . . , Nj}, we
may write

cj,k(x, y) =

cj,k,0(x)
(

y
b(x)

)νj,k/d
vj,k(x, y), if k ∈ K+

j ,

cj,k,0(x)
(
a(x)
y

)νj,k/d
vj,k(x, y), if k ∈ K−j ,

for some cj,k,0 ∈ S(Πm(A)), νj,k ∈ N, and ψ-unit vj,k. Fix q = (q1, . . . , qN+2) in (0,∞)N+2 such
that ψ(Aθ) ⊆ Bq(R) and such that for all j ∈ J and k ∈ {1, . . . , Nj} we have uaj = Uaj ◦ ψ,
ubj = Ubj ◦ ψ, and vj,k = Vj,k ◦ ψ for some real analytic functions Uaj , Ubj , and Vj,k on Bq(R)
which extend to complex analytic functions on a neighbourhood of Bq(C) such that for each
U ∈ {Uaj , Ubj , Vj,k}j,k,

|U(z)− 1| < ε for all z ∈ Bq(C).

We may assume that qN+1 = qN+2 = 1.
Focus on one choice of j ∈ J . Writing out the equation hj(x, y, t) = H̃j ◦ ψ̃j(Pθ(x, y), t) in

full detail with the ψ-prepared forms of its components gives

hj(x, y, t) = H̃j

(cj,k,0(x)

(
a(x)

y

)νj,k/d
Vj,k ◦ ψ(x, y)

)
k∈K−j

,(36)

(
cj,k,0(x)

(
y

b(x)

)νj,k/d
Vj,k ◦ ψ(x, y)

)
k∈K+

j

,

(
aj,0(x)yαj

t

)1/dj (
Uaj ◦ ψ(x, y)

)1/dj ,(
t

bj,0(x)yβj

)1/dj (
Ubj ◦ ψ(x, y)

)−1/dj

)
.

Consider k ∈ {1, . . . , Nj}, and observe that on Aθ we have that |cj,k(x, y)| ≤ pj,k, that
|vj,k(x, y)| ≥ 1 − ε, and that a(x)

y
and y

b(x)
can take values arbitrarily close to 1 (for each

fixed x ∈ Πm(A)). It follows that

(37) |cj,k,0(x)| ≤ pj,k
1− ε
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on Aθ. Similar reasoning shows that

(38)
∣∣∣∣aj,0(x)yαj

t

∣∣∣∣1/dj ≤ ( 1

1− ε

)1/dj

and
∣∣∣∣ t

bj,0(x)yβj

∣∣∣∣1/dj ≤ (1 + ε)1/dj

hold on Aj as well. Clearly

(39)
∣∣∣∣a(x)

y

∣∣∣∣1/d ≤ 1 and
∣∣∣∣ y

b(x)

∣∣∣∣1/d ≤ 1

on Aθ, and also for all k ∈ {1, . . . , Nj} we have

(40) |Vj,k| ≤ 1 + ε, |Uaj |1/dj ≤ (1 + ε)1/dj , and |Ubj |−1/dj ≤
(

1

1− ε

)1/dj

on Bq(C). Using the variables (W,X, Y, Z) = ((Wk)
N
k=1, (Xj,k)

Nj
k=1, Y1, Y2, Z1, Z2), define

Hj(W,X, Y, Z) := H̃j

((
XkY

νj,k
1 Vj,k(W )

)
k∈K−j

,
(
XkY

νj,k
2 Vj,k(W )

)
k∈K+

j
,

Z1

(
Uaj(W )

)1/dj , Z2

(
Ubj(W )

)−1/dj
)
.

Define

ρ =

(
q1, . . . , qN ,

p1

1− ε
, . . . ,

pNj
1− ε

, 1, 1, 1, 1

)
.

Observe from the inequalities (37)-(40), from the conditions (35) imposed upon our choice of
ε, and from (36) that the range of the map on Aj given by

(x, y, t) 7→

(
(ck(x))Nk=1 , (cj,k(x))

Nj
k=1 ,

(
a(x)

y

)1/d

,

(
y

b(x)

)1/d

,(41)

(
aj,0(x)yαj

t

)1/dj

,

(
t

bj,0(x)yβj

)1/dj
)

is contained in Bρ(R), that Hj is defined as a complex analytic function on a neighbourhood of
Bρ(C), and that hj is the composition of Hj with the map (41). This completes the proof. �

Definition 5.6. We call a generator for Cexp (Aθ) of the form (27) a prepared generator .

Remarks 5.7. Fix a prepared generator Tj as in Proposition 5.5.
(1) If bj < +∞, then we may suppose rj = 0. If bj ≡ +∞, then we may suppose that

rj < −1.
To see this, suppose first that bj < +∞. If rj ≥ 0, then write

gj (x, y) trjhj (x, y, t) =
(
gj (x, y)

(
bj,0 (x) yβj

)rj)(( t

bj,0 (x) yβj

)rj
hj (x, y, t)

)
= g̃j (x, y) h̃j (x, y, t) .

If rj < 0, then write

gj (x, y) trjhj (x, y, t) = (gj (x, y) (aj,0 (x) yαj)rj)

((
aj,0 (x) yαj

t

)−rj
hj (x, y, t)

)
= g̃j (x, y) h̃j (x, y, t) .
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Note that, in both cases, h̃j is a ψj-function (but not necessarily a ψj-unit), because
rj is an integral multiple of 1/dj. We have hence reduced to the case rj = 0.

Suppose now that bj ≡ +∞. Let n0 be the smallest exponent appearing in the series

expansion of hj (x, y, t) with respect to the variable
(
aj,0(x)yαj

t

)1/dj
. Then we can factor

out the power
(
aj,0(x)yαj

t

)n0/dj
from the expansion of hj and write

gj (x, y) trjhj (x, y, t) =
(
gj (x, y) (aj,0 (x) yαj)n0/dj

)
trj−n0/dj h̃j (x, y, t) ,

where h̃j is a ψj-unit. Note that r̃j := rj − n0/dj is necessarily strictly smaller than
−1 (otherwise γj would not be defined).

(2) Whenever b < +∞, Tj is superintegrable over Πm (A). This is clear, since for all
x ∈ Πm (A), y 7→ T abs

j (x, y) extends to a continuous function on the closure of Ax in
R.

Remark 5.8. For all m ∈ N, subanalytic X ⊆ Rm, and g ∈ Cexp(X), there exists a finite
partition A of X into subanalytic cells (see Definition 3.3) such that g � A is analytic for each
open set A ∈ A.

Proof. Apply Proposition 5.5 to f (except we now omit the variable y since we are working
on X rather than on X × R), and let A be the partition of X so obtained. Consider an
open set A ∈ A. For each j ∈ J , γj � A is analytic because it is the integral of an analytic
function with analytic limits of integration. (Namely, basic facts about power series show that
the antiderivative in t of integrand Γj(x, t) is analytic, and evaluating this antiderivative at
analytic limits of integration in x gives in an analytic function in x.) It therefore follows from
equations (26) and (27) that f � A is analytic. �

In view of Remark 5.7(2), we can focus our attention on cells which are unbounded above.
For such cells, our next goal is to reduce to the case where each of the generators in Equation
(26) is either superintegrable, or in Cexp

naive (Aθ), or is such that the variable y does not appear
in the integration limits aj and bj of the γ-function.

Proposition 5.9. Proposition 5.5 holds with the additional property that, whenever b ≡ +∞,
every Tj is either superintegrable, or in Cexp

naive (Aθ), or there exist analytic and subanalytic
functions aj,0, bj,0 on Πm (A) such that aj (x, y) = aj,0 (x) and either bj ≡ +∞ or bj (x, y) =
bj,0 (x).

In order to prove the above proposition, we first need to establish two technical lemmas
(Lemmas 5.12 and 5.13 below). Their aim is to reduce to the case of prepared generators
such that the variable y only appears in the units in the prepared form of the integration
limits of the γ-function, that is αj = βj = 0. To achieve this, our main tool will be to
compute γ by integrating by parts. This will lead to rewriting the prepared generator as a
finite sum of generators which are either superintegrable, or in Cexp

naive (Aθ), or are in a “better
form” (for example, the variable y now only appears in one of the two integration limits). We
will also have to refine the partition into cells along the way. This is harmless when we refine
the partition with respect to the variables x. When further partitioning with respect to the
variable y, we will possibly create new bounded cells, which can be handled as in Remark
5.7(2).
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Definition 5.10. In the notation of Definition 5.4, suppose that bj < +∞. We let ψj,− and
ψj,+ be the maps obtained from ψj by omitting the last and the second-to-last component of
ψj, respectively. We extend this definition to the case bj ≡ +∞ by stipulating that ψj,− = ψj
and ψj,+ = 0.

Remark 5.11. Notice that when bj ≡ +∞, αj and βj are necessarily non-negative, since
aj, bj ≥ 1.

Lemma 5.12 (Splitting). Let f ∈ Cexp (X) for some subanalytic set X ⊆ Rm and let A ∈ A
be one of the cells obtained from Proposition 5.5 satisfying b = +∞. Let Tj be one of the
generators corresponding to this A satisfying bj < +∞, αj = 0 and βj > 0 then we may write
Tj as a finite sum

∑
Tk of prepared generators, where each Tk is either superintegrable, or in

Cexp
naive (Aθ), or is such that bk ≡ +∞ (and hence hk is a ψk,−-function).

Proof. We consider a generator Tj as in the statement of the lemma. In the notation of
Proposition 5.5, let nj ∈ N be such that

(42) pj − njβj + δj < −1.

Our next aim is to write hj as a sum of three terms, depending on the choice of nj, as follows:

(43) hj (x, y, t) =

(
t

aj,0 (x)

)rj,−
hj,− (x, y, t) + hj,0 (x, y, t) +

(
t

bj,0 (x) yβj

)nj
hj,+ (x, y, t) ,

where rj,− < −1 is rational, hj,− is a ψj,−-function, hj,+ is a ψj,+-function, and hj,0 is a finite

sum of terms of the form g (x, y) zk, where g is a ψ-function, k ∈ N and z is either
(
t
bj

)1/dj
or(aj

t

)1/dj .

In order to do this, we expand hj as a series in the variables
(
t
bj

)1/dj
,
(aj
t

)1/dj , with ψ-
functions as coefficients. Now, remembering that b ≡ +∞ and αj = 0, for each k, l ∈ N
write

(
t

bj,0 (x) yβj

)k/dj (aj,0 (x)

t

)l/dj
=


(

aj,0(x)

bj,0(x)yβj

)l/dj (
t

bj,0(x)yβj

)(k−l)/dj
, if k ≥ l,(

aj,0(x)

bj,0(x)yβj

)k/dj (aj,0(x)

t

)(l−k)/dj
, if k < l,

and

(44)
aj,0 (x)

bj,0 (x) yβj
=

[
aj,0 (x)

bj,0 (x) a (x)βj

](
a (x)

y

)βj
.

The quotient on left side of (44) is bounded, since it is equal to the bounded quotient aj
bj

multiplied by a unit. Moreover, for each x we may take y to be arbitrarily close to a (x),
thereby making a(x)

y
arbitrarily close to 1. It follows that the function in square brackets on

the right side of (44), which does not depend on y, is also bounded and therefore can be
included in the list of functions c1 (x) , . . . , cN (x) in ψ.

Therefore we can write hj as the sum of a ψj,−-function of the form
∑

k≥1 gj,k (x, y)
(
aj,0(x)

t

)k/dj
plus a ψj,+-function of the form

∑
k≥0 g̃j,k (x, y)

(
t

bj,0(x)yβj

)k/dj
, where gj,k, g̃j,k are ψ-functions.
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If we set

hj,− =
∑

k≥dj+1

gj,k (x, y)

(
aj,0 (x)

t

) k
dj
−1− 1

dj

, hj,+ =
∑

k≥djnj

g̃j,k (x, y)

(
t

bj,0 (x) yβj

) k
dj
−nj

,

we obtain Equation (43) with rj,− = −1− 1
dj

and

hj,0 =

dj∑
k=1

gj,k (x, y)

(
aj,0 (x)

t

)k/dj
+

djnj−1∑
k=0

g̃j,k (x, y)

(
t

bj,0 (x) yβj

)k/dj
.

Hence we can write

Γj,− (x, y, t) =

(
t

aj,0 (x)

)rj,−
hj,− (x, y, t) (log t)sj eiσjt,

Γj,0 (x, y, t) = hj,0 (x, y, t) (log t)sj eiσjt,

Γj,+ (x, y, t) =

(
t

bj,0 (x) yβj

)nj
hj,+ (x, y, t) (log t)sj eiσjt

and
Tj (x, y) = Tj,− (x, y) + Tj,0 (x, y) + Tj,+ (x, y) ,

where one obtains Tj,−, Tj,0 and Tj,+ from Tj by replacing Γj with Γj,−, Γj,0 and Γj,+, respec-
tively.

To handle Tj,−, note that, since rj,− < −1, we can use the additivity relation
ˆ bj(x,y)

aj(x,y)

Γj,− (x, y, t) dt =

ˆ +∞

aj(x,y)

Γj,− (x, y, t) dt−
ˆ +∞

bj(x,y)

Γj,− (x, y, t) dt.

Therefore we can replace Tj,− by a sum of two prepared generators for Cexp (Aθ) whose γ-
functions are defined by integrals with +∞ as the upper limit of integration.

To handle Tj,0, compute
´ bj(x,y)

aj(x,y)
Γj,0 (x, y, t) dt by integrating by parts, where one differen-

tiates hj,0 (x, y, t) (log t)sj and integrates eiσjt. This has the effect of replacing Tj,0 (x, y) with
a sum of terms that are either prepared generators for Cexp

naive (Aθ) or are of the same form as
Tj,0 but with the powers of t in hj,0 reduced by 1. By repeating this strategy finitely many
times, we reduce to the case that all powers of t in hj,0 are less than −1, which can then be
handled as we did for Tj,−.

It remains to handle Tj,+. Recall that

(45)
(

t

bj,0 (x) yβj

)nj
hj,+ (x, y, t) (log t)sj =

 +∞∑
k=njdj

g̃j,k (x, y)

(
t

bj,0 (x) yβj

)k/dj (log t)sj .

Differentiating the right side of (45) with respect to t gives

1

bj,0 (x) yβj


(∑+∞

k=njdj
k
dj
g̃j,k (x, y)

(
t

bj,0(x)yβj

)k/dj−1
)

(log t)sj

+sj

(∑+∞
k=njdj

g̃j,k (x, y)
(

t

bj,0(x)yβj

)k/dj−1
)

(log t)sj−1

 .

Therefore, if we compute
´ bj(x,y)

aj(x,y)
Γj,+ (x, y, t) dt by integrating by parts nj times, where one

begins by differentiating the left side of (45) and integrating eiσjt as before, one reduces to
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studying prepared generators for Cexp (Aθ) of the form

T (x, y) = fj (x) ypj−njβj (log y)qj eiφj(x,y)

ˆ bj(x,y)

aj(x,y)

h (x, y, t) (log t)s eiσjt dt,

where h is a ψj,+-function and s is a rational number. Since h is bounded and the length of
the interval (aj (x, y) , bj (x, y)) is of order yδj as y → +∞ (see Definition 5.4 and Proposition
5.5), it follows that for each x ∈ Πm (A) there is a constant C (x) > 0 such that

T abs (x, y) ≤ C (x) ypj−njβj+δj (log y)qj+s .

Hence, by (42) we can conclude that T is superintegrable. �

Lemma 5.13. In the notation of Proposition 5.5, suppose b ≡ +∞; if Tj is a prepared
generator with the property that αj > 0, then we may write Tj as a finite sum of prepared
generators which are either superintegrable or in Cexp

naive (Aθ).

Proof. We consider a generator Tj as in the statement of the lemma.
In the notation of Proposition 5.5, suppose first that bj < +∞. By Remark 5.7(1), we have

rj = 0.
First assume that

pj + δj < −1.

Since hj is bounded by a constant and the length of the interval (aj (x, y) , bj (x, y)) is of order
yδj as y → +∞, it follows that for each x ∈ Πm (A) there is a constant C (x) > 0 such that

(46) T abs
j (x, y) ≤ C (x) ypj+δj (log y)qj+sj .

So Tj is superintegrable, and we are done.
So now assume that pj + δj ≥ −1. Note that

∂

∂t

((
aj,0 (x) yαj

t

)1/dj
)

= − 1

dj

(
aj,0 (x) yαj

t

)1/dj 1

t
,

and that
∂

∂t

((
t

bj,0 (x) yβj

)1/dj
)

=
1

dj

(
t

bj,0 (x) yβj

)1/dj 1

t
.

Write hj = Hj ◦ ψj, where Hj (X1, . . . , XN , Y, T1, T2) is a power series converging in a neigh-
bourhood of the closure of the image of ψj. Thus we can factor out 1/t every time we
differentiate the expression hj (x, y, t) (log t)sj with respect to t. Moreover, the factor 1/t may
be written as

1

t
=

1

aj,0 (x) yαj

(
aj,0 (x) yαj

t

)
.

Therefore if we compute γj (x, y, t) by integrating by parts, where one integrates eiσjt and
differentiates hj (x, y, t) (log t)sj , we can express Tj as a finite sum of terms, each of which is
either in Cexp

naive (Aθ) or is of the same form as Tj, but with pj replaced by pj − αj. Therefore
by repeating this strategy finitely many times, we sufficiently decrease the value of pj in order
to reduce to the case that pj + δj < −1, and we are done for the case bj < +∞.

It remains to consider the case bj ≡ +∞. By Remark 5.7(1), rj < −1 and hj is a ψj,−-
function. This case can be handled very similarly to the previous case: one decreases the
value of pj by repeatedly integrating by parts in order to additionally assume that

pj < −1.
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Since

γabs
j (x, y) ≤M

ˆ +∞

1

trj (log t)sj dt < +∞,

where |hj| ≤M , this shows that the analogue of (46) is now

T abs
j (x, y) ≤ C (x) ypj (log y)qj ,

hence Tj is superintegrable. �

We now complete the proof of Proposition 5.9.

Proof of Proposition 5.9. Let b ≡ +∞ and Tj be as in Proposition 5.5. If Tj is either superin-
tegrable or in Cexp

naive (Aθ), then we are done. Otherwise, thanks to the lemmas above we may
assume that αj = βj = 0 (recall that if bj ≡ +∞ we have set bj,0 ≡ +∞ and βj = 0). To see
this, if αj > 0, then apply Lemma 5.13. Suppose now that αj = 0. If bj ≡ +∞ or βj = 0,
then we are done. Otherwise, apply Lemma 5.12 and again Lemma 5.13.

We first establish the following claim: up to replacing a (x) with some analytic subanalytic
ã (x) ≥ a (x) and up to further partitioning with respect to the variables x, we may assume
that for all j ∈ J ,

(1) |aj (x, y)− aj,0 (x) | ≤ 1 and |bj (x, y)− bj,0 (x) | ≤ 1 on Aθ, and
(2) the function hj extends to a ψj-function with ψj now defined on the set

Ãj = {(x, y, t) : (x, y) ∈ Aθ,min{aj,0 (x) , aj (x, y)} < t < max{bj,0 (x) , bj (x, y)}}.

To establish the claim, for each j ∈ J , fix a subanalytic neighbourhood Uj of the closure of
ψj (Aj) such that hj = Hj◦ψj for some power series Hj centred at the origin and converging on
Uj. Recall that every ψ is bounded and subanalytic. Hence, for each ψ-unit u ∈ {uaj , ubj , ucj},
limy→+∞ u (x, y) is a well-defined subanalytic function of x (which may be supposed to be
analytic, up to refining the partition), and therefore may be considered as a part of the
corresponding coefficient function in {aj,0, bj,0, cj,0}. We may therefore assume that for each
u ∈ {uaj , ubj , ucj},

lim
y→+∞

u (x, y) = 1.

In particular, limy→+∞ aj (x, y) = aj,0 (x) and limy→+∞ bj (x, y) = bj,0 (x). Hence, for each
x ∈ Πm (A) there exists a real number ã (x) ≥ a (x) such that for all y > ã (x) and all j ∈ J ,
we have that |aj (x, y)−aj,0 (x) | ≤ 1, that |bj (x, y)− bj,0 (x) | ≤ 1 and that ψj

(
Ãj

)
⊆ Uj. By

definable choice (see for example [14, Chapter 6]), we may take ã to be a subanalytic function
of x (and we may be suppose ã to be analytic, up to refining the partition). This establishes
the claim.

We may therefore partition Aθ according to the conditions a (x) < y < ã (x) and ã (x) < y.
We are done on the subset of Aθ defined a (x) < y < ã (x) (as in the case of b < +∞ treated
in Proposition 5.5), so it suffices to consider the subset of Aθ defined by y > ã (x). Therefore
up to changing notation, we may simply assume that ã (x) = a (x).

Now, write
ˆ bj(x,y)

aj(x,y)

Γj (x, y, t) dt =

ˆ bj,0(x)

aj,0(x)

Γj (x, y, t) dt−
ˆ aj(x,y)

aj,0(x)

Γj (x, y, t) dt+

ˆ bj(x,y)

bj,0(x)

Γj (x, y, t) dt
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(note that when bj ≡ +∞ the last term of the sum does not appear). Remark that
ˆ aj(x,y)

aj,0(x)

Γj (x, y, t) dt = eiσjaj,0(x)

ˆ aj(x,y)

aj,0(x)

trjhj (x, y, t) (log t)sj eiσj(t−aj,0(x)) dt,

and, thanks to the claim, |aj (x, y) − aj,0 (x) | ≤ 1 on Aθ. Hence, eiσj(t−aj,0(x)) is a complex-
valued subanalytic function (see Definition 2.3) over its domain of integration. So the integral
on the right side of the above equation is a complex-valued constructible function on Aθ,
because C is stable under integration (see [8, 9]). This shows that (x, y) 7→

´ aj(x,y)

aj,0(x)
Γj (x, y, t) dt

is in Cexp
naive (Aθ). For similar reasons, (x, y) 7→

´ bj(x,y)

bj,0(x)
Γj (x, y, t) dt is also in Cexp

naive (Aθ). �

We are now ready to finish the proof of the Preparation Theorem. In view of Proposition
5.9, it only remains to show that those generators for which the variable y does not appear
in the integration limits of the γ-function can be expressed as finite sums of generators which
are either superintegrable or naive in y. Moreover, we need ensure that Property (2b) in the
statement of Theorem 5.2 is also satisfied.

Proof of Theorem 5.2. Let b ≡ +∞ and consider a generator Tj as in the statement of
Proposition 5.9, which is neither superintegrable nor in Cexp

naive (Aθ). Thus Tj is such that
γj (x, y) =

´ bj,0(x)

aj,0(x)
Γj (x, y, t) dt (where we also allow the possibility bj,0 ≡ +∞) and, since

αj = βj = 0, the variable y now only appears in the component
(
a(x)
y

)1/d

of ψj (see Equa-
tions (24) and (25)). Hence, we can now expand hj (x, y, t) as a power series in the variable
(a (x) /y)1/d with coefficients in the variables (x, t). The powers of y which appear in Tj are
thus of the form pj − n

d
, where n is the summation index in the power series expansion of hj.

Since finitely many of such powers are greater than or equal to −1, we can write Tj as a sum
of finitely many terms that are naive in y plus a final term of the form

fj (x) yp (log y)qj eiφj(x,y)

ˆ bj,0(x)

aj,0(x)

trjh (x, y, t) (log t)sj eiσjt dt

for some rational p < −1 and ψj-function h. This final term is clearly superintegrable, since
h is bounded.

Summing up, we have written f ◦ Pθ (x, y) as a finite sum of generators which are either
superintegrable or of the form

(47) Tj (x, y) = fj (x) yrj (log y)sj eiφj(x,y),

where fj ∈ Cexp (Πm (A)), rj ∈ Q ∩ [−1,+∞), sj ∈ N, and φj ∈ S (Aθ).
It remains to prove Property (2b) in the statement if Theorem 5.2.
Let J ′ = {j : Tj is as in (47)} and apply Proposition 3.10 to the collection {φj : j ∈ J ′}.

Focus on a cell A′ = {(x, y) : x ∈ Πm (A′) , a′ (x) < σ′ (y − θ′ (x))τ
′
< b′ (x)} ⊆ Aθ that this

constructs, along with its associated centre θ′ and map ψ′ given by

ψ′ (x, y) =

(
c′1 (x) , . . . , c′N ′ (x) ,

(
a′ (x)

y

)1/d′

,

(
y

b′ (x)

)1/d′
)

if b′ < +∞,

and ψ′ (x, y) =

(
c′1 (x) , . . . , c′N ′ (x) ,

(
a′ (x)

y

)1/d′
)

if b′ ≡ +∞



OSCILLATORY AND SUBANALYTIC FUNCTIONS 32

on
A′θ′ = {(x, y) : x ∈ Πm (A′) , a′ (x) < y < b′ (x)}.

First suppose that θ′ 6= 0. Then the closure of {y/θ′ (x) : (x, y) ∈ A′} is a compact subset
of (0,+∞), so each of the fibres A′x is bounded above. We are then done on A′ by Remark
5.7(2).

Now suppose that θ′ = 0. Because A′x ⊆ (1,+∞) for each x, it follows that σ′ = τ ′ = 1.
Thus A′ = {(x, y) : x ∈ Πm (A′) , a′ (x) < y < b′ (x)} with 1 ≤ a ≤ a′ < b′. When b′ < +∞,
we are again done on A′, so assume that b′ ≡ +∞. We may assume that the list of functions
c′1, . . . , c

′
N ′ contains c1, . . . , cN and also (a (x) /a′ (x))1/d. We may also assume that d′ was

chosen so that 1/d is an integer multiple of 1/d′. So because(
a (x)

y

)1/d

=

(
a (x)

a′ (x)

)1/d(
a′ (x)

y

)1/d

,

it follows that each component of ψ is a ψ′-function. Therefore to simplify notation, we may
simply assume that A′ = Aθ and that ψ′ = ψ.

Hence, on Aθ we can write, for all j ∈ J ′,
φj (x, y) = φj,0 (x) yljuj (x, y) ,

where φj,0 ∈ S (Πm (A)) is analytic, lj ∈ Q (an integer multiple of 1/d) and uj is a ψ-unit.

We expand the unit uj with respect to the variable
(
a(x)
y

)1/d

and multiply by ylj , so that we
can rewrite the above equation as

φj (x, y) = φj,+ (x, y) + φj,− (x, y) ,

where φj,+ ∈ S (Πm (A))
[
y1/d

]
and φj,− (x, y) = φj,0 (x)

(
a(x)
y

)1/d

ũj (x, y), for some ψ-unit
ũj. Up to refining the partition with respect to the variables x, we may assume that |φj,0|
is either bounded from above or bounded away from zero. In either of the two cases, φj,− is
a ψ-function. This is clear in the first case. In the second case, up to further partitioning
the cell (as we have done for example in the proof of Proposition 5.9), we may suppose that

y > a (x) (φj,0 (x))d. We then modify ψ accordingly, by adding the bounded function
(

1
φj,0

)d
to c1 (x) , . . . , cN (x) and considering the function

(
a(x)(φj,0(x))d

y

)1/d

as the last component of
ψ.

Therefore, exp (iφj,−) is a complex-valued subanalytic function (see Definition 2.3) which
can be expanded as a power series F in the variable y−1/d with analytic functions of x as
coefficients. Let Kj ∈ N be such that, in the notation of Equation (47), rj − Kj

d
< −1.

We split the power series F into a polynomial part, by summing up to Kj, and a rest G.
Therefore, we can replace Tj by a finite sum of terms of the form appearing in Equation (47),
but with the further property that φj ∈ S (Πm (A)) [y1/d], plus a final superintegrable term
(corresponding to the rest G of the series).

Summing up, we have partitioned the index set J as J int∪Jnaive, where Tj is superintegrable
for every j ∈ J int and for all j ∈ Jnaive, Tj is of the form in Equation (47) with φj ∈
S (Πm (A)) [y1/d]. Now, by writing

eiφj(x,y) = ei(φj(x,y)−φj(x,0))eiφj(x,0)

and absorbing eiφj(x,0) into fj (x), we may assume that φj (x, 0) = 0 for all j ∈ Jnaive.
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By further partitioning in x, we may also assume that for all j, k ∈ Jnaive, y 7→ φj (x, y) and
y 7→ φk (x, y) either define the same polynomial function for all x ∈ Πm (A) or define different
polynomial functions for all x ∈ Πm (A). Therefore by summing over terms for j ∈ Jnaive with
equal tuples (rj, sj, φj (x, y)), we may assume that these tuples are distinct. We have thus
completed the proof of Theorem 5.2. �

6. Proof of Theorem 2.20

In this section we complete the proof of Theorem 2.20 using Proposition 6.5(3) below, which
states that, denoting by f the function

∑
j∈J cje

ipj(t), then there exists a real number ε > 0

such that the set Vε = {t ∈ [0,+∞) : |f (t)| ≥ ε} is not too sparse. To prove Proposition
6.5(3) let us first introduce a definition and notation. In what follows the notation vol` stands
for the Lebesgue measure in the corresponding space R`, ` ≥ 1. All sets and maps involved
with this notation are tacitly assumed to be Lebesgue measurable.

Definition 6.1. Let {x} := x − bxc denote the fractional part of the real number x and
let p = (p1, . . . , p`) : [0,+∞) → R`, be a map. If I1, . . . , I` ⊆ R are bounded intervals with
nonempty interior, we denote by I the box

∏`
j=1 Ij. For T ≥ 0 we let

Wp,I,T := {t ∈ [0, T ] : {p (t)} ∈ I} ,
where {p(t)} denotes the tuple ({p1(t)}, . . . , {p` (t)}).

The map p is said to be continuously uniformly distributed modulo 1, in short c.u.d.
mod 1, if for every box I ⊆ [0, 1)`,

lim
T→+∞

vol1 (Wp,I,T )

T
= vol` (I) .

Remark 6.2. By [34] and [23, Corollary 9.1], a polynomial map p = (p1, . . . , p`) is c.u.d. mod
1, provided that no nontrivial linear combination over Z of the polynomials pj is constant.

Lemma 6.3. Let p : [0,+∞)→ R` be a c.u.d. mod 1 map, I ⊆ [0, 1)` be a box and

Wp,I := {t ∈ R : {p (t)} ∈ I}.
Then for all sufficiently large k ∈ N,

vol1
(
Wp,I ∩ [2k, 2k+1]

)
≥ 2k−1 vol` (I) and

ˆ
Wp,I

dt

t
= +∞.

Proof. Let us denote vol` (I) by s. By definition there exists T0 ≥ 0 such that for every T ≥ T0,

vol1 (Wp,I,T ) ∈ [T
5s

6
, T

7s

6
].

It follows that for any k ∈ N such that 2k ≥ T0,

vol1 (Wp,I) ∩ [2k, 2k+1] = vol1
(
Wp,I,2k+1 \Wp,I,2k

)
≥ s

5

6
2k+1 − s7

6
2k = s2k−1.

Therefore, denoting by k0 the smallest integer k such that 2k ≥ T0, we have
ˆ
Wp,I

dt

t
≥
ˆ
Wp,I∩[2k0 ,+∞)

dt

t
=

+∞∑
k=k0

ˆ
Wp,I∩[2k,2k+1]

dt

t
≥ s

+∞∑
k=k0

2k−1

2k+1
= +∞,

which concludes the proof. �
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Remark 6.4. Let c1, . . . , cn ∈ C \ {0} and let p1 (t) , . . . , pn (t) ∈ R[t] be distinct polynomials
such that p1 (0) = . . . = pn (0) = 0 and such at least one of them is not constantly zero.
Consider the function f (t) =

∑n
j=1 cje

ipj(t). Extract from the family of the polynomials pj a
basis of the Q-vector space spanned by this family. Without loss of generality, we may suppose
that such a basis is given by (p1, . . . , p`). Write

pk = rk,1p1 + . . .+ rk,`p`, k = `+ 1, . . . , n,

with rk,j ∈ Q for k = ` + 1, . . . , n, j = 1, . . . , `. If, for j = 1, . . . , `, we denote by ρj the least
common multiple of the denominators of the nonzero rational numbers among r`+1,j, . . . , rn,j
and we let p̃j = pj/2πρj, then we have, for k = `+ 1, . . . , n,

pk = 2πsk,1p̃1 + . . .+ 2πsk,`p̃`,

where sk,1, . . . , sk,` ∈ Z and the family of polynomials (p̃1, . . . , p̃`) is independent over Z. To
sum up, one can write

f (t) = P
(
e2πip̃1(t), . . . , e2πip̃`(t)

)
,

where P is a Laurent polynomial in C[X1, . . . , X`,
1
X1
, . . . , 1

X`
] which contains at least ` ≥ 1

monomials of the form cjX
ρj
j , with cj 6= 0 and ρj ∈ N. Therefore P is not a constant (note

that we have not assumed that the function f is not constant).
Now since the family (p̃1, . . . , p̃`) is independent over Z and since p1 (0) = . . . = p` (0) = 0,

no nontrivial Z-linear combination of p̃1, . . . , p̃` is constant, thus by Remark 6.2, the map
p = (p̃1, . . . , p̃`) is c.u.d. mod 1.

Proposition 6.5. Let f : R→ C be given by a finite sum

f (t) =
∑
j∈J

cje
ipj(t),

where the cj ∈ C \ {0} and the pj (t) are distinct polynomials in R[t], vanishing at 0. Then
one can find ε > 0 such that

(1) There exist two sequences (t0,n)n∈N and (t1,n)n∈N, which both tend to +∞, such that
∀n ∈ N, |f (t0,n)− f (t1,n) | ≥ ε. In particular limt→+∞ f (t) exists if and only if pj = 0
for all j ∈ J (in other words, if and only if f is a constant function).

(2) There exists a sequence (tn)n∈N which tends to +∞ such that for all n ≥ 0, |f (tn) | ≥ ε.
(3)
´
Vε

1
t

dt = +∞, where Vε = {t ∈ [1,+∞) : |f (t)| ≥ ε}.

Proof. We may assume without loss of generality that J is {1, . . . , n}. By Remark 6.4, one
can write f (t) = P

(
e2πip̃1(t), . . . , e2πip̃`(t)

)
, where P is a nonconstant Laurent polynomial

in R[X1, . . . , X`,
1
X1
, . . . , 1

X`
] and (p̃1, . . . , p̃`) is a c.u.d. mod 1 map. Set a1 = e2πiα1 , b1 =

e2πiβ1 , . . . , a` = e2πiα` , b` = e2πiβ` , where α1, β1, . . . , α`, β` ∈ [0, 1) are complex numbers such
that

|P (a1, . . . , a`)− P (b1, . . . , b`) | ≥ 3ε,

for some ε > 0, and let us then consider the following two sets

A = {t ∈ R : ({p̃1 (t)}, . . . , {p̃` (t)}) ∈
∏̀
j=1

Aj}, B = {t ∈ R : ({p̃1 (t)}, . . . , {p̃` (t)}) ∈
n∏
j=1

B`},

where Aj ⊆ [0, 1) is an interval centred at αj and Bj ⊆ [0, 1) is an interval centred at βj. If
we denote by h (t) the map

(
eip̃1(t), . . . , eip̃`(t)

)
, since (p̃1, . . . , p̃`) is a c.u.d. mod 1 map, by the
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continuity of h and P , by taking our intervals Aj and Bj sufficiently small, one can find two
sequences (t0,n)n∈N ∈ A, (t1,n)n∈N ∈ B both tending to +∞ such that

∀n ∈ N, |P (h (t0,n))− P (a1, . . . , a`) | ≤ ε and |P (h (t1,n))− P (b1, . . . , b`) | ≤ ε.

This gives that ∀n ∈ N, |f (t0,n) − f (t1,n) | ≥ ε and proves (1). To prove (2) we repeat
the same argument as in (1): we choose complex numbers a1 = e2πiα1 , . . . , a` = e2πiα` , with
α1 . . . , α`,∈ [0, 1), such that |P (a1, . . . , a`) | ≥ 2ε and we define as above the corresponding
sets A1, . . . , A` and A with the property that when t ∈ A, |f (t) − P (a1, . . . , a`) | ≤ ε. One
thus has that for every t ∈ A, |f (t) | ≥ ε. However, A certainly contains a sequence (tn)n∈N
which tends to +∞, since (p̃1, . . . , p̃`) is a c.u.d. mod 1 map. This proves (2).

Now, since the set A defined above is such that A ⊆ Vε, and since (p̃1, . . . , p̃`) is c.u.d. mod
1, by Lemma 6.3 we have proved (3). �

We now complete the proof of Theorem 2.20.

Proof of Theorem 2.20. Let f ∈ Cexp (X × R) and apply Theorem 5.2 to f . This produces a
finite partition A of X×R into cells over Rm. Consider one such cell A ∈ A that is open over
Rm, and let θ be a centre for A. Write

f ◦ Pθ (x, y) =
∑
j∈J int

Tj (x, y) +
∑

j∈Jnaive

Tj (x, y) on Aθ.

Therefore,
f =

∑
j∈J int

Tj ◦ P−1
θ +

∑
j∈Jnaive

Tj ◦ P−1
θ on A.

If Jnaive = ∅, then we are done. So suppose Jnaive 6= ∅, which implies that Aθ is unbounded
above (i.e. b ≡ +∞, in the notation of Definition 3.4).

Recall from Remark 3.14(1) that

∂yPθ (y) :=
∂Pθ,m+1

∂y
(x, y) = στyτ−1,

and that τ − 1 equals either 0 or −2. Notice that

Int
(
Tj ◦ P−1

θ ,Πm (A)
)

= Int (Tj∂yPθ,Πm (A)) ∀j ∈ J.
For every j ∈ Jnaive, in the notation of Equation (21), we have:

(48) Tj (x, y) ∂yPθ (y) = στfj (x) yrj+τ−1 (log y)sj eiφj(x,y),

which is integrable in y if and only if fj (x) = 0 or rj + τ < 0. Therefore by defining

J Int := J int ∪ {j ∈ Jnaive : rj + τ < 0},
we see that for each j ∈ J ,

Int (Tj∂yPθ,Πm (A)) =

{
Πm (A) , if j ∈ J Int,
{x ∈ Πm (A) : fj (x) = 0}, if j ∈ Jnaive := J \ J Int.

Let

g (x, y) =
∑
j∈JInt

Tj ◦ P−1
θ (x, y) , for all (x, y) ∈ A,

H =
⋂

j∈Jnaive

{x ∈ Πm (A) : fj (x) = 0}.
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Notice that, by taking the sum of the squares of the real and imaginary parts of fj (see Remark
2.14(2)), we can write H = {x ∈ Πm (A) : h (x) = 0}, for some h ∈ Cexp (X).

It is clear that
Int (g,Πm (A)) = Πm (A) .

It remains to show that
Int (f � A,Πm (A)) = H

and
f (x, y) = g (x, y) for all (x, y) ∈ A with x ∈ Int (f � A,Πm (A)).

Clearly,
f (x, y) = g (x, y) for all (x, y) ∈ A with x ∈ H,

so H ⊆ Int (f � A,Πm (A)).
To prove the other inclusion, we show that if x 6∈ H, then x 6∈ Int

(∑
j∈Jnaive Tj∂yPθ,Πm (A)

)
=

Int
(∑

j∈Jnaive Tj ◦ P−1
θ ,Πm (A)

)
, and hence x 6∈ Int (f � A,Πm (A)).

Fix x ∈ Πm (A) \ H. Then the set J := {j ∈ Jnaive : fj (x) 6= 0} ⊆ Jnaive is nonempty
(see Equation (48)). Recall that the tuples {(rj − τ − 1, sj, φj (x, y))}j∈J are distinct and that
ρj := rj − τ − 1 ≥ −1 for all j ∈ J . Let

E = {(ρ, s) ∈ Q× N : ∃j ∈ J (ρj, sj) = (ρ, s)} and,
if (ρ, s) ∈ E, let E(ρ,s) = {j ∈ J : (ρj, sj) = (ρ, s)}.

Write

F (x, y) =
∑
j∈J

Tj∂yPθ (x, y) =

=
∑

(ρ,s)∈E

yρ (log y)s

 ∑
j∈E(ρ,s)

στfj (x) eiφj(x,y)

 .

Up to summing like terms, we may suppose that all polynomials φj in the previous sum are
distinct. Let (ρ0, s0) be the lexicographic maximum of E and

G (x, y) =
∑

j∈E(ρ0,s0)

στfj (x) eiφj(x,y).

By applying Proposition 6.5(3) to the function y 7→ G (x, y), we obtain ε > 0 such that for
all y ∈ Vε, F (x, y) can be written as

yρ0 (log y)s0 G (x, y)

1 +
∑

(ρ,s)∈E\{(ρ0,s0)}

yρ−ρ0 (log y)s−s0 G (x, y)−1

 ∑
j∈E(ρ,s)

στfj (x) eiφj(x,y)

 .
Notice that there exists M > 0 such that for all y ∈ Vε ∩ [M,+∞) the square bracket in the
previous equation is bounded from below by some positive constant K. Therefore,ˆ +∞

M

|F (x, y)| dy ≥
ˆ
Vε∩[M,+∞)

|F (x, y)| dy

≥ εK

ˆ
Vε∩[M,+∞)

yρ0 (log y)s0 dy ≥ εK

ˆ
Vε∩[M,+∞)

1

y
dy.
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However, by Proposition 6.5(3) the last integral on the right diverges. Hence, x 6∈ Int (F,Πm (A)),
and we are done. �

7. Asymptotic expansions and limits

In this section we prove a series of consequences of our main results and their proofs.
In Subsection 7.1 we prove that functions in Cexp

naive have convergent asymptotic expansions
of a certain form. We use this result to produce in Subsection 7.2 two examples of functions
that are in Cexp but not in Cexp

naive.
In Subsection 7.3 we prove that Cexp is stable under taking pointwise limits.

7.1. Asymptotic expansions of naive functions.

Definition 7.1. A collection G = (gn)n∈N of functions gn : (0,+∞)→ R with strictly positive
germ at +∞ is an asymptotic scale at +∞ if for all n ∈ N, limy→+∞

gn+1(y)
gn(y)

= 0.
An C-vector space A of functions a : R → C is a space of coefficients if for every

a ∈ A \ {0} there are ε > 0 and a sequence (yn)n∈N, with limn→+∞ yn = +∞, such that
∀n ∈ N, |a (yn) | > ε.

Given a function f : (0,+∞)→ C, an asymptotic scale G and a space of coefficients A, we
say that f has a (G,A)-asymptotic expansion at +∞ if there are y0 > 0 and a sequence
(an (y))n∈N ⊆ A such that

∀N ∈ N ∃C > 0 s. t. ∀y > y0,

∣∣∣∣∣f (y)−
N∑
n=0

an (y) gn (y)

∣∣∣∣∣ ≤ CgN+1 (y) .

Lemma 7.2. If a function f admits a (G,A)-asymptotic expansion, then such an expansion
is unique, i.e. the sequence (an (y))n∈N is uniquely determined.

Proof. Suppose that (ãn (y))n∈N is another sequence of coefficients. Supposing inductively that
an = ãn for all n < N , we have

|(aN (y)− ãN (y)) gN (y)| =

∣∣∣∣∣
N∑
n=0

an (y) gn (y)−
N∑
n=0

ãn (y) gn (y)

∣∣∣∣∣
≤

∣∣∣∣∣f (y)−
N∑
n=0

an (y) gn (y)

∣∣∣∣∣+

∣∣∣∣∣f (y)−
N∑
n=0

ãn (y) gn (y)

∣∣∣∣∣
≤ C0gN+1 (y) ,

for some constant C0 > 0 and for y sufficiently large. Dividing by gN (y), we obtain that
limy→+∞ |aN (y)− ãN (y)| = 0. Now, the function a (y) := aN (y)− ãN (y) belongs to A, and
if a (y) is not identically zero, then a (y) is bounded away from zero on some sequence of points
going to +∞. Hence the only way for a (y) to tend to zero is if a (y) is identically zero. �

Proposition 7.3. Let f ∈ Cexp
naive (R). Then f has a (G,A)-asymptotic expansion, where

• G = (yrn (log y)sn)n∈N with rn ∈ Q sn ∈ N and (rn, sn)n∈N a decreasing sequence of
lexicographically ordered pairs;
• A =

{
E (y) =

∑
j∈J cje

ipj(y1/d) : (cj)j∈J ∈ CJ
}
, for some d ∈ N, some finite set J ⊆

N and distinct polynomials pj (y) ∈ R[y] with pj (0) = 0.
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Moreover, if En (y) =
∑

j∈J cj,neipj(y1/d) are the coefficients of such an expansion, then for all
sufficiently large y and for all j ∈ J , the series

(49) fj (y) =
∑
n∈N

cj,ny
rn (log y)sn

converge absolutely and
f (y) =

∑
n∈N

En (y) yrn (log y)sn .

Proof. Notice first that, if G and A are as in the statement, then G is an asymptotic scale
and, by Proposition 6.5(2), A is indeed a space of coefficients.

By Remark 3.1, if g ∈ S (R), then, in the notation of Equation (11), we have

eig(y) = G (y) e
ip

(
y

1
d

)
,

where G (y) = eig0(y) is a complex-valued subanalytic function (see Definition 2.3), since g0 is
bounded. Moreover, in the notation of Equation (10),

log g (y) = log c+ r log y + h (y) ,

where h (y) = log
(

1 +H
(
y−

1
d

))
is in S ([y0,+∞)) for some sufficiently large y0.

Hence, it is easy to see that, if f ∈ Cexp
naive (R), then we may assume that, for y sufficiently

large,

(50) f (y) =
∑
j∈J

fj (y) e
ipj

(
y

1
d

)
,

where J is a finite set, fj is a complex-valued constructible function, d ∈ N and {pj (y) : j ∈
J} ⊆ R[y] is a collection of distinct polynomials such that pj (0) = 0.

Moreover, there exists a finite set K such that each fj is of the form

fj (y) =
∑
k∈K

hj,k (y) (log y)sj,k ,

where sj,k ∈ N and hj,k is a complex-valued subanalytic function.
Let us prove that fj is indeed an absolutely convergent series.
It is easy to see that Remark 3.1 also holds for complex-valued subanalytic functions (where

now c ∈ C andH a convergent power series with complex coefficients). Applying again Remark
3.1 to each hj,k, for y sufficiently large we can write

(51) fj (y) =
∑
k∈K

bj,ky
rj,k (log y)sj,k

(
1 +Hj,k

(
y−

1
d

))
,

where bj,k ∈ C, rj,k ∈ Q is an integer multiple of 1
d
and Hj,k (y) =

∑
m∈N aj,k,my

m is an
absolutely convergent power series with complex coefficients and such thatHj,k (0) = 0. Hence,
up to reorganizing the sum in Equation (51), we have proved Equation (49).

Now, setting rj,k,m = rj,k − m
d
, we can write

f (y) =
∑

(j,k)∈J×K
m∈N

bj,kaj,k,my
rj,k,m (log y)sj,k e

ipj

(
y

1
d

)
.
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Let
I = {(r, s) ∈ Q× N : ∃j ∈ J,∃k ∈ K, ∃m ∈ N s.t. (rj,k,m, sj,k) = (r, s)} and,

if (r, s) ∈ I, let I(r,s) = {(j, k,m) ∈ J ×K × N : (rj,k,m, sj,k) = (r, s)}.
We can write

f (y) =
∑

(r,s)∈I

yr (log y)sE(r,s) (y) ,

where E(r,s) (y) =
∑

(j,k,m)∈I(r,s) bj,kaj,k,me
ipj

(
y

1
d

)
. Notice that for every (r, s) ∈ I the set I(r,s) is

finite, so E(r,s) is a finite sum of exponentials. Moreover, if I0 is the set of all r ∈ Q such that
there exists s ∈ N with (r, s) ∈ I, we have that I0 is bounded from above (by max(j,k)∈J×Krj,k)
and for every r ∈ I0 there are finitely many s ∈ N such that (r, s) ∈ I (in fact, the cardinality
of the set of all s such that there exists r ∈ I0 with (r, s) ∈ I is uniformly bounded by the
product of the cardinalities of J and K). Hence, with respect to the lexicographic order, I has
the same order type as ω and we can fix a decreasing bijection N 3 n 7→ (rn, sn) = (r, s) ∈ I.

Let us thus rename En (y) = E(rn,sn) (y). We have proved that, for y sufficiently large,

f (y) =
∑
n∈N

En (y) yrn (log y)sn .

In particular, f has indeed a (G,A)-asymptotic expansion. �

7.2. Two functions which are in Cexp (R) but not in Cexp
naive (R).

Example 7.4. Consider the function f (y) = e−|y|.

Consider the Fourier transform of f :

f̂ (y) =

ˆ
R

e−2πixye−|x|dx.

It is well known that f̂ is a semi-algebraic integrable function, namely f̂ (y) = 2
1+4π2y2 (see for

example [18]) Since we can compute f as the inverse Fourier transform of f̂ , and since f̂ is
semi-algebraic, we have that f belongs to the class Cexp (R).

It follows from Remark 2.8 that if g ∈ S (R), then e−|g(y)| ∈ Cexp (R) (in particular, e−y
2 ∈

Cexp (R)).

Claim. The function f (y) = e−|y| is not in Cexp
naive (R).

Proof. Suppose for a contradiction that f ∈ Cexp
naive (R). By Proposition 7.3 we may write f (y)

as the sum of a convergent series

f (y) =
∑
n∈N

En (y) yrn (log y)sn

for all sufficiently large y. Since the germ of f at +∞ is nonzero, this series contains a nonzero
term. Choose n0 ∈ N least such that En0 (y) is not identically 0. Thus there exists a constant
C > 0 such that

|f (y) –En0 (y) yrn0 (log y)sn0 | ≤ Cyrn0+1 (log y)sn0+1

for all sufficiently large y. Since f(y)
yrn0 (log y)sn0

and y
rn0+1 (log y)

sn0+1

yrn0 (log y)sn0
both tend to 0 as y →

+∞, dividing both sides of this inequality by yrn0 (log y)sn0 and letting y tend to +∞ gives
limy→+∞En0 (y) = 0, which contradicts Proposition 6.5(2). �
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Example 7.5. Consider the sine integral Si : [0,+∞)→ R, which is defined by

Si (y) =

ˆ y

0

sin (t)

t
dt =

ˆ y

0

eit − e−it

2it
dt .

Clearly, Si ∈ Cexp ([0,+∞)).

Claim. The function Si (y) is not in Cexp
naive ([0,+∞)).

Proof. Recall the classical asymptotic formula (see [1])

Si (y) ∼ π

2
− cos y

y

∑
k∈N

(−1)k
(2k)!

y2k
− sin y

y

∑
k∈N

(−1)k
(2k + 1)!

y2k+1
.

Hence, Si (y) has a (G,A)-asymptotic expansion, with G and A as in the statement of Propo-
sition 7.3. However, in the notation of Equation (49), the series F1 (y) =

∑
k∈N (−1)k (2k)!

y2k+1

and F2 (y) =
∑

k∈N (−1)k (2k+1)!
y2k+2 are divergent. Therefore, by Lemma 7.2 and Proposition 7.3

Si (y) /∈ Cexp
naive ([0,+∞)). �

7.3. Pointwise limits.

Definition 7.6. For any X ⊆ Rm and f : X × R→ C, let

Lim (f,X) := {x ∈ X : lim
y→+∞

f (x, y) exists}.

Proposition 7.7. Let f ∈ Cexp (X × R) for some subanalytic set X ⊆ Rm. There exist
g, h ∈ Cexp (X) such that

Lim (f,X) = {x ∈ X : h (x) = 0}
and such that for all x ∈ Lim (f,X),

lim
y→+∞

f (x, y) = g (x) .

Proof. Apply Theorem 5.2 to f (x, y) with respect to y. Focus on one cell of the form

A = {(x, y) : x ∈ Πm (A) , y > a (x)}.
Let

(52)
E = {(r, s) ∈ Q× N : ∃j ∈ J (rj, sj) = (r, s)} and,
if (r, s) ∈ E, let E(r,s) = {j ∈ J : (rj, sj) = (r, s)}.

The terms in the preparation involving yr (log y)s with r < 0 may be neglected since they
affect neither the existence of limy→+∞ f (x, y) nor its value when it exists. So we may assume
that f (x, y) is naive in y with nonnegative powers of y in each term of the preparation. Write
f as the finite sum

(53) f (x, y) =
∑

(r,s)∈E

yr (log y)s

 ∑
j∈E(r,s)

fj (x) eiφj(x,y)

 ,

where each fj is in Cexp (Πm (A)), and where we have that for each (r, s) and each x ∈ Πm (A),

φj (x, y) =
m∑
k=1

aj,k (x) y
k
d , for j ∈ E(r,s),
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is a family of distinct polynomials in y
1
d with subanalytic coefficients aj,k. By partitioning in

x we may also assume that if there exist j̃ ∈ E(r,s) and x̃ ∈ Πm (A) such that φj̃ (x̃, y) = 0

for all y such that (x̃, y) ∈ A, then φj̃ (x, y) = 0 for all (x, y) ∈ A (note that there is at most
one such j̃ ∈ E(r,s) such that φj̃ ≡ 0 because for each x ∈ Πm (A), (φj (x, y))j∈J is a family of
distinct polynomials in y

1
d ).

Claim. For each x ∈ Πm (A), x ∈ Lim (f,Πm (A)) if and only if the following two conditions
hold:

(1) For each (r, s) ∈ E such that r > 0 or s > 0, we have that fj (x) = 0 for all j ∈ E(r,s).
(2) For all j ∈ E(0,0) such that φj 6≡ 0, we have fj (x) = 0.
To prove the claim, fix x ∈ Πm (A). Observe that if Conditions 1 and 2 hold, then either

f is identically 0, or else there exists j0 ∈ E(0,0) such that f (x, y) = fj0 (x) for all y. Either
way, limy→+∞ f (x, y) exists trivially.

To prove the converse, assume that x ∈ Lim (f,Πm (A)). Conditions 1 and 2 clearly hold if
fj (x) = 0 for all j ∈

⋃
(r,s)∈EE(r,s), so assume otherwise. Choose (r0, s0) maximal with respect

to the lexicographical ordering such that fj (x) 6= 0 for some j ∈ E(r0,s0). By Proposition
6.5(2), since limy→+∞ f (x, y) exists, it follows that r0 = s0 = 0. Thus Condition 1 holds, and
we have

f (x, y) =
∑

j∈E(0,0)

fj (x) eiφj(x,y)

for all y. Proposition 6.5(1) now shows that Condition 2 holds. This proves the claim.

The claim easily implies the proposition. Indeed, define

h =

 ∑
(r, s) ∈ E s.t.
r > 0 or s > 0

∑
j∈E(r,s)

|fj|2

+

 ∑
j ∈ E(0,0) s.t.

φj 6≡0

|fj|2

 ;

define g = fj0 if there exists j0 ∈ E(0,0) such that φj0 ≡ 0, and define g = 0 otherwise. Then
g, h ∈ Cexp (Πm (A)). The claim shows that

Lim (f � A,Πm (A)) = {x ∈ A : h (x) = 0}

and that
f (x, y) = g (x) for all (x, y) ∈ A such that h (x) = 0.

�

8. Parametric Lp-completeness and the Fourier-Plancherel transform

In this section we prove a parametric Lp-completeness theorem for Cexp and use this to show
that Cexp is closed under the Fourier-Plancherel transform.

Definition 8.1. Let X ⊆ Rm and f : X ×R→ C be Lebesgue measurable, and p ∈ [1,+∞].
For each y ∈ R, define fy : X → C by fy (x) = f (x, y) for all x ∈ X. We say that the family
of functions (fy)y∈R is Cauchy in Lp (X) as y → +∞ if (fy)y∈R ⊆ Lp (X) and for all ε > 0
there exists y0 ∈ R such that

‖fy − fy′‖p < ε for all y, y′ ≥ y0.
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Proposition 8.2. Let p ∈ [1,+∞] and f ∈ Cexp (X × R) for a subanalytic set X ⊆ Rm, and
suppose that (fy)y∈R is Cauchy in Lp (X) as y → +∞. Then there exist g ∈ Cexp (X)∩Lp (X)

and a subanalytic set X0 ⊆ X such that volm (X \X0) = 0,

lim
y→+∞

‖fy − g‖p = 0,

and
lim

y→+∞
f (x, y) = g (x) for all x ∈ X0.

Before proving Proposition 8.2, we use it to show that Cexp is closed under the Fourier-
Plancherel transform.

Theorem 8.3. Let F̃ be the Fourier-Plancherel extension of the Fourier transform to L2 (Rn),
as in (6). Then, the image of Cexp (Rn) ∩ L2 (Rn) under F̃ is Cexp (Rn) ∩ L2 (Rn).

Proof. Let f ∈ Cexp (Rn) ∩ L2 (Rn). We use coordinates x = (x1, . . . , xn) and t = (t1, . . . , tn)
on Rn. For each y ∈ R, define

By = {t ∈ Rn : |t| ≤ y},
and observe that L2 (By) ⊆ L1 (By) for each y (by the Cauchy-Schwartz inequality, since
voln (By) < +∞). So we may define F : Rn+1 → C by

(54) F (x, y) :=

ˆ
By

f (t) e−2πit·x dt =

ˆ
Rn
χBy (t) f (t) e−2πit·x dt,

and we have that F ∈ Cexp (Rn+1) since Cexp is closed under integration. The extended Fourier
transform F̃ (f) is the equivalence class of functions

[
f̂
]
(with respect to almost everywhere

equivalence) that is defined by the condition

lim
y→+∞

‖f̂ − Fy‖2 = 0.

Thus (Fy)y∈R is Cauchy in L2 (Rn) as y → +∞, so by Proposition 8.2 we may fix g ∈ Cexp (Rn)
such that

lim
y→+∞

‖g − Fy‖2 = 0,

and hence
[
f̂
]

= [g]. This shows that the extended Fourier transform F̃ maps Cexp (Rn) ∩
L2 (Rn) into Cexp (Rn)∩L2 (Rn). A completely symmetric argument, where one simply replaces
i with −i in (54), shows that the inverse extended Fourier transform maps Cexp (Rn)∩L2 (Rn)
into Cexp (Rn)∩L2 (Rn) as well, so Cexp (Rn)∩L2 (Rn) is in fact the image of Cexp (Rn)∩L2 (Rn)

under F̃ . �

The remainder of the section is devoted to the proof of Proposition 8.2, which requires us
to develop a bit of machinery. This proof is somewhat similar to the proof of Proposition 7.7,
except we cannot rely on the facts about c.u.d. mod 1 maps quoted in Remark 6.2. Instead,
we need to adapt these facts to parametric families of maps that are c.u.d. mod 1 in a certain
uniform sense. We are not aware of a reference in the literature on c.u.d. mod 1 maps that
considers this parametric case, so this section develops this material from scratch. We remark
that the proofs of Lemma 8.6 and Proposition 8.7 below use ideas found in the proofs of the
following content in [23]: Example 9.2 and the closely interrelated Theorems 1.1, 2.1, 6.1, 6.2,
9.1, 9.2, and 9.9.
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Let us first give the parametric version of Definition 6.1. For this, let X be a nonempty set
and ψ = (ψ1, . . . , ψn) : X × [0,+∞)→ Rn be a map. If I1, . . . , In ⊆ R are bounded intervals
with nonempty interior, we denote by I the box

∏`
j=1 Ij and, for T ≥ 0 and x ∈ X, we let

W x
ψ,I,T := {t ∈ [0, T ] : {ψ (x, t)} ∈ I},

where {ψ (x, t)} denotes the vector of fractional parts ({ψ1 (x, t)}, . . . , {ψn (x, t)}) of the com-
ponents of ψ.

Definition 8.4. With this notation, we say that the map ψ is continuously uniformly
distributed modulo 1 on X (abbreviated as c.u.d. mod 1 on X) if for every box I ⊆ [0, 1)n,

lim
T→+∞

sup
x∈X

vol1
(
W x
ψ,I,T

)
T

= voln (I) .

The following Remark is the parametric analogue of Lemma 6.3.

Remark 8.5. Suppose that ψ : X × [0,+∞) → Rn is c.u.d. mod 1 on X. Then for each box
I ⊆ [0, 1)n, there exists k0 ∈ N such that for all k ≥ k0, for all x ∈ X,

vol1
(
{t ∈ [2k, 2k+1) : {ψ (x, t)} ∈ I}

)
≥ 2k−1 voln (I) .

This bound is proven just as Lemma 6.3, using the uniform limit in the parameter x provided
by Definition 8.4.

The following technical lemma will be used in the proof of the forthcoming Proposition 8.7.

Lemma 8.6. Define φ : X × [0,+∞)→ R by

φ (x, t) =
d∑
j=0

φj (x) tj,

where d is a positive integer, the functions φ0, . . . , φd : X → R are bounded, and there exists
ε > 0 such that |φd (x) | > ε for all x ∈ X. Then the function Φ : X × [0,+∞) → C defined
by

Φ (x, T ) =

ˆ T

0

eiφ(x,t) dt

is bounded.

Proof. It suffices to show that for some suitable choice of T0 ≥ 0 there exists a constant C > 0
such that for all (x, T ) ∈ X × [T0,+∞)∣∣∣∣ˆ T

T0

eiφ(x,t) dt

∣∣∣∣ ≤ C.

Define

f (x, t) :=
φ (x, t)

φd (x)
= td +

d−1∑
j=0

φj (x)

φd (x)
tj,

and observe that our assumed bounds on φ0, . . . , φn show that the coefficient functions in x
of the polynomial f (x, t) are bounded. Therefore by computing ∂f

∂t
and ∂2f

∂t2
and factoring out

their leading terms, we may fix T0 > 0 such that

(55)
∂f

∂t
(x, t) = dtd−1u (x, t) and

∂2f

∂t2
(x, t) =

{
0, if d = 1,
d (d− 1) td−2v (x, t) , if d > 1,
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for some functions u (x, t) and v (x, t) (when d > 1) that take values in [1
2
, 3

2
] for all (x, t) ∈

X × [T0,+∞). Therefore ∂f
∂t

> 0 and ∂2f
∂t2
≥ 0 on X × [T0,+∞), so for each x ∈ X, the

functions t 7→ f (x, t) and t 7→ ∂f
∂t

(x, t) are respectively strictly increasing and monotonically
increasing on [T0,+∞). For each x ∈ X, let t = g (x, s) be the inverse of s = f (x, t), where
t ≥ T0 and s ≥ f (x, T0). For each T ≥ T0, we can perform the integral substitution

s = f (x, t) , ds =
∂f

∂t
(x, t) dt =

∂f

∂t
(x, g (x, s)) ds

to write ˆ T

T0

eiφ(x,t) dt =

ˆ T

T0

eiφd(x)f(x,t) dt

=

ˆ f(x,T )

f(x,T0)

eiφd(x)s

∂f
∂t

(x, g (x, s))
ds.(56)

The function

s 7→ 1
∂f
∂t

(x, g (x, s))

is monotonically decreasing on [f (x, T0) ,+∞), so we can apply the second mean value theorem
for integrals to the real and complex parts of the integral (56). For the real part, this gives

(57)
ˆ f(x,T )

f(x,T0)

cos (φd (x) s)
∂f
∂t

(x, g (x, s))
ds =

1
∂f
∂t

(x, T0)

ˆ ξ(x,T )

f(x,T0)

cos (φd (x) s) ds

for some ξ (x, T ) ∈ (f (x, T0) , f (x, T )). Since s 7→ cos (φd (x) s) has an antiderivative with
period 2π

|φd(x)| , and since 2π
|φd(x)| ≤

2π
ε
, the integral in the right side of (57) may be replaced

with an integral over an interval of length at most 2π
ε
. This, along with the form of ∂f

∂t
given

in (55), shows that (57) is bounded. A nearly identical calculation shows the same for the
imaginary part of (56), and the lemma follows. �

The following Proposition 8.7 is the parametric analogue of Remark 6.2, stating that poly-
nomials maps are c.u.d. mod 1 when nontrivial Z-linear combinations of their components
are nonconstant. For technical reasons, in the parametric case it is more convenient to reduce
to the situation of maps with monomial instead of polynomial components.

Proposition 8.7. Consider a map ψ = (ψ1, . . . , ψn) : X × [0,+∞) → Rn, where X is a
compact topological space and where for each j ∈ {1, . . . , n},

ψj (x, t) = gj (x) tγj

for some continuous function gj : X → R and positive integer γj. Assume that for each
x ∈ X, the functions t 7→ ψ1 (x, t) , . . . , t 7→ ψn (x, t) are linearly independent over Q. Then ψ
is c.u.d. mod 1 on X.

The following notation and observation will be used in the proof of Proposition 8.7.

Remark 8.8. Let γ = max{γ1, . . . , γn}, and for each k ∈ {1, . . . , γ}, let Jk = {j ∈ {1, . . . , n} :
γj = k}. The assumption that t 7→ ψ1 (x, t) , . . . , t 7→ ψn (x, t) are linearly independent over Q
for each x ∈ X is equivalent to saying that for each k ∈ {1, . . . , γ} and x ∈ X, the family of
real numbers (gj (x))j∈Jk is linearly independent over Q.
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Proof of Proposition 8.7. We shall use the variables t, y = (y1, . . . , yn), and z = (z1, . . . , zn),
and write dy for dy1 ∧ . . .∧ dyn. Let ε > 0 and a box I =

∏n
j=1 Ij ⊆ [0, 1)n be given. For each

j ∈ {1, . . . , n}, let χIj : R → {0, 1} be the 1-periodic extension of the characteristic function
of Ij in [0, 1), and define χI : Rn → {0, 1} by χI (y) =

∏n
j=1 χIj (yj). Thus

vol1 ({t ∈ [0, T ] : {ψ (x, t)} ∈ I}) =

ˆ T

0

χI ◦ ψ (t) dt.

Let ε > 0 and fix δ ∈ (0, 1]n sufficiently small so that 1 − (1− δ)n < ε
4
. For each j ∈

{1, . . . , n}, fix 1-periodic continuous functions pj : R → [0, 1] and qj : R → [0, 1] such that
pj (t) ≤ χIj (t) ≤ qj (t) for all t ∈ R and such that

vol1
(
{t ∈ [0, 1] : pj (t) 6= χIj (t)}

)
≤ δ and vol1

(
{t ∈ [0, 1] : qj (t) 6= χIj (t)}

)
≤ δ.

Define p : Rn → [0, 1] and q : Rn → [0, 1] by p (y) =
∏n

j=1 pj (yj) and q (y) =
∏n

j=1 qj (yj).
Since p (y) ≤ χI (y) ≤ q (y) for all y ∈ Rn, we have, for all x ∈ X,

(58)
1

T

ˆ T

0

p ◦ ψ (x, t) dt ≤ 1

T

ˆ T

0

χI ◦ ψ (x, t) dt ≤ 1

T

ˆ T

0

q ◦ ψ (x, t) dt.

It now suffices to show that there exists T0 > 0 such that the lower and upper bounds in (58)
are within ε of voln (I) for all x ∈ X and T ≥ T0. The computations involving the lower
bound and the upper bound are identical, so we only show the computation with the lower
bound.

Fix η ∈ (0, 1]n sufficiently small so that for all y, z ∈ [−2, 2]n, if |yj − zj| < η for all
j ∈ {1, . . . , n}, then

∣∣∣∏n
j=1 yj −

∏n
j=1 zj

∣∣∣ < ε
4
. By a Weierstrass approximation theorem, for

each j ∈ {1, . . . , n} we may fix a trigonometric polynomial

Pj (t) =

Nj∑
α=−Nj

cj,αe2πiαt

(where Nj ∈ N and cj,α ∈ C for each α) such that

(59) |pj (t)− Pj (t)| ≤ η

for all t ∈ R. Define P : Rn → C by P (y) =
∏n

j=1 Pj (yj). Since voln (I) =
´

[0,1]n
χI (y) dy,

we have∣∣∣∣ 1

T

ˆ T

0

p ◦ ψ(x, t) dt− voln(I)

∣∣∣∣ ≤ ∣∣∣∣ 1

T

ˆ T

0

(p ◦ ψ(x, t)− P ◦ ψ(x, t)) dt

∣∣∣∣ (*)(60)

+

∣∣∣∣ 1

T

ˆ T

0

P ◦ ψ(x, t) dt−
ˆ

[0,1]n
P (y) dy

∣∣∣∣ (**)

+

∣∣∣∣ˆ
[0,1]n

(P (y)− p (y)) dy

∣∣∣∣ (***)

+

∣∣∣∣ˆ
[0,1]n

(p (y)− χI (y)) dy

∣∣∣∣ . (****)

Note that |pj (t) | ≤ 1 and |Pj (t) | ≤ |pj (t) |+ |Pj (t)−pj (t) | ≤ 1+η ≤ 2 for all j ∈ {1, . . . , n}
and t ∈ R, so by our choice of η, (59) implies that |p (y)−P (y) | ≤ ε

4
for all y ∈ Rn. Therefore
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the terms (*) and (***) in (60) are both bounded above by ε
4
. And since

n⋂
j=1

{y ∈ [0, 1]n : pj (yj) = χIj (yj)} ⊆ {y ∈ [0, 1]n : p (y) = χI (y)}

and

voln

(
n⋂
j=1

{y ∈ [0, 1]n : pj (yj) = χIj (yj)}

)
≥ (1− δ)n ,

it follows that
voln ({y ∈ [0, 1]n : p (y) 6= χI (y)}) ≤ 1− (1− δ)n ≤ ε

4
,

so the term (****) in (60) is also bounded above by ε
4
. So to finish, we need to show that

there exists T0 > 0 such that the term (**) in (60) is also bounded above by ε
4
for all x ∈ X

and all T ≥ T0.
We have

P (y) =
n∏
j=1

 Nj∑
αj=−Nj

cj,αje
2πiαjyj

 =
∑

α∈Zn∩[−N,N ]

cαe2πiα·y,

where N = (N1, . . . , Nn), [−N,N ] =
∏n

j=1[−Nj, Nj], cα =
∏n

j=1 cj,αj for α = (α1, . . . , αn),
and α · y =

∑n
j=1 αjyj. Thus

P ◦ ψ (x, t) =
∑

α∈Zn∩[−N,N ]

cαe2πiα·ψ(x,t).

Observe that
1

T

ˆ T

0

c0 dt−
ˆ

[0,1]n
c0ds = c0 − c0 = 0 and that

ˆ
[0,1]n

cαe2πiα·s ds = 0

for all nonzero α ∈ Zn ∩ [−N,N ]. Therefore the term (**) equals∣∣∣∣∣∣
∑

α∈(Zn\{0})∩[−N,N ]

cα
T

ˆ T

0

e2πiα·ψ(x,t) dt

∣∣∣∣∣∣ .
Using the notation Jk from Remark 8.8, for each nonzero α ∈ Zn ∩ [−N,N ] let

φα,k (x) =
∑
j∈Jk

αjgj (x) for each k ∈ {1, . . . , γ},

d (α) = max{k ∈ {1, . . . , γ} : αj 6= 0 for some j ∈ Jk},

and observe that

α · ψ (x, t) =

d(α)∑
k=1

φα,k (x) tk.

The set X is compact, the functions φα,1, . . . , φα,d(α) are continuous on X, and by Remark 8.8,
φα,d(α) has no zero in X because t 7→ ψ1 (x, t) , . . . , t 7→ ψn (x, t) are linearly independent over
Q for each x ∈ X. Therefore |φα,1|, . . . , |φα,d(α)| are bounded above, and |φα,d(α)| is bounded
below by a positive constant. We may apply Lemma 8.6 to fix T0 > 0 such that for all x ∈ X
and T ≥ T0, the term (**) is bounded above by ε

4
. �
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Let us fix the notation in view of Lemma 8.9. For this consider a cell

A = {(x, t) : x ∈ Πm (A) , t > a (x)},

where Πm (A) is connected and open in Rm. Define f : A→ C by

f (x, t) =
∑
j∈J

fj (x) eiφj(x,t),

where J is a nonempty finite index set, (fj)j∈J is a family of analytic functions in Cexp (Πm (A)),
(φj)j∈J is a family of distinct functions on Πm (A)×R that are polynomials in t with analytic
coefficients in S (Πm (A)), and φj (x, 0) = 0 for all j ∈ J and x ∈ Πm (A).

Lemma 8.9 below is the parametric analogue of the presentation of the function f (t) in
Remark 6.4 as a nonconstant Laurent polynomial in e2πip̃1 , . . . , e2πip̃` where the polynomial
map (p̃1 (t) , . . . , p̃` (t)) is c.u.d. mod 1. Here in the parametric case it is technically more
convenient to present f (x, t) as a nonconstant Laurent polynomial (with coefficient functions
in the parameter x) in e2πiψ1(x,t), . . . , e2πiψn(x,t), where the map (ψ1 (x, t) , . . . , ψn (x, t)) is a
monomial map in t that is c.u.d. mod 1 on certain compact sets of Πm (A).

Lemma 8.9. With the notation just fixed above, we may express f as a composition

f (x, t) = F (x, ψ (x, t))

on A, where for some n ∈ N, ψ = (ψ1, . . . , ψn) is a monomial map in t with analytic coef-
ficient functions in S (Πm (A)) and F (x, z1, . . . , zn) is a Laurent polynomial in the variables
e2πiz1 , . . . , e2πizn with coefficients fj (x), j ∈ J . If J is a singleton {j0} and if φj0 = 0, then
n = 0 and F (x) = fj0 (x). Otherwise we have n > 0 and

(1) there exists a set B ⊆ Πm (A) such that volm (Πm (A) \B) = 0 and for any x ∈ B,
z 7→ F (x, z) is nonconstant,

(2) for any open set Ω ⊆ Πm (A) and any real number λ < volm (Ω), there exists a real
number T0 and a compact set K ⊆ Ω ∩B such that K × [T0,+∞) ⊆ A, volm (K) ≥ λ
and ψ � K × [T0,+∞) is c.u.d. mod 1 on K.

Proof. Since the functions φj, j ∈ J , are distinct, it is only possible to have φj = 0 for all
j ∈ J when J is a singleton {j0}, and in this case we have f (x, t) = fj0 (x). We may now
assume that φj 6= 0 for some j ∈ J . In this case, since φj (x, 0) = 0 for all j ∈ J and all
x ∈ Πm (A),

d := max{deg φj : j ∈ J}
is a positive integer. For each j ∈ J , write

φj (x, t) =
d∑

k=1

φj,k (x) tk

with φj,k ∈ S (Πm (A)). For each k ∈ {1, . . . , d}, fix Γk ⊆ J such that (φγ,k)γ∈Γk
is a basis

over Q of the span over Q of the family (φj,k)j∈J (as functions of x), and let

Γ = {(γ, k) : k ∈ {1, . . . , d}, γ ∈ Γk}.

We may fix a positive integer η such that for each (j, k) ∈ J × {1, . . . , d},

φj,k =
∑
γ∈Γk

αj;γ,k
η

φγ,k
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for a unique tuple of integers (αj;γ,k)γ∈Γk
. With this notation we have

f (x, t) =
∑
j∈J

fj (x) ei
∑d
k=1 φj,k(x)tk =

∑
j∈J

fj (x) ei
∑d
k=1

∑
γ∈Γk

αj;γ,k
η

φγ,k(x)tk

=
∑
j∈J

fj (x)
∏

(γ,k)∈Γ

(
e2πiψγ,k(x)

)αj;γ,k
= F

(
x, (ψγ,k (x))(γ,k)∈Γ

)
.

where for each (γ, k) ∈ Γ ψγ,k (x, t) =
φγ,k(x)tk

2πη
and

F
(
x, (zγ,k)(γ,k)∈Γ

)
=
∑
j∈J

fj (x)
∏

(γ,k)∈Γ

(
e2πizγ,k

)αj;γ,k .
For each j ∈ J , fj is a nonzero analytic function on the connected and open set Πm (A), so
the set

U := {x ∈ Πm (A) : fj(x) 6= 0 for all j ∈ J}
satisfies vol (Πm (A) \ U) = 0. The fact that φj, j ∈ J , are distinct functions implies that(

(αj;γ,k)(γ,k)∈Γ

)
j∈J

is a family of distinct tuples in ZΓ. As a consequence, for each x ∈ U the

trigonometric polynomial z 7→ F (x, z) is nonconstant.
Observe that since (φγ,k)γ∈Γk

is independent over Q (as functions of x), for each k ∈
{1, . . . , d} and nonzero tuple c = (cγ) ∈ ZΓk ,

∑
γ∈Γk

cγφγ,k is a nonzero analytic function

on Πm (A), so the set
{
x ∈ U :

∑
γ∈Γk

cγψγ,k (x) = 0
}

cannot have a positive measure, and
the set

B := U \

 d⋃
k=1

⋃
c∈ZΓk\{0}

{
x ∈ U :

∑
γ∈Γk

cγφγ,k (x) = 0

}
satisfies volm (Πm (A) \B) = 0 as well. This gives (1), since B ⊂ U .

On the other hand, from the definition of B we see that for each k ∈ {1, . . . , d}, for each
x ∈ B, the family of numbers (φγ,k (x))(γ,k)∈Γ is linearly independent over Q, and by Remark
8.8, for each x ∈ B the family of functions (t 7→ ψγ,k (x, t))(γ,k)∈Γ is linearly independent over
Q. Given an open set Ω ⊆ Πm (A) and any positive real number λ with λ < volm (Ω) =
volm (Ω ∩B), the inner regularity of the Lebesgue measure shows that we may fix a compact
set K ⊆ Ω∩B with volm (K) ≥ λ. Since K is compact and a (x) is continuous, we may fix T0

sufficiently large so that K × [T0,+∞) ⊆ A. Proposition 8.7 then shows that the restriction
of ψ := (ψγ,k)(γ,k)∈Γ to K × [T0,+∞) is c.u.d. mod 1 on K, which completes the proof of
(2). �

The following Lemma 8.10 is the parametric version of Proposition 6.5(1). It will be used
in the proof of Proposition 8.2.

Lemma 8.10. Consider f (x, t) = F (x, ψ (x, t)) as given in Lemma 8.9, with z 7→ F (x, z)
nonconstant for some x ∈ Πm (A). Then there exist ε > 0, δ > 0, a strictly increasing
sequence (tj)j∈N in R diverging to +∞, a compact set K ⊂ X and a sequence (Xj)j∈N of
Lebesgue measurable subsets of K ⊆ Πm (A), with for any j ∈ N, volm (Xj) ≥ δ, X2j+1 ⊆ X2j

and such that for all j ∈ N, for all x0 ∈ X2j, x1 ∈ X2j+1,

|f (x0, t2j) | ≥ ε and |f (x0, t2j)− f (x1, t2j+1) | ≥ ε.
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Proof. Since z 7→ F (x, z) is nonconstant and 1-periodic in each of the components of z =
(z1, . . . , zn), one may find v0, v1 ∈ [0, 1)n such that f (x, v0) 6= f (x, v1) and thus, assuming
for instance that f (x, v0) 6= 0, one may fix ε > 0, an open subset U of Πm (A) containing x
and boxes I0, I1 ⊆ [0, 1)n respectively containing v0, v1 such that dist (F (U × I0) , 0) ≥ ε and
dist (F (U × I0) , F (U × I1)) ≥ ε.

By Lemma 8.9(2) we may fix a compact set K ⊆ U and T0 ∈ R such that volm (K) > 0,
K × [T0,+∞) ⊆ A, and ψ � K × [T0,+∞) is c.u.d. mod 1 on K. Define

δ =
1

2
volm (K) voln (I0) min

{
1,

1

2
voln (I1)

}
.

Remark 8.5 shows that we may fix k0 ∈ N, 2k0 > T0, such that for all k ≥ k0, all i ∈ {0, 1}
and all x ∈ K,

vol1
(
{t ∈ [2k, 2k+1) : {ψ (x, t)} ∈ Ii}

)
≥ 2k−1 voln (Ii) .

Let us now construct t0, t1 and the corresponding sets X1 ⊂ X0 ⊂ K. For this we consider

E0 := {(x, t) ∈ K × [2k0 , 2k0+1) : {ψ (x, t)} ∈ I0}.

Fubini’s theorem gives, integrating first in the variable t and then in the variable x,

volm+1 (E0) =

ˆ
x∈K

vol1 ({t : (x, t) ∈ E0}) dx ≥ volm (K) 2k0−1 voln (I0) .

But Fubini’s theorem also gives, integrating first in the variable x and then in the variable t,

volm+1 (E0) =

ˆ 2k0+1

2k0

volm ({x : (x, t) ∈ E0}) dt.

It follows that we may certainly choose t0 ∈ [2k0 , 2k0+1) to define

X0 = {x ∈ K : (x, t0) ∈ E0}

so that

(61) volm (X0) ≥ volm+1 (E0)

2k0
≥ 1

2
volm (K) voln (I0) ≥ δ.

Now denote k0 + 1 by k1. Then 2k1 > t0. We apply the same construction as above but with
I1 instead of I0, [2k1 , 2k1+1) instead [2k0 , 2k0+1) and X0 instead of K. For this we define

E1 = {(x, t) ∈ X0 × [2k1 , 2k1+1) : {ψ (x, t)} ∈ I1}

and then we choose, with the same argument as above using Fubini’s theorem on E1, some
t1 ∈ [2k1 , 2k1+1) and define

X1 = {x ∈ X0 : (x, t1) ∈ E1}
so that, in conjunction with (61)

volm (X1) ≥ 1

2
volm (X0) voln (I1) ≥ 1

4
volm (K) voln (I0) voln (I1) ≥ δ.

For j ≥ 1, the pairs (t2j, t2j+1), (X2j, X2j+1) are defined in the same way, t2j being constructed
from t2j−1, X2j from K, t2j+1 from t2j and X2j+1 from X2j. �

We can finally prove Proposition 8.2.
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Proof of Proposition 8.2. Let p ∈ [1,+∞] and f ∈ Cexp (X × R) for a subanalytic setX ⊆ Rm,
and suppose that (fy)y∈R is Cauchy in Lp (X) as y → +∞. Since Lp (X) is complete, there
exists a function h ∈ Lp (X) such that

(62) lim
y→+∞

‖fy − h‖p = 0,

and there exists a sequence (yj)j∈N in R tending to +∞ such that

(63) lim
j→+∞

f (x, yj) = h (x) for almost all x ∈ X.

(See for instance Theorems 3.11 and 3.12 in Rudin [31].)
Apply Theorem 5.2 to f (x, y) with respect to y. Let A be the collection of cells A given

by the preparation that are open in Rm+1 and of the form

A = {(x, y) : x ∈ Πm (A) , y > a (x)},

and put X0 =
⋃
{Πm (A) : A ∈ A}. Since volm (X \X0) = 0, it suffices to focus on one A ∈ A

and prove that the conclusion of the theorem holds for f � A. Write f as a finite sum

f (x, y) =
∑
j∈J

Tj (x, y)

on A with each term of the form Tj (x, y) = yrj (log y)sj gj (x, y) specified in Remark 5.3;
thus gj ∈ Cexp (A) with |gj (x, y) | ≤ ηj (x) on A for some continuous function ηj : Πm (A) →
[0,+∞), and gj (x, y) = fj (x) eiφj(x,y) when rj ≥ −1, with φj (x, y) distinct polynomials in
y1/d for some integer d ≥ 0, such that φj (x, 0) = 0 for all x ∈ Πm (A). Each function fj
can be taken to be analytic on A by Remark 5.8 and not identically zero, and Πm (A) is
connected since A is a subanalytic cell. We claim that there exists g ∈ Cexp (Πm (A)) such
that limy→+∞ f (x, y) = g (x) for all x ∈ Πm (A). This claim and (63) imply that g (x) = h (x)
for almost all x ∈ Πm (A), and hence limy→+∞ ‖fy � Πm (A)− g‖p = 0 by (62). So we will be
done once we prove the claim.

Let E = {(rj, sj) : j ∈ J}, and for each (r, s) ∈ E let J(r,s) = {j ∈ J : (rj, sj) = (r, s)}.
Thus

(64) f (x, y) =
∑

(r,s)∈E

yr (log y)s S(r,s) (x, y)

where for each (r, s) ∈ E,

(65) S(r,s) (x, y) =
∑

j∈J(r,s)

gj (x, y) .

For each (r, s) ∈ E, define η(r,s) : Πm (A)→ [0,+∞) by η(r,s) (x) =
∑

j∈J(r,s)
ηj (x), and observe

that η(r,s) is continuous and that
∣∣S(r,s) (x, y)

∣∣ ≤ η(r,s) (x) on A.
Let (r, s) be the lexicographic maximum element of E. If r < 0, then limy→+∞ f (x, y) = 0

for all x ∈ Πm (A), and we are done. If r = s = 0 and J is a singleton, say J = {j0}, and
φj0 = 0, then

f (x, y) = fj0 (x) +
∑

(r,s)∈E\{(0,0)}

yr (log y)s gj (x, y) ,

with r < 0 for all (r, s) ∈ E \ {(0, 0)}, so limy→+∞ f (x, y) = fj0 (x) on Πm (A), and we are
also done. The two remaining cases are when r > 0 or s > 0, or when r = s = 0 and φj 6= 0
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for some j ∈ J(0,0). We will complete the proof by showing that these two remaining cases are
impossible.

We may assume that r ≥ 0, since this is a common assumption of the two remaining cases.
Notice that

S(r,s)

(
x, yd

)
=
∑

j∈J(r,s)

fj (x) eiφj(x,yd)

is of the form hypothesized in Lemma 8.9. Therefore, we can apply Lemma 8.10 and find
ε > 0, δ > 0, a compact set K ⊂ Πm (A), a strictly increasing sequence (yj)j∈N in (1,+∞)

tending to +∞ with K × [y0,+∞) ⊂ A, a sequence (Xj)j∈N of Lebesgue measurable subsets
of K such that for all j ∈ N, volm (Xj) ≥ δ, X2j+1 ⊂ X2j ⊂ K and

∀ x ∈ X2j+1, |S(r,s) (x, y2j) | ≥ 2ε and |S(r,s) (x, y2j+1)− S(r,s) (x, y2j) | ≥ 3ε.

The set K is compact, each function η(r,s) is continuous, and limy→+∞ y
r−r (log y)s−s = 0 for

all (r, s) ∈ E \ {(r, s)}, so by replacing (yj)j∈N with a tail of the sequence, we may assume
that for all y ≥ y0,

max

 ∑
(r,s)∈E\{(r,s)}

yr−r (log y)s−s η(r,s) (x) : x ∈ K

 ≤ ε.

Observe that for all j ∈ N and x ∈ X2j,∣∣∣∣∣∣S(r,s) (x, y2j) +
∑

(r,s)∈E\{(r,s)}

yr−r2j (log y2j)
s−s S(r,s) (x, y2j)

∣∣∣∣∣∣ ≥ 2ε− ε = ε,

so

|f (x, y2j) | = yr2j (log y2j)
s

∣∣∣∣∣∣S(r,s) (x, y2j) +
∑

(r,s)∈E\{(r,s)}

yr−r2j (log y2j)
s−s S(r,s) (x, y2j)

∣∣∣∣∣∣
≥ yr2j (log y2j)

s ε.

In consequence, if r > 0 or s > 0, then

‖fy2j
− h‖p ≥ ‖fy2j

‖p − ‖h‖p ≥ yr2j (log y2j)
s εδ − ‖h‖p −→

n→+∞
+∞,

which contradicts (62). So we may suppose that r = s = 0 and φj 6= 0 for some j ∈ J(0,0).
Thus on A

f (x, y) = S(0,0) (x, y) +
∑

(r,s)∈E\{(0,0)}

yr (log y)s S(r,s) (x, y) .

It follows that for all j ∈ N and x ∈ X2j+1,
|f (x, y2j)− f (x, y2j+1)| ≥ |S (x, y2j)− S (x, y2j+1)|

−

∣∣∣∣∣∣
∑

(r,s)∈E\{(0,0)}

yr2j (log y2j)
s S(r,s) (x, y2j)

∣∣∣∣∣∣
−

∣∣∣∣∣∣
∑

(r,s)∈E\{(0,0)}

yr2j+1 (log y2j+1)s S(r,s) (x, y2j+1)

∣∣∣∣∣∣
≥ 3ε− ε− ε = ε.
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Finally we obtain, for all j ∈ N,
‖f2j − fy2j+1

‖p ≥ εδ,

which contradicts the fact that (fy)y∈R is Cauchy in Lp (X) as y → +∞. �

References

1. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and math-
ematical tables, Dover Publications Inc., 1965.
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