
HAL Id: hal-03798607
https://hal.science/hal-03798607v1

Preprint submitted on 6 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Image Style Transferred to Graphical User Interfaces
Karim Hammoudi, Adnane Cabani, Halim Benhabiles, Mahmoud Melkemi

To cite this version:
Karim Hammoudi, Adnane Cabani, Halim Benhabiles, Mahmoud Melkemi. Image Style Transferred
to Graphical User Interfaces. 2022. �hal-03798607�

https://hal.science/hal-03798607v1
https://hal.archives-ouvertes.fr


Image Style Transferred
to Graphical User Interfaces

Karim Hammoudi1,2, Adnane Cabani3, Halim Benhabikes4, and Mahmoud
Melkemi1,2

1 Université de Haute-Alsace, Department of Computer Science, IRIMAS, F-68100
Mulhouse, France

{karim.hammoudi,mahmoud.melkemi}@uha.fr
2 Université de Strasbourg

3 Normandie Univ, UNIROUEN, ESIGELEC, IRSEEM, 76000 Rouen, France
adnane.cabani@esigelec.fr

4 JUNIA, CNRS-IEMN, Universite de Lille, Lille F-59000, France
halim.benhabiles@junia.com

Abstract. This paper presents an approach for permitting the restyling
of an application by automatic analysis of a considered image. The ap-
proach relies on the analysis of color distribution from a query image
and a color-to-component mapping in order to perform its style trans-
fer to the GUI. No deep learning technique is used, e.g. making the
approach applicable without investigating image style learning through
training stages. We show how our approach can i) be used to directly
and dynamically restyle GUI of applications, ii) be adopted as an end-
user functionality towards the restyling of mobile app, desktop app, web
app and so on, iii) serve to developers e.g. for facilitating the selection of
appropriate reference graphic charter during the design stage of their ap-
plications by exploring GUI appearances from a list of considered query
images. Experimental results show the efficiency of the approach and its
high potential of generalization.

Keywords: Image Style Transfer · Visual Computing · GUI · Graphic
Charter · Design Pattern · UX · HCI.

1 Introduction and motivation

Nowadays, the graphical user interface of majority of applications deployed over
the world is static in the sense that the default designs cannot be changed or
can sometimes be modified according to a predefined list of design templates.
In this context, we propose a restyling approach which exploits an input image
of our choice (already stored image, taken photo) for dynamically colorizing a
graphical user interface.

The style transfer is a particularly active topic which is more and more
investigated for automatically transferring style characteristics of a data [1–3] or
a drawing technique [4–6] to another one towards facilitating styling tasks for a
large spectrum of applications.



2 K. Hammoudi et al.

To the past, e.g. in [7], efficient statistical approaches have been developed
to successfully transfer color characteristics from one image to another one.

In [8], authors proposes an approach which can change the appearance of
photos to a different time of day. This approach exploits a database of time-
lapse videos. By this way, a photo taken in daylight can be transformed into a
realistic photo taken at night.

Recently, authors of [9] proposed an approach for permitting a photorealis-
tic style transfer while limiting spatial distortions or unrealistic artifacts which
should not happen in real photographs. The key ingredient of their approach
is the use of wavelet transforms that naturally fits in deep networks. In [10],
authors propose an approach which permits to insert the image of an object in
the image of a painting and to automatically harmonize the overall. To this end,
the style of the painting is transferred to the image of the inserted object making
the resulting global composition appearing as it was originally painted. Besides,
the deep learning approach which is presented in [11] can transfer in high quality
the style of a cartoon face, a caricature face or an anime face to a real face pic-
ture. In [12], authors propose a framework that permits a style transfer without
applying a direct use of an image, but only with a text description of the desired
style. By this way, associating the term “fire” to an image permits to apply on
a fire style on this latter.

Most of the recent style transfer approaches currently rely on the use of
neural-related techniques but not all [13]; e.g. in reason of applicative contexts
for which data training stages, data-to-data matching stages or deep architecture
parametrization cannot be easily operated.

To the best of our knowledge, very few approaches have been proposed for
transferring the style of an image to a graphical user interface. In [14], a deep
learning restyling approach is presented to globally transfer the style of an image
to the image of a considered graphical user interface. The obtained results are
very interesting and promising. However, it seems that their quality of results
is related to a well-choice of the images. On the other side, suggested training
stages could be time-consuming which may be fastidious for the users. In the
next section, we propose an approach which could be less time-consuming since
no machine learning technique is used. On the other hand, our method evaluates
how aesthetic and usable could be the interface restyled from a query image.

2 Proposed approach

Figure 1 shows the global dataflow diagram of the color-based approach which is
proposed for restyling the graphical user interface of an application from a query
image. This restyling workflow is applied to the GUI of a mobile application but
other types of application such as web application or desktop application can
be considered. In our process, the proposed application, which implements our
approach, includes functionalities for loading a stored image or for taking a
picture from a camera for its exploitation towards restyling the graphical user
interface. Once the image loaded or taken, dominant colors are identified. To this



Image Style Transferred to Graphical User Interfaces 3

Fig. 1: Global dataflow diagram of the proposed approach for dynamically
restyling a GUI of an application from an image.

end, an histogram of color distribution is computed and a classification of color
intensities is operated [15] with respect to the number of component category
which is present in the considered graphical user interface (e.g. text, buttons,
background). Then the default color of graphical components is replaced by the
identified dominant colors of the considered image. Additionally to the transfer
of color, the analyzed image can also be used for texturing the background of
the application according to the expectation of the user. The output shows an
application which is restyled with the appearance of the considered image.

More specifically, the modification of default colors associated with the graph-
ical components is performed from an image by previously producing a compo-
nent adjacency graph. Indeed, considering the graphical user interface of an
application (e.g. Figure 2a), the corresponding blueprint mode is activated. This
permits to obtain a simplified and wireframe view of the GUI (see Figure 2b).
The blueprint mode provides a wireframe and complementary view of the GUI
which permits to focus on components of the design without the distraction of
content.

Both conventional design and blueprint views are exploited in order to define
an adjacency graph (see Figure 2c) where each region corresponds to a node
[16]. This latter graph can then be represented as a component adjacency graph
such as shown in Figure 2d. We can observe that the text of the header (font) is
connected to the filled header. This latter is connected to the background which
is connected to the border of buttons with a single edge as well as to the central
image. Since this latter corresponds to a loaded picture which is static in this
design, this component is not included in the graph. Button borders are then
connected to filled buttons which are themselves connected to the button text.

More precisely, this defined component adjacency graph is then used as a
fixed data structure towards simultaneously evaluating the aesthetic quality and
the usability of the restyled graphical user interface. More precisely, a metric has
been defined in order to globally measure the contrast in between components of



4 K. Hammoudi et al.

(a) Default application. (b) Blueprint view. (c) Region adjacency graph.

(d) Component adjacency graph.

Fig. 2: Workflow applied to produce a component adjacency graph.

the defined adjacency graph. It is assumed that a high contrast value will result
in a visually pleasant GUI with a satisfactory level in component usability.

The components of the defined adjacency graph are encapsulated into one
ordered vector v.

v = (C1, ..., Cn)T (1)

where Ci(1≤i≤n)
corresponds to there retained adjacency components (n ≥ 2).

The constrast ratio is defined as follows:

r =

∑m
j=1∆(Cj , Cj+1)

m×∆max
(2)

where m represents the number of edges in between components; i.e m =
n− 1. ∆(Cj , Cj+1) corresponds to the Euclidean distance in between dominant
color values which are respectively assigned to the components Cj and Cj+1.
∆max corresponds to the highest contrasting value being which can be obtained



Image Style Transferred to Graphical User Interfaces 5

e.g. when adjacent components are black and white, respectively. In this case,
the contrast ratio reaches its largest value r = 1.

The number of identified dominant colors is n since it corresponds to the
number of adjacency components (i.e, number of components of v). These re-
tained dominant colors are stored in a vector w = (col1, ..., coln). Therefore, the
largest contrast r? can be reached by determining the optimal color distribution
w?. Specifically, we seek a permutation σ such that w? = (colσ(1), ..., colσ(n))
maximizes the contrast ratio r. The maximum is reached after at most n! steps
(n! is the number of permutations of {1, ...n}). The computation of w? is not
time consuming when n is not large as it is the case in our application. Other-
wise, the search space can be reduced by randomly selecting a fixed number of
permutation. From these retained permutations, we keep the one which provides
the best contrast ratio.

r? = arg max
w

c (3)

3 Experimental results and evaluation

(a) User test 1. (b) User test 2. (c) User test 3.

Fig. 3: Application dynamically styled by taking successive selfie photos in the
context of try-on of clothes.

Figure 3 displays a dynamic restyling of a default application by successively
taking selfie photos in the context of try-on of clothes. This study case can be
seen as a simulation of a virtual clothes try-on system for which the wearing of



6 K. Hammoudi et al.

a virtual garment accordingly involves the instantaneous harmonization of the
GUI.

We can observe that dominants colors from image objects have been trans-
ferred to the graphical components of the interface. In particular, we remark
that the photo backgrounds have colored the backgrounds of the application in
Figures (3a) to (3c). In Figure 3a, buttons seems colored from the shirt color,
button borders seems colored from the skin color. In Figure 3b, buttons seems
colored from the skin color, the header seems colored from the T-shirt color. In
Figure 3c, buttons seems colored from the T-shirt color, button borders seems
colored from the skin color. Visually, outputs of user tests 1 and 2 can be sat-
isfying. However, the output of the user test 3 is not satisfying in reason of the
color of the buttons and their inner texts which is relatively close. This makes
the corresponding texts unreadable and this application unusable.

Figure 4 shows the application styled by loading images of different natures.
Quality of the applications styled from the loaded images is displayed as a score
ranging in [0,1] which has been obtained by computing the contrast metric c.
Figures 4a to 4f are ordered by their score from lowest to highest style transfer
quality.

Figure 4a displays the loading of a kind of chessboard image for which a
single dominant color has voluntarily been retained. The resulting design of the
application is homogeneous making the background, button borders, buttons
and writings appearing as a whole. The obtained null score value corresponds to
an application which is neither aesthetic nor usable.

Figures 4b and 4c show outdoor photos. In Figure 4b, we can observe that the
color of the vegetation seems reported to the background, button borders and
writings. The color of the inner buttons seems to come from the background. The
color of cars, although visually consistent, is not used for coloring components
since not dominant. The quality of the image transfer is low (score value 0.21) in
reason of the low contrast in between components related to the buttons which
also makes the interface complex to use. In Figure 4c, the sky color is reported
to the header, the remaining components got close colors from the bricks of the
building facades. Quality of the styled application is similar to the one of the
Figure 4b. No color optimization processes have been operated to Figures 4a to
4c.

Figures 4d depicts an indoor photo. The colors, although relatively limited
in term of variety, are distributed to components with a satisfactory way. We
observe a high contrast, distinguishable components, readable writings and us-
able button functionality. We also observe the same results by using artistic
images which have a variety of colors; e.g. (see Figures 4e and 4f). It seems that
the quality of the styled application is satisfying in term of aesthetic (graphical
coherency) and usage when the contrast score is superior or equal to 0.44.



Image Style Transferred to Graphical User Interfaces 7

(a) (b) (c)

(d) (e) (f)

Fig. 4: Application styled by loading images of different natures. Quality of the
applications styled from the loaded images is displayed as a score ranging in
[0,1].

4 Conclusion

An approach has been proposed for restyling the graphical user interface of ap-
plications from an image. Such approach can be integrated as a complementary
tool for application development cycles in order to facilitate the creation of de-
signs. Such approach can also be included in a large spectrum of applications
towards permitting to end-users the self-changing of the design through an im-
age loading or taking functionality. The transfer of colors is performed without



8 K. Hammoudi et al.

invoking neural analysis techniques which can be time-consuming in training
stages. The employed graph design and optimization process provide a direct
and promising solution for restyling applications from query images.

Acknowledgments

The authors would like to thank the students Goutam Manjunath Shanbhag,
Wei-Chien Chao, Mariam Helala, Serge Niyigena Gihozo, Olakunle Saheed Ogun-
solu, Prabhu Kumar Reddy Marry, Shailesh Kumar of the Master training in
Software Engineering & Digital Transformation, ESIGELEC School of Engineer-
ing, Rouen, France for their assistance in development and experiment stages.

References

1. E. Grinstein, N. Q. K. Duong, A. Ozerov, and P. Pz, “Audio style transfer,” in
2018 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 586–590, 2018.

2. K. Yin, J. Gao, M. Shugrina, S. Khamis, and S. Fidler, “3dstylenet: Creating 3d
shapes with geometric and texture style variations,” in Proceedings of International
Conference on Computer Vision (ICCV), 2021.

3. S. Cygert and A. Czyzewski, “Style transfer for detecting vehicles with thermal
camera,” in 2019 Signal Processing: Algorithms, Architectures, Arrangements, and
Applications (SPA), pp. 218–222, 2019.

4. O. Texler, J. Fǐser, M. Lukáč, J. Lu, E. Shechtman, and D. Sýkora, “Enhanc-
ing neural style transfer using patch-based synthesis,” in Proceedings of the
8th ACM/Eurographics Expressive Symposium on Computational Aesthetics and
Sketch Based Interfaces and Modeling and Non-Photorealistic Animation and Ren-
dering, Expressive ’19, (Goslar, DEU), p. 4350, Eurographics Association, 2019.

5. D. Kotovenko, M. Wright, A. Heimbrecht, and B. Ommer, “Rethinking style trans-
fer: From pixels to parameterized brushstrokes,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12196–
12205, June 2021.

6. X. Liu, W. Wu, H. Wu, and Z. Wen, “Deep style transfer for line drawings,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 353–
361, May 2021.

7. E. Reinhard, M. Adhikhmin, B. Gooch, and P. Shirley, “Color transfer between
images,” IEEE Computer Graphics and Applications, vol. 21, no. 5, pp. 34–41,
2001.

8. Y. Shih, S. Paris, F. Durand, and W. Freeman, “Data-driven hallucination of
different times of day from a single outdoor photo,” ACM Transactions on Graphics
(TOG), vol. 32, 11 2013.

9. J. Yoo, Y. Uh, S. Chun, B. Kang, and J.-W. Ha, “Photorealistic style transfer via
wavelet transforms,” in 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 9035–9044, 2019.

10. F. Luan, S. Paris, E. Shechtman, and K. Bala, “Deep painterly harmonization,”
arXiv preprint arXiv:1804.03189, 2018.



Image Style Transferred to Graphical User Interfaces 9

11. S. Yang, L. Jiang, Z. Liu, and C. C. Loy, “Pastiche master: Exemplar-based high-
resolution portrait style transfer,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 7693–7702, June 2022.

12. G. Kwon and J. C. Ye, “Clipstyler: Image style transfer with a single text con-
dition,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 18062–18071, June 2022.

13. Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style transfer:
A review,” IEEE Transactions on Visualization and Computer Graphics, vol. 26,
pp. 3365–3385, nov 2020.

14. M. H. Fischer, R. R. Yang, and M. S. Lam, “Imaginenet: Restyling apps using
neural style transfer,” 2020.

15. Q. Zheng, M. Lu, S. Wu, R. Hu, J. Lanir, and H. Huang, “Image-guided color
mapping for categorical data visualization,” Computational Visual Media, 2022.

16. A. Tremeau and P. Colantoni, “Regions adjacency graph applied to color image
segmentation,” IEEE Transactions on Image Processing, vol. 9, no. 4, pp. 735–744,
2000.


