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ZEROES AND RATIONAL POINTS OF ANALYTIC FUNCTIONS

GEORGES COMTE AND YOSEF YOMDIN

December 16, 2017

Abstract. For an analytic function f(z) =
∑∞
k=0 akz

k on a neighbourhood of
a closed disc D ⊂ C, we give assumptions, in terms of the Taylor coefficients ak
of f , under which the number of intersection points of the graph Γf of f|D and
algebraic curves of degree d is polynomially bounded in d. In particular, we show
these assumptions are satisfied for random power series, for some explicit classes of
lacunary series, and for solutions of algebraic differential equations with coefficients
and initial conditions in Q. As a consequence, for any function f in these families,
Γf has less than β logα T rational points of height at most T , for some α, β > 0.
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1. Introduction

Let DR ⊂ C be a closed disc, centred at the origin and of radius R, let f : DR → C
be an analytic function on a neighbourhood of DR, and for any d ≥ 1, let us denote
by Pd the subspace of polynomials of C[X, Y ] of degree at most d. Assuming that
for any polynomial P ∈ C[X, Y ], P (z, f(z)) is not identically zero, or in other words,
that f is transcendental, the quantity

Zd(f) = sup
P∈Pd

#{z ∈ DR;P (z, f(z)) = 0},
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(where zeroes are counted with multiplicity) is finite. The integer Zd(f) is also the
maximum number of intersection points between the graph Γf of f and algebraic
curves of degree at most d. Thus any bound of Zd(f) will be called in the sequel a
Bézout bound for f , since such a bound is called a Bézout bound in the case of proper
intersection of two algebraic curves. Moreover in the algebraic case a polynomial
bound in the degrees involved holds.

Bounding Zd(f) is very closely related to the study of “Doubling”, or “Bernstein
- type” inequalities for restrictions of polynomials P as above to the graph Γf of
f (see, for instance, [21, 37]). Through this connection, many methods and results
in Potential Theory, on one side, and in Approximation Theory, on the other side,
become relevant, starting with the basic results of [38, 39]. Still, we try to keep the
references to the minimum.

This article studies the growth of Zd(f), as d goes to infinity; more specifically, we
provide certain assumptions on the transcendental analytic function f , under which
f has, like in the algebraic case, a Bézout bound polynomial in d.

The asymptotic behaviour of Zd(f) as d goes to infinity was studied for different
classes of functions, with different tools. In fact, Zd(f) < ∞ generally holds when
f is definable in an o-minimal structure expanding the real field 1. But in this very
general situation the behaviour of f with respect to algebraic curves of growing degree
is difficult to predict. In the analytic case, considered in the present paper, the
following observation is instructive: for any ζ ∈]0, 1[ there is analytic function f such
that for a sequence of degrees d going to infinity, Zd(f) ≥ ed

ζ (see, for instance, [34,
Example 7.5], [41] or [42], and inequality (5.0.4) of Remark 5.0.3 below). On the other
hand, one also knows that for any analytic function f , Zd(f) is bounded from above
by a polynomial in d of degree 2, for a certain sequence of degrees d going to infinity
(see [22, Theorem 1.1]) and the asymptotic of this upper bound is best possible (see
for instance [21, Corollary 2.6])

A polynomial in d Bézout bound for f(z) = ez was obtained in [43]. For entire
functions f of positive order (under some additional conditions) such bounds were
obtained in [21, 22] 2 and in [12, 16]. For the Riemann zeta function, and for some
other specific functions accurate polynomial bounds were obtained in [11, 30]. Very
recently, for solutions of certain types of algebraic differential equations, a polynomial
in d Bézout bound was obtained in [7].

Our approach to the problem of bounding Zd(f), for f(z) =
∑∞

k=0 akz
k, is based

on a detailed algebraic study of the Taylor coefficients ak of f . It follows a long
research line, starting with a classical work of Bautin ([2, 3]). Bautin’s discovery was
that for analytic families fλ(z) =

∑∞
k=0 vk(λ)zk, with λ – a parameter ranging in

a finite dimensional space, and vk(λ) – polynomials in λ, the number of zeroes can
be bounded in terms of the polynomial ideals Ir = {v0(λ), . . . , vr(λ)} (the Bautin
ideals). This approach was further developed in many publications (see, for instance,
[15, 17, 24, 37, 45] and references therein). In particular, the case of linear families

1Note that, on the opposite side, by [26], a polynomial Bézout bound for f does not imply that
f is polynomial or even definable in some o-minimal structure.

2 For the first time instances of analytic functions (with lacunary Taylor series at the origin)
having polynomial Bézout bound with prescribed growth were provided in [21, Corollary 6.2].
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(that is to say vk(λ) is linear in λ) where computations are reduced to linear algebra,
was considered in [44]. In the present paper we concentrate on linear families of the
form P (z, f(z)). Notice that some notions introduced below play important role also
in Hermite-Padé approximations (see, for instance, [1, 33], and references therein, and
Remark 3.2.9 below). We plan to present some instances of this important connection
separately.

We will consider polynomials P (z, y) =
∑

0≤i,j≤d λi,jz
iyj. In this case the parameter

vector λ = (λi,j) ranges in the space Cm, with m = (d+ 1)2 and we have

fλ(z) = P (z, f(z)) =
∞∑
k=0

vk(λ)zk,

with vk(λ) linear forms in the parameter λ. The specific coefficients of vk(λ) can be
explicitly written through the Taylor coefficients ak of f (see Section 3 below). For
each k we can write v0(λ)

...
vk(λ)

 = Mk

λ1
...
λm

 ,

with a (k + 1) × m matrix Mk. We define the Bautin index bd = bd(f) as the
minimal k for which the rank of Mk is equal to m, and call Mbd = Mbd(f) the d-th
Bautin matrix of f (see Definition 2.0.9). The Bautin index bd is also the maximal,
with respect to λ, multiplicity at 0 of fλ(z) (see Proposition 2.0.3). Finally, we
denote by δd = δd(f) > 0 the maximum of the absolute value of all non-zero minor
determinants of size m ×m of the Bautin matrix Mbd . In this way we associate to
each transcendental analytic function f(z) =

∑∞
k=0 akz

k, two sequences (bd)d≥1, and
(δd)d≥1. For hypertranscendental f (that is when all the derivatives f (r), r ≥ 0, are
algebraically independent) we also define a sequence of multiplicities (ηd)d≥1 in the
following way (see also Definition 3.3.3).

Consider the Taylor expansion of f(z) =
∑∞

k=0 ak(u)(z − u)k at points u near
the origin. Using these expansions we construct, as above, the square matrices
Mm(u), m = (d+ 1)2. Assume that the determinants ∆d(u) of Mm(u) do not vanish
identically in u, and let ηd(f) be the multiplicity of zero of ∆d(u) at u = 0. We then
have

∆d(u) = αdu
ηd +O(uηd+1), with αd 6= 0.

The three sequences (δd), (bd), (ηd) are defined algebraically, through a finite amount
(depending on d) of the Taylor coefficients ak of f , and they present natural tran-
scendence measures of f . In the present paper we investigate some basic properties
of these sequences, and their role in bounding Zd(f). All the three sequences can be
defined for formal power series f(z) with coefficients in an arbitrary field, although
here we work only with complex (or real) analytic functions on DR.
The following are our main results:

(1) We bound Zd(f) in terms of bd(f) and δd(f) > 0 (Proposition 2.0.11). In
particular, for bd(f) ≤ R(d), and δd(f) ≥ e−S(d), with R, S polynomials in d,
we have Zd(f) ≤ T (d), with T also a polynomial in d.
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(2) If the Taylor coefficients ak of f are rational, we define hl(f) as the maximal
denominator of ak, k = 0, 1, . . . , l. We bound from below δd in terms of bd and
hbd (Proposition 3.2.7). In particular, for bd(f) ≤ R(d), and hl(f) ≤ eS(l), with
R and S polynomials, we show that δd(f) ≥ e−U(d), and hence Zd(f) ≤ T (d),
with T, U also polynomials in d (Theorem 3.2.8). As an example, we show
that this is the case for solution of algebraic ODE’s with rational coefficients
and rational initial values (Theorem 3.5.3). This gives another proof of one of
results in [7].

(3) If the Taylor coefficients ak at 0 of a hypertranscendental function f are ra-
tional and satisfy hl(f) ≤ eS(l), with S polynomial, and if there exists a
polynomial R such that ηd ≤ R(d), d ≥ 1, then we show that Zd(f) ≤ T (d),
with T also polynomial. (Theorem 3.3.4).

(4) We consider a class of lacunary series f , similar to the one considered in
[20]. We show that for this class the Bautin index bd(f) can be explicitly
estimated, as well as the Bautin matrices and the determinants δd(f). On this
base we obtain examples of both polynomial and non-polynomial growth of
Zd(f) (Theorem 3.4.5).

(5) Clearly, for a series f with random Taylor coefficients ak, the square Bautin
matrices Mm(u), m = (d + 1)2 are non-degenerate. Hence bd(f) = m =
(d + 1)2. We show that with probability one the determinants ∆d of these
matrices satisfy ∆d ≥ e−U(d) (Theorem 4.0.2), and therefore Zd(f) ≤ T (d),
with T, U polynomials in d (Corollary 4.0.3).

(6) Analytic functions on compact domains with polynomial Bézout bounds have
the following remarkable Diophantine property: the number of rational points
of height ≤ T in their graph is bounded by a power of log T . It means that
they have few rational points of given height, since a sharp upper bound for
this number, for analytic functions, is in CεT

ε, for any ε > 0. Therefore
our assumptions also provide families of transcendental sets with few rational
points, as explained in Section 5 (see Theorem 5.0.2).

The paper is organized as follows. In section 2 we consider general linear families
fλ, we introduce the definitions used throughout the paper, and we give a general
bound for Zd(f) in terms of the Bautin index and the determinant δ. In section 3
we prove the results (1) to (4). In section 4 we prove (5). Finally in Section 5 we
give direct Diophantine applications of our analytic Bézout theorems, as mentioned
in (6).

2. Linear families of analytic functions

The beginning of this Section is based on [44].
Let us denote by DR the disc {z ∈ C, |z| ≤ R}, let ψ : (DR, 0) → (Cn, 0) be an

analytic curve, and let

(2.0.1) ψ(t) =
∞∑
k=1

akz
k, ak ∈ Cn,
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be the Taylor expansion of ψ at 0 ∈ C. We assume that the series (2.0.1) converges
in a neighbourhood of the disk DR = {z ∈ C, |z| ≤ R}, and that ||ψ(t)|| ≤ A for any
z ∈ DR.

For λ = (λ1, . . . , λm) ∈ Cm, let

Qλ =
m∑
i=1

λiQi,

with Qj : (Ω, 0) → C, j = 1, . . . ,m, analytic functions in a neighbourhood Ω of the
polydisc of Cn of radius A, and bounded there by B.

In what follows we are interested in linear families of analytic functions of the form

(2.0.2) fλ(z) = Qλ(ψ(z)) =
m∑
i=1

λiQi(ψ(z)).

Write

(2.0.3) Qi(ψ(z)) =
∞∑
k=0

cikz
k.

By our assumptions Qi(ψ(z)) ≤ B on DR, i = 1, . . . ,m. Hence, by Cauchy’s esti-
mates, we have

(2.0.4) |cik| ≤
B

Rk
.

For the Taylor development of the linear family fλ we have

(2.0.5) fλ(z) =
∞∑
k=0

vk(λ)zk, vk(λ) =
m∑
i=1

cikλi.

Thus the coefficients vk(λ) of the series (2.0.5) are linear forms in λ and by (2.0.4),
for any k

(2.0.6) |vk(λ)| ≤ mB|λ|
Rk

,

where |λ| = max{|λ1|, . . . , |λm|}.
Now we associate to the family fλ an integer b = b(fλ). Let, for i ∈ N, Li ⊆ Cm be

the linear subspace of Cm defined by the equations v0(λ) = . . . = vi(λ) = 0. We have

L0 ⊇ L1 ⊇ . . . Li ⊇ . . . .

Hence on a certain step b this sequence stabilizes

Lb−1 % Lb = Lb+1 = · · · = L.

Note that λ ∈ Lb ⇐⇒ vk(λ) = 0, for k = 0, 1, . . .

Definition 2.0.1. We call this number b the Bautin index of the family fλ (see [2, 3]).

Remark 2.0.2. Of course the dimension of the subspaces Li ⊂ Cm, i ∈ N, is at most
m and if z 7→ fλ(z) is not identically zero for all λ, dim(Lb) ≤ m−1. More accurately,
if we assume that for λ 6= 0 the function fλ(t) does not vanish identically, then we
have Lb = {0}. But the dimension of Li can drop at most by one at each step, thus
necessarily in this situation b ≥ m−1. This will be the case if f(z) is a transcendental
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function for the family of polynomials of degree at most d, that is for ψ(z) = (z, f(z))
and Qi,j = X iY j with i, j ≤ d, a classical case mainly considered in the following
sections.

On the other hand the Bautin index may be as big as wished. In general one cannot
explicitly find the Bautin index of fλ, since the moments, when the dimension of Li
drops, are usually difficult to determine.

A first characterization of the Bautin index of the family fλ is the following.

Proposition 2.0.3. Let us assume that for λ 6= 0 the function z 7→ fλ(z) is not
identically zero, and let us denote by µ the maximal multiplicity, with respect to the
parameters λ 6= 0, of the Taylor series at the origin of fλ(z). Then µ = b.

Proof. There exists a parameter λ such that fλ(z) has multiplicity µ, that is such
that

fλ(z) = vµ(λ)zµ + vµ+1(λ)zµ+1 + · · · ,
with vµ(λ) 6= 0. Therefore λ ∈ Lµ−1 \ Lµ. It follows that Lµ $ Lµ−1, and b ≥ µ.
On the other hand, since no parameter λ 6= 0 can cancel v0, . . . , vµ in the same time,
Lµ = {0} = Lµ+1 = · · · , and thus b ≤ µ. �

Remark 2.0.4. The system v0(λ) = · · · = vm−2(λ) = 0, with m parameters, always
having a non-zero solution, one sees that the maximal multiplicity of fλ is at least
m − 1. Proposition 2.0.3 then implies that b ≥ m − 1, that was already noted in
Remark 2.0.2.

Remark 2.0.5. Under the assumption that for λ 6= 0 the function z 7→ fλ(z) is not
identically zero, and counting zeroes with multiplicity, from Proposition 2.0.3 one
observes that

lim
r→0

max
λ 6=0

#{z ∈ Dr, fλ(z) = 0} ≥ b.

We give hereafter in Theorem 2.0.7 more accurate relations between the Bautin index
and the number of zeroes of the family fλ, showing in particular that the above
inequality is an equality.

Since L is defined by v0(λ) = · · · = vb(λ) = 0, any linear form `(λ), which vanishes
on L, can be expressed as a linear combination of v0, . . . , vb. Now a basis (vi1 , . . . , viσ),
i1, . . . , iσ ∈ {0, . . . , b}, of the space of linear forms vanishing on L being chosen among
the elements of the family (v0, . . . , vb), there exists a constant c̃ > 0, depending on
this basis, such that for any ` with `|L ≡ 0, we have

(2.0.7) `(λ) =
σ∑
j=1

µjvij(λ), µj ∈ C, and |µj| ≤ c̃‖`‖, j = 1, . . . , σ.

where for `(λ) =
∑m

i=1 αiλi, ‖`‖ = maxi |αi|.

Notation 2.0.6. We denote by c = c(fλ) > 0 the minimum of the constants c̃ satisfying
(2.0.7).
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An effective estimation of c is difficult, in general. However, if the Bautin index
b(fλ) is known, c(fλ) can be estimated via a finite computation in terms of the Taylor
coefficients of ψ and of Qi (see Proposition 2.0.11 below).

Now let a family fλ be given, and let the Bautin index b(fλ) and the constant c(fλ)
of this family be defined as above.

Theorem 2.0.7. Zeroes being counted with multiplicity, we have the following uni-
form bounds with respect to the parameter λ, when fλ 6≡ 0.

(1) The maximal number of zeroes of fλ in the disk DR
4
is at most

5b log
(
4 + 2c(b+ 1)

B

Rb

)
if R ≤ 1,

and 5b log
(
4 + 2c(b+ 1)B

)
if R ≥ 1,

(2) This maximal number of zeroes of fλ is at most b in Dρ, where

ρ =
R

e10b+2 max(2, c(b+ 1)Bmax( 1
R
, 1)b)

.

Proof. For any λ ∈ Cm, and for any j ≥ b + 1, by the definition of c and from the
bound (2.0.4) (see Theorem 1.1 of [44] and the last inequality in its proof), we have

(2.0.8) |vj(λ)|Rj ≤ c(b+ 1)Bmax(
1

R
, 1)b max

i=0,...,b
|vi(λ)|Ri.

Then, the bounds to prove on the number of zeroes are consequences of (2.0.8) and
[37, Lemma 2.2.1, Theorem 2.1.3]. �

Remark 2.0.8. Note that under the assumption that for λ 6= 0 the function z 7→ fλ(z)
is not identically zero, and counting zeroes with multiplicity, from Theorem 2.0.7 and
Remark 2.0.5 one has

lim
r→0

max
λ6=0

#{z ∈ Dr, fλ(z) = 0} = b.

This infinitesimal maximal number of zeroes is called the cyclicity of Qλ on ψ (see
[44]).

In what follows we develop explicit bounds on the number of zeroes of fλ in DR
4
in

terms of the coefficients cik, with i = 1, . . . ,m, k = 0, . . . , b, i.e., ultimately, in terms
of the Taylor coefficients of ψ and of Qi up to the order b. By Theorem 2.0.7, this
amounts bounding the constant c(fλ) introduced in Notation 2.0.6. Note also that
such a bound is given by a bound on the coefficients µj, . . . , µσ of the system (2.0.7),
since in this system one can consider only linear forms ` of norm 1. Let us denote
the dimension of the stabilized subspace L = Lb by s = m − σ (≤ m − 1). All the
information we need, as we will see, is encoded in the rank σ matrix M = (cik), k =
0, . . . , b, i = 1, . . . ,m, with b + 1 lines and m columns. With our notation, M = Mb

is defined by v0(λ)
...

vb(λ)

 = Mb

λ1
...
λm

 .
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Definition 2.0.9. With the above notation, the (b+1)×m matrixM = Mb is called
the Bautin matrix of the family fλ. The matrix Mb is the matrix of the linear map Λ
sending elements of the vector space Q spanned by the analytic functions Q1, . . . , Qm

(assumed to be linearly independent) to the space of b-jets at the origin of analytic
functions. The map Λ is the composition of the linear maps Λ̃ : Q → C{z} sending
Qλ to fλ with the linear map jb0 : C{z} → Cb+1 of b-jets at the origin, b being the
first order of jets at the origin such that dim(jb0(Λ̃(Q)) = dim(Λ̃(Q)).

Notation 2.0.10. We will denote by δ > 0 the maximum of the absolute value of all
non-zero minor determinants of size σ × σ of the Bautin matrix M .

Proposition 2.0.11. Let fλ be given as above. Then

c(fλ) ≤ σ
(B
√
σ)σ−1

δRβ(σ−1)
, where β = b if R ≤ 1 and β =

σ

2
if R ≥ 1.

In turn, in the disk DR
4
, the maximal number Z(fλ) of zeroes of the family fλ, with

respect to the parameter λ, satisfies

Z(fλ) ≤ 5b log(4 + 2(b+ 1)
√
σ

(B
√
σ)σ

δRbσ
) if R ≤ 1,

and Z(fλ) ≤ 5b log(4 + 2(b+ 1)
√
σ

(B
√
σ)σ

δR
σ
2

(σ−1)
) if R ≥ 1,

Proof. Let M̂ be a submatrix of M of size σ × σ, with the absolute value of the
determinant equal to δ, according to notation 2.0.10. M̂ is obtained from M by the
choice of the lines i1 < · · · < iσ of M (corresponding to the choice (vi1 , . . . , viσ) for a
basis of the space of linear forms cancelling on L), and the choice of certain σ columns,
say, the first σ columns in M . When ‖`‖ ≤ 1, (2.0.7) gives the linear systemα1

...
ασ

 = tM̂

µ1
...
µσ


with |αj| ≤ 1, j = 1, . . . , σ. Therefore, by the Cramer rule, each µj satisfies

(2.0.9) |µj| ≤
σδ̂

δ
,

where δ̂ is the maximum of the absolute values of (σ− 1)× (σ− 1) sub-minors of M̂ .
Next, by (2.0.4), we have

|ciij | ≤
B

Rij
≤ B

Rb
if R ≤ 1

and |ciij | ≤
B

Rij
≤ B

Rj
if R ≥ 1.

Consequently, the length of the j-th row-vectors in (σ − 1) × (σ − 1) sub-minors of
M̂ does not exceed

B
√
σ − 1

Rb
if R ≤ 1, and

B
√
σ − 1

Rj
if R ≥ 1



ZEROES AND RATIONAL POINTS OF ANALYTIC FUNCTIONS 9

Interpreting the determinant as the volume of the span of its row-vectors, we conclude
that

σδ̂ ≤ σ
(B
√
σ − 1)σ−1

Rb(σ−1)
≤ σ

(B
√
σ)σ−1

Rb(σ−1)
if R ≤ 1

and σδ̂ ≤ σ
(B
√
σ − 1)σ−1

R
σ
2

(σ−1)
≤ σ

(B
√
σ)σ−1

R
σ
2

(σ−1)
if R ≥ 1.

This bound, combined with (2.0.9) and Theorem 2.0.7, completes the proof of Propo-
sition 2.0.11. �

Remark 2.0.12. From the beginning of this section, we have assumed that the analytic
map ψ is defined on a disc centred at the origin and that ψ(0) = 0. This choice is
harmless since, in case ψ is defined on a ball centred at a, one can consider φ(z) =
ψ(z + a)− ψ(a) and the bounds given in Theorem 2.0.7 and Proposition 2.0.11 for φ
and the family Qi(w + ψ(a)) are the same bounds for ψ and the family Qi(w) when
Taylor series are considered at a instead of 0.

Remark 2.0.13. A classical application of bounds given in Proposition 2.0.11 is for
analytic plane curves ψ(z) = (z, f(z)) and the family Qi(X, Y ) of two variables
monomials of total degree at most some integer d. In this case we consider that
f is given by its Taylor series at the origin and that this series converges on the disc
DR of radius R and centred at the origin, by Remark 2.0.12. The curve ψ(z) is the
standard parametrization of the graph of f . In this setting we will provide bounds for
the number of zeroes of Pd(z, f(z)) on DR that are uniform with respect to coefficients
of polynomials Pd of degree at most d. Now note that in this situation one can only
consider functions f that are bounded by 1 on DR, since a uniform bound on the
number of zeroes of Pd(z, 1

N
f(z)), where N bounds f(z) on DR, provides a uniform

bound on the number of zeroes of Pd(z, f(z)). In the same way one can as well assume
for simplicity that f is analytic on the unit disc, up to applying the bounds provided
by Proposition 2.0.11 to the new function g(z) = f(Rz), since a uniform bound on the
zeroes of Pd(w, g(w)) on D1 is a uniform bound on the zeroes of Pd(z, f(z)) on DR. Of
course the same rescaling effects apply in the same way for the family X iY j, i, j ≤ d,
of two variables monomials. Nevertheless those reductions are not always possible for
any family of analytic functions Qj and for any analytic curve ψ.

Finally when one restricts to analytic functions bounded by 1 on D1 and for the
family Qi,j = X iY j, i + j ≤ d or for the family X iY j, i, j ≤ d of two variables
monomials, one can take 1 for B as bound for Qi,j(z, f(z)) on D1. Note that in this
case, from Proposition 2.0.11 we deduce the following statement.

Corollary 2.0.14. Let fλ be given as above with R = 1 and B = 1, then in the
disk D 1

4
the maximal number Z(fλ) of zeroes of the family fλ, with respect to the

parameters λ, satisfies

Z(fλ) ≤ 5b log(4 + 2(b+ 1)
eσ log σ

δ
).

Proof. After taking B = 1 and R = 1 in the last inequality of Proposition 2.0.11,
observe that

√
σ
σ+1

= e(σ+1) 1
2

log σ ≤ eσ log σ. �
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3. Bézout bounds for transcendental analytic curves

3.1. Families of polynomials. From now on we consider the classical case of the
family of polynomials with degree at most a fixed integer d. That is to say, for a
given analytic function f : (D1, 0)→ (C, 0)

we want to bound the number of zeroes of Pd(z, f(z)), for Pd a two variables
polynomial of degree at most d. Considering Remarks 2.0.12 and 2.0.13, for simplicity
we assume that f sends 0 to 0, is given by its converging Taylor series on the unit
disc D1, and is bounded by 1 on D1.

In fact, we consider the problem in the following (essentially equivalent) form 3:
give a bound for

Zd(f) := max
pj∈C[z],deg pj≤d

#{z ∈ D,
d∑
j=0

pj(z)f j(z) = 0}

for some disc D ⊂ D1 centred at the origin. Denoting pj(z) =
∑d

i=0 λj,iz
i, the sum∑d

j=0 pj(z)f j(z) has the form
∑

0≤i,j≤d λj,iz
if j(z).

With the notation of Section 2, we have to consider the family of monomials Qi,j =
X iY j, i, j ≤ d, and the analytic function ψ(z) = (z, f(z)), therefore here the number
of parameters is m = (d + 1)2. Let us denote by Qd the vector space spanned by
the monomials Qi,j = X iY j, i, j ≤ d. In order to guarantee Zd(f) < ∞ for any
d as soon as some pj is not zero, we assume that f is transcendental, that is no
non-zero polynomial restricted to the graph of f vanishes identically. By Remark
2.0.2, the Bautin index b = bd of this family satisfies b ≥ m − 1 = d2 + 2d and
the corresponding Bautin matrix M = Mb has at least m = (d + 1)2 lines (and
exactly m columns). Furthermore the dimension s of the space Lb is 0 and therefore
the dimension σ of the space generated by v0, . . . , vb is m. The matrix M is the
matrix of the linear map Λ : Qd → Cb+1 (in the basis of monomials) sending an
element P (X, Y ) ∈ Qd to the b-jet jb0(P (z, f(z)) at the origin of the analytic map
P (z, f(z)), and, with the notation of Definition 2.0.9, b is the first index of jets such
that dim(jb0(Λ̃(Qd))) = dim(Λ̃(Qd)) = (d+ 1)2.

Notation 3.1.1. For i, j ∈ N, we denote by aji the ith Taylor coefficient at the origin
of the jth power f j of f . Namely, aji = 1

i!
(f j)(i)(0).

With this notation, a direct computation shows that

3 The family
∑

0≤i,j≤d λj,iz
if j(z) considered here presents the advantage to have a slightly more

symmetric Bautin matrix then the family
∑
i+j≤d λj,iz

if j(z). Of course one can easily deduce the
Bautin matrix of the second family from the Bautin matrix of the first family, and the problem
could be considered only for the family

∑
i+j≤d λj,iz

if j(z) as well. In particular note that Zd(f) ≤
Zd(f) ≤ Z2d(f), and therefore a polynomial bound for the maximal number of zeroes of one family
gives rise to a polynomial bound for the maximal number of zeroes of the other family.
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M =



1 0 0 a1
0 0 0 · · · ad0 0 0

0 0 a1
d−1 a1

d−2 0 · · · add−1 0
0 1 a1

d a1
d−1 a1

0 · · · add ad0
0 0 a1

d+1 a1
d a1

1 · · · add+1 ad1

0 0 0 a1
b a1

b−1 a1
b−d · · · adb adb−1 adb−d


By Corollary 2.0.14 any non-zero minor determinant of size m×m of M will provide
a bound for Zd(f) on D 1

4
, since in Corollary 2.0.14, δ is the maximum of all non-zero

minor determinants of size m ×m of M . But such a minor has to contain the first
d + 1 lines of M , as well as the last line. One sees that the absolute value ∆ of any
non-zero determinant of (d2 + d)× (d2 + d) minor of the following matrix

(3.1.1) M̃ =


a1
d+1 a1

1 · · · add+1 ad1

a1
b a1

b−d · · · adb adb−d


provides on D 1

4
the Bézout bound

(3.1.2) Zd(f) ≤ 5b log(4 + 2(b+ 1)
e2(d+1)2 log(d+1)

∆
).

3.2. Bézout bound through the transcendence index. We start this subsection
by the following definition of a notion of measure of the local transcendence of an
analytic transcendental function.

Definition 3.2.1. For a transcendental analytic function f : D1 → C and for any
d ≥ 1 the d-th transcendence index νd of f is the maximal (with respect to all non-
zero polynomials Pd ∈ Pd) multiplicity at 0 of the function g(z) = Pd(z, f(z)). The
non-decreasing sequence ν(f) = (ν1, . . . , νd, . . .) is called the transcendence sequence
of f .

Remark 3.2.2. The d-th transcendence index measures the maximal order of contact
at the origin between the graph of f and algebraic curves of degree at most d. The
higher this index is, the less f seems transcendental, since infinite νd means that f is
algebraic.

Remark 3.2.3. As already observed in Proposition 2.0.3, νd is the Bautin index of the
linear family associated to f and the monomials X iY j of degree i+j at most d. Since
the number of monomials in two variables of degree at most d is (d+ 1)(d+ 2)/2, by
Remark 2.0.2, νd ≥ (d2 + 3d)/2 always.
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Remark 3.2.4. Using the notation b, as in the beginning of section 3, for the Bautin
index of the family

∑
0≤j≤d pj(z)f j(z), with deg pj ≤ d, one has by Proposition 2.0.3

that b = µ, where µ is the maximal multiplicity, with respect to the coefficients of the
polynomials pj, of this family. Therefore one gets νd ≤ b = µ ≤ ν2d. In particular,
inequality (3.1.2) gives the following proposition.

Proposition 3.2.5. Let f : D1 → C be a transcendental analytic function with
transcendence sequence (νd)d≥1, then on D 1

4

Zd(f) ≤ 5ν2d log(4 + 2(ν2d + 1)
e2(d+1)2 log(d+1)

∆
),

where ∆ is the absolute value of a certain non-zero minor determinant of size (d2 +
d)× (d2 + d) of the matrix M̃ defined at (3.1.1).

Now we assume that f(z) =
∑∞

k=0 akz
k has rational Taylor coefficients ak = mk

pk
,

with the greatest common divisor mk ∧ pk of mk, pk equal to 1 and pk > 0, and let us
introduce the following notation.

Notation 3.2.6. For any l ≥ 1, let hl = max{pk; k = 1, . . . , l}.
Under this assumption we can bound from below the non-zero determinant of the

(d2 + d) × (d2 + d) minors of M̃ , in terms of the transcendence index ν2d and the
height bound hν2d .

Proposition 3.2.7. For f as above and for ∆ the absolute value of a non-zero minor
determinant of size (d2 + d)× (d2 + d) of M̃ we have

∆ ≥ h−d
2(d+1)ν2d

ν2d
.

Proof. For simplicity write h for hν2d and ν for ν2d. Using the notation of 3.1.1,
write the coefficients a1

k, k ≤ ν, as rational numbers having the same denominator
D, this common denominator being at most hν . Next we write the coefficients aji , for
1 ≤ j ≤ d, 1 ≤ i ≤ ν, as rational numbers having the same denominator Dd. Indeed,
aji are sums of the products a1

i1
· · · a1

ij
, i1 + · · · + ij = i, with j ≤ d. Therefore the

determinant of a (d2 + d)× (d2 + d) minor of M̃ can be written as a rational number
having for denominator

Dd2(d+1) ≤ hd
2(d+1)ν .

But then such a non-zero determinant cannot be smaller in absolute value than
h−d

2(d+1)ν . �

An important special case is when there exist polynomials R(d) and S(d), with
positive coefficients, such that

(3.2.1) νd ≤ R(d), hl ≤ eS(l), d, l ≥ 1

Under this condition we can guarantee that Zd(f) grows at most polynomially in d.

Theorem 3.2.8. Assume that f has rational Taylor coefficients at the origin, and
that the growth conditions (3.2.1) are satisfied. Then on D 1

4

Zd(f) ≤ T (d),

for a certain polynomial T .
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Proof. Under condition (3.2.1) and by Proposition 3.2.7, since S is an increasing
function, we have

1

∆
≤ hd

2(d+1)ν2d
ν2d

≤ eS(R(2d))d2(d+1)R(2d) = eU(d).

Now by Proposition 3.2.5, on D 1
4
, we easily have for instance

Zd(f) ≤ 5R(2d) log(4 + 2(R(2d) + 1)e2(d+1)2 log(d+1)eU(d))

≤ 5R(2d) log(4R(2d)e2(d+1)3eU(d))

≤ 10R2(2d) + 10R(2d)(2(d+ 1)3 + U(d))

�

Remark 3.2.9. Producing instances of Taylor series f(z) =
∑

k≥0 akz
k converging on

D1, with rational coefficients ak having denominators bounded from above by eS(k),
where S is a certain polynomial, is easy. Nevertheless the second assumption of
Theorem 3.2.8, concerning the growth of the transcendence sequence of f , is more
difficult to control. A polynomial bound νd(f) ≤ R(d) is known for solutions of some
classes of algebraic ODE’s (see [6, 25, 32, 31]). We expect such a bound to hold for
Taylor series produced by some natural classes of recurrence relations. In Section 3.4
we give conditions on lacunarity of the series f that allow estimates of the growth of
νd(f). In general, we consider bounding of the growth of the transcendence sequence
of f as an important open question.

If we consider polynomials P (z, y) = p1(z)y+p0(z) of degree 1 in y, with p0(z), p1(z)
of degree d in z, we are in the framework of the classical Padé approximation. In
this case the sequence of maximal multiplicities µd = µd(f) of g(z) = P (z, f(z)) =
p1(z)f(z)+p0(z) has the following remarkable description (see, for instance, [33]): let

f(z) =
1

q1(z) + 1
q2(z)+...

, deg ql = sl, l = 1, 2, ...,

be a continued fraction representation of the series f(z). Then µd = s1 +s2 + · · ·+sd.

For polynomials P (z, y) = p0(z) of degree 0 in y the behavior of µd was studied in
[24], in particular, it was related there to linear non-autonomous recurrence relations
for the Taylor coefficients of f .

3.3. Bézout bound through the Bautin multiplicity. In the previous section
3.2, in Proposition 3.2.7, some minors of the matrix M̃ were bounded from below, in
terms of the transcendence index ν2d and the height bound hν2d . On this base, on
D 1

4
, Zd(f) was bounded from above by a polynomial in d (see Theorem 3.2.8), under

the condition that the sequences (νd)d≥1 and (log hd)d≥1 are polynomially bounded.
A special case in which the transcendence index (or thanks to the double inequality

of Remark 3.2.4, in which the Bautin index b itself of the family
∑d

j=0 pjf
j, deg pj ≤ d)

is polynomially bounded is the case that b is minimal, that is equal to d2 + 2d. In
this case the matrix M̃ of (3.1.1) is an invertible square matrix of size d2 +d with the
same determinant as the Bautin matrix M .
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Notation 3.3.1. Being zero or not, let us call this (d2 + d)× (d2 + d) determinant the
Bautin determinant of the family

∑d
j=0 pjf

j, deg pj ≤ d, and let us denote it by ∆d.

So far the study has been done by looking at Taylor series at the origin. Let us
now allow Taylor expansions of f at points z near the origin. In this situation, the
Bautin matrix M , as well as its submatrix M̃ , have entries aji (z) that are analytic
functions in the variable z. To emphasize this dependency, we adopt the notation
M̃(z) and ∆d(z) (and keep the notation M̃ and ∆d for z = 0). We shall assume that
for each degree d the Bautin determinant ∆d(z), as a function of z, does not vanish
identically. This is in particular true when f(z) is a hypertranscendental function,
i.e. all the derivatives are algebraically independent. In this situation, for a generic
base point z, ∆d(z) 6= 0, νd(z) ≤ d2 +2d, and therefore the transcendence index νd(z)
is polynomially bounded. The study of section 3.2 could then be done by shifting the
origin at some generic point z, however in this translation one loses the control on
the rationality of the coefficients of the Taylor expansion of f , an assumption that is
necessary to formulate at some fixed point (namely the origin, for simplicity), since
this assumption makes no sense at generic points z. Nevertheless, still in the case
that ∆d(z) does not vanish identically, one can use the following dichotomy:

- when ∆d(0) 6= 0, as just observed, we are in particular in the frame of Section 3.2
where νd is polynomially bounded (by d2 + 2d),

- when ∆d(0) = 0, we can expand ∆d(z) as a non-zero Taylor series in z at the
origin and study the multiplicity of this expansion with respect to d. We will see in
Theorem 3.3.4 that when the sequence of these multiplicities has at most a polynomial
growth, then a Bézout bound for f is still possible.

Remark 3.3.2. This dichotomy means that when some transversality defect for f is
quantitatively well controlled (through the multiplicity of ∆d(z)), then a good zero-
counting bound is possible, and for instance, in turn, a good bound for the density of
rational points of bounded height in the graph of f will also be possible (see Theorem
5.0.2).

Definition 3.3.3. For any d ≥ 1, the d-th Bautin multiplicity ηd of f is the multi-
plicity at 0 of the Bautin determinant ∆d(z), considered as an analytic function of z.
The sequence η(f) = (ηd)d≥1 is called the Bautin multiplicity sequence of f .

In brief, for each d ≥ 1, we can write
∆d(z) = αdz

ηd +O(zηd+1), with αd 6= 0.

Theorem 3.3.4. Assume that f : D1 → C is an analytic function with rational
Taylor coefficients at the origin satisfying the growth condition (3.2.1) and such that
there exists a polynomial R with ηd ≤ R(d), for d ≥ 1. Then on D 1

4

Zd(f) ≤ T (d),

for a certain polynomial T .

Proof. The Bautin matrix of Definition 2.0.9 is the matrix of size (d+1)2, in the base
of monomials of Qd, of the linear map Λ̂ : Qd → (C{z})(d+1)2 sending a polynomial
to the vector of the first (d + 1)2 derivatives (P (z, f(z))(j)/j! of P (z, f(z)). For a
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given polynomial P ∈ Qd, such that the multiplicity at the origin of P (z, f(z)) is
maximal, and therefore is the Bautin index bd of f for the family of monomials of Qd,
one can write bd = d2 + 2d + r, with r ≥ 0. Then the multiplicity at the origin of
the first (d + 1)2 derivatives of P (z, f(z)) is bigger than r. Now writing the Bautin
matrix in a basis of Qd starting with P , the elements of the first column of this matrix
have multiplicity at least r. It follows that the Bautin determinant ∆d(z) itself has
multiplicity at least r = bd − d2 − 2d, and therefore ηd ≥ bd − d2 − 2d ≥ νd − d2 − 2d.
As a conclusion, when ηd is polynomially bounded, νd is polynomially bounded as
well. The existence of the polynomial T then follows from Theorem 3.2.8. �

Remark 3.3.5. The function ∆d(z) is a polynomial with coefficients in Z in the vari-
ables a1(z), . . . , ad2+d(z) and with degree d(d+1)2

2
. Indeed, the entries of M̃ are the

functions aji , with i = 1, . . . , d2 + d, j = 1, . . . , d, and aji is a sum of products of type
ai1 · · · aij , i1 + · · ·+ ij = i. The Bautin multiplicity ηd therefore measures the degree
of cancellation allowed by the polynomial ∆d applied on the d2 +d first derivatives of
f . This simple observation suggests to introduce, for an hypertranscendental analytic
function f : D1 → C, the notion of polynomial hypertranscendence, defined by the
existence of polynomials A,B ∈ R[X] with positive coefficients, such that for any
d ∈ N, for any polynomial P ∈ Z[X0, . . . , XA(d)], with degree ≤ d, the multiplicity
of P (f(z)

0!
, f
′(z)
1!
, . . . , f

(A(d))(z)
A(d)!

) at the origin is bounded by B(d). This notion of strong
hypertranscendence, relevant by itself, is motivated here by the remark that since
there exists p ∈ N such that d2 + d ≤ dp and d(d+1)2

2
≤ A(dp), we have ηd ≤ B(dp) for

such a function.

3.4. Lacunary series. The aim of this section is to give concrete instances of series
f satisfying polynomial growth condition for the transcendence sequence (νd)d≥1 con-
sidered in (3.2.1), and thus having a polynomial Bézout bound. For this we focus on
lacunary series for which the computation of a bound for the transcendence sequence
(νd)d≥1 is possible. This case has been considered in [21, Theorem 6.1], where a family
of analytic functions with Zd(f) having prescribed growth is given. Our conditions,
being more flexible, improve on these earlier conditions (see Remark 3.4.7).

We begin with the following remark which improves on the estimates of Propositions
3.2.7 and 3.2.8, in case of lacunary series.

Remark 3.4.1. Assume that the Taylor coefficients of the series f are rational num-
bers and denote by θd the amount of those non-zero coefficients among a0, . . . , aνd .
Then, with exactly the same proofs adapted to this notation, Proposition 3.2.7 and
Theorem 3.2.8 may be formulated as follows: the absolute value ∆ of a non-zero
minor determinant of size (d2 + d) × (d2 + d) of M̃ satisfies ∆ ≥ h

−d2(d+1)θ2d
θ2d

, and
consequently when there exist polynomials R and S such that θd ≤ R(d), hd ≤ eS(d),
one gets Zd(f) ≤ T (d)ν2d log ν2d, for some polynomial T .

Now in order to estimate the growth of the transcendence sequence (νd)d≥1, let us
assume that the lacunarity of the series f is quantitatively controlled by the following
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condition

(3.4.1) f(z) =
∞∑
k=1

akz
nk , ak 6= 0 and for any k ≥ 1, nk+1 > n2

k.

Note that in what follows no assumption is made on the rationality of the Taylor
coefficients of f . We assume that f is analytic on D1 and bounded there by 1.

Lemma 3.4.2. Under condition (3.4.1), for any l ≥ 1 and for any m, j ∈ [0, nl+1 −
1], the series zmf j(z) contains the non-zero monomial (al+1)jzjnl+1+m, and no other
monomials with degree in ]jnl+1 +m,nl+2[.

Proof. For j = 0 the series zmf j(z) is the monomial zm and thus is of the required
from. Now for j ≥ 1, write f(z) as the sum f(z) = fl+1(z) + f̄l+1(z), with fl+1(z) =∑l+1

k=1 akz
nk , and f̄l+1(z) =

∑∞
k=l+2 akz

nk . The monomial (al+1)jzjnl+1 has the highest
degree among the monomials of the series f j(z) which come from the terms in f jl+1.
On the other hand, all other monomials in f j(z) which come from the products of
terms in fl+1(z) and in f̄l+1(z), have degree at least nl+2. The terms of the series
xmf j(z) are the terms of f j(z) shifted by m and therefore for m, j < nl+1 we have

jnl+1 +m ≤ (nl+1 − 1)nl+1 + nl+1 − 1 = n2
l+1 − 1 < nl+2,

since by condition (3.4.1), nl+2 > n2
l+1. �

Proposition 3.4.3. Under condition (3.4.1), for any l ≥ 1 and for any d in the
interval [nl, nl+1 − 1] we have

nl+1 ≤ νd ≤ n2
l+1 − 1 < nl+2.

Proof. First of all, for l ≥ 1 and d ≥ nl, we have νd ≥ νnl ≥ nl+1, since for the polyno-
mial P (z, y) = y −

∑l
k=1 akz

nk of degree nl, the function P (z, f(z)) =
∑∞

k=l+1 akz
nk

has multiplicity nl+1 at the origin.
Let now Pd(z, y) = pd(z)yd + · · · + p1(z)y + p0(z) be a polynomial of degree d ≤

nl+1 − 1 and let us prove that the multiplicity of Pd(z, f(z)) at the origin is at most
n2
l+1 − 1; this will prove that νd ≤ n2

l+1 − 1 < nl+2.
Denote by s ≤ d the highest degree of y in Pd(z, y) for which the polynomial ps(z)

is not identically zero, and let us write ps(z) = axr + bxr−1 + · · · , r ≤ d, with
a 6= 0. By Lemma 3.4.2, the summand axrf s(z) in Pd(z, f(z)) contains the monomial
v = a(al+1)szsnl+1+r. Let us show that this monomial cannot cancel with any other
monomial in Pd(z, f(z)), because, if it is the case, since for s, r ≤ d < nl+1, we have

snl+1 + r ≤ (nl+1 − 1)nl+1 + nl+1 − 1 ≤ n2
l+1 < nl+2,

it will finish the proof. As just noticed, since snl+1+r < nl+2, the monomial v can can-
cel only with the monomials coming from the truncated series fl+1(z) =

∑l+1
k=1 akz

nk

introduced in the proof of Lemma 3.4.2, since f(z) − fl+1(z) =
∑∞

k=l+2 akz
nk . But

on one hand v cannot cancel with any monomial in ps(z)f sl+1(z), and on the other
hand, for any q < s, the monomials in f q(z), q < s, coming from the truncated
series fl+1(z), have degree at most qnl+1. Hence the highest degree of monomials in
pq(z)f ql+1(z) can be qnl+1 + d < (q + 1)nl+1 ≤ snl+1 + r. As announced, we conclude
that v cannot cancel with any other monomial in Pd(z, f(z)). �
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Lemma 3.4.2 does not only let us bound the terms of the sequence ν like in Proposi-
tion 3.4.3, it also lets us compute some (d+1)2× (d+1)2 non-zero minor determinant
in the Bautin matrix M (up to allowing more than b+ 1 rows in M).

Proposition 3.4.4. Under condition (3.4.1), for any l ≥ 1, for any d ∈ [nl, nl+1−1],
there exists a (d+ 1)2× (d+ 1)2 minor in M (up to allowing more than b+ 1 rows in
the definition of the Bautin matrix M) with non-zero determinant ∆ = (al+1)

1
2
d(d+1)2 .

For d = nl+1− 1 this determinant is the upper square (d+ 1)2× (d+ 1)2 minor of the
Bautin matrix M .

Proof. Let us fix l ≥ 1, and d ∈ [nl, nl+1 − 1]. Then for any j = 0, . . . , d by Lemma
3.4.2, we have inM a lower-triangular square (d+1)×(d+1) blockMj corresponding
to lines ranging from jnl+1 to jnl+1 + d and columns ranging from j(d + 1) to (j +
1)(d + 1) − 1 in M , and Mj has for entries (al+1)j on its main diagonal. Note that
dnl+1 + d may be bigger than b + 1, so we maybe have to consider a matrix having
more lines then the Bautin matrix M , which is harmless.

Now, if we drop from M all the lines which are not in Mj for some j = 0, . . . , d,
we obtain a (d+ 1)2× (d+ 1)2 minor M ′ which is lower triangular and has the blocks
Mj, j = 0, . . . , d, on its main diagonal. Hence its determinant ∆ is (al+1)

1
2
d(d+1)2 .

For d equal to its maximal value nl+1 − 1 each line of M belongs to one block Mj,
and hence M ′ coincides with the upper square (d+ 1)2× (d+ 1)2 minor of the Bautin
matrix M . �

So far, in condition (3.4.1) we have required that the lacunarity of the series f(z) =∑∞
k=1 akz

nk is big enough. We now require in addition that the lacunarity of f is not
too big, in the following condition

(3.4.2) There exists q > 2, such that for any k ≥ 1, n2
k < nk+1 ≤ nqk.

Under this assumption we can now show that f has a polynomial Bézout bound on
D 1

4
.

Theorem 3.4.5. Under condition (3.4.2), the transcendence sequence νd grows at
most polynomially in d. More accurately we have

νd(f) < dq
2

.

If, in addition, for a certain fixed p > 0, and for any k ≥ 1 we have |ak| ≥ e−n
p
k , then

on D 1
4

Zd(f) ≤ 10(2d)q
2

(1 + qd2 + 5dpq+3).

Proof. Let the degree d ≥ 1 be given and let l be such that d ∈ [nl, nl+1 − 1]. By
Proposition 3.4.3 we have

νd < nl+2 ≤ (nl)
q2 ≤ dq

2

.

Now by Proposition 3.4.4 we obtain the existence of some (d + 1)2 × (d + 1)2 minor
in M with non-zero determinant ∆, such that

|∆| = |al+1|
1
2
d(d+1)2 ≥ exp(−1

2
d(d+ 1)2npl+1)
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≥ exp(−1

2
d(d+ 1)2nqpl ) ≥ exp(−1

2
dqp+1(d+ 1)2).

Now by Proposition 3.2.5,

Zd(f) ≤ 5ν2d log(4 +
ν2d + 1

∆
e2(d+1)3) ≤

≤ (2d)q
2

5 log(4 + ((2d)q
2

+ 1)e
1
2
dqp+1(d+1)2+2(d+1)3).

Since for instance, 1 + (2d)q
2 ≤ e2dq2 , 1

2
dqp+1(d + 1)2 + 2(d + 1)3 ≤ 5dpq+1(d + 1)2 ≤

10dpq+3, we have
Zd(f) ≤ (2d)q

2

5 log(4 + e2qd2+10dpq+3

).

And finally since log(4 + ex) ≤ 2 + x, for x ≥ 0, we obtain

Zd(f) ≤ 10(2d)q
2

(1 + qd2 + 5dpq+3).

This completes the proof of Theorem 3.4.5 �

Remark 3.4.6. When the gaps between the degrees nl grow faster than assumed in
Theorem 3.4.5, that is faster than forced by condition (3.4.2), the asymptotic growth
of the transcendence indices νd and of bounds on Zd(f) fastens accordingly. Notice,
however, that from Proposition 3.4.3, for a subsequence of degrees of the form d =
nl+1 − 1, l ≥ 1, under condition (3.4.1) only, the multiplicity νd is at most d2 +
2d. Under appropriate assumptions on the coefficients al for the above subsequence
of degrees d we obtain a polynomial bound also for Zd(f). This phenomenon is
to compare to a similar behaviour in [22, Theorem 1.1] or [41, Theorem 0.3], [42,
Theorem 1.3], where the minimal asymptotic for Zd(f) is obtained on some sequence
of degrees d going to infinity.

Remark 3.4.7. In [21, Corollary 6.2], for α ≥ 3, the lacunarity condition,

(3.4.3) nk+1 = nα−1
k , ak = e−nk lognk

is considered as a condition implying a polynomial Bézout bound for f (with pre-
scribed order of asymptotic in [α − 1, α] as explained in the introduction). Here our
condition (3.4.2) and our assumption |ak| ≥ e−n

p
k , for some p > 0, in Theorem 3.4.5,

are somewhat more flexible as conditions giving a polynomial Bézout bound for f .

3.5. Rational Taylor coefficients via recurrence relations. In this section we
study recurrence relations for the Taylor coefficients of the series f(z) =

∑∞
k=1 akz

k,
assuming that the starting coefficients are rational numbers. In case the recurrence
relation is linear (with polynomial coefficients in 1/k) it turns out that the ak’s satisfy
the bound hl ≤ eS(l), l ≥ 1 of condition (3.2.1), one of the two hypotheses required
in Theorems 3.2.8 and 3.3.4. Furthermore in case f is a solution of an algebraic
differential equation with polynomial coefficients, the other hypothesis required in
Theorem 3.2.8, namely a bound that is polynomial in d for the transcendence index
νd, is automatically satisfied (see Remark 3.5.2 and Theorem 3.5.3).

Let
Q(k, u1, u2, . . . , ur) =

∑
|β|≤d1

pβ(k)uβ
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be a polynomial of degree d1 in the variables u1, u2, . . . , ur and with coefficients
pβ(k) =

∑d2
i=0 cβ,i(

1
k
)i being polynomials in 1

k
of degree d2. We consider a polyno-

mial recurrence relation of length r of the form
(3.5.1) ak+1 = Q(k, ak, ak−1, . . . , ak−r+1).

We assume that the coefficients cβ,i are rational numbers, as well as the initial terms
a0, a1, . . . , ar−1 of the sequence a = (a0, a1, . . . , ar−1, ar, . . .). For k ≥ r− 1, let Dk de-
note the common denominator of a0, . . . , ak, when those rational numbers are written
in their irreducible form. We also denote by L1 (respectively, L2) the common de-
nominator of all the coefficients cβ,i, i = 0, . . . , d2, |β| ≤ d1 (respectively, the common
denominator of all the initial given terms a0, a1, . . . , ar−1) again when those rational
numbers are written in their irreducible form. Note that Dr−1 = L2.

Proposition 3.5.1. With the notation above, for any k ≥ r − 1,

Dk ≤ eMdk−r+1
1 k log k,

where
M = max

(
logL2

(r − 1) log(r − 1)
, d2 +

logL1

log 2

)
.

Proof. The products of aj entering Q in (3.5.1) can be written with denominator Dd1
k .

Therefore, the next term ak+1, and hence all the terms a0, . . . , ak, ak+1, can be written
with the common denominator D̃k+1 = L1k

d2Dd1
k . Now we prove by induction that

(3.5.2) Dk ≤ eMdk−r+1
1 k log k.

For k = r−1 we haveDr−1 = L2, and (3.5.2) is satisfied by the choice ofM . Assuming
that the required inequality is satisfied for a certain k ≥ r − 1, we now prove it for
k + 1. We have

Dk+1 ≤ D̃k+1 = L1k
d2Dd1

k ≤ L1k
d2eMdk+1−r+1

1 k log k

= eMdk+1−r+1
1 k log k+logL1+d2 log k

= e
Mdk+1−r+1

1 (k log k+
logL1+d2 log k

Mdk+1−r+1
1

)
.

By the choice of M the last expression does not exceed

eMdk+1−r+1
1 (k log k+log k) < eMdk+1−r+1

1 (k+1) log(k+1).

This completes the proof of Proposition 3.5.1. �

Notice that for d1 > 1 the denominators grow as a double exponent, i.e. faster
than an exponent of a polynomial in k. The trivial example of recurrence relation
ak+1 = a2

k, i.e. ak = a2k

0 , shows that this growth indeed happens in recurrence relations
of the form (3.5.1).

Remark 3.5.2. However, in the special case of linear recurrence relations of the
form (3.5.1), we have d1 = 1, and the bound of Proposition 3.5.1 takes the form
Dk ≤ eMk log k. This special case includes Poincaré-type recurrence relations, which
are satisfied by the Taylor coefficients of solutions f(z) of linear differential equa-
tions with polynomial coefficients. In the more general case where f satisfies an
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algebraic differential equation f (d) = Q(z, f(z), . . . , f (d−1)), where Q is some given
polynomial in Q[X1, . . . , Xd], iteration of derivation of each member of this equation
leads to equations of type f (k)(z) = Qk(z, f(z), . . . , f (d−1)), where Qk is a polynomial
in Q[X1, . . . , Xd] with controlled height of its coefficients and controlled degree with
respect to d. Studying these derivations and using some results of [7] one obtains also
in this case the bound on the height of ak = f (k)(0) required by our growth condition
(3.2.1). Therefore, combining well-known bounds on the transcendence sequences
(νd)d≥1 of solutions of differential equations with polynomial coefficients, that turn
out to be polynomially bounded in d (see [6, 25, 31, 32]), our Proposition 3.5.1 and
Theorem 3.2.8 above, we immediately obtain the following statement, a result, which
was recently proved (among others results in this direction and by others methods)
in [7, Corollary 4, Theorem 6] (note that in [7], no assumption on the rationality of
initial conditions is required).

Theorem 3.5.3. Let f be an analytic function, defined on the unit disc, that is
solution of an algebraic differential equation with rational coefficients and initial con-
ditions. Then there exists a polynomial T such that on D 1

4
, Zd(f) ≤ T (d).

4. Bautin determinant for random series

In this section, we discuss the behaviour of the Bautin determinant for random
Taylor coefficients. We prove that for any p ∈]0, 1[, there exists a set Ep of probability
p, such that for any series f ∈ Ep, the corresponding Bautin determinant, as a function
of d, is bounded from below by eUp(d), for a certain polynomial Up. In case ∆d 6= 0, the
Bautin index of the family

∑d
j=0 pjf

j is d2 + 2d, and consequently the transcendence
index νd is bounded by d2 + 2d, and thus the growth condition on the transcendence
indices sequence in Theorem 3.2.8 is fulfilled. It follows that for any p ∈]0, 1[, for
Taylor coefficients in a set of probability p, Zd(f) is polynomially bounded in d.

Let us fix some integer d ≥ 1 and let us start by the following remark.

Remark 4.0.1. As already noticed in Remark 3.3.5, as a polynomial in the Taylor
coefficients of the series f , the Bautin determinant (of size d2 + d), still denoted ∆d,
is a polynomial in the variables a1, . . . , ad2+d and with degree d(d+1)2

2
.

For d ≥ 1, following this remark, and to be more general, we will consider instead
of the polynomial ∆d of arity (number of variables) d2 + d and degree d(d + 1)2/2,
any polynomial with arity and degree polynomially bounded in d.

Let I = [−1, 1] ⊂ R. We consider the unit n-dimensional cubes In ∈ Rn, n ≥ 1,
and the infinite dimensional unit cube I∞ = lim←−n∈N I

n that comes with its standard
projections πn : I∞ → In. Let us denote by µn the probability Lebesgue measure on
In, for any n ≥ 1. For any n ≥ 1 and any measurable set G ⊂ In denote by G̃ ⊂ I∞

the cylinder π−1
n (G) over G. The probability measure µ on I∞ is defined by setting

µ(E) =
∑∞

i=1 µni(Gni), for any subset E ⊂ I∞ that can be expressed as a disjoint
union of cylinders G̃ni , with Gni a µni-measurable in Ini .

We identify the sequences (ak)k≥0 ∈ I∞ with the analytic functions f(z) =
∑∞

k=0 akz
k,

this series converging at least in the interior of D1. For a polynomial Q of arity m
and for f = (ak)k≥0 ∈ I∞ we denote Q(a0, . . . , am−1) = Q(πm(f)) by Q(f).
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Let finally (Qd)d≥1 be a sequence of polynomials Qd, of arity md and degree qd, and
let us assume

(4.0.1) |Qd|Imd = max{|Qd(x)|;x ∈ Imd} ≥ 1.

Note that we also have |∆d|Id2+d ≥ 1, since ∆d = 1 when for instance a1
d+1 = 1 and

aji = 0 for i = 1, . . . , d2 + d, j = 1, . . . , d, i 6= d+ 1, j 6= 1.

Theorem 4.0.2. With the above notation, for any p ∈]0, 1[, there exists a set Ep ⊂
I∞ of measure p, such that for any f ∈ Ep, and for any d ≥ 1,

|Qd(f)| ≥
(

3(1− p)
2π2d2md

)qd
.

In particular, for qd,md satisfying qd ≤ dκ1 ,md ≤ dκ2 , for some κ1, κ2 ≥ 0, we have,
with probability at least p:

|Qd(f)| ≥ e−(γp+κ2)dκ1+1

,

where γp goes to +∞ as p goes to 1.

Proof. Let p ∈]0, 1[, d ≥ 1, and θd = 6(1−p)
π2d2

. We define the real number εd as the
maximum of the numbers ε such that the set

Vd = {u ∈ Imd , |Qd(u)| ≤ ε}
satisfies µmd(Vd) ≤ θd. Now for V =

⋃∞
d=0 Vd ⊂ I∞ and Ep = I∞ \ V we have

µ(V ) ≤
∞∑
d=0

θd = 1− p, and thus µ(Ep) ≥ p.

Clearly, for any f ∈ Ep, for any d ≥ 1, we have |Qd(f)| ≥ εd. It remains to estimate
the numbers εd. We use for this purpose the following multivariate Remez inequality
proved in [18] (see also [14]).
Let Z be a measurable subset of In. Then for every real polynomial P in n variables
and of degree d,

(4.0.2) |P |In <
(

4n

λ

)d
|P |Z ,

where λ = µn(Z).
Applying inequality (4.0.2) to Z = Vd and P = Qd, by our assumption (4.0.1) we get

1 ≤ |Qd|Iqd <
(

4md

µmd(Vd)

)qd
εd,

or equivalently µmd(Vd) ≤ 4mdε
1
qd
d . In particular, for εd =

(
θd

4md

)qd
=
(

3(1−p)
2π2d2md

)qd
, we

have µmd(Vd) ≤ θd. This completes the proof of the first inequality of Theorem 4.0.2.
Substituting into this inequality qd = dκ1 ,md = dκ2 , we obtain for any f ∈ Ep and
for any d ≥ 1

|Qd(f)| ≥
(

3(1− p)
2π2

)dκ1
d−2−κ2dκ1 = e−cpd

κ1e−(2+κ2dκ1 ) log d
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≥ e−cpd
κ1e−(2+κ2dκ1 )d ≥ e−(2+cp+κ2)dκ1+1

= e−(γp+κ2)dκ1+1

,

where cp = log
(

2π2

3(1−p)

)
> 0, γp = 2 + cp.

�

We apply Theorem 4.0.2 to the case where Qd = ∆d, then as a consequence of
Theorem 3.2.8, we obtain the following statement.

Corollary 4.0.3. With the above notation, for any p ∈]0, 1[, there exists a set Ep ⊂
I∞ of measure p, such that for any f ∈ Ep, on D 1

4
, Zd(f) ≤ Cpd

8, where Cp → +∞
as p → 1. Or, in other words, with probability 1, random series satisfy polynomial
Bézout bounds (with degree at most 8).

5. Analytic functions with few rational points in their graph

We start this section by the following definition.

Definition 5.0.1. Let x = (x1, . . . , xn) ∈ Qn. The height of x is the integer
max{|ai|, |bi|; i = 1, . . . , n}, where xi = ai/bi with ai, bi ∈ Z, ai ∧ bi = 1, i = 1, . . . , n.

Explicit bounds on the number #X(Q, T ) of rational points X(Q, T ) of height at
most T , in some given set X ⊂ Rn, are usually related to Bézout bounds satisfied
by X. Let us assume for instance that X is a transcendental set definable in some
o-minimal structure expanding the real field, and to simplify, of dimension 1. Then
following [36], that generalizes the classical by now method of [10], one knows that
X(Q, T ) is contained in a certain number HX,T,d of hypersurfaces of Rn of degree d,
this number being of the form CX,dT

τd , with τd → 0 when d → ∞. It follows that
since the definable set X satisfies a Bézout bound (see [10, Theorem 1], [36])

(5.0.1) ∀ε > 0,∃CX,ε,∀T ≥ 1, #X(Q, T ) ≤ CX,εT
ε.

Now in case the curve X is given by a system of convenient parametrizations (as mild
parametrizations defined in [35], or slow parametrizations defined in [23]), or more
simply, in case X is the graph Γf of some transcendental analytic function f on a
compact interval of R, a computation shows that the constant CΓf ,d is polynomially
bounded in d and that T τblog Tc is a constant K independent of T (see [35, Proposition
2.4], [23, Proposition 2.18]). Therefore, for some polynomial Q, on gets

(5.0.2) #X(Q, T ) ≤ Zblog T c(f)KQ(blog T c).
Moreover, in this situation when f has a Bézout bound polynomial in d, one obtains
the following improvement of the general bound (5.0.1)

(5.0.3) ∃β, ∃α > 0, ∀T ≥ 1, #X(Q, T ) ≤ β logα T.

Recently several results appeared, establishing in different cases bounds for #X(Q, T )
as in (5.0.3), some of them proving the existence of convenient parametrizations for
certain families of sets X with respect to log-bounds as in (5.0.3), the others proving
polynomial Bézout bounds in some particular cases (see, among these results, [4],
[5], [9], [7], [8], [12], [13] , [19], [23], [28], [29] and [30]). In the same spirit we give
hereafter direct Diophantine applications of the polynomial Bézout bounds obtained
in previous sections of the paper.
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Let f be an analytic function converging on D1 (on D8 for condition 3 of Theorem
5.0.2) and let us denote by Γf its graph over D 1

4
. As a consequence of Theorems

3.2.8, 3.3.4, 3.4.5, 3.5.3 and Corollary 4.0.3, one has

Theorem 5.0.2. Assume that one of the following conditions is satisfied
(1) The Taylor coefficient of f at the origin are rational and the growth conditions

(3.2.1) are satisfied,
(2) f has rational Taylor coefficient at the origin satisfying the growth condition

(3.2.1) and ηd is polynomially bounded,
(3) f(z) =

∑
k≥1 akz

nk , the lacunarity condition (3.4.2) is satisfied and for some
p > 0, for any k ≥ 1, |ak| ≥ e−n

p
k ,

(4) f is a solution of an algebraic differential equation with rational coefficients
and initial conditions,

(5) f is a random series, in the sense of Section 4.
Then there exist α, β > 0 such that

#Γf (Q, T ) ≤ β logα T.

Remark 5.0.3. Not only for functions definable in some o-minimal structures, but
also for analytic functions, the asymptotics of (5.0.1) is sharp, since, for instance by
[34, Example 7.5], [41] or [42], there exist functions analytic on a neighbourhood of a
compact interval having asymptotically as many as possible rational points of height
at most T in their graph with respect to (5.0.1). For instance, for any ε ∈]0, 1[,
more than 1

2
e2 log1−ε T points, for an infinite sequence of heights T . In consequence one

cannot expect polynomial Bézout bounds in all degree d for these analytic functions,
since by (5.0.2) one has

1

2
e2blog T c1−ε ≤ 1

2
e2 log1−ε T ≤ Zblog T c(f)CΓf ,blog T cT

τblog Tc .

And thus for any ζ ∈]0, 1[, there exists a sequence of degrees d going to infinity and
such that

(5.0.4) Zd(f) ≥ Zd(f) ≥ ed
ζ

.

As a consequence of (5.0.4), the condition that ∆d ≥ e−U(d) for some positive polyno-
mial U , may not be satisfied for particular analytic functions f . Indeed, when ∆d 6= 0,
the transcendence index νd is polynomially bounded in d and in case ∆d ≥ e−U(d), by
Proposition 3.2.5

Zd(f) ≤ 5ν2d log(4 + (ν2d + 1)
e2(d+1)3

∆
)

≤ 5ν2d[log(5) + log(ν2d + 1) + 2(d+ 1)3 + U(d)].

Remark 5.0.4. The condition |ak| ≥ e−n
p
k of Theorem 5.0.2 (4) allows in particular

order 0 for the lacunary series f(z) =
∑

k≥1 akz
nk when f is an entire function, since

the order of f is given by lim supn→∞−nk lognk
log |ak|

(see [27, Theorem 14.1.1]), contrariwise
to [12, Theorem 1.1] and [22, Section 7] where order 0 is not allowed. Furthermore the
conditions of Theorem 5.0.2 allow to consider analytic functions that are not entire.
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Remark 5.0.5. Statement (5) of Theorem 5.0.2 can be seen as a consequence of [13,
Theorem 2.7], that in fact shows that in case f(0) has a convenient transcendence
measure, then the set #Γf (Q, T ) satisfies the conclusion of Theorem 5.0.2, and on
the other hand the set of real numbers having this convenient transcendence measure
is a full set of R.

Remark 5.0.6. Using the estimates of [23, Theorem 2.20] (see also [35, proof of The-
orem 1.5]) and Corollary 4.0.3, on deduces that for random series, with probability
one, the exponent α in the bound of Theorem 5.0.2 may be chosen as 8.

Remark 5.0.7. The conditions 1 to 4 on f in Theorem 5.0.2 are natural with the aim of
showing that there are few rational points in Γf , since combinations of finer conditions
are considered in order to obtain more remarkable Diophantine properties for Γf . For
instance, in Siegel-Shidlovskii’s theorem a combination of conditions comparable to
conditions 1 and 4 of Theorem 5.0.2, among others, imply that there is at most one
rational point in Γf . More accurately, let f be a E-function, that is a Taylor series∑∞

k=0 akz
k with, for simplicity, rational coefficients ak satisfying for any ε > 0

|ak| = O(kk(ε−1)) and |qk| = O(kεk),

where qk is a common denominator for a0, a1, 2!a2, . . . , k!ak. Assuming moreover that
f is solution of a linear differential equation of order n with coefficients in Q[z], such
that f, f ′, . . . , f (n−1) are algebraically independent over C(z), then for any algebraic
number z0 6= 0, the numbers f(z0), . . . , f (n−1)(z0) are algebraically independent over
Q, and in particular f(z0) is transcendental (see for instance [32, Theorem 2.1] or [40,
Theorem 3, p. 123]).
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