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For an analytic function f (z) = ∞ k=0 a k z k on a neighbourhood of a closed disc D ⊂ C, we give assumptions, in terms of the Taylor coefficients a k of f , under which the number of intersection points of the graph Γ f of f |D and algebraic curves of degree d is polynomially bounded in d. In particular, we show these assumptions are satisfied for random power series, for some explicit classes of lacunary series, and for solutions of algebraic differential equations with coefficients and initial conditions in Q. As a consequence, for any function f in these families, Γ f has less than β log α T rational points of height at most T , for some α, β > 0.
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(where zeroes are counted with multiplicity) is finite. The integer Z d (f ) is also the maximum number of intersection points between the graph Γ f of f and algebraic curves of degree at most d. Thus any bound of Z d (f ) will be called in the sequel a Bézout bound for f , since such a bound is called a Bézout bound in the case of proper intersection of two algebraic curves. Moreover in the algebraic case a polynomial bound in the degrees involved holds.

Bounding Z d (f ) is very closely related to the study of "Doubling", or "Bernstein -type" inequalities for restrictions of polynomials P as above to the graph Γ f of f (see, for instance, [START_REF] Coman | Measures of transcendency for entire functions[END_REF][START_REF] Roytwarf | Bernstein classes[END_REF]). Through this connection, many methods and results in Potential Theory, on one side, and in Approximation Theory, on the other side, become relevant, starting with the basic results of [START_REF] Sadullaev | Plurisubharmonic measures and capacities on complex manifolds[END_REF][START_REF] Sadullaev | Estimates of polynomials on analytic sets[END_REF]. Still, we try to keep the references to the minimum.

This article studies the growth of Z d (f ), as d goes to infinity; more specifically, we provide certain assumptions on the transcendental analytic function f , under which f has, like in the algebraic case, a Bézout bound polynomial in d.

The asymptotic behaviour of Z d (f ) as d goes to infinity was studied for different classes of functions, with different tools. In fact, Z d (f ) < ∞ generally holds when f is definable in an o-minimal structure expanding the real field 1 . But in this very general situation the behaviour of f with respect to algebraic curves of growing degree is difficult to predict. In the analytic case, considered in the present paper, the following observation is instructive: for any ζ ∈]0, 1[ there is analytic function f such that for a sequence of degrees d going to infinity, Z d (f ) ≥ e d ζ (see, for instance, [START_REF] Pila | Integer points on the dilation of a subanalytic surface[END_REF]Example 7.5], [START_REF] Surroca | Sur le nombre de points algébriques où une fonction analytique transcendante prend des valeurs algébriques[END_REF] or [START_REF] Surroca | Valeurs algébriques de fonctions transcendantes[END_REF], and inequality (5.0.4) of Remark 5.0.3 below). On the other hand, one also knows that for any analytic function f , Z d (f ) is bounded from above by a polynomial in d of degree 2, for a certain sequence of degrees d going to infinity (see [START_REF] Coman | Transcendence measures and algebraic growth of entire functions[END_REF]Theorem 1.1]) and the asymptotic of this upper bound is best possible (see for instance [START_REF] Coman | Measures of transcendency for entire functions[END_REF]Corollary 2.6])

A polynomial in d Bézout bound for f (z) = e z was obtained in [START_REF] Tijdeman | On the number of zeros of general exponential polynomials[END_REF]. For entire functions f of positive order (under some additional conditions) such bounds were obtained in [START_REF] Coman | Measures of transcendency for entire functions[END_REF][START_REF] Coman | Transcendence measures and algebraic growth of entire functions[END_REF] 2 and in [START_REF] Boxall | Rational values of entire functions of finite order[END_REF][START_REF] Brudnyȋ | On local behavior of holomorphic functions along complex submanifolds of C n[END_REF]. For the Riemann zeta function, and for some other specific functions accurate polynomial bounds were obtained in [START_REF] Bos | On polynomial inequalities on exponential curves in C n[END_REF][START_REF] Masser | Rational values of the Riemann zeta function[END_REF]. Very recently, for solutions of certain types of algebraic differential equations, a polynomial in d Bézout bound was obtained in [START_REF] Binyamini | Zero counting and invariant sets of differential equations[END_REF].

Our approach to the problem of bounding Z d (f ), for f (z) = ∞ k=0 a k z k , is based on a detailed algebraic study of the Taylor coefficients a k of f . It follows a long research line, starting with a classical work of Bautin ([2,[START_REF] Bautin | On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type[END_REF]). Bautin's discovery was that for analytic families f λ (z) = ∞ k=0 v k (λ)z k , with λ -a parameter ranging in a finite dimensional space, and v k (λ) -polynomials in λ, the number of zeroes can be bounded in terms of the polynomial ideals I r = {v 0 (λ), . . . , v r (λ)} (the Bautin ideals). This approach was further developed in many publications (see, for instance, [START_REF] Brudnyȋ | Cyclicity of zeroes of families of analytic functions[END_REF][START_REF] Brudnyȋ | Rolle type theorem for cyclicity of zeroes of families of analytic functions[END_REF][START_REF] Friedland | s, p)-valent functions[END_REF][START_REF] Roytwarf | Bernstein classes[END_REF][START_REF] Yomdin | Global finitness properties of analytic families and algebra of their coefficients[END_REF] and references therein). In particular, the case of linear families 1 Note that, on the opposite side, by [START_REF] Gwoździewicz | On the number of solutions of an algebraic equation on the curve y = e x + sin x, x > 0, and a consequence for o-minimal structures[END_REF], a polynomial Bézout bound for f does not imply that f is polynomial or even definable in some o-minimal structure. 2 For the first time instances of analytic functions (with lacunary Taylor series at the origin) having polynomial Bézout bound with prescribed growth were provided in [START_REF] Coman | Measures of transcendency for entire functions[END_REF]Corollary 6.2].

(that is to say v k (λ) is linear in λ) where computations are reduced to linear algebra, was considered in [START_REF] Yomdin | Oscillation of analytic curves[END_REF]. In the present paper we concentrate on linear families of the form P (z, f (z)). Notice that some notions introduced below play important role also in Hermite-Padé approximations (see, for instance, [START_REF] Baker | Convergence theorems for rows of differential and algebraic Hermite-Padé approximations[END_REF][START_REF] Nikishin | Rational approximations and orthogonality[END_REF], and references therein, and Remark 3.2.9 below). We plan to present some instances of this important connection separately.

We will consider polynomials P (z, y) = 0≤i,j≤d λ i,j z i y j . In this case the parameter vector λ = (λ i,j ) ranges in the space C m , with m = (d + 1) 2 and we have

f λ (z) = P (z, f (z)) = ∞ k=0 v k (λ)z k ,
with v k (λ) linear forms in the parameter λ. The specific coefficients of v k (λ) can be explicitly written through the Taylor coefficients a k of f (see Section 3 below). For each k we can write , and (δ d ) d≥1 . For hypertranscendental f (that is when all the derivatives f (r) , r ≥ 0, are algebraically independent) we also define a sequence of multiplicities (η d ) d≥1 in the following way (see also Definition 3.3.3).

  v 0 (λ) . . . v k (λ)   = M k   λ 1 . . .
Consider the Taylor expansion of f (z) = ∞ k=0 a k (u)(z -u) k at points u near the origin. Using these expansions we construct, as above, the square matrices M m (u), m = (d + 1) 2 . Assume that the determinants ∆ d (u) of M m (u) do not vanish identically in u, and let η d (f ) be the multiplicity of zero of ∆ d (u) at u = 0. We then have

∆ d (u) = α d u η d + O(u η d +1 ), with α d = 0.
The three sequences (δ d ), (b d ), (η d ) are defined algebraically, through a finite amount (depending on d) of the Taylor coefficients a k of f , and they present natural transcendence measures of f . In the present paper we investigate some basic properties of these sequences, and their role in bounding Z d (f ). All the three sequences can be defined for formal power series f (z) with coefficients in an arbitrary field, although here we work only with complex (or real) analytic functions on D R . The following are our main results:

( (2) If the Taylor coefficients a k of f are rational, we define h l (f ) as the maximal denominator of a k , k = 0, 1, . . . , l. We bound from below δ d in terms of b d and h b d (Proposition 3.2.7). In particular, for b d (f ) ≤ R(d), and h l (f ) ≤ e S(l) , with R and S polynomials, we show that δ d (f ) ≥ e -U (d) , and hence

Z d (f ) ≤ T (d),
with T, U also polynomials in d (Theorem 3.2.8). As an example, we show that this is the case for solution of algebraic ODE's with rational coefficients and rational initial values (Theorem 3.5.3). This gives another proof of one of results in [START_REF] Binyamini | Zero counting and invariant sets of differential equations[END_REF]. (3) If the Taylor coefficients a k at 0 of a hypertranscendental function f are rational and satisfy h l (f ) ≤ e S(l) , with S polynomial, and if there exists a polynomial R such that

η d ≤ R(d), d ≥ 1, then we show that Z d (f ) ≤ T (d),
with T also polynomial. (Theorem 3.3.4). ( 4) We consider a class of lacunary series f , similar to the one considered in [START_REF] Coman | Bernstein-Walsh inequalities and the exponential curve in C 2[END_REF]. We show that for this class the Bautin index b d (f ) can be explicitly estimated, as well as the Bautin matrices and the determinants δ d (f ). On this base we obtain examples of both polynomial and non-polynomial growth of Z d (f ) (Theorem 3.4.5). ( 5 6) Analytic functions on compact domains with polynomial Bézout bounds have the following remarkable Diophantine property: the number of rational points of height ≤ T in their graph is bounded by a power of log T . It means that they have few rational points of given height, since a sharp upper bound for this number, for analytic functions, is in C T , for any > 0. Therefore our assumptions also provide families of transcendental sets with few rational points, as explained in Section 5 (see Theorem 5.0.2).

The paper is organized as follows. In section 2 we consider general linear families f λ , we introduce the definitions used throughout the paper, and we give a general bound for Z d (f ) in terms of the Bautin index and the determinant δ. In section 3 we prove the results (1) to (4). In section 4 we prove [START_REF] Besson | Points rationnels de la fonction gamma d'Euler[END_REF]. Finally in Section 5 we give direct Diophantine applications of our analytic Bézout theorems, as mentioned in (6).

Linear families of analytic functions

The beginning of this Section is based on [START_REF] Yomdin | Oscillation of analytic curves[END_REF]. Let us denote by D R the disc {z ∈ C, |z| ≤ R}, let ψ : (D R , 0) → (C n , 0) be an analytic curve, and let (2.0.1)

ψ(t) = ∞ k=1 a k z k , a k ∈ C n ,
be the Taylor expansion of ψ at 0 ∈ C. We assume that the series (2.0.1) converges in a neighbourhood of the disk D R = {z ∈ C, |z| ≤ R}, and that ||ψ(t)|| ≤ A for any z ∈ D R . For λ = (λ 1 , . . . , λ m ) ∈ C m , let 

Q λ = m i=1 λ i Q i , with Q j : (Ω, 0) → C, j = 1, . . . ,
f λ (z) = Q λ (ψ(z)) = m i=1 λ i Q i (ψ(z)). Write (2.0.3) Q i (ψ(z)) = ∞ k=0 c i k z k . By our assumptions Q i (ψ(z)) ≤ B on D R , i = 1, . . . ,
f λ (z) = ∞ k=0 v k (λ)z k , v k (λ) = m i=1 c i k λ i .
Thus the coefficients v k (λ) of the series (2.0.5) are linear forms in λ and by (2.0.4), for any k

(2.0.6) |v k (λ)| ≤ mB|λ| R k , where |λ| = max{|λ 1 |, . . . , |λ m |}.
Now we associate to the family f λ an integer b = b(f λ ). Let, for i ∈ N, L i ⊆ C m be the linear subspace of C m defined by the equations v 0 (λ) = . . . = v i (λ) = 0. We have

L 0 ⊇ L 1 ⊇ . . . L i ⊇ . . . .

Hence on a certain step b this sequence stabilizes

L b-1 L b = L b+1 = • • • = L. Note that λ ∈ L b ⇐⇒ v k (λ) = 0, for k = 0, 1, . . . Definition 2.0.1.
We call this number b the Bautin index of the family f λ (see [START_REF] Bautin | Du nombre de cycles limites naissant en cas de variation des coefficients d'un état d'équilibre du type foyer ou centre[END_REF][START_REF] Bautin | On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type[END_REF]).

Remark 2.0.2. Of course the dimension of the subspaces L i ⊂ C m , i ∈ N, is at most m and if z → f λ (z) is not identically zero for all λ, dim(L b ) ≤ m-1. More accurately, if we assume that for λ = 0 the function f λ (t) does not vanish identically, then we have L b = {0}. But the dimension of L i can drop at most by one at each step, thus necessarily in this situation b ≥ m-1. This will be the case if f (z) is a transcendental function for the family of polynomials of degree at most d, that is for ψ(z) = (z, f (z)) and Q i,j = X i Y j with i, j ≤ d, a classical case mainly considered in the following sections.

On the other hand the Bautin index may be as big as wished. In general one cannot explicitly find the Bautin index of f λ , since the moments, when the dimension of L i drops, are usually difficult to determine.

A first characterization of the Bautin index of the family f λ is the following.

Proposition 2.0.3. Let us assume that for λ = 0 the function z → f λ (z) is not identically zero, and let us denote by µ the maximal multiplicity, with respect to the parameters λ = 0, of the Taylor series at the origin of f λ (z). Then µ = b.

Proof. There exists a parameter λ such that f λ (z) has multiplicity µ, that is such that

f λ (z) = v µ (λ)z µ + v µ+1 (λ)z µ+1 + • • • , with v µ (λ) = 0. Therefore λ ∈ L µ-1 \ L µ . It follows that L µ L µ-1
, and b ≥ µ. On the other hand, since no parameter λ = 0 can cancel v 0 , . . . , v µ in the same time,

L µ = {0} = L µ+1 = • • • , and thus b ≤ µ. Remark 2.0.4. The system v 0 (λ) = • • • = v m-2 (λ) = 0,
with m parameters, always having a non-zero solution, one sees that the maximal multiplicity of f λ is at least m -1. Proposition 2.0.3 then implies that b ≥ m -1, that was already noted in Remark 2.0.2.

Remark 2.0.5. Under the assumption that for λ = 0 the function z → f λ (z) is not identically zero, and counting zeroes with multiplicity, from Proposition 2.0.3 one observes that lim

r→0 max λ =0 #{z ∈ D r , f λ (z) = 0} ≥ b.
We give hereafter in Theorem 2.0.7 more accurate relations between the Bautin index and the number of zeroes of the family f λ , showing in particular that the above inequality is an equality.

Since L is defined by v 0 (λ) = • • • = v b (λ) = 0, any linear form (λ), which vanishes on L, can be expressed as a linear combination of v 0 , . . . , v b . Now a basis (v i 1 , . . . , v iσ ), i 1 , . . . , i σ ∈ {0, . . . , b}, of the space of linear forms vanishing on L being chosen among the elements of the family (v 0 , . . . , v b ), there exists a constant c > 0, depending on this basis, such that for any with |L ≡ 0, we have where for

(λ) = m i=1 α i λ i , = max i |α i |.
Notation 2.0.6. We denote by c = c(f λ ) > 0 the minimum of the constants c satisfying (2.0.7).

An effective estimation of c is difficult, in general. However, if the Bautin index b(f λ ) is known, c(f λ ) can be estimated via a finite computation in terms of the Taylor coefficients of ψ and of Q i (see Proposition 2.0.11 below). Now let a family f λ be given, and let the Bautin index b(f λ ) and the constant c(f λ ) of this family be defined as above.

Theorem 2.0.7. Zeroes being counted with multiplicity, we have the following uniform bounds with respect to the parameter λ, when f λ ≡ 0.

(1) The maximal number of zeroes of f λ in the disk DR 4 is at most

5b log 4 + 2c(b + 1) B R b if R ≤ 1, and 5b log 4 + 2c(b + 1)B if R ≥ 1, (2) This maximal number of zeroes of f λ is at most b in D ρ , where ρ = R e 10b+2 max(2, c(b + 1)B max( 1 R , 1) b )
.

Proof. For any λ ∈ C m , and for any j ≥ b + 1, by the definition of c and from the bound (2.0.4) (see Theorem 1.1 of [START_REF] Yomdin | Oscillation of analytic curves[END_REF] and the last inequality in its proof), we have

(2.0.8) |v j (λ)|R j ≤ c(b + 1)B max( 1 R , 1) b max i=0,...,b |v i (λ)|R i .
Then, the bounds to prove on the number of zeroes are consequences of (2.0.8) and [37, Lemma 2.2.1, Theorem 2.1.3].

Remark 2.0.8. Note that under the assumption that for λ = 0 the function z → f λ (z) is not identically zero, and counting zeroes with multiplicity, from Theorem 2.0.7 and Remark 2.0.5 one has

lim r→0 max λ =0 #{z ∈ D r , f λ (z) = 0} = b.
This infinitesimal maximal number of zeroes is called the cyclicity of Q λ on ψ (see [START_REF] Yomdin | Oscillation of analytic curves[END_REF]).

In what follows we develop explicit bounds on the number of zeroes of f λ in DR 4 in terms of the coefficients c i k , with i = 1, . . . , m, k = 0, . . . , b, i.e., ultimately, in terms of the Taylor coefficients of ψ and of Q i up to the order b. By Theorem 2.0.7, this amounts bounding the constant c(f λ ) introduced in Notation 2.0.6. Note also that such a bound is given by a bound on the coefficients µ j , . . . , µ σ of the system (2.0.7), since in this system one can consider only linear forms of norm 1. Let us denote the dimension of the stabilized subspace L = L b by s = m -σ (≤ m -1). All the information we need, as we will see, is encoded in the rank

σ matrix M = (c i k ), k = 0, . . . , b, i = 1, . . . , m, with b + 1 lines and m columns. With our notation, M = M b is defined by   v 0 (λ) . . . v b (λ)   = M b   λ 1 . . . λ m   .
Definition 2.0.9. With the above notation, the (b + 1) × m matrix M = M b is called the Bautin matrix of the family f λ . The matrix M b is the matrix of the linear map Λ sending elements of the vector space Q spanned by the analytic functions Q 1 , . . . , Q m (assumed to be linearly independent) to the space of b-jets at the origin of analytic functions. The map Λ is the composition of the linear maps Λ : Q → C{z} sending Q λ to f λ with the linear map j b 0 : C{z} → C b+1 of b-jets at the origin, b being the first order of jets at the origin such that dim(j b 0 ( Λ(Q)) = dim( Λ(Q)). Notation 2.0.10. We will denote by δ > 0 the maximum of the absolute value of all non-zero minor determinants of size σ × σ of the Bautin matrix M . Proposition 2.0.11. Let f λ be given as above. Then

c(f λ ) ≤ σ (B √ σ) σ-1 δR β(σ-1) , where β = b if R ≤ 1 and β = σ 2 if R ≥ 1.
In turn, in the disk DR

4

, the maximal number Z(f λ ) of zeroes of the family f λ , with respect to the parameter λ, satisfies

Z(f λ ) ≤ 5b log(4 + 2(b + 1) √ σ (B √ σ) σ δR bσ ) if R ≤ 1, and Z(f λ ) ≤ 5b log(4 + 2(b + 1) √ σ (B √ σ) σ δR σ 2 (σ-1) ) if R ≥ 1, Proof.
Let M be a submatrix of M of size σ × σ, with the absolute value of the determinant equal to δ, according to notation 2.0.10. M is obtained from M by the choice of the lines i 1 < • • • < i σ of M (corresponding to the choice (v i 1 , . . . , v iσ ) for a basis of the space of linear forms cancelling on L), and the choice of certain σ columns, say, the first σ columns in M . When ≤ 1, (2.0.7) gives the linear system

  α 1 . . . α σ   = t M   µ 1 . . . µ σ   with |α j | ≤ 1, j = 1, . . . , σ.
Therefore, by the Cramer rule, each µ j satisfies (2.0.9)

|µ j | ≤ σ δ δ ,
where δ is the maximum of the absolute values of (σ -1) × (σ -1) sub-minors of M . Next, by (2.0.4), we have

|c i i j | ≤ B R i j ≤ B R b if R ≤ 1 and |c i i j | ≤ B R i j ≤ B R j if R ≥ 1.
Consequently, the length of the j-th row-vectors in (σ -1) × (σ -1) sub-minors of M does not exceed

B √ σ -1 R b if R ≤ 1, and B √ σ -1 R j if R ≥ 1
Interpreting the determinant as the volume of the span of its row-vectors, we conclude that

σ δ ≤ σ (B √ σ -1) σ-1 R b(σ-1) ≤ σ (B √ σ) σ-1 R b(σ-1) if R ≤ 1 and σ δ ≤ σ (B √ σ -1) σ-1 R σ 2 (σ-1) ≤ σ (B √ σ) σ-1 R σ 2 (σ-1) if R ≥ 1.
This bound, combined with (2.0.9) and Theorem 2.0.7, completes the proof of Proposition 2.0.11.

Remark 2.0.12. From the beginning of this section, we have assumed that the analytic map ψ is defined on a disc centred at the origin and that ψ(0) = 0. This choice is harmless since, in case ψ is defined on a ball centred at a, one can consider φ(z) = ψ(z + a) -ψ(a) and the bounds given in Theorem 2.0.7 and Proposition 2.0.11 for φ and the family Q i (w + ψ(a)) are the same bounds for ψ and the family Q i (w) when Taylor series are considered at a instead of 0.

Remark 2.0.13. A classical application of bounds given in Proposition 2.0.11 is for analytic plane curves ψ(z) = (z, f (z)) and the family Q i (X, Y ) of two variables monomials of total degree at most some integer d. In this case we consider that f is given by its Taylor series at the origin and that this series converges on the disc D R of radius R and centred at the origin, by Remark 2.0.12. The curve ψ(z) is the standard parametrization of the graph of f . In this setting we will provide bounds for the number of zeroes of P d (z, f (z)) on D R that are uniform with respect to coefficients of polynomials P d of degree at most d. Now note that in this situation one can only consider functions f that are bounded by 1 on D R , since a uniform bound on the number of zeroes of P d (z, 1 N f (z)), where N bounds f (z) on D R , provides a uniform bound on the number of zeroes of P d (z, f (z)). In the same way one can as well assume for simplicity that f is analytic on the unit disc, up to applying the bounds provided by Proposition 2.0.11 to the new function g(z) = f (Rz), since a uniform bound on the zeroes of P d (w, g(w)) on D 1 is a uniform bound on the zeroes of P d (z, f (z)) on D R . Of course the same rescaling effects apply in the same way for the family X i Y j , i, j ≤ d, of two variables monomials. Nevertheless those reductions are not always possible for any family of analytic functions Q j and for any analytic curve ψ.

Finally when one restricts to analytic functions bounded by 1 on D 1 and for the family Q i,j = X i Y j , i + j ≤ d or for the family X i Y j , i, j ≤ d of two variables monomials, one can take 1 for B as bound for Q i,j (z, f (z)) on D 1 . Note that in this case, from Proposition 2.0.11 we deduce the following statement.

Corollary 2.0.14. Let f λ be given as above with R = 1 and B = 1, then in the disk D1 4 the maximal number Z(f λ ) of zeroes of the family f λ , with respect to the parameters λ, satisfies

Z(f λ ) ≤ 5b log(4 + 2(b + 1) e σ log σ δ ).
Proof. After taking B = 1 and R = 1 in the last inequality of Proposition 2.0.11, observe that √ σ σ+1 = e (σ+1) 1 2 log σ ≤ e σ log σ .

Bézout bounds for transcendental analytic curves

3.1. Families of polynomials. From now on we consider the classical case of the family of polynomials with degree at most a fixed integer d. That is to say, for a given analytic function f : (D 1 , 0) → (C, 0) we want to bound the number of zeroes of P d (z, f (z)), for P d a two variables polynomial of degree at most d. Considering Remarks 2.0.12 and 2.0.13, for simplicity we assume that f sends 0 to 0, is given by its converging Taylor series on the unit disc D 1 , and is bounded by 1 on D 1 .

In fact, we consider the problem in the following (essentially equivalent) form 3 : give a bound for

Z d (f ) := max p j ∈C[z],deg p j ≤d #{z ∈ D, d j=0 p j (z)f j (z) = 0}
for some disc D ⊂ D 1 centred at the origin. Denoting p j (z) = d i=0 λ j,i z i , the sum

d j=0 p j (z)f j (z) has the form 0≤i,j≤d λ j,i z i f j (z).
With the notation of Section 2, we have to consider the family of monomials Q i,j = X i Y j , i, j ≤ d, and the analytic function ψ(z) = (z, f (z)), therefore here the number of parameters is m = (d + 1) 2 . Let us denote by Q d the vector space spanned by the monomials Q i,j = X i Y j , i, j ≤ d. In order to guarantee Z d (f ) < ∞ for any d as soon as some p j is not zero, we assume that f is transcendental, that is no non-zero polynomial restricted to the graph of f vanishes identically. By Remark 

( Λ(Q d ))) = dim( Λ(Q d )) = (d + 1) 2 .
Notation 3.1.1. For i, j ∈ N, we denote by a j i the ith Taylor coefficient at the origin of the jth power f j of f . Namely,

a j i = 1 i! (f j ) (i) (0).
With this notation, a direct computation shows that 3 The family 0≤i,j≤d λ j,i z i f j (z) considered here presents the advantage to have a slightly more symmetric Bautin matrix then the family i+j≤d λ j,i z i f j (z). Of course one can easily deduce the Bautin matrix of the second family from the Bautin matrix of the first family, and the problem could be considered only for the family i+j≤d λ j,i z i f j (z) as well. In particular note that

Z d (f ) ≤ Z d (f ) ≤ Z 2d (f )
, and therefore a polynomial bound for the maximal number of zeroes of one family gives rise to a polynomial bound for the maximal number of zeroes of the other family.

M =                1 0 0 a 1 0 0 0 • • • a d 0 0 0 0 0 a 1 d-1 a 1 d-2 0 • • • a d d-1 0 0 1 a 1 d a 1 d-1 a 1 0 • • • a d d a d 0 0 0 a 1 d+1 a 1 d a 1 1 • • • a d d+1 a d 1 0 0 0 a 1 b a 1 b-1 a 1 b-d • • • a d b a d b-1 a d b-d               
By Corollary 2.0.14 any non-zero minor determinant of size m × m of M will provide a bound for Z d (f ) on D1

4

, since in Corollary 2.0.14, δ is the maximum of all non-zero minor determinants of size m × m of M . But such a minor has to contain the first d + 1 lines of M , as well as the last line. One sees that the absolute value ∆ of any non-zero determinant of (d

2 + d) × (d 2 + d) minor of the following matrix (3.1.1) M =     a 1 d+1 a 1 1 • • • a d d+1 a d 1 a 1 b a 1 b-d • • • a d b a d b-d    
provides on D1 

∆ ≥ h -d 2 (d+1)ν 2d ν 2d .
Proof. For simplicity write h for h ν 2d and ν for ν 2d . Using the notation of 3.1.1, write the coefficients a 1 k , k ≤ ν, as rational numbers having the same denominator D, this common denominator being at most h ν . Next we write the coefficients a j i , for 1 ≤ j ≤ d, 1 ≤ i ≤ ν, as rational numbers having the same denominator D d . Indeed, a j i are sums of the products

a 1 i 1 • • • a 1 i j , i 1 + • • • + i j = i, with j ≤ d.
Therefore the determinant of a (d 2 + d) × (d 2 + d) minor of M can be written as a rational number having for denominator

D d 2 (d+1) ≤ h d 2 (d+1)ν
. But then such a non-zero determinant cannot be smaller in absolute value than

h -d 2 (d+1)ν .
An important special case is when there exist polynomials R(d) and S(d), with positive coefficients, such that (3.2.1)

ν d ≤ R(d), h l ≤ e S(l) , d, l ≥ 1
Under this condition we can guarantee that Z d (f ) grows at most polynomially in d.

Theorem 3.2.8. Assume that f has rational Taylor coefficients at the origin, and that the growth conditions (3.2.1) are satisfied. Then on

D1 4 Z d (f ) ≤ T (d),
for a certain polynomial T .

Proof. Under condition (3.2.1) and by Proposition 3.2.7, since S is an increasing function, we have d) .

1 ∆ ≤ h d 2 (d+1)ν 2d ν 2d ≤ e S(R(2d))d 2 (d+1)R(2d) = e U (
Now by Proposition 3.2.5, on D1

4

, we easily have for instance

Z d (f ) ≤ 5R(2d) log(4 + 2(R(2d) + 1)e 2(d+1) 2 log(d+1) e U (d) ) ≤ 5R(2d) log(4R(2d)e 2(d+1) 3 e U (d) ) ≤ 10R 2 (2d) + 10R(2d)(2(d + 1) 3 + U (d))
Remark 3.2.9. Producing instances of Taylor series f (z) = k≥0 a k z k converging on D 1 , with rational coefficients a k having denominators bounded from above by e S(k) , where S is a certain polynomial, is easy. Nevertheless the second assumption of Theorem 3.2.8, concerning the growth of the transcendence sequence of f , is more difficult to control. A polynomial bound ν d (f ) ≤ R(d) is known for solutions of some classes of algebraic ODE's (see [START_REF] Binyamini | Multiplicity estimates: a Morse-theoretic approach[END_REF][START_REF] Gabrielov | Multiplicity of a zero of an analytic function on a trajectory of a vector field[END_REF][START_REF] Nesterenko | Published for the Tata Institute of Fundamental Research[END_REF][START_REF] Nesterenko | Estimates for the number of zeros of certain functions[END_REF]). We expect such a bound to hold for Taylor series produced by some natural classes of recurrence relations. In Section 3.4 we give conditions on lacunarity of the series f that allow estimates of the growth of ν d (f ). In general, we consider bounding of the growth of the transcendence sequence of f as an important open question.

If we consider polynomials P (z, y) = p 1 (z)y+p 0 (z) of degree 1 in y, with p 0 (z), p 1 (z) of degree d in z, we are in the framework of the classical Padé approximation. In this case the sequence of maximal multiplicities µ d = µ d (f ) of g(z) = P (z, f (z)) = p 1 (z)f (z) + p 0 (z) has the following remarkable description (see, for instance, [START_REF] Nikishin | Rational approximations and orthogonality[END_REF]): let

f (z) = 1 q 1 (z) + 1 q 2 (z)+...
, deg q l = s l , l = 1, 2, ..., be a continued fraction representation of the series f (z). Then

µ d = s 1 + s 2 + • • • + s d .
For polynomials P (z, y) = p 0 (z) of degree 0 in y the behavior of µ d was studied in [START_REF] Friedland | s, p)-valent functions[END_REF], in particular, it was related there to linear non-autonomous recurrence relations for the Taylor coefficients of f . 3.3. Bézout bound through the Bautin multiplicity. In the previous section 3.2, in Proposition 3.2.7, some minors of the matrix M were bounded from below, in terms of the transcendence index ν 2d and the height bound h ν 2d . On this base, on D1 Let us now allow Taylor expansions of f at points z near the origin. In this situation, the Bautin matrix M , as well as its submatrix M , have entries a j i (z) that are analytic functions in the variable z. To emphasize this dependency, we adopt the notation M (z) and ∆ d (z) (and keep the notation M and ∆ d for z = 0). We shall assume that for each degree d the Bautin determinant ∆ d (z), as a function of z, does not vanish identically. This is in particular true when f (z) is a hypertranscendental function, i.e. all the derivatives are algebraically independent. In this situation, for a generic base point z, ∆ d (z) = 0, ν d (z) ≤ d 2 + 2d, and therefore the transcendence index ν d (z) is polynomially bounded. The study of section 3.2 could then be done by shifting the origin at some generic point z, however in this translation one loses the control on the rationality of the coefficients of the Taylor expansion of f , an assumption that is necessary to formulate at some fixed point (namely the origin, for simplicity), since this assumption makes no sense at generic points z. Nevertheless, still in the case that ∆ d (z) does not vanish identically, one can use the following dichotomy:

-when ∆ d (0) = 0, as just observed, we are in particular in the frame of Section 3.2 where ν d is polynomially bounded (by d 2 + 2d),

-when ∆ d (0) = 0, we can expand ∆ d (z) as a non-zero Taylor series in z at the origin and study the multiplicity of this expansion with respect to d. We will see in Theorem 3.3.4 that when the sequence of these multiplicities has at most a polynomial growth, then a Bézout bound for f is still possible. Remark 3.3.2. This dichotomy means that when some transversality defect for f is quantitatively well controlled (through the multiplicity of ∆ d (z)), then a good zerocounting bound is possible, and for instance, in turn, a good bound for the density of rational points of bounded height in the graph of f will also be possible (see Theorem 5.0.2). Proof. The Bautin matrix of Definition 2.0.9 is the matrix of size (d + 1) 2 , in the base of monomials of Q d , of the linear map Λ : Q d → (C{z}) (d+1) 2 sending a polynomial to the vector of the first (d + 1) 2 derivatives (P (z, f (z)) (j) /j! of P (z, f (z)). . Indeed, the entries of M are the functions a j i , with i = 1, . . . , d 2 + d, j = 1, . . . , d, and a j i is a sum of products of type

a i 1 • • • a i j , i 1 + • • • + i j = i.
The Bautin multiplicity η d therefore measures the degree of cancellation allowed by the polynomial ∆ d applied on the d 2 + d first derivatives of f . This simple observation suggests to introduce, for an hypertranscendental analytic function f : D 1 → C, the notion of polynomial hypertranscendence, defined by the existence of polynomials A, B ∈ R[X] with positive coefficients, such that for any d ∈ N, for any polynomial P ∈ Z[X 0 , . . . , X A(d) ], with degree ≤ d, the multiplicity of

P ( f (z) 0! , f (z) 1! , . . . , f (A(d)) (z) A(d)!
) at the origin is bounded by B(d). This notion of strong hypertranscendence, relevant by itself, is motivated here by the remark that since there exists p ∈ N such that d 2 + d ≤ d p and d(d+1) 2 2 ≤ A(d p ), we have η d ≤ B(d p ) for such a function.

3.4. Lacunary series. The aim of this section is to give concrete instances of series f satisfying polynomial growth condition for the transcendence sequence (ν d ) d≥1 considered in (3.2.1), and thus having a polynomial Bézout bound. For this we focus on lacunary series for which the computation of a bound for the transcendence sequence (ν d ) d≥1 is possible. This case has been considered in [START_REF] Coman | Measures of transcendency for entire functions[END_REF]Theorem 6.1], where a family of analytic functions with Z d (f ) having prescribed growth is given. Our conditions, being more flexible, improve on these earlier conditions (see Remark 3.4.7).

We begin with the following remark which improves on the estimates of Propositions 3.2.7 and 3.2.8, in case of lacunary series. Remark 3.4.1. Assume that the Taylor coefficients of the series f are rational numbers and denote by θ d the amount of those non-zero coefficients among a 0 , . . . , a ν d . Then, with exactly the same proofs adapted to this notation, Proposition 3.2.7 and Theorem 3.2.8 may be formulated as follows: the absolute value ∆ of a non-zero minor determinant of size 

(d 2 + d) × (d 2 + d) of M satisfies ∆ ≥ h -d 2 (d+1)θ 2d θ 2d
f (z) = ∞ k=1 a k z n k , a k = 0 and for any k ≥ 1, n k+1 > n 2 k .
Note that in what follows no assumption is made on the rationality of the Taylor coefficients of f . We assume that f is analytic on D 1 and bounded there by 1.

Lemma 3.4.2. Under condition (3.4.1), for any l ≥ 1 and for any m, j ∈ [0, n l+1 -1], the series z m f j (z) contains the non-zero monomial (a l+1 ) j z jn l+1 +m , and no other monomials with degree in ]jn l+1 + m, n l+2 [.

Proof. For j = 0 the series z m f j (z) is the monomial z m and thus is of the required from. Now for j ≥ 1, write f (z) as the sum

f (z) = f l+1 (z) + fl+1 (z), with f l+1 (z) = l+1 k=1 a k z n k , and fl+1 (z) = ∞ k=l+2 a k z n k .
The monomial (a l+1 ) j z jn l+1 has the highest degree among the monomials of the series f j (z) which come from the terms in f j l+1 . On the other hand, all other monomials in f j (z) which come from the products of terms in f l+1 (z) and in fl+1 (z), have degree at least n l+2 . The terms of the series x m f j (z) are the terms of f j (z) shifted by m and therefore for m, j < n l+1 we have 

jn l+1 + m ≤ (n l+1 -1)n l+1 + n l+1 -1 = n 2 l+1 -1 < n l+2
n l+1 ≤ ν d ≤ n 2 l+1 -1 < n l+2 . Proof.
First of all, for l ≥ 1 and d ≥ n l , we have ν d ≥ ν n l ≥ n l+1 , since for the polynomial P (z, y) = y -l k=1 a k z n k of degree n l , the function P (z, f (z)) = ∞ k=l+1 a k z n k has multiplicity n l+1 at the origin.

Let now P d (z, y) = p d (z)y d + • • • + p 1 (z)y + p 0 (z) be a polynomial of degree d ≤ n l+1 -1 and let us prove that the multiplicity of P d (z, f (z)) at the origin is at most n 2 l+1 -1; this will prove that ν d ≤ n 2 l+1 -1 < n l+2 . Denote by s ≤ d the highest degree of y in P d (z, y) for which the polynomial p s (z) is not identically zero, and let us write p s (z) = ax r + bx r-1 + • • • , r ≤ d, with a = 0. By Lemma 3.4.2, the summand ax r f s (z) in P d (z, f (z)) contains the monomial v = a(a l+1 ) s z sn l+1 +r . Let us show that this monomial cannot cancel with any other monomial in P d (z, f (z)), because, if it is the case, since for s, r ≤ d < n l+1 , we have

sn l+1 + r ≤ (n l+1 -1)n l+1 + n l+1 -1 ≤ n 2 l+1
< n l+2 , it will finish the proof. As just noticed, since sn l+1 +r < n l+2 , the monomial v can cancel only with the monomials coming from the truncated series f l+1 (z) = l+1 k=1 a k z n k introduced in the proof of Lemma 3.4.2, since f (z) -f l+1 (z) = ∞ k=l+2 a k z n k . But on one hand v cannot cancel with any monomial in p s (z)f s l+1 (z), and on the other hand, for any q < s, the monomials in f q (z), q < s, coming from the truncated series f l+1 (z), have degree at most qn l+1 . Hence the highest degree of monomials in p q (z)f q l+1 (z) can be qn l+1 + d < (q + 1)n l+1 ≤ sn l+1 + r. As announced, we conclude that v cannot cancel with any other monomial in P d (z, f (z)). ) block M j corresponding to lines ranging from jn l+1 to jn l+1 + d and columns ranging from j(d + 1) to (j + 1)(d + 1) -1 in M , and M j has for entries (a l+1 ) j on its main diagonal. Note that dn l+1 + d may be bigger than b + 1, so we maybe have to consider a matrix having more lines then the Bautin matrix M , which is harmless. Now, if we drop from M all the lines which are not in M j for some j = 0, . . . , d, we obtain a (d + 1) 2 × (d + 1) 2 minor M which is lower triangular and has the blocks M j , j = 0, . . . , d, on its main diagonal. Hence its determinant ∆ is (a l+1 )

1 2 d(d+1) 2 .
For d equal to its maximal value n l+1 -1 each line of M belongs to one block M j , and hence M coincides with the upper square (d + 1) 2 × (d + 1) 2 minor of the Bautin matrix M . So far, in condition (3.4.1) we have required that the lacunarity of the series f (z) = ∞ k=1 a k z n k is big enough. We now require in addition that the lacunarity of f is not too big, in the following condition (

3.4.2)

There exists q > 2, such that for any k ≥ 1, n 2 k < n k+1 ≤ n q k . Under this assumption we can now show that f has a polynomial Bézout bound on D1 

ν d (f ) < d q 2 .
If, in addition, for a certain fixed p > 0, and for any k ≥ 1 we have

|a k | ≥ e -n p k , then on D1 4 Z d (f ) ≤ 10(2d) q 2 (1 + qd 2 + 5d pq+3 ).
Proof. Let the degree d ≥ 1 be given and let l be such that d ∈ [n l , n l+1 -1]. By Proposition 3.4.3 we have

ν d < n l+2 ≤ (n l ) q 2 ≤ d q 2 .
Now by Proposition 3.4.4 we obtain the existence of some (d + 1) 2 × (d + 1) 2 minor in M with non-zero determinant ∆, such that

|∆| = |a l+1 | 1 2 d(d+1) 2 ≥ exp(- 1 2 d(d + 1) 2 n p l+1 ) ≥ exp(- 1 2 d(d + 1) 2 n qp l ) ≥ exp(- 1 2 d qp+1 (d + 1) 2 ).
Now by Proposition 3.2.5,

Z d (f ) ≤ 5ν 2d log(4 + ν 2d + 1 ∆ e 2(d+1) 3 ) ≤ ≤ (2d) q 2 5 log(4 + ((2d) q 2 + 1)e 1 2 d qp+1 (d+1) 2 +2(d+1) 3 ). Since for instance, 1 + (2d) q 2 ≤ e 2dq 2 , 1 2 d qp+1 (d + 1) 2 + 2(d + 1) 3 ≤ 5d pq+1 (d + 1) 2 ≤ 10d pq+3 , we have Z d (f ) ≤ (2d) q 2 5 log(4 + e 2qd 2 +10d pq+3 ).
And finally since log(4 + e x ) ≤ 2 + x, for x ≥ 0, we obtain

Z d (f ) ≤ 10(2d) q 2 (1 + qd 2 + 5d pq+3 ).
This completes the proof of Theorem 3. 

)

n k+1 = n α-1 k , a k = e -n k log n k
is considered as a condition implying a polynomial Bézout bound for f (with prescribed order of asymptotic in [α -1, α] as explained in the introduction). Here our condition (3.4.2) and our assumption |a k | ≥ e -n p k , for some p > 0, in Theorem 3.4.5, are somewhat more flexible as conditions giving a polynomial Bézout bound for f . 3.5. Rational Taylor coefficients via recurrence relations. In this section we study recurrence relations for the Taylor coefficients of the series f (z) = ∞ k=1 a k z k , assuming that the starting coefficients are rational numbers. In case the recurrence relation is linear (with polynomial coefficients in 1/k) it turns out that the a k 's satisfy the bound h l ≤ e S(l) , l ≥ 1 of condition (3.2.1), one of the two hypotheses required in Theorems 3.2.8 and 3.3.4. Furthermore in case f is a solution of an algebraic differential equation with polynomial coefficients, the other hypothesis required in Theorem 3.2.8, namely a bound that is polynomial in d for the transcendence index ν d , is automatically satisfied (see Remark 3.5.2 and Theorem 3.5.3).

Let

Q(k, u 1 , u 2 , . . . , u r ) = |β|≤d 1 p β (k)u β
be a polynomial of degree d 1 in the variables u 1 , u 2 , . . . , u r and with coefficients

p β (k) = d 2 i=0 c β,i ( 1 k ) i being polynomials in 1 k of degree d 2 .
We consider a polynomial recurrence relation of length r of the form (3.5.1)

a k+1 = Q(k, a k , a k-1 , . . . , a k-r+1 ).
We assume that the coefficients c β,i are rational numbers, as well as the initial terms a 0 , a 1 , . . . , a r-1 of the sequence a = (a 0 , a 1 , . . . , a r-1 , a r , . . .). For k ≥ r -1, let D k denote the common denominator of a 0 , . . . , a k , when those rational numbers are written in their irreducible form. We also denote by L 1 (respectively, L 2 ) the common denominator of all the coefficients c β,i , i = 0, . . . , d 2 , |β| ≤ d 1 (respectively, the common denominator of all the initial given terms a 0 , a 1 , . . . , a r-1 ) again when those rational numbers are written in their irreducible form. Note that D r-1 = L 2 .

Proposition 3.5.1. With the notation above, for any k ≥ r -1,

D k ≤ e M d k-r+1 1 k log k ,
where

M = max log L 2 (r -1) log(r -1) , d 2 + log L 1 log 2 .
Proof. The products of a j entering Q in (3.5.1) can be written with denominator D d 1 k . Therefore, the next term a k+1 , and hence all the terms a 0 , . . . , a k , a k+1 , can be written with the common denominator

Dk+1 = L 1 k d 2 D d 1
k . Now we prove by induction that (3.5.2)

D k ≤ e M d k-r+1 1 k log k .
For k = r-1 we have D r-1 = L 2 , and (3.5.2) is satisfied by the choice of M . Assuming that the required inequality is satisfied for a certain k ≥ r -1, we now prove it for k + 1. We have

D k+1 ≤ Dk+1 = L 1 k d 2 D d 1 k ≤ L 1 k d 2 e M d k+1-r+1 1 k log k = e M d k+1-r+1 1 k log k+log L 1 +d 2 log k = e M d k+1-r+1 1 (k log k+ log L 1 +d 2 log k M d k+1-r+1 1 
)

. By the choice of M the last expression does not exceed

e M d k+1-r+1 1 (k log k+log k) < e M d k+1-r+1 1 (k+1) log(k+1) .
This completes the proof of Proposition 3.5.1.

Notice that for d 1 > 1 the denominators grow as a double exponent, i.e. faster than an exponent of a polynomial in k. The trivial example of recurrence relation a k+1 = a 2 k , i.e. a k = a 2 k 0 , shows that this growth indeed happens in recurrence relations of the form (3.5.1). Remark 3.5.2. However, in the special case of linear recurrence relations of the form (3.5.1), we have d 1 = 1, and the bound of Proposition 3.5.1 takes the form D k ≤ e M k log k . This special case includes Poincaré-type recurrence relations, which are satisfied by the Taylor coefficients of solutions f (z) of linear differential equations with polynomial coefficients. In the more general case where f satisfies an algebraic differential equation f (d) = Q(z, f (z), . . . , f (d-1) ), where Q is some given polynomial in Q[X 1 , . . . , X d ], iteration of derivation of each member of this equation leads to equations of type f (k) (z) = Q k (z, f (z), . . . , f (d-1) ), where Q k is a polynomial in Q[X 1 , . . . , X d ] with controlled height of its coefficients and controlled degree with respect to d. Studying these derivations and using some results of [START_REF] Binyamini | Zero counting and invariant sets of differential equations[END_REF] one obtains also in this case the bound on the height of a k = f (k) (0) required by our growth condition (3.2.1). Therefore, combining well-known bounds on the transcendence sequences (ν d ) d≥1 of solutions of differential equations with polynomial coefficients, that turn out to be polynomially bounded in d (see [START_REF] Binyamini | Multiplicity estimates: a Morse-theoretic approach[END_REF][START_REF] Gabrielov | Multiplicity of a zero of an analytic function on a trajectory of a vector field[END_REF][START_REF] Nesterenko | Estimates for the number of zeros of certain functions[END_REF][START_REF] Nesterenko | Published for the Tata Institute of Fundamental Research[END_REF]), our Proposition 3.5.1 and Theorem 3.2.8 above, we immediately obtain the following statement, a result, which was recently proved (among others results in this direction and by others methods) in [7, Corollary 4, Theorem 6] (note that in [START_REF] Binyamini | Zero counting and invariant sets of differential equations[END_REF], no assumption on the rationality of initial conditions is required). Theorem 3.5.3. Let f be an analytic function, defined on the unit disc, that is solution of an algebraic differential equation with rational coefficients and initial conditions. Then there exists a polynomial T such that on D1 

Bautin determinant for random series

In this section, we discuss the behaviour of the Bautin determinant for random Taylor coefficients. We prove that for any p ∈]0, 1[, there exists a set E p of probability p, such that for any series f ∈ E p , the corresponding Bautin determinant, as a function of d, is bounded from below by e Up(d) , for a certain polynomial U p . In case ∆ d = 0, the Bautin index of the family d j=0 p j f j is d 2 + 2d, and consequently the transcendence index ν d is bounded by d 2 + 2d, and thus the growth condition on the transcendence indices sequence in Theorem 3.2.8 is fulfilled. It follows that for any p ∈]0, 1[, for Taylor coefficients in a set of probability p, Z d (f ) is polynomially bounded in d.

Let us fix some integer d ≥ 1 and let us start by the following remark. For d ≥ 1, following this remark, and to be more general, we will consider instead of the polynomial ∆ d of arity (number of variables) d 2 + d and degree d(d + 1) 2 /2, any polynomial with arity and degree polynomially bounded in d.

Let I = [-1, 1] ⊂ R. We consider the unit n-dimensional cubes I n ∈ R n , n ≥ 1, and the infinite dimensional unit cube I ∞ = lim ← -n∈N I n that comes with its standard projections π n : I ∞ → I n . Let us denote by µ n the probability Lebesgue measure on I n , for any n ≥ 1. For any n ≥ 1 and any measurable set G ⊂ I n denote by G ⊂ I ∞ the cylinder π -1 n (G) over G. The probability measure µ on I ∞ is defined by setting µ(E) = ∞ i=1 µ n i (G n i ), for any subset E ⊂ I ∞ that can be expressed as a disjoint union of cylinders Gn i , with G n i a µ n i -measurable in I n i .

We identify the sequences (a k ) k≥0 ∈ I ∞ with the analytic functions f (z) = ∞ k=0 a k z k , this series converging at least in the interior of D 1 . For a polynomial Q of arity m and for f = (a k ) k≥0 ∈ I ∞ we denote Q(a 0 , . . . , a m-1 ) = Q(π m (f )) by Q(f ).

Let finally (Q d ) d≥1 be a sequence of polynomials Q d , of arity m d and degree q d , and let us assume 

|Q d (f )| ≥ 3(1 -p) 2π 2 d 2 m d q d .
In particular, for q d , m d satisfying q d ≤ d κ 1 , m d ≤ d κ 2 , for some κ 1 , κ 2 ≥ 0, we have, with probability at least p:

|Q d (f )| ≥ e -(γp+κ 2 )d κ 1 +1 ,
where γ p goes to +∞ as p goes to 1.

Proof. Let p ∈]0, 1[, d ≥ 1, and θ d = 6(1-p) π 2 d 2 .
We define the real number ε d as the maximum of the numbers ε such that the set [START_REF] Brudnyȋ | A certain extremal problem for polynomials in n variables[END_REF] (see also [START_REF] Brudnyȋ | On local behavior of analytic functions[END_REF]).

V d = {u ∈ I m d , |Q d (u)| ≤ ε} satisfies µ m d (V d ) ≤ θ d . Now for V = ∞ d=0 V d ⊂ I ∞ and E p = I ∞ \ V we have µ(V ) ≤ ∞ d=0 θ d = 1 -p,
Let Z be a measurable subset of I n . Then for every real polynomial P in n variables and of degree d, 

1 ≤ |Q d | I q d < 4m d µ m d (V d ) q d ε d , or equivalently µ m d (V d ) ≤ 4m d ε 1 q d d . In particular, for ε d = θ d 4m d q d = 3(1-p) 2π 2 d 2 m d q d , we have µ m d (V d ) ≤ θ d .
This completes the proof of the first inequality of Theorem 4.0.2. Substituting into this inequality q d = d κ 1 , m d = d κ 2 , we obtain for any f ∈ E p and for any d ≥ 1

|Q d (f )| ≥ 3(1 -p) 2π 2 d κ 1 d -2-κ 2 d κ 1 = e -cpd κ 1 e -(2+κ 2 d κ 1 ) log d ≥ e -cpd κ 1 e -(2+κ 2 d κ 1 )d ≥ e -(2+cp+κ 2 )d κ 1 +1 = e -(γp+κ 2 )d κ 1 +1 ,
where c p = log 2π 2 3(1-p) > 0, γ p = 2 + c p .

We apply Theorem 4.0.2 to the case where Q d = ∆ d , then as a consequence of Theorem 3.2.8, we obtain the following statement. 

Analytic functions with few rational points in their graph

We start this section by the following definition.

Definition 5.0.1. Let x = (x 1 , . . . , x n ) ∈ Q n . The height of x is the integer max{|a i |, |b i |; i = 1, . . . , n}, where x i = a i /b i with a i , b i ∈ Z, a i ∧ b i = 1, i = 1, . . . , n.
Explicit bounds on the number #X(Q, T ) of rational points X(Q, T ) of height at most T , in some given set X ⊂ R n , are usually related to Bézout bounds satisfied by X. Let us assume for instance that X is a transcendental set definable in some o-minimal structure expanding the real field, and to simplify, of dimension 1. Then following [START_REF] Pila | The rational points of a definable set[END_REF], that generalizes the classical by now method of [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF], one knows that X(Q, T ) is contained in a certain number H X,T,d of hypersurfaces of R n of degree d, this number being of the form C X,d T τ d , with τ d → 0 when d → ∞. It follows that since the definable set X satisfies a Bézout bound (see [START_REF] Bombieri | The number of integral points on arcs and ovals[END_REF]Theorem 1], [START_REF] Pila | The rational points of a definable set[END_REF])

(5.0.1) ∀ > 0, ∃C X, , ∀T ≥ 1, #X(Q, T ) ≤ C X, T .
Now in case the curve X is given by a system of convenient parametrizations (as mild parametrizations defined in [START_REF] Pila | Mild parameterization and the rational points of a Pfaff curve[END_REF], or slow parametrizations defined in [START_REF] Comte | Points of bounded height on oscillatory sets[END_REF]), or more simply, in case X is the graph Γ f of some transcendental analytic function f on a compact interval of R, a computation shows that the constant C Γ f ,d is polynomially bounded in d and that T τ log T is a constant K independent of T (see [START_REF] Pila | Mild parameterization and the rational points of a Pfaff curve[END_REF]Proposition 2.4], [START_REF] Comte | Points of bounded height on oscillatory sets[END_REF]Proposition 2.18]). Therefore, for some polynomial Q, on gets (5.0.2) #X(Q, T ) ≤ Z log T (f )KQ( log T ).

Moreover, in this situation when f has a Bézout bound polynomial in d, one obtains the following improvement of the general bound (5.0.1)

(5.0.3) ∃β, ∃α > 0, ∀T ≥ 1, #X(Q, T ) ≤ β log α T.

Recently several results appeared, establishing in different cases bounds for #X(Q, T ) as in (5.0.3), some of them proving the existence of convenient parametrizations for certain families of sets X with respect to log-bounds as in (5.0.3), the others proving polynomial Bézout bounds in some particular cases (see, among these results, [START_REF] Besson | Sur le nombre de points rationnels de la fonction zêta de Riemann[END_REF], [START_REF] Besson | Points rationnels de la fonction gamma d'Euler[END_REF], [START_REF] Binyamini | Wilkie's conjecture for restricted elementary functions[END_REF], [START_REF] Binyamini | Zero counting and invariant sets of differential equations[END_REF], [START_REF] Binyamini | The Pila-Wilkie theorem for subanalytic families: a complex analytic approach[END_REF], [START_REF] Boxall | Rational values of entire functions of finite order[END_REF], [START_REF] Boxall | Algebraic values of certain analytic functions[END_REF] , [START_REF] Cluckers | Uniform parameterization of subanalytic sets and diophantine applications[END_REF], [START_REF] Comte | Points of bounded height on oscillatory sets[END_REF], [START_REF] Jones | Mildness and the density of rational points on certain transcendental curves[END_REF], [START_REF] Jones | The density of algebraic points on certain Pfaffian surfaces[END_REF] and [START_REF] Masser | Rational values of the Riemann zeta function[END_REF]). In the same spirit we give hereafter direct Diophantine applications of the polynomial Bézout bounds obtained in previous sections of the paper.

Let f be an analytic function converging on D 1 (on D 8 for condition 3 of Theorem 5.0.2) and let us denote by Γ f its graph over D1 Remark 5.0.3. Not only for functions definable in some o-minimal structures, but also for analytic functions, the asymptotics of (5.0.1) is sharp, since, for instance by [START_REF] Pila | Integer points on the dilation of a subanalytic surface[END_REF]Example 7.5], [START_REF] Surroca | Sur le nombre de points algébriques où une fonction analytique transcendante prend des valeurs algébriques[END_REF] or [START_REF] Surroca | Valeurs algébriques de fonctions transcendantes[END_REF], there exist functions analytic on a neighbourhood of a compact interval having asymptotically as many as possible rational points of height at most T in their graph with respect to (5.0.1). For instance, for any ∈]0, 1[, more than 1 2 e 2 log 1-T points, for an infinite sequence of heights T . In consequence one cannot expect polynomial Bézout bounds in all degree d for these analytic functions, since by (5.0.2) one has 1 2 e 2 log T 1-≤ 1 2 e 2 log 1-T ≤ Z log T (f )C Γ f , log T T τ log T .

And thus for any ζ ∈]0, 1[, there exists a sequence of degrees d going to infinity and such that (5.0.4)

Z d (f ) ≥ Z d (f ) ≥ e d ζ .
As a consequence of (5.0.4), the condition that ∆ d ≥ e -U (d) for some positive polynomial U , may not be satisfied for particular analytic functions f . Indeed, when ∆ d = 0, the transcendence index ν d is polynomially bounded in d and in case ∆ d ≥ e -U (d) , by Proposition 3. Remark 5.0.4. The condition |a k | ≥ e -n p k of Theorem 5.0.2 (4) allows in particular order 0 for the lacunary series f (z) = k≥1 a k z n k when f is an entire function, since the order of f is given by lim sup n→∞ -n k log n k log |a k | (see [START_REF] Hille | Analytic function theory[END_REF]Theorem 14.1.1]), contrariwise to [START_REF] Boxall | Rational values of entire functions of finite order[END_REF]Theorem 1.1] and [START_REF] Coman | Transcendence measures and algebraic growth of entire functions[END_REF]Section 7] where order 0 is not allowed. Furthermore the conditions of Theorem 5.0.2 allow to consider analytic functions that are not entire.

Remark 5.0.5. Statement (5) of Theorem 5.0.2 can be seen as a consequence of [START_REF] Boxall | Algebraic values of certain analytic functions[END_REF]Theorem 2.7], that in fact shows that in case f (0) has a convenient transcendence measure, then the set #Γ f (Q, T ) satisfies the conclusion of Theorem 5.0.2, and on the other hand the set of real numbers having this convenient transcendence measure is a full set of R.

Remark 5.0.6. Using the estimates of [START_REF] Comte | Points of bounded height on oscillatory sets[END_REF]Theorem 2.20] (see also [35, proof of Theorem 1.5]) and Corollary 4.0.3, on deduces that for random series, with probability one, the exponent α in the bound of Theorem 5.0.2 may be chosen as 8.

Remark 5.0.7. The conditions 1 to 4 on f in Theorem 5.0.2 are natural with the aim of showing that there are few rational points in Γ f , since combinations of finer conditions are considered in order to obtain more remarkable Diophantine properties for Γ f . For instance, in Siegel-Shidlovskii's theorem a combination of conditions comparable to conditions 1 and 4 of Theorem 5.0.2, among others, imply that there is at most one rational point in Γ f . More accurately, let f be a E-function, that is a Taylor series ∞ k=0 a k z k with, for simplicity, rational coefficients a k satisfying for any ε > 0

|a k | = O(k k(ε-1) ) and |q k | = O(k εk ),
where q k is a common denominator for a 0 , a 1 , 2!a 2 , . . . , k!a k . Assuming moreover that f is solution of a linear differential equation of order n with coefficients in Q[z], such that f, f , . . . , f (n-1) are algebraically independent over C(z), then for any algebraic number z 0 = 0, the numbers f (z 0 ), . . . , f (n-1) (z 0 ) are algebraically independent over Q, and in particular f (z 0 ) is transcendental (see for instance [START_REF] Nesterenko | Published for the Tata Institute of Fundamental Research[END_REF]Theorem 2.1] or [START_REF] Shidlovskii | Transcendental numbers[END_REF]Theorem 3,p. 123]).
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 5 Rational Taylor coefficients via recurrence relations 18 4. Bautin determinant for random series 20 5. Analytic functions with few rational points in their graph 22 References 24 1. Introduction Let D R ⊂ C be a closed disc, centred at the origin and of radius R, let f : D R → C be an analytic function on a neighbourhood of D R , and for any d ≥ 1, let us denote by P d the subspace of polynomials of C[X, Y ] of degree at most d. Assuming that for any polynomial P ∈ C[X, Y ], P (z, f (z)) is not identically zero, or in other words, that f is transcendental, the quantity Z d (f ) = sup P ∈P d #{z ∈ D R ; P (z, f (z)) = 0}, This research was supported by the ISF, Grant No. 779/13, by FSMP and by ANR DEFIGEO.

1 )

 1 × m matrix M k . We define the Bautin index b d = b d (f ) as the minimal k for which the rank of M k is equal to m, and call M b d = M b d (f ) the d-th Bautin matrix of f (see Definition 2.0.9). The Bautin index b d is also the maximal, with respect to λ, multiplicity at 0 of f λ (z) (see Proposition 2.0.3). Finally, we denote by δ d = δ d (f ) > 0 the maximum of the absolute value of all non-zero minor determinants of size m × m of the Bautin matrix M b d . In this way we associate to each transcendental analytic function f (z) = ∞ k=0 a k z k , two sequences (b d ) d≥1

1 )

 1 We bound Z d (f ) in terms of b d (f ) and δ d (f ) > 0 (Proposition 2.0.11). In particular, for b d (f ) ≤ R(d), and δ d (f ) ≥ e -S(d) , with R, S polynomials in d, we have Z d (f ) ≤ T (d), with T also a polynomial in d.

  ) Clearly, for a series f with random Taylor coefficients a k , the square Bautin matrices M m (u), m = (d + 1) 2 are non-degenerate. Hence b d (f ) = m = (d + 1) 2 . We show that with probability one the determinants ∆ d of these matrices satisfy ∆ d ≥ e -U (d) (Theorem 4.0.2), and therefore Z d (f ) ≤ T (d), with T, U polynomials in d (Corollary 4.0.3). (

µ

  j v i j (λ), µ j ∈ C, and |µ j | ≤ c , j = 1, . . . , σ.

  2.0.2, the Bautin index b = b d of this family satisfies b ≥ m -1 = d 2 + 2d and the corresponding Bautin matrix M = M b has at least m = (d + 1) 2 lines (and exactly m columns). Furthermore the dimension s of the space L b is 0 and therefore the dimension σ of the space generated by v 0 , . . . , v b is m. The matrix M is the matrix of the linear map Λ : Q d → C b+1 (in the basis of monomials) sending an element P (X, Y ) ∈ Q d to the b-jet j b 0 (P (z, f (z)) at the origin of the analytic map P (z, f (z)), and, with the notation of Definition 2.0.9, b is the first index of jets such that dim(j b 0
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 323213254 Z d (f ) ≤ 5b log(4 + 2(b + 1) e 2(d+1) 2 log(d+1) ∆ )Bézout bound through the transcendence index. We start this subsection by the following definition of a notion of measure of the local transcendence of an analytic transcendental function. For a transcendental analytic function f : D 1 → C and for any d ≥ 1 the d-th transcendence index ν d of f is the maximal (with respect to all nonzero polynomials P d ∈ P d ) multiplicity at 0 of the function g(z) = P d (z, f (z)). The non-decreasing sequence ν(f ) = (ν 1 , . . . , ν d , . . .) is called the transcendence sequence of f . Remark 3.2.2. The d-th transcendence index measures the maximal order of contact at the origin between the graph of f and algebraic curves of degree at most d. The higher this index is, the less f seems transcendental, since infinite ν d means that f is algebraic. Remark 3.2.3. As already observed in Proposition 2.0.3, ν d is the Bautin index of the linear family associated to f and the monomials X i Y j of degree i + j at most d. Since the number of monomials in two variables of degree at most d is (d + 1)(d + 2)/2, by Remark 2.0.2, ν d ≥ (d 2 + 3d)/2 always. Remark 3.2.4. Using the notation b, as in the beginning of section 3, for the Bautin index of the family 0≤j≤d p j (z)f j (z), with deg p j ≤ d, one has by Proposition 2.0.3 that b = µ, where µ is the maximal multiplicity, with respect to the coefficients of the polynomials p j , of this family. Therefore one gets ν d ≤ b = µ ≤ ν 2d . In particular, inequality (3.1.2) gives the following proposition. Let f : D 1 → C be a transcendental analytic function with transcendence sequence (ν d ) d≥1 , then on D1 d (f ) ≤ 5ν 2d log(4 + 2(ν 2d + 1) e 2(d+1) 2 log(d+1) ∆ ), where ∆ is the absolute value of a certain non-zero minor determinant of size (d 2 + d) × (d 2 + d) of the matrix M defined at (3.1.1). Now we assume that f (z) = ∞ k=0 a k z k has rational Taylor coefficients a k = m k p k , with the greatest common divisor m k ∧ p k of m k , p k equal to 1 and p k > 0, and let us introduce the following notation. Notation 3.2.6. For any l ≥ 1, let h l = max{p k ; k = 1, . . . , l}. Under this assumption we can bound from below the non-zero determinant of the (d 2 + d) × (d 2 + d) minors of M , in terms of the transcendence index ν 2d and the height bound h ν 2d . Proposition 3.2.7. For f as above and for ∆ the absolute value of a non-zero minor determinant of size (d 2 + d) × (d 2 + d) of M we have

4 ,

 4 Z d (f ) was bounded from above by a polynomial in d (see Theorem 3.2.8), under the condition that the sequences (ν d ) d≥1 and (log h d ) d≥1 are polynomially bounded. A special case in which the transcendence index (or thanks to the double inequality of Remark 3.2.4, in which the Bautin index b itself of the family d j=0 p j f j , deg p j ≤ d) is polynomially bounded is the case that b is minimal, that is equal to d 2 + 2d. In this case the matrix M of (3.1.1) is an invertible square matrix of size d 2 + d with the same determinant as the Bautin matrix M . Notation 3.3.1. Being zero or not, let us call this (d 2 + d) × (d 2 + d) determinant the Bautin determinant of the family d j=0 p j f j , deg p j ≤ d, and let us denote it by ∆ d . So far the study has been done by looking at Taylor series at the origin.
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 3334 For any d ≥ 1, the d-th Bautin multiplicity η d of f is the multiplicity at 0 of the Bautin determinant ∆ d (z), considered as an analytic function of z. The sequence η(f ) = (η d ) d≥1 is called the Bautin multiplicity sequence of f . In brief, for each d ≥ 1, we can write ∆ d (z) = α d z η d + O(z η d +1 ), with α d = 0. Theorem 3.3.4. Assume that f : D 1 → C is an analytic function with rational Taylor coefficients at the origin satisfying the growth condition (3.2.1) and such that there exists a polynomial R with η d ≤ R(d), for d ≥ 1. Then on D1 d (f ) ≤ T (d), for a certain polynomial T .

  For a given polynomial P ∈ Q d , such that the multiplicity at the origin of P (z, f (z)) is maximal, and therefore is the Bautin index b d of f for the family of monomials of Q d , one can write b d = d 2 + 2d + r, with r ≥ 0. Then the multiplicity at the origin of the first (d + 1) 2 derivatives of P (z, f (z)) is bigger than r. Now writing the Bautin matrix in a basis of Q d starting with P , the elements of the first column of this matrix have multiplicity at least r. It follows that the Bautin determinant ∆ d (z) itself has multiplicity at least r = b d -d 2 -2d, and therefore η d ≥ b d -d 2 -2d ≥ ν d -d 2 -2d. As a conclusion, when η d is polynomially bounded, ν d is polynomially bounded as well. The existence of the polynomial T then follows from Theorem 3.2.8. Remark 3.3.5. The function ∆ d (z) is a polynomial with coefficients in Z in the variables a 1 (z), . . . , a d 2 +d (z) and with degree d(d+1) 2 2

  , and consequently when there exist polynomials R and S such that θ d ≤ R(d), h d ≤ e S(d) , one gets Z d (f ) ≤ T (d)ν 2d log ν 2d , for some polynomial T . Now in order to estimate the growth of the transcendence sequence (ν d ) d≥1 , let us assume that the lacunarity of the series f is quantitatively controlled by the following condition(3.4.1) 

  , since by condition (3.4.1), n l+2 > n 2 l+1 . Proposition 3.4.3. Under condition (3.4.1), for any l ≥ 1 and for any d in the interval [n l , n l+1 -1] we have

Lemma 3 . 1 2

 31 4.2 does not only let us bound the terms of the sequence ν like in Proposition 3.4.3, it also lets us compute some (d + 1) 2 × (d + 1) 2 non-zero minor determinant in the Bautin matrix M (up to allowing more than b + 1 rows in M ). Proposition 3.4.4. Under condition (3.4.1), for any l ≥ 1, for any d ∈ [n l , n l+1 -1], there exists a (d + 1) 2 × (d + 1) 2 minor in M (up to allowing more than b + 1 rows in the definition of the Bautin matrix M ) with non-zero determinant ∆ = (a l+1 ) d(d+1) 2 . For d = n l+1 -1 this determinant is the upper square (d + 1) 2 × (d + 1) 2 minor of the Bautin matrix M . Proof. Let us fix l ≥ 1, and d ∈ [n l , n l+1 -1]. Then for any j = 0, . . . , d by Lemma 3.4.2, we have in M a lower-triangular square (d +1) × (d +1
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 4345 Theorem Under condition (3.4.2), the transcendence sequence ν d grows at most polynomially in d. More accurately we have
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 45346 When the gaps between the degrees n l grow faster than assumed in Theorem 3.4.5, that is faster than forced by condition (3.4.2), the asymptotic growth of the transcendence indices ν d and of bounds on Z d (f ) fastens accordingly. Notice, however, that from Proposition 3.4.3, for a subsequence of degrees of the form d = n l+1 -1, l ≥ 1, under condition (3.4.1) only, the multiplicity ν d is at most d 2 + 2d. Under appropriate assumptions on the coefficients a l for the above subsequence of degrees d we obtain a polynomial bound also for Z d (f ). This phenomenon is to compare to a similar behaviour in [22, Theorem 1.1] or [41, Theorem 0.3], [42, Theorem 1.3], where the minimal asymptotic for Z d (f ) is obtained on some sequence of degrees d going to infinity. Remark 3.4.7. In [21, Corollary 6.2], for α ≥ 3, the lacunarity condition,

4 ,

 4 Z d (f ) ≤ T (d).

Remark 4 .0. 1 .

 41 As already noticed in Remark 3.3.5, as a polynomial in the Taylor coefficients of the series f , the Bautin determinant (of size d 2 + d), still denoted ∆ d , is a polynomial in the variables a 1 , . . . , a d 2 +d and with degree d(d+1) 2 2 .

( 4 .0. 1 )

 41 |Q d | I m d = max{|Q d (x)|; x ∈ I m d } ≥ 1. Note that we also have |∆ d | I d 2 +d ≥ 1, since ∆ d = 1 when for instance a 1 d+1 = 1 and a j i = 0 for i = 1, . . . , d 2 + d, j = 1, . . . , d, i = d + 1, j = 1. Theorem 4.0.2. With the above notation, for any p ∈]0, 1[, there exists a set E p ⊂ I ∞ of measure p, such that for any f ∈ E p , and for any d ≥ 1,

( 4 .0. 2 )

 42 |P | I n < 4n λ d |P | Z , where λ = µ n (Z). Applying inequality (4.0.2) to Z = V d and P = Q d , by our assumption (4.0.1) we get

Corollary 4 . 0 . 3 . 4 ,

 4034 With the above notation, for any p ∈]0, 1[, there exists a set E p ⊂ I ∞ of measure p, such that for any f ∈ E p , on D1 Z d (f ) ≤ C p d 8 , where C p → +∞ as p → 1. Or, in other words, with probability 1, random series satisfy polynomial Bézout bounds (with degree at most 8).

4 .

 4 As a consequence of Theorems 3.2.8, 3.3.4, 3.4.5, 3.5.3 and Corollary 4.0.3, one has Theorem 5.0.2. Assume that one of the following conditions is satisfied (1) The Taylor coefficient of f at the origin are rational and the growth conditions (3.2.1) are satisfied, (2) f has rational Taylor coefficient at the origin satisfying the growth condition (3.2.1) and η d is polynomially bounded, (3) f (z) = k≥1 a k z n k , the lacunarity condition (3.4.2) is satisfied and for some p > 0, for any k ≥ 1, |a k | ≥ e -n p k , (4) f is a solution of an algebraic differential equation with rational coefficients and initial conditions, (5) f is a random series, in the sense of Section 4. Then there exist α, β > 0 such that #Γ f (Q, T ) ≤ β log α T.
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 25 d (f ) ≤ 5ν 2d log(4 + (ν 2d + 1) e 2(d+1) 3 ∆ ) ≤ 5ν 2d [log(5) + log(ν 2d + 1) + 2(d + 1) 3 + U (d)].

  m, analytic functions in a neighbourhood Ω of the polydisc of C n of radius A, and bounded there by B.

	In what follows we are interested in linear families of analytic functions of the form
	(2.0.2)