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Abstract. Complexity of near future and even nowadays applications
is exponentially increasing. In order to tackle the design of such complex
systems, being able to engineer self-organising systems is a promising
approach. This way, the whole system will autonomously changes its
behaviour as its parts locally reorganise themselves, always providing
an adapted function. This paper proposes to focus on engineering such
systems generating emergent functionalities. We will first define two im-
portant concepts to take into account in such a context: Emergence and
Self-Organisation. Building on these two concepts, we will highlight three
main challenges researchers have to cope with: (i) how to control the sys-
tem at the macro level by only focusing on the design of agents at the
micro level, (ii) what kind of tools, models and guides are needed to
develop such systems in order to help designers and (iii) how validation
of such systems can be achieved? Each of these three challenges will be
explained and positioned in regard to the main existing approaches. Our
solutions combining emergence and self-organisation will be expounded
for each challenge.

Keywords: Complex Systems, Engineering, Emergence, Multi-Agent
System, Self-Organisation.

1 Context, Definitions and the Three Challenges

Complexity of near future and even nowadays applications is exponentially in-
creasing. This is due to a combination of aspects such as the great number of 
components taking part in the applications, the fact that knowledge and control 
have to be distributed, the presence of non linear processes in the system, the 
fact that the system is more and more often open, its environment dynamic and 
the interactions unpredictable. In order to tackle the design of such complex 
systems, being able to engineer self-organising systems is a promising approach 
providing the needed robustness and adaptation in the light of the aforemen-
tioned difficulties.



1.1 Understanding and Designing Complex Artificial Systems

The multidisciplinary community ONCE-CS (Open Network of Centres of Ex-
cellence in Complex Systems), clearly states the current interests in Complexity:
”the new Science of Complex System addresses the need to master the increasing
complexity we see in natural and social systems. Examples include the human
and new treatments for disease, managing the Internet, public administration,
and business. This new science will revolutionise our world, causing irresistible
changes”. In computer science, different kinds of techniques have been developed
to tackle complexity such as those based on heuristics and metaheuristics [1],
those based on learning such as genetic algorithm or neural network [2,3] and
those based on self-organisation processes [4,5,6]. Since a Multi-Agent System
(MAS) is defined as a macro-system composed of autonomous agents which pur-
sue individual objectives and which interact in a common environment to solve
a common task, it can be viewed as a paradigm to design complex applications.
To overcome difficulties coming from the openness and the dynamic of the

environment, the system must be adaptive. Most natural systems have the ability
to adapt themselves to a changing environment, such as the ability of the body to
adapt its internal temperature when the temperature outside changes. It is well
known that the process enabling these phenomena is self-organisation, defined by
Bonabeau et al. as: ”a set of dynamical interactions whereby structures appear at
the global level of a system from interactions among its lower-level components
[. . . ] The rules specifying the interactions are executed on the basis of purely
local information, without reference to the global pattern” [7].

1.2 Defining Self-organisation and Emergence for Artificial Systems

Self-organisation is a paradigm more and more used in MAS [8] and a definition
with an artificial systems point of view has been provided by the European
working group TFG SO (TFG SO1 of Agentlink III) [9]:

Definition 1. Self-organisation is the mechanism or the process enabling a sys-
tem to change its organisation without explicit external command during its ex-
ecution time.

In general, the environment plays a fundamental role in the self-organisation pro-
cess in constraining the system behaviour. It provides events which disturbs the
system and leads the system to change its behaviour in self-organising. But some
artificial systems can self-organise without interaction with the environment. In
this case, when the system becomes stable it cannot evolve more.
The concept of self-organisation is often coupled with the concept of emer-

gence [10]. And it seems that emergence is a suitable context to design complex
systems that cannot be controlled by a human in a centralised way. We com-
monly agree with the fact that an emergent phenomenon must be observable.

1 TFG SO: Technical Forum Group on Self-Organisation in MAS, see
http://www.irit.fr/TFGSO.



From an observer point of view, we assume that if one can observe the content
of the entities of a system and if one can observe at the system level a behaviour
that cannot be reduced to the behaviour of the entities, the global behaviour
can be qualified as emergent. In other words, we can say that a human can-
not determine the global behaviour of the system only by looking at the agent
behaviour. We can also qualify a phenomenon as emergent if we need different
terms, vocabularies to explain the micro and the macro levels2. This leads to
give the following operational definition of emergence in artificial systems, based
on three points: what we want to be emergent (subject), at what condition it is
emergent and how we can use it (method) [11,12].

1. Subject. The goal of a computational system is to realise an adequate func-
tion, judged by a relevant user. This ”function” can be for instance a be-
haviour, a pattern, a property (which may evolve during time) that has to
emerge.

2. Condition. This function is emergent if the coding of the system does not
depend on the knowledge of this function. This coding has to contain the
mechanisms facilitating the adaptation of the system during its coupling with
the environment, so as to tend toward a coherent and relevant function.

3. Method. The mechanisms which allow the changes are specified by self-orga-
nisation rules, providing autonomous guidance to the components’ behaviour
without any explicit knowledge about the collective function nor how to
reach it.

1.3 The Three Challenges for Engineering Systems Which Generate
Emergent Functionalities

Designers of complex systems have been taking inspiration from natural systems
in which complex structures or behaviours appear at the global level of a system
from interactions among its lower-level components. The phenomenon observed
at the macro-level emerges by self-organisation of the micro-level components
making up the system. From an engineering point of view, the potential of this
approach is important because it simplifies the design and diminishes the design
delays. To develop a complex system, it is sufficient to design its components
(called agents) which are less complex, to provide them with means to self-
organise through local interactions and to enable them to interact with parts of
the environment. But this is not so easy to do, as Parunak & Zambonelli [13]
have claimed: ”Such behaviour can also surface in undesirable ways”. So, systems
can reach undesirable states because the main difficulty lies in controlling global
behaviour while designing at micro-level.
In our point of view, there are three main challenges to overcome to design

self-organising applications. The first consists in answering the question: ”how to
control the emergence” or in others terms ”how to control the system behaviour
at the macro level by only focusing on the design of agents at the micro level?”

2 This criteria has been highlighted in the working group TFG SO.



in order to avoid harmful global phenomena. The second challenge is to provide
tools, models and guides to develop such systems. Because the goal of engineering
self-organising systems is to deliver systems with a global behaviour which meets
the requirements or realizes the desired function, the third challenge is about
how to validate these systems. The aim of this paper is to briefly present these
challenges in regard to the main existing approaches and to expound our ideas
and solutions to address them.
In this paper, we first define the two important concepts to take into account

in such a context: Emergence and Self-Organisation (Section 2). Then, the three
challenges will be respectively explained in section 3,4 and 5, positioned in regard
to the main existing approaches and finally our approach will be expounded. The
paper ends by stating which research axes have to be pursued.

2 Challenge 1: An Emergence-Based Theory for the
Designer of Complex Systems

Designing such MAS requires to find rules to make the system achieves the
required collective behaviour, that is ”functions that are useful to the system’s
stakeholders” [14], ”the required macroscopic behaviour” [15], ”a functionally
adequate function” [11] ,... How does this produce a complex system with the
right behaviour at the global level? The environment plays here its key role
by constraining the system, and the system needs to be able to adapt to these
constraints. There is an apparent antinomic situation in the idea of engineering
applications with emergent functionalities. On one hand, emergent behaviour is
a behaviour which occurs and in a certain manner cannot be under control. On
the other hand, a software designer wants the system he is building to achieve a
desired function. So, we can conclude saying that we want to control the emergent
behaviour of the systems. The solution is then to better understand relations
between micro and macro levels and to build a system able to self-adapt to
environmental dynamics.

2.1 Some Mechanisms to Engineer Self-organising Applications

Currently, the objective of most researchers in self-organising MAS is to find
relevant mechanisms to guide the agent behaviour at the micro level, helping
the agents to self-organise and to obtain at the macro level, the behaviour of
the system the designer expects. But the previous definition framework needs to
be carefully instantiated with specific techniques enabling this self-organisation
while allowing emergent functionalities to appear. Usual techniques are based
on stigmergy, cooperation, gossip, natural selection, attraction and repulsion,
potential fields, social relationships, trust...
One of the first kind of artificial systems related to self-organisation is based on

the metaphor that only the better adapted individuals survive. In evolutionary
computation and genetic algorithms [16,17], the system finds a solution in a
huge state space in converging towards similar individuals which represent the



solution. They are able to learn and adapt because the population evolves under
the pressure of a specific function. Designer have to face two difficulties: on one
hand, to give a well suited problem representation in terms of individuals and
genes, and on the other hand to provide, in addition to mutation and cross-over
operators, an efficient fitness function used by the individuals. This fundamental
function is in general established from global knowledge about the solution the
designer wants to achieve.
Neural networks [18,19] are usually composed of several layers: the entry, out-

put and the hidden ones. Each layer has several neurons connected by weighted
links. They are able to change the organisation between neurons of two consec-
utive layers during the learning phase by changing the weights. In general, it is
difficult to find the right number of hidden levels and the number of neurons per
level. The function used to update the weights of the links is dependent of the
solution the system has to reach. Moreover, the learning corpus is not so easy
to choose and requires a habit from the designer. The evolution of the system
can be viewed as the self-organisation of the neurons, in particular in Kohonen
maps [20].
Multi-agent systems are one of the most representatives among artificial sys-

tems dealing with complexity and distribution [21,22]. Self-organisation is a way
to simplify the design of these systems in having a bottom up approach. Three
kinds of inspirations are used to design these self-organising systems: the bio-
logic and natural one [23], the social one [24], and the artificial one [25]. The
mechanisms based on biologic approaches are closer to the work presented in
this paper.
The stigmergy mechanism has been widely used and was first observed in

societies of social insects by Grassé and can be summarised as ”the work excites
the workers” [26]. Agents leave information in the environment which can be
perceived by the others. In general, this information evaporates after a given
time. This mechanism allows task coordination and regulation within a group,
using only indirect interactions and without central control. There is no method
to develop this technique and the primary difficulty is to adjust the different pa-
rameters such as the speed of evaporation or the amount of information dropped.
Because the solution must be represented in the environment, the final goal of
the system guides the design phase. It is quite obvious that it cannot be applied
if agents cannot act directly on an environment.

2.2 Adapt the System by Its Parts

In our approach, we consider that each part Pi of a system S achieves a par-
tial function fPi of the global function fS (cf. figure 1). fS is the result of the
combination of the partial functions fPi , noted by the operator ”◦”. The combi-
nation being determined by the current organisation of the parts, we can deduce
fS = fP1 ◦ fP2 ◦ ...◦ fPn . As generally fP1 ◦ fP2 �= fP2 ◦ fP1 , by transforming the
organisation, the combination of the partial functions is changed and therefore
the global function fS changes. So, enabling a MAS to self-organise consists in



Fig. 1. Adaptation: changing the function of the system by changing its organisation

enabling the agent to change inside the organisation. The global function realized
is the result of the organisation between agents in the system. This reorganisation
technique can be extended with two other techniques, we are currently working
on: self-tuning (parts can modify the parameters defining their behaviour) and
self-evolution (parts can appear and disappear when needed). To ensure that
the system will generate emergent behaviour, according to the definition of the
emergence and to be able to control this emergence, it is necessary to provide
to the agents a local criterion which enables them to self-organise. This requires
both a theoretical and engineering framework.
The cooperation is the engine of the self-organisation and the heart of our

bottom-up method. Cooperation is classically defined by the fact that two agents
work together if they need to share resources or competences [27]. We add to this
definition, the fact that an agent locally tries on one hand, to anticipate problems
and on the other hand to detect cooperation failures called Non Cooperative
Situations (NCS ) and try to repair these NCS [28]. To anticipate NCS, the
agent always chooses the actions which disturb the less other agents it knows.
In others words, the agents, by trying to always have a cooperative attitude, act
by reorganising their acquaintances and interactions with the others agents.

2.3 Controlling Emergence: The Theorem of Functional Adequacy

Cooperation was extensively studied in computer science by Axelrod [29] and
Huberman [30] for instance. ”Everybody will agree that cooperation is in general
advantageous for the group of cooperators as a whole, even though it may curb
some individual’s freedom” [31]. In order to show how cooperation improves ar-
tificial complex systems design, we have developed the AMAS (Adaptive Multi-
Agent System) [32,11] theory which is based upon the following theorem. This



theorem describes the relation between cooperation in a system and the collec-
tive result which is ”functionally adequate3”.

Theorem 1. For any functionally adequate system, there exists at least one
cooperative internal medium system that fulfils an equivalent function in the same
environment.

Definition 2. A cooperative internal medium system is a system where no NCS
exist.

Definition 3. An agent is in a (NCS) when:

(¬cper) a perceived signal is not understood or is ambiguous;
(¬cdec) perceived information does not produce any new decision;
(¬cact) the consequences of its actions are not useful to others.

The objective is to design systems that do the best they can when they encounter
difficulties called NCS. The designer has to describe not only what an agent has
to do in order to achieve its goal but also which locally detected situations must
be avoided and when they are detected how to suppress them (in the same
manner that exceptions are treated in classical programs).
This theorem means that we only have to use (and hence understand) a subset

of particular systems (those with cooperative internal mediums) in order to
obtain a functionally adequate system in a given environment. We concentrate
on a particular class of such systems, those with the following properties [32]:

– The system is cooperative and functionally adequate to the constraints of
its environment. Its parts do not ’know’ the global function the system has
to achieve via adaptation (thus enabling emergent functionalities).
– The system does not have an explicitly defined goal, rather it acts using its
perceptions of the environment as a feedback in order to adapt the global
function to be adequate. The mechanism of adaptation is for each agent to try
and maintain cooperation using their skills, representations of themselves,
other agents and environment.
– Each part only evaluates whether the changes taking place are cooperative
from its point of view – it does not know if these changes are dependent on
its own past actions.

2.4 Architecture and Functioning of an AMAS Agent

A cooperative agent in the AMAS theory has the four following characteristics.
First, an agent is autonomous. Secondly, an agent is unaware of the global func-
tion of the system; this global function emerges (from the agent level towards

3 ”Functional” refers to the ”function” the system is producing, in a broad meaning,
i.e. what the system is doing, what an observer would qualify as the behaviour of a
system. And ”adequate” simply means that the system is doing the ”right” thing,
judged by an observer or the environment. So ”functional adequacy” can be seen as
”having the appropriate behaviour for the task”.



the multi-agent level). Thirdly, an agent can detect NCSs and acts to return in
a cooperative state. And finally, a cooperative agent is not altruistic (it does not
always seeks to help the other agents), but benevolent (it seeks to achieve its
goal while being cooperative).
Cooperative agents are equipped with several modules representing a partition

of their “physical”, “cognitive” or “social” capacities. Each module represents
a specific resource for the agent during its “perceive-decide-act” life cycle. The
first four modules are quite classical in an agent model: Interaction Module (in
fact composed of Perception Module and Action Module), Skill Module, Repre-
sentation Module and Aptitude Module. The novelty comes from the Cooperation
Module which contains local rules to solve NCS. All the cooperative attitudes of
agents are implemented in this module: it must provide an action for a given state
of skills, representations and perceptions, if the agent is in a NCS. Therefore,
cooperative agents must possess rules to detect NCS. For each NCS detection
rule, the Cooperation Module associates one or several actions to process to
avoid or to solve the current NCS. During the perception phase of the agents’
life cycle, the Perception Modules updates the values of the sensors. These data
directly imply changes in the Skill and Representation Modules. Once the knowl-
edge updated, the decision phase must result on an action choice. During this
phase, the Aptitude Module computes from knowledge and proposes action(s)
or not. In the same manner, the Cooperation Module detects if the agent is in
a NCS or not. In the former case, the Cooperation Module proposes an action
that subsumes the proposed action by the Aptitude Module. In the latter case,
the only action4 proposed by the Aptitude Module is chosen. Once an action
is chosen during the action phase, the agent acts by activating its effectors or
changing its knowledge.
According to the AMAS theory, agents have to be able to detect when they

are in a NCS and how they can act to come back in a cooperative situation.
Agents also always try to stay in a cooperative situation and so the whole system
converges to a cooperative state within and with its environment. This leads –
according to the theorem of functional adequacy (theorem 1) – to an adequate
system.
Thus, this describes the typical decision process of a generic AMAS agent.

But the NCS and the actions which could be applied to solve them are not
generic: designers have to write their own specific NCS set and related actions
for each kind of agent they wish the system to contain.

3 Challenge 2: A Method and Tools for the Designer of
Complex Systems

The first and obvious problem software designers encounter when trying to en-
gineer complex systems lies of course in their nature: complexity. How can we
build something we do not even fully understand? Since the years 2000, agent

4 There is only one action possible, otherwise an NCS is detected.



oriented methodology field is in full rise; numerous new methodologies devoted
to particular problems appeared [33], but very few of them are devoted to design
multi-agent systems generating emergent functionalities.

3.1 Existing Works for Engineering Self-organising Multi-agent
Systems

Van Parunak and Bruckner propose a design guide for swarming systems engi-
neering [14] consisting of ten design principles: the four first are derived from
couples processes, the three next are derived from autocatalysis and the three
last are derived from functional adjustment. Even if swarming systems have
demonstrated their effectiveness as an alternative model of cognition and have
been applied to number of applications, this approach is not very easy to apply
because of the huge number of parameters to tune. The ten given principles are
very general and no associated tool exists. No guide is given to indicate if the
use of swarming systems is more relevant than conventional cognitive techniques
for designing the current application or problem.
De Wolf [15] has defined a full life-cycle methodology based on the Unified

Process customized to explicitly focus on engineering macroscopic behaviour of
such kind of systems. This customization takes place in the following steps of
the process:

– After the requirements analysis done, one checks if an autonomous behaviour
is needed, if the available information is distributed, if the system is subject
to high dynamics such as failures and frequent changes;
– In the design phase, general guidelines or principles, reference architectures,
decentralised mechanisms allowing coordination between agents to achieved
desirable macroscopic properties, have to be used to design self-organising
emergent MAS. In that sense, DeWolf proposes an initial catalogue including
the most widely used coordination mechanisms such as digital pheromones,
gradient fields, market based coordination, and tag based coordination. Fur-
thermore, he proposes ”Information flow” as a design abstraction which en-
ables designing a solution independently of the coordination mechanism.
– In the verification and testing phase, he combines agent-based simulations
with scientific numerical algorithms for dynamical systems design. More de-
tailed are given in the challenge 3 of this paper.

3.2 Engineering Adaptive Multi-agent Systems: ADELFE

ADELFE 5 is a methodology devoted to software engineering of adaptive multi-
agent according to the AMAS approach. ADELFE enables the development of
software with emergent functionality and consists of a notation based on UML
(Unified Modelling Language) and AUML (Agent-UML) [34], a design process

5 ADELFE is a French acronym for ”Atelier de Développement de Logiciels à Fonc-
tionnalité Émergente”.



based on the RUP (Rational Unified Process), a platform made up of a graphical
design tool called OpenTool and a library of components that can be used to
make the application development easier.
Thedesignprocess (seefigure2)coversall thephasesofa classical softwaredesign

(from the requirements to the deployment) in adding some specific steps to design
adaptive systems. OMG’s SPEM (Software Process Engineering Metamodel) has
been used to express the ADELFE process and the SPEM vocabulary is used to
expound themethodology:WorkDefinitions (WDi),Activities (Aj) andSteps (Sk).

ADELFE : Design Methodology

– Final requirements. The environment of the system is central in the AMAS
theory; this is due to the fact that the adaptation process depends on the in-
teractions between the system and its environment. This characteristic has
led to the addition of one Activity (A6) and one Step (A7-S2) in the ”Final
Requirements”WD2. Designersmust characterize the environment of the sys-
tem by qualifying it as being accessible or not, deterministic or not, dynamic
or static and discrete or continuous. These terms represent a help to later de-
termine if the AMAS technology is required or not to build the studied system
(A11). At this point, designers must also begin to think about the situations
that can be ”unexpected” or ”harmful” for the system because these situa-
tions can lead to NCS at the agent level. Therefore, the determination of use
cases has been modified to take this aspect into account (S2).
– Analysis. The use of AMAS theory is not a solution fitted to every applica-
tion. For that reason, ADELFE provides an interactive tool (A11) to help a
designer to decide if the use of the AMAS theory is required to implement
his application. ADELFE does not assume that all the entities defined dur-
ing the final requirements are agents. Therefore, this methodology focuses
on the agents identification (A12) and some guidelines are then provided
to help designers to identify agents [35]. A Step (S3) has also been added
concerning the study of agents relationships.
– Design. Agents being identified and their relationships being studied, de-
signers have now to study the way in which the agents are going to interact
(A15) thanks to protocol diagrams. ADELFE also provides a model for de-
signing cooperative agents (A16), following the agent architecture presented
in section 2.5. The global function of a self-organising system is not coded;
designers have only to code the local behaviour of the parts composing it.
ADELFE provides some generic cooperation failures such as incomprehen-
sion, ambiguity, uselessness or conflict. Designers must fill up one table per
NCS to give the name of each NCS, its generic type, the state in which
the agent must be to detect it, the conditions of its detection and what ac-
tions the agent must perform to deal with it. A new Activity (A17) of fast
prototyping based on finite state machine has been added to the process. It
enables designers to verify the behaviour of the built agents. Now simulations
tools is included into ADELFE to complete the life cycle of its development
process [36,37].



Fig. 2. ADELFE process

Tools Linked with ADELFE. Even if ADELFE is suited to develop appli-
cations based on the AMAS technology, it does not assume that the designer is
specialized in this field. Therefore, some additional notations are provided as well
as some tools to help or guide the designer throughout the process application
[38]:

1. A tool enabling to know if the use of the AMAS technology is useful to
implement the target system. Eleven questions are asked to designers using
a graphical interface. This adequacy is studied at two levels: the global one
(system) with 8 questions and the local one (components) with 3 questions.
A designer uses a slider to answer a question and to give a rate among twenty
possibilities ranging from ”yes” to ”no”. His answers are then analysed by
the support decision tool. The answers of ADELFE regarding the global level
and the local one are then given in a graphical tool and an interpretation of
the results can also be obtained.

2. An interactive tool which describes the process and helps the designer to
apply it (it can be downloaded at http://www.irit.fr/ADELFE). The first
functionality of the ADELFE interactive tool is to be a guide by describing
the process; each activity or step of the process is depicted and exemplified
by applying it to a timetabling problem (ETTO) [35]. The interactive tool
also provides a means to support the adopted notations and draw the needed
diagrams by integrating OpenTool which has been modified for ADELFE. It
checks the project consistency by displaying what stages (activities or steps)



can be done depending on what has been already done or what documents
have been produced yet.

3. OpenTool, a graphical modelling tool supporting the UML notation and
embedded in the ADELFE toolkit. It enables applications modelling while
assuring that the produced models are valid. As some lacks exist in the UML
notation to deal with the specific modules composing a cooperative agent,
nine stereotypes have been defined to show how an agent is formed and/or
how its behaviour is expressed («cooperative agent» «characteristic» «skill»,
«aptitude», «representation», «interaction», «perception», «actions» and
«cooperation»). On the other hand, to model interaction protocols between
agents AUML interaction protocol model has been extended and included in
OpenTool functionalities. OpenTool has also been modified to enabling ex-
pression of cooperation failures. In the fast prototyping stage (A-17), agents’
behaviours are simulated using a functionality of OpenTool which requires
a dynamic model (state-chart) for each simulated entity (object or agent).
As agents’ behaviours are modelled as AIP protocol diagrams and a method
was proposed to transform a protocol diagram (a particular generic sequence
diagram) into a state-chart that OpenTool is able to simulate.

4 Challenge 3 : A Validation Framework for the Designer
of Complex Systems

It is quite obvious that the software validation phase, requested by industrials
and end-users, is necessary before its commercialization. So, validation of self-
organising applications is, even more, a mandatory step during development.
In software engineering, there are often many validation activities but in this
paper we focus on the global behaviour validation of the system which consists
in verifying that the system complies to the desired function. Validation is not a
new axis in computer science, but self-organising systems lead to new challenges
not yet taken into account by classical methods. In large scale dynamic and
adaptive systems such as self-organising systems, the methods, techniques and
tools for validation are still in a research phase [39]. In general, formal methods
[40] for validation, such as model checking, theorem proving... are adequate for
checking/proving desired properties of the system when the code is showing the
following properties: it is static and it runs in well-known environments. A static
code is a code which does not evolve and there is no learning at this level. A
well-known environment means that the system does not face unexpected events
or unexpected scenarii.

4.1 Related Works in Multi-agent Systems

The question of validation becomes more and more crucial in self-organising
MAS and some works attempts to deal with it. Tom De Wolf et all [41] use
simulation-based scientific analysis for designing self-organising systems achiev-
ing the required system behaviour. They combine realistic agent-based simu-
lation and existing scientific numerical analysis algorithms to design a system



simulation. The main phase in the design process is to identify macroscopic
properties desired at the system level, macroscopic variables for measuring the
macroscopic properties and define microscopic variables for each macroscopic
one. Then when an analysis algorithm is chosen, simulations are launched so
as to analyse the global behaviour of the system in terms of desired properties
linked to specific parameters. Parameters are adjusted iteratively until the sys-
tems exhibits a satisfactory behaviour. The difficulty in this approach is to define
the different variables and express the link between the macro and micro levels.
Bruce Edmonds has shown in several papers [42,43] that formal methods are

insufficient to show the reliability of self-organised systems. He proposes to use
an experimental method to produce reliable self-organising systems and mixes
in his approach engineering and adaptation. After the process of construction
which constructs the multi-agent systems from the agents, the design process
consists in adaptation cycles. A cycle begins with a test and comparison of the
global behaviour of the system and the desired global behaviour. If it is not
satisfying the system adapts to change its global behaviour. This cycle stops
when the produced global behaviour fits the desired one. The validation is done
by experiments and is considered by the authors as the sole mean at this time.

4.2 Validation of AMAS

In ADELFE, the reliability of the global behaviour of the system, ensured by
the AMAS theory, is verified essentially at the design phase. In self-organising
system, the desired function cannot always be well defined, for example: what is
the global function of the Internet? What is the global function of a crowd? By
consequence the automatic verification is not always possible and must be done
by the designer. In ADELFE, this functional adequacy is checked at the end of
the design but also during the design. Our aim is to give more tools to automate
the verification-update cycle. We are very close to Edmonds’s approach. The
tests realized by simulation help to enhance the system and to improve the
functional adequacy, i.e. to verify that the system fits the desired function.
As explained in [11], we can consider in agent-based software engineering that

the object conceptual level and the agent conceptual level in the system design
process overlap. The test phase of the code realized with the targeted program-
ming language is done in parallel with the agent design phase (see figure 3). So,
in ADELFE, what we call Living Design is defined by the link between design
and test phases of the two processes. Namely, Living Design means ”construct
agents during run-time”. Therefore, the designer is like a biologist who studies
the behaviour of living creatures and who can modify its model according to his
observations. For doing this, simulation is used in order to help the designer to
develop the agents of the system by observing the system at the global level.
As we have say before, applying the AMAS theory consists in enumerating,

according to the current problem to solve, all the NCS that can appear during
the system functioning and then defining the actions the system must apply to
return to a cooperative state. Currently, during the preliminary requirements
phase, ADELFE provides tools to express NCS in the use case diagrams. During



Fig. 3. Living Design

the design phase, it is possible to find if some deadlocks can take place within
an interaction protocol, or if some protocols are useless or inconsistent. The
protocol diagram notation has been extended to express these situations. Thus,
the behaviour of several agents could be judged in accordance (or not) with the
sequence diagrams described in the analysis phase. However, the core difficulty
lies in identifying NCS and in helping the designer to find all these NCS. Simu-
lation is used in ADELFE to help designers to find the correct behaviours of the
agents during the design stage: by simulating a simplified system and observ-
ing it during execution, the behaviour of agents can be modified and improved.
Currently, our work focuses only on situated multi-agent systems and not yet
on communicative ones. The main reason for such a choice was that the obser-
vation of the behaviour in an environment is easier to be judged by an observer.
Simulation enables to automatically identify these situations during execution
of a prototype of a targeted MAS. A model of cooperative agents [37] is imple-
mented under the SeSAm platform by using an architecture inspired from the
subsumption architecture proposed by Brooks and reusing the notion of priority
between the (conditions, actions) couple. This behaviour can be expressed with
a set of behavioural rules which follow this pattern:

if premise then consequent

where premise is a logical predicate made up of elements coming from agent
perceptions or characteristics, and consequent activates one of the possible
actions this agent may perform. The difference between Brooks’ architecture
and ours is that our agents have representations. The cooperative agent model
[37] automatically detects some NCS during the execution of a simulated MAS
and shows where and when NCS appear. The designer has then to modify the
agent behaviour.
In our more recent work [36], this goes a step further as during a simulation

cycle, an agent has the ability to self-design its behaviour considering that (i)
all the rules needed to design the decision process are given by a designer (that
is the agent does not learn new rules during the process), (ii) the set of given
rules is complete and correctly written and (iii) the system interacts with a



dynamic environment. The Self-Design Behaviour Module (SDBM) inside an
agent is implemented as an adaptive MAS. Behavioural rules forming it have to
collectively adapt to the agent’s environment and are then considered as agents.
They have to self-organise in order to find the best hierarchy of rules that is
to say the most efficient behaviour for the agent it belongs to. This work is on
going but we obtained first encouraging results [36].
Because the systems are adaptive, it is necessary to validate them in a dy-

namic environment. The number of states and of events perceived by the system
must be very important and the validation can not currently be formal. The
formal validation can be done on the agent code but not yet at the global level,
so currently on these systems only partial formal validation can be done and
the global behaviour can be verified only by simulation. The role of the de-
signer/observer is fundamental because he participates to the co-construction of
the system. He plays the role of an environment which interacts with the system
and causes the change of the system behaviour.

5 Conclusion

We have presented the three main challenges for engineering systems with emer-
gent functionalities will be confronted with, as well as current investigated leads
and work relating to the use of self-organisation and emergent phenomena.

1. System control related problems can be partially solved by providing the sys-
tem with capability to self-adapt to the environment. Common decentralized
mechanisms used to achieve such a control are inspired by existing natural
systems (ants colony, collective movements) or social-related behaviours (co-
operation, competition). This is the case for the AMAS theory which is based
on an environmental constraints driven process and enables engineering sys-
tems whose parts self-organise according to local cooperative criteria.

2. In order to support those new ways to design complex systems, new tools
and methodologies have to focus on local behaviours, environment character-
ization and emergent phenomena. Unfortunately, the few existing method-
ologies are yet in the research domain and/or incomplete (no deployment
and maintenance phases). Moreover, system design analysis is still strongly
focused on global ends analysis which cannot fit with some application re-
quirements: for instance, in Ambiant Intelligence it is not possible to fully
specify what the system has to do.

3. Given that emergence and self-organisation had not seriously been studied
as hard science subject, classical formal methods are not suitable. Engi-
neered complex systems verification and validation can only be achieved
using simulation-based approaches. Nowadays, the most reliable way con-
sists in iteratively improving the designed system using mathematical tools
(statistical analysis, behavioural parameters optimisation) or semi-
autonomous adaptive programming (Living Design).

Emergence and self-organisation have only recently been considered as serious
alternatives in industrial software engineering. As anyone can notice by reading



strategic agendas of some European platforms (ARTEMIS, eMobility, EPoSS),
the main displayed concerns about these ”new paradigms” are validation and
verification aspects:

”These system-design principles seem to be compatible with the good
average-case performance. However, these often conflict with a design’s
predictability.” (Artist2 Network of Excellence, 20066)

Nevertheless, in our opinion, industry does not really have a choice: as software
becomes more complex, this approach is the only viable option currently known.
True artificial complex systems will thus be built using emergence and self-
organisation: Ambient Intelligence, Swarm Robotics, Autonomous Computing,
e-Health-care, Computational Biology...
Another major effort has to be done towards methodologies supporting (en-

abling) pure local analysis without any need to specify what the system has to
do or underspecified system. As a matter of fact, the core of the complex system
engineering problem remains the lack of accepted theories (even non complete
ones) of emergence and self-organisation.Without such a fundamental key, it will
be difficult to legitimate and disseminate this approach, as well as to promote
and explain any future successful ”killer applications”.
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