
HAL Id: hal-03798561
https://hal.science/hal-03798561

Submitted on 5 Oct 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Methodology Fragments Definition in SPEM for
Designing Adaptive Methodology : a First Step

Sylvain Rougemaille, Frédéric Migeon, Thierry Millan, Marie-Pierre Gleizes

To cite this version:
Sylvain Rougemaille, Frédéric Migeon, Thierry Millan, Marie-Pierre Gleizes. Methodology Fragments
Definition in SPEM for Designing Adaptive Methodology : a First Step. 9th International Workshop
on Agent Oriented Software Engineering (AOSE 2008), May 2008, Estoril, Portugal. pp.213-224,
�10.1007/978-3-642-01338-6_6�. �hal-03798561�

https://hal.science/hal-03798561
https://hal.archives-ouvertes.fr


Methodology Fragments Definition in SPEM

for Designing Adaptive Methodology:
A First Step

Sylvain Rougemaille1, Frederic Migeon1, Thierry Millan2,
and Marie-Pierre Gleizes1

1 SMAC team,
2 MACAO team,

IRIT Computer Science Research Institut of Toulouse,
Université Paul Sabatier,
118 Route de Narbonne,

F-31062 TOULOUSE CEDEX 9, France
{rougemai,migeon,Thierry.Milan,Marie-Pierre.Gleizes}@irit.fr

http://www.irit.fr

Abstract. The aim of this paper is to highlight how SPEM (Software
and System Process Engineering Meta-model) 2.0 OMG (Object Man-
agement Group) can participate to design adaptive methodology process.
The idea follows the FIPA Methodology Technical Committee (TC) one
which consists in expressing a methodology in several fragments. Then,
designer has to combine the relevant fragments to compose his own
methodology. In this paper, we have chosen SPEM 2.0 OMG to express
the fragments. The latest SPEM version improves methodology content
and process re-usability, by introducing new capabilities as a clear sep-
aration between structural and dynamic methodology concerns. Those
improvements in the field of methodology specification, are studied to
determine their interests in the scope of Agent-Oriented Software En-
gineering (AOSE) and particularly, their impact on “methodology frag-
ments” definition. ADELFE and PASSI methodologies have been taken
as example to illustrate the use of SPEM 2.0 in the scope of “fragment”
definition. In this paper, only the first step of the general objective con-
sisting in expressing the fragments, is done and presented.

Keywords: SPEM 2.0, ADELFE, Methodology Fragments, Agent Ori-
ented Software Engineering, Process Engineering.

1 Introduction

Many agent-oriented methodologies have been developed last decade (e.g. [1,12]:
ASPECS [7], ADELFE [2], Gaia [22], INGENIAS [9], PASSI [6], Prometheus [18],
SODA [17], Tropos [4]). Each has its own specificities: ADELFE is dedicated to
adaptive system and cooperative agents design, ASPECS is dedicated to holonic
multi-agent systems, Gaia focuses on static organization and roles, whereas



PASSI focuses on agent social aspects thanks to ontology, SODA highlights
the notion of environment, etc. However, Agent-Oriented Software Engineer-
ing (AOSE) research community agrees the necessity of several methodologies
and advocates the impossibility to build one general and universal one as it
was pointed out in works like [10]. Thus, we cannot assume these methodolo-
gies can be applied to build every multi-agent applications. It seems that some
methodologies or some parts of methodologies are more relevant than other to
achieve some kinds of task. For example Tropos treats very well the prelimi-
nary requirements and provides models to realize it. That is the reason why
the FIPA Methodology TC has proposed to define fragments. A fragment repre-
sents a portion of a methodology. Then, as it is also explained in [11], designers
can choose methodological components from different methodologies in order to
build their own relevant one. Software and System Process Engineering Meta-
model (SPEM) is a standard specified by the Object Management Group (OMG)
which latest revision 2.0 has just been adopted [16]. Its scope is the definition of a
minimal set of concepts to design and manage software and system development
process. In this paper, our aim is to highlight the relevance of this meta-model
to express FIPA fragments.

Section 2 briefly describes the ADELFE methodology process which is used
to illustrate the concepts developed in the paper. Section 3 presents the SPEM
2.0 OMG freshly adopted standard and studies more specifically new concepts
such as Method Plugin, that are promising in the scope of AOSE. We also argue
that this latest OMG vision of software process modeling is compliant to the
FIPA Methodology TC concepts of “Methodology fragment” [8] (see section 5).
Section 4 focuses on the aspects of SPEM 2.0 which are interesting for AOSE.
Section 5 defines the fragment notion and the translation between the fragment
and SPEM 2.0; this is illustrated on ADELFE and PASSI in section 6. The
papers ends with the analysis and some perspectives of this work.

2 Introducing ADELFE Methodology

In order to illustrate the use of SPEM 2.0 [16] in AOSE, the ADELFE method-
ology [2] which was described with the previous SPEM version, has been taken
as an example throughout the paper. ADELFE is devoted to the development of
softwares with emergent functionalities and conforming to the Adaptive Multi-
Agent System (AMAS) theory [3]. It is based on the Rational Unified Process
(RUP) which was modified to fit specific AMAS needs. We recently have mi-
grated this definition in SPEM 2.0 thanks to the Eclipse Process Framework
(EPF)1. The following sections are illustrated with this definition conforming to
the SPEM 2.0 recommended notations (SPEM 2.0 profile). ADELFE consists of
five phases:

– Preliminary and Final requirements: they represent typical phases in object-
oriented software development and are based on the RUP. However,

1 http://www.eclipse.org/epf



in addition to the classical approach, they define AMAS specific tasks such
as precise study of the system environment.

– Analysis: this is a specific phase that allows analysts to determine whether
an AMAS is needed or not.

– Design: this phase is devoted to the determination of software architecture.
It strongly depends on the previous ones (object or AMAS specific design).

– Development : this is a model-driven phase which allows automatic code gen-
eration of the previously designed agents. This phase is still under develop-
ment and was presented in [19].

This paper focuses on the analysis phase. It is composed of four tasks devoted
to the definition of a primary software architecture from the requirements that
have been previously established (see figure 1). It determines the adequacy be-
tween the problem domain and an AMAS solution. This is done thanks to the
“Verify AMAS Adequacy” task that allows the “Agent Analyst” to elect an
AMAS approach, if needed, by answering questions about the systems function-
alities.

To ease the analyst task, a visual tool which provides the adequacy degree at
local and global level, has been developed. This verification task is specific to
the ADELFE methodology, thus it has been defined as a fragment, and is a part
of section 6 examples.

3 SPEM 2.0 Overview

SPEM 2.0 is a MOF 2.0 [13] based meta-model that defines extension to the UML
2.0 infrastructure [14] meta-model. A notation has also been defined, which is
based on a UML 2.0 superstructure [15] profile. The following use this notation
to illustrate the underlying meta-model. Roughly, the SPEM 2.0 meta-model
consists of seven packages:

– The Core package defines SPEM 2.0 foundations: its main concepts and the
way they can be extended (based on UML 2.0 infrastructure)

– The Process Structure package contains the basics elements to describe a
development process as a breakdown structure.

– The Process Behavior package contains concepts enabling the description of
process execution (State,Transition, ControlFlow, etc.). It does not define a
specific formalism but links process structure and external behavioral con-
cepts letting implementers feel free to select the appropriate language (UML
activity or state machine diagrams, BPMN2, etc.)

– The Managed Content package defines concepts for textual descriptions of
processes and methodology contents.

– The Method Content package defines the core concepts of every methodology
such as Tasks, Roles and Work products.

– The Process With Method package binds method contents (i.e. what have to
be done) to process structure elements (i.e. the scheduling of these tasks).

2 Business Process Modeling Notation http://www.bpmn.org/



Fig. 1. ADELFE analysis phase workflow

– The Method Plugin package defines large scale plugin mechanisms to ease
the definition of separate extensible methodology. It provides the concept of
Method Library which is the container for Method Plugin and Configuration
(those two concepts and their interests are discussed in further sections).

As a process engineering meta-model, SPEM 2.0 allows to model, document,
present, manage, interchange development processes and methods. Phases can
be described from a static or structural point of view, in terms of Method Con-
tent concepts, or from a more dynamic point of view, using Process with Methods
concepts. Figure 1 is an example of a workflow (UML activity diagram) describ-
ing the tasks sequence and the products involved in the ADELFE analysis phase.

4 SPEM 2.0 Capabilities

SPEM 2.0 structure has been improved and some of its concepts have been clar-
ified, for instance, a clear separation have been defined between Method Content
Element and process Element. Those improvements bring capabilities that we
found interesting in the scope of agent oriented methodology fragments definition
and use.

4.1 Concerns Separation

SPEM 2.0 provides clear separation between the definition of methodology con-
tents Tasks, Work Products and Roles and their application in a specific delivery
process (Activities, Role Use, Work Product use). In fact, those two concerns



are respectively managed by the Method Content and Process Structure SPEM
packages. Thus, process description is separated from the structure, it could be
defined on its own (Process Behavior package) as, for example, an extension of
UML Superstructure behavioral concepts (Activity and State Chart diagrams
specialization). This separation is enforced by the definition of different Pack-
ageableElements : on one hand MethodContentPackage and on the other Pro-
cessPackage which represents two distinct “containers”. The first one contains
the building bricks of methodologies (Task, WorkProduct, Guidelines,...), the
second defines their use through BreakdownElements such as Activity, TaskUse,
RoleUse, WorkProductUse and so on.

4.2 Modularity and Re-usability

At the Method level. The Method Plugin package authorizes modularization,
eases extensibility and thus ensures that every methodology could be tailored
in the more suitable way. SPEM 2.0 allows the description of Method Plugin
which can be considered as a kind of extensible method packages container; it
defines a whole method (content and use). The idea can be summarize as follow,
a Method Library defines both Method Plugins and Method Configurations that
represent respectively the content of the library and visibility “rules” over this
content; in other words, building bricks that method engineers can select (the
set of methods contained by the library), and what is effectively presented to the
end-user (parts of those methods covering specific needs of the process). Method
Plugin defines a first level of modularity. In addition, Method Library concept
represents the topmost container for plugins and configurations, this last notion
constitutes a kind of repository.

At the Process Level. ProcessPattern is a special kind of activity defined in the
SPEM 2.0 base plugin, such as Iteration, Phase, etc. It refers to an un-applied gen-
eral process, i.e. a breakdown of elements unbound to Method Content elements.
It could be used as a building brick for development life cycle, the rationale for
this concept is to describe reusable cluster of activities known to achieve the pro-
duction of some deliverables (sets of Work products) in an efficient way.

Within a Process. Considering a fine-grain level of modularity and encapsu-
lation, SPEM 2.0 offers the concept of Process Component, which conforms to
the notion of software component [21] (provided and required interfaces, white
or black box vision, ports, assembly, etc.). Taking a closer look to the adopted
specification[16], it is a specialization of ProcessPackage, which is the primary
process element container (Activities, Task Use, Work Product Use, etc.). It
defines a process within an activity as a “black box” simply qualified by Work
Product Ports that could gather its inputs and outputs (as could be software com-
ponents interfaces). The main goal of process component is to keep some part of a
process unresolved, i.e. the development phase, in order to choose the better im-
plementation, using a code-centric approach or a model-driven one for example.



5 AOSE Methodology Fragments

This section presents the notion of Methodology Fragment in the scope of AOSE.
It is promoted by the FIPA Methodology TC [8] and shares principles with Sit-
uational Method Engineering as it was quoted in [20]. FIPA method fragments
are tightly connected to the SPEM 1.0 OMG standard as they use the same main
concepts: Activities, Artifacts, Role and so on.

5.1 Definition

This section presents the method fragment as it has been defined by the FIPA
methodology TC, an much more extensive definition of this proposition can be
found in [5]. According to the FIPA, a fragment is composed of the following parts:

1. A portion of process.
2. The result of the work. It represents some kind of product/artifact like

(A)UML/UML diagrams, text documents, etc.
3. Some preconditions, kind of constraints specifying when it is possible to start

the process specified in the fragment because of missing required inputs or
because of guard condition violation.

4. A list of concepts (related to the MAS meta-model) to be defined (designed)
or refined during the specified process fragment.

5. Guideline(s) that illustrates how to apply the fragment and best practices
related to that.

6. A glossary of terms used in the fragment (to avoid misunderstandings and to
ease re-usability).

7. Composition guidelines - A description of the context/problem that is behind
the methodology from which the specific fragment is extracted.

8. Aspects of fragment. Textual description of specific issues like for example:
platform to be used, application area, etc.

9. Dependency relationships useful to define fragments assembly.

It should be noticed that not all of these parts are always mandatory. However,
from this definition, it is already possible to note some interesting points. First
of all, fragments use concepts that are still defined in the SPEM 2.0 specifica-
tion (Activities, Work Products, Roles) but it needs clarification, because con-
cepts have been moved into separate packages and are associated thanks to new
elements such as WorkProductUse and RoleUse.

5.2 Fragment Compliance with SPEM 2.0

Rationale. SPEM possesses a wide audience and its use is enabled by many
implementations. We advocate that being compliant with this “de facto” stan-
dard is important to broaden the use of agent-oriented methodologies and princi-
ples. Furthermore, as fragments aim to provide a common framework (language,
repository) for agent-oriented methodologies and that the latest SPEM version
partially meets these requirements we propose a translation, mapping between
FIPA fragments and SPEM.



Mapping Fragments to SPEM 2.0. A method fragment is a portion of a
development process defining deliverables (work products), guidelines, precondi-
tions, and sets of concepts and key-words characterizing it in the scope of the
method in which it was defined. Considering fragments through this rough defi-
nition, eases the determination of the more suitable SPEM 2.0 concepts, if any.
However, one of the proposals of [5], which presents an enhanced version of the
fragment meta-model from the FIPA methodology TC, is that fragments should
be considered from different points of view whether you are interested in their
reuse, storing, implementation or in the definition of the process they represent.
So it seems obvious that the election of a method fragment depend on the point
of view and the requirements defined by the method engineer. By taking a closer
look to the SPEM 2.0 specification, Method plugin package provides concepts that
fulfill most of FIPA requirements:

– Method Plugin defines by the means of Method content packages and Process
packages sets of reusable process portions (see section 5.1). It goes further
than this by splitting those reusable parts into methodology contents and pro-
cess.

– FIPA vision of fragment corresponds to a process portion. Of course, this por-
tion must embody some composition rules or constraints. FIPA elected Pro-
cess Component as the SPEM 1.0 closer concept for fragment [5]. This notion
has been improved and clarify in the latest specification so that it seems it
better fits fragment needs. In fact, it defines precise input and output con-
straints in terms of Work Product Ports. A process component encapsulates
a single Activity which can be broken down into sub-activities representing
the process leading to be delivered of output work product using the declared
inputs.

– Referring to the above description, fragment is equipped with glossary, guide-
lines and other textual descriptions or concepts intended to ease method en-
gineer to achieve its composition. All those elements can be seen as Guidance
special kinds. In the Core Package Guidance is an Extensible Element spe-
cialization, therefore it can be extended and defines its own Kinds. Glossary,
Aspect, Guideline and Composition Guideline can be derived from Guidance
and applied to any elements defined in the Process Component.

– In [20] authors promote the idea of a common repository for method frag-
ments indexed thanks to concepts defined by MAS meta-models, they also
have implemented it. SPEM integrates the concept of repository: Method Li-
brary which is the container for Method Plugins. A library contains several
plugins, both Method Content and Process Package elements of these plug-
ins can be referred by Method Configuration to tailor and to present a new
Software Engineering Process (SEP).

– Dependency relationship are defined at different levels: between plugins, be-
tween process component as well as mapping from process pattern and the
methodology contents they use. In fact, it only depends on fragment
granularity.



Granularity. Fragment does not match a single SPEM 2.0 concept but should be
considered as different ones depending, for instance, on its granularity. As SPEM
offers different re-usable concepts with different granularity, from task to Method
Plugin.

Concerns. Fragment is a portion of process. However, process element in SPEM
2.0 has been divided into definition and use. Thus, this separation needs to be
considered while mapping fragment to SPEM concepts. Fragments that define
elementary work part, related products and roles should be mapped to Method
Content concepts. Whereas fragments defining some “good practice” or a com-
mon way to deliver a kind of products (i.e. an Model Driven approach to produce
code), should be mapped to Process Content concepts.

Custom Categories. Method plugin allows the re-usability of its whole
contents definitions and process uses. In order to ease the reuse of fragments,
we propose to integrate their definition into two Method Plugin customs cate-
gories, Fragments and Fragments Guidelines. Those two categories are intended
to group, on one hand, the work to do and the way it can be done (Tasks and Pro-
cess Patterns) and, on the other hand, guidances (concepts and all useful docu-
ments for the use of fragments). Those categories could be themselves categorized
thanks to inner custom categories (see 6.2).

Going Further. Method Library can be used as general purpose SEP container.
It could even contain sets of reusable elements (content and process) that do not
belong to a specific SEP, but could be used as building bricks. More than an
agent-oriented methodologies repository, SPEM 2.0 Method plugin and Library
allow to reuse any other method plugin elements since they have been imported
in the same library. The EPF eclipse plugin is a SPEM 2.0 implementation which
provides all those capabilities, thus it can be used to define method plugins into
library as well as tailor new SEP from those plugins (Method Configuration).
Projects such as OpenUP3 meet the requirements of the FIPA methodology TC
by using the modularity and re-usability skills of SPEM through the EPF plu-
gin. In fact, OpenUP provides an open-source, common and extensible base for
iterative incremental SEP. It seems obvious that AOSE will make profit of such
projects by defining specific AO method plugins and reusing predefined ones.

6 SPEM 2.0 Fragments Definition

This section presents a kind of fragment definition “process”, that is illustrated
with ADELFE, and PASSI fragment. First of all, method plugins have to be de-
fined. This allows us to describe re-usable method and process contents (Tasks,
Work Products, Roles and Guidance, etc.). Then, some customization is needed.
New plugins are equipped with two Custom Categories: Fragments and Frag-
ments Guidelines which will gather all elements that are needed for the

3 http://epf.eclipse.org/wikis/openup



Fig. 2. DOD PASSI fragment definition in SPEM 2.0 using EPF

description of re-usable method fragments. At this stage, the definition of frag-
ments only depends on their characteristics (see section 5.1). The following
presents SPEM 2.0 fragment definitions. ADELFE characteristic parts (previ-
ously identified as fragments) as first instance, as well as a PASSI fragment. We
use the EPF eclipse plugin to realize these definitions.

6.1 ADELFE Fragments

ADELFE has been defined as a sequence of Work Definitions containing Activi-
ties, Work Products and Role. As this description could not be straight forward
translated to SPEM 2.0, due to concern separation mainly, we have to gather ba-
sic work definitions (Tasks in SPEM 2.0) into some kinds of categories. This is
the purpose of Discipline: the Tasks intended to be executed during a particu-
lar Phase or Iteration are grouped in the same Discipline. In this example, we
focus on the fragment called: “Verify AMAS adequacy” Task. As a SPEM 2.0
Task, it can be re-used and even extended in other method plugin. It consists of
two Steps : “Verify adequacy at the global” and “local level”. This Task/fragment
is related to specific Guidances, which ease its use and integration within an
other method: the “AMAS Adequacy” Concept and the “Adequacy tool” Tool
Mentor4. We have added this task at the Fragments category, as well as its re-
lated guidances to the Fragments Guidelines category (as shown in the right panel
of the screen shot in figure 2).

4 Concept and Tool Mentor are both Kind of Guidance, they are defined in the SPEM
2.0 base plugin.



6.2 PASSI DOD Fragment

We choose the “Domain Ontology Description Fragment” as an other instance
of SPEM 2.0 fragment description. According to its definition [5], it is a “coarse
grain” fragment. It involves several tasks, work products in a specific workflow.
We have made the choice of mapping it to a Process With Method element: a De-
livery Process5 which contains an Activity named “DOD delivery”. This activity
is broken down into tasks leading to the delivery of the DOD. We also have de-
fined some inner categories to distinguish tasks from process, roles and products
(see figure 2). Moreover, the DOD PASSI fragment defines “fragment aspects”
that haven’t been defined in ADELFE fragment. We have determined that this
concepts should mapped to a “generic kind of guidance”: Supporting material as
it is used to contain “information not specifically covered by the other guidance
types”.

7 Discussion and Prospects

According to the previous examples, it seems that SPEM 2.0, thanks to its ca-
pabilities (as shown in section 4.2), goes one step further toward the provision of
an agent-oriented Method library where all the identified methodology fragment
should be defined and stored as reusable and extensible Method Content and Pro-
cesses within Method plugins. Moreover, the SPEM standard provides a common
frame or language to define methods, good practices and gained expertise in the
field of AOSE, as well as a widespread use and tool support for the description,
management or even enactment of processes.

Situational Method Engineering has promoted for years, the idea that not a
single method could fit all method engineers needs, it strongly depends on the
studied domain. From this idea, FIPA has proposed the concept of fragments
which is intended to cope with this problem. We assume that the SPEM 2.0 ver-
sion has reached a stage where modularity and re-usability area is sufficient to
allow fragments definition. However, even if a descriptive specification is already
possible using SPEM, some important issues still have to be faced. For instance,
we have presented the description of fragments with EPF, this is not straight-
forward. In fact, Process Component is not implemented in EPF, methodological
units can’t be expressed so easily with encapsulation and interfaces (provided or
requested). Although a task can be defined with input and output work products
(as we discussed it in section 5.2) the SPEM 2.0 base plug-in provided by EPF
does not allow to define coarse-grained encapsulated units.

Therefore, what about the assembly of such fragment? How can we fix problems
such as input/output type verifications, name conflicts, etc.? How can we assist
method engineer during the election of the more suitable fragment while they are
devoted to different agent paradigms? One of the ideas proposed in [20] for the
browsing and search into fragment repository, is the use of an ontology, or at least

5 SPEM 2.0 base plugin special kind of Process Package.



a taxonomy, containing the concepts linked to each fragment and which can be
use as a guide for the tailoring of a new fragment-based methodology.

Fragments interest is precisely that they focus on specific agent paradigms
(ADELFE for emergent system and cooperative agent, ASPECS for holonic MAS,
etc.). Thus, they depend on the underpinning method meta-model from which
they are derived. This implies that, to perform fragment connection to another,
a kind of mapping or “glue” have to be created because related concepts may be-
long to different paradigm or domain. Thus, building ontology over those concepts
may ease this “glue” generation, maybe using model transformation. However, if
we reconsider the ADELFE fragment of adequacy verification, is it really specific
to AMAS or could it be generalized to any type of agent? Therefore, could it be
used to verify adequacy of a system with holonic paradigm, provided that it has
been extended or adapted. This implies that fragments should be parameterized
with concepts like the type of agent or system (cooperative, BDI, holonic, etc.).
For instance, the adequacy verification will become: “verification of the adequacy
between solution and the problem domain”.

However, assembly is a well-known problem in the scope of programming lan-
guage, composing software component or aspects is not trivial. Therefore, com-
posing methodology fragments appears to be a complicated task, thus automate
the design of a new methodology will result in a much more complicated work.

This paper has presented some preliminary steps towards this further goal. The
main work will be to propose tools to combine these fragments. Because it is a
complex problem requiring adaptation, we can propose an adaptive multi-agent
system to solve it where the fragments will be agentified.

References

1. Bergenti, F., Gleizes, M.-P., Zambonelli, F. (eds.): Methodologies and Software En-
gineering for Agent Sytems. Kluwer Academic Publishers, Dordrecht (2004)

2. Bernon, C., Camps, V., Gleizes, M.-P., Picard, G.: Engineering Adaptive Multi-
Agent Systems: The ADELFE Methodology. In: Henderson-Sellers, B., Giorgini, P.
(eds.) Agent-Oriented Methodologies, pp. 172–202. Idea Group Pub., USA (2005)

3. Capera, D., Georgé, J.-P., Gleizes, M.-P., Glize, P.: The AMAS Theory for Complex
Problem Solving Based on Self-organizing Cooperative Agents. In: TAPOCS 2003
at WETICE 2003, Linz, Austria. IEEE CS, Los Alamitos (2003)

4. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information sys-
tems engineering: the Tropos project. Information Systems 27(6) (2002)

5. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method fragments for agent
design methodologies: from standardisation to research. Int. J. of Agent-Oriented
Software Engineering 1, 91–121 (2007)

6. Cossentino, M., Gaglio, S., Sabatucci, L., Seidita, V.: The PASSI and agile PASSI
MAS meta-models compared with a unifying proposal. In: Pěchouček, M., Petta,
P., Varga, L.Z. (eds.) CEEMAS 2005. LNCS, vol. 3690, pp. 183–192. Springer, Hei-
delberg (2005)

7. Cossentino, M., Gaud, N., Galland, S., Hilaire, V., Koukam, A.: A holonic meta-
model for agent-oriented analysis and design. In: Mař́ık, V., Vyatkin, V., Colombo,
A.W. (eds.) HoloMAS 2007. LNCS, vol. 4659, pp. 237–246. Springer, Heidelberg
(2007)



8. FIPA. Method fragment definition, fipa document edition (November 2003)
9. Gomez-Sanz, J., Pavon, J.: Agent Oriented Software Engineering with INGENIAS.

In: Mař́ık, V., Müller, J.P., Pěchouček, M. (eds.) CEEMAS 2003. LNCS, vol. 2691,
p. 394. Springer, Heidelberg (2003)

10. Henderson-Sellers, B.: Evaluating the feasibility of method engineering for the cre-
ation of agent-oriented methodologies. In: Pěchouček, M., Petta, P., Varga, L.Z.
(eds.) CEEMAS 2005. LNCS, vol. 3690, pp. 142–152. Springer, Heidelberg (2005)

11. Juan, T., Sterling, L., Martelli, M., Mascardi, V.: Customizing AOSE methodolo-
gies by reusing AOSE features. In: Rosenschein, J.S., Sandholm, T., Wooldridge,
M., Yokoo, M. (eds.) International Conference on Autonomas Agents and Multi-
Agent Systems (AAMAS 2003), Melbourne, Australia, pp. 1024–1025 (2003)

12. Luck, M., Ashri, R., d’Inverno, M.: Agent-Based Software Development. Artech
House, Inc., Norwood (2004)

13. Object Management Group, Inc. Meta Object Facility (MOF) 2.0 Core Specifica-
tion (October 2003)

14. Object Management Group, Inc. Unified Modeling Language (UML) 2.0 Infrastruc-
ture Specification. Final Adopted Specification (August 2003)

15. Object Management Group, Inc. Unified Modeling Language (UML) 2.0 Super-
structure Specification. Final Adopted Specification (August 2003)

16. Object Management Group, Inc. Software & Systems Process Engineering Meta-
model Specification v2.0, omg edition (October 2007)

17. Omicini, A.: SODA: Societies and infrastructures in the analysis and design of
agent-based systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS,
vol. 1957, pp. 185–193. Springer, Heidelberg (2001)

18. Padgham, L., Winikoff, M.: Prometheus: A methodology for developing intelligent
agents. In: Proceedings of the Third International Workshop on Agent Oriented
Software Engineering at AAMAS (July 2002)

19. Rougemaille, S., Migeon, F., Maurel, C., Gleizes, M.-P.: Model Driven Engineer-
ing for Designing Adaptive Multi-Agent Systems. In: Artikis, A., O’Hare, G.M.P.,
Stathis, K., Vouros, G. (eds.) ESAW 2007. LNCS, vol. 4995, Springer, Heidelberg
(2008)

20. Seidita, V., Cossentino, M., Gaglio, S.: A repository of fragments for agent system
design. In: Paoli, F.D., Stefano, A.D., Omicini, A., Santoro, C. (eds.) Proceedings
of the 7th WOA 2006 Workshop From Objects to Agents, September 2006. CEUR
Workshop Proceedings, vol. 204, CEUR-WS.org (2006)

21. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming, 2nd edn. ACM Press/Addison-Wesley (2002)

22. Wooldridge, M., Jennings, N.R., Kinny, D.: The gaia methodology for agent-
oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000); Times Cited: 3 Article English Cited References Count: 34 412fd


